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Abstract

We introduce delegation into a standard Lucas exchange economy, where trading

in financial assets is delegated to funds, but the endowment process is owned by their

clients. Flow-performance incentive functions describe how much capital investors pro-

vide to funds at each date, as a function of past performance. We consider a rich set

of flow-performance functions including examples with both convex and concave re-

gions, and derive implications for asset prices and trading patterns of various incentive

schemes. Delegation affects the Sharpe ratio through two channels: discount rate and

capital flow. The two work in opposite directions leaving the aggregate effect ambigu-

ous, in general. For some flow-performance functions even if all investors are identical

funds trade among themselves and returns are dispersed in the cross-section. In con-

trast, when the flow-performance relationship is convex for some funds and concave for

others they might not trade at all. In this case, delegation does not effect the Sharpe

ratio. Also, the direction of lending and borrowing between funds with different incen-

tives can depend on the sign of the skew of the endowment process.

∗Email address: rkaniel@duke.edu, kondorp@ceu.hu. We are grateful to seminar participants at Central
European University , CREI, Collegio Carlo Alberto, London School of Economomics, Oxford University,
and Tilburg University.



1 Introduction

While it is undisputed that financial intermediaries play a central role in financial markets,

our understanding of the impact of these intermediaries on asset prices is fairly limited.1

Specifically, we know fairly little on how do the incentives of delegated portfolio managers

impact asset prices when different types of delegated portfolio managers co-exist.

The importance of improving our understanding of the link between the incentives of

these intermediaries and asset prices was highlighted in the recent financial crisis. Some

have suggested that the incentives of financial institutions played an important role in the

emergence of the crisis, as well as in amplifying it once it began. To analyze the link

between the incentives of these institutions and asset prices, we introduce delegation into a

standard Lucas exchange economy, by introducing financial intermediaries (funds) that make

dynamic investment decisions on behalf of their clients, who own the endowment process.

A general insight from our analysis is that the implications of convexities in incentives are

richer than the popular view that they induce risk taking. For example fund managers with

the most convex incentives might not leverage up and their presence might not decrease

the Sharpe-ratio. Also, even if agents are identical, convexities in the flow-performance

relationship induce heterogeneous strategies, trade, preference for positive skewness and

excessively volatile prices.

Similar to a standard Lucas exchange economy there is a Lucas tree paying a stochastic

dividend each period, there is a stock which is a a claim on the endowment process, and a

riskless bond which is in zero net supply. Financial markets are populated by fund managers.

These managers are allowed to set their fees freely every period, which they need to consume.

Each period they invest the capital they have under management in a portfolio of the two

financial assets. The endowment process is owned by funds’ clients, who cannot invest

directly in financial assets. Each period clients allocate capital to different funds depending

on each fund’s past performance relative to the market. The relationship between last

period’s return compared to the market and new capital flow is described by each manager’s

incentive function. We interpret the incentive function as a short-cut for an unmodelled

learning process by clients on managers’. Its empirical counterpart is the flow-performance

relationship. We are agnostic as to whether the learning process is rational or not. Instead

of deriving the incentive function from first principles, we allow for a rich set of possible

exogenous specifications including examples with both convex and concave intervals. We

allow different types of funds to co-exist in the same economy by considering settings where

1See, for example, the presidential address of Allen (2001) for an elaborate discussion on the importance
of the role of financial intermediaries.
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different funds can have different incentive functions.

To obtain an analytically tractable model we combine a few simplifying assumptions.

First, managers have log utility. Second, managers are forced to consume their fees, and can

not trade on their own account. Third, incentive functions are composites of constant elastic-

ity functions. That is, we divide the set of possible relative returns into an arbitrary number

of segments. Within each segment the incentive function has constant elasticity. However,

the elasticity can freely vary across segments allowing for flat, linear, concave or convex

segments within the same incentive function.2 We are particularly interested in increasing

elasticity incentive functions, i.e. where higher segments imply larger elasticity. The com-

bination of log utility and piece-wise constant elasticity functions is the key methodological

contribution that allows us to derive simple analytical formulas for the trading pattern and

asset prices under various incentive functions, even when managers with different incentive

functions co-exist.

We present the main insights of the model through a sequence of three examples. In

the first, funds are heterogeneous with differing constant elasticity incentive functions. We

refer to funds with constant elasticity incentives as mutual funds. In the second, funds are

identical with an increasing elasticity incentive function. Specifically, the incentive function

has two segments where the response in capital flows has a larger elasticity in the higher

segment, when the return of the fund exceeds the market return by a prespecified proportion.

We refer to funds with such incentives as hedge funds. In the third, mutual funds and hedge

funds co-exist so that one group of funds has a constant elasticity incentive function and the

other has an increasing elasticity incentive function.

When funds are identical with an increasing elasticity incentive function there is trade

among ex ante identical agents, dispersion in realized returns and excess volatility in prices.

In particular, even if hedge funds are identical ex ante, a subset of them sell bonds to the

rest and invest in a leveraged portfolio. In contrast, buyers of the bond have a smaller then

unity (possibly negative) exposure to the market. If hedge funds were to follow an identical

strategy their return would equal to the market return in all states and they would never be

evaluated at the higher segment of their incentive function. This implies gains from trade.

With asymmetric strategies, a different subset of hedge funds outperforms the market in each

state, getting extra capital flows in that state. The benefit of the added flows outweighs the

cost induced by distorting the portfolio. As the performance of the two groups varies across

the two states, so does the total delegated endowment. As managers bid up prices in the

state when their total capital is higher, the price-dividend ratio also varies across states.

We interpret this as excess volatility, since in the standard no-delegation Lucas-economy

2With sufficient number of intervals we can basically approximate a wide set of incentive functions.
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the price-dividend ratio is constant. While the price-dividend ratio varies across states,

state prices and the Sharpe ratio remains constant. However, they do get impacted by the

presence of delegation, where the aggregate effect is driven by two effects. First, an extra

unit of return is appreciated more when the total capital of the fund industry is lower. This

is the standard discount rate effect. Second, an extra unit of return is appreciated more when

it increases capital flows through the incentive function. We call this the capital-flow effect.

Generally, the two effects work in the opposite direction, because the average hedge fund is

richer when she is evaluated at the higher-elasticity segment of her incentive function. In

aggregate, increasing elasticity incentives can both increase and decrease the Sharpe ratio.

To contrast the argument that incentives with increasing elasticity can create trade among

identical agents, we show that when incentive functions all have constant elasticities that

may differ across funds there is no trade, all funds hold the market portfolio, and the Sharpe

ratio is the same as it would be without delegation. In particular, we consider two groups of

mutual funds, where each of the groups can have a convex, concave, flat or linear constant

elasticity incentive function. Constant elasticities change marginal utilities by the same

proportion in both states. Therefore, even if the marginal utility of a unit return of agents

differ across groups, their marginal rate of substitution do not, and there are no gains from

trade. The capital flows and endowment share of mutual funds are independent from the

dividend growth shock because each fund performs exactly like the market in each state.

This implies no discount rate effect and no capital flow effect of delegation, so the Sharpe

ratio remains constant.

In our last example, mutual funds and hedge funds co-exist. In this case, the relative

capital of the two groups influences both portfolios allocations and prices. When hedge funds

own all the capital, then the equilibrium is as in the example with only hedge funds: there is

an asymmetric equilibrium where ex ante identical hedge funds trade among each other. As

the capital share of hedge funds decrease, the dispersion in hedge fund strategies and returns

decreases as well. When the capital share of hedge funds is sufficiently low all hedge funds

follow the same strategy. That is, hedge funds do not trade among themselves, but trade

with the mutual funds. Interestingly, when all hedge funds follow the same strategy, they

borrow from mutual funds and leverage up only when a boom is less likely than a recession.

Otherwise they lend to mutual funds and leverage down. For any underlying skewness of

the endowment process this implies a positively skewed relative return distribution for hedge

funds. Thus, in equilibrium increasing elasticity incentive functions imply the opposite of

the popular observation that hedge funds ”pick up nickels in front of a steam roller”.

Our paper is related to several branches of the literature. First, papers that study the

effects of delegated portfolio management on asset prices (e.g. Shleifer-Vishny 1997, Vayanos,
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2003, Cuoco-Kaniel, 2007, Dasgupta-Prat, 2006, 2008, Guerrieri-Kondor, 2009, ) Most of

these papers use models that are fairly different than the Lucas-tree exchange economy,

making it hard to compare the results to standard consumption based asset pricing models.

Apart from our work, to our knowledge the only other exception is He and Krishnamurthy

(2008) who also studies the effect of delegation in a standard Lucas-economy. The main

difference is that in He and Krishnamurthy (2008) managers are not directly interested in

managing larger funds. In their model, fund flows effect the decision of managers only

indirectly, through the effect of flows on equilibrium prices. Therefore, they cannot asses the

effect of convexities in the flow-performance relationship on asset prices through managers’

incentives. In contrast, this is our main focus.

Second, the literature on consumption based asset pricing with heterogeneous risk aver-

sion (e.g. Dumas (1989), Wang (1996), Chan-Kogan (2002), Bhamra-Uppal, (2007), Longstaff-

Wang (2008)). Models in these papers have similar structure to ours but very different im-

plications. The closest to our work is Chan and Kogan (2002) who assumes that agents value

their consumption relative to others. In flavor, this is similar to our assumption that fund

flows are a function of relative performance. However, the two structures have very different

implications. This demonstrate well that heterogeneous incentives and heterogeneous risk

aversion have different asset pricing implications. For example, unlike in our structure, in

Chen and Kogan trade among identical traders is never required in equilibrium. Also, in

Chan and Kogan relative consumption evaluation implies a stationary distribution of con-

sumption shares. This is not the case in our structure. In our basic model only one of the

intermediaries survive in the long term. Finally, just like in any other paper with hetero-

geneous risk-aversion, in Chan and Kogan less risk averse agents always lend to more risk

averse agents. In our paper, hedge funds typically borrow from mutual funds when a high

shock is unlikely but lend to mutual funds when a high shock is likely.

additional related literature to be added here....

The structure of the paper is as follows. In the next section we present the general

model. We discuss the general set up, our equilibrium concept and the main properties of

the equilibrium. In Section 3, we derive the main insights of our model by presenting three

examples. Readers more interested in insights then techniques might start directly with

Section 3. In Section 4 we present two extensions (allowing funds to endogenously decide

whether to be a mutual fund or a hedge fund, and allowing funds to endogenously choose

between two markets with differing dividend growth processes), while in Section 5 we discuss

the main assumptions of the model. Finally, we conclude.
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2 The general model

In this section we introduce the general framework, define our equilibrium concept and

present sufficient conditions for the existence of such an equilibrium and its basic properties.

This gives a useful toolbox which we will use in the subsequent sections to analyze various

examples.

2.1 The Economy

We consider a discrete-time, infinite-horizon exchange economy with complete financial mar-

kets and a single perishable consumption good. There is only one source of uncertainty and

participants trade in financial securities to share risk.

Our model has two non-standard elements. First, the endowment process is owned by

the clients of fund managers who cannot trade financial assets directly. Clients invest a pro-

portion of the endowment through each manager depending on the past relative performance

of the manager and described by their incentive function. The empirical counterpart of the

incentive function is the flow-performance relationship.3 Instead of deriving the incentive

function from first principles, we take it exogenously in the spirit of Shleifer and Vishny

(1997). However, we allow for a rich set of possible exogenous specifications including ex-

amples with kinks and convex intervals. Second, we allow for two groups of fund managers

with differing incentive functions to coexist.

Our objective is to analyze the effect of various versions of convexities in incentives

on trading patterns and asset prices, as well as to understand the equilibrium interactions

between different types of delegated portfolio managers.

Securities. The aggregate endowment process is described by the binomial tree

δt+1 = ytδt

where the growth process yt has two i.i.d. states: st = H,L. The dividend growth is either

high yH or low yL, with yH > yL. The probability of the high and the low states are p and

(1− p) respectively.

Investment opportunities are represented by a one period riskless bond and a risky stock.

3There is a large empirical literature exploring the relationship between past performance and future
fund flows. This literature shows that there is a positive relationship between performance and flows for
most type of financial intermediaries but the shape of this relationship is effected by the type of the fund.
See Chevalier and Ellison (1997), Sirri and Tufano (1998), and Chen et al. (2003)) for evidence on mutual
funds, Bares, Gibson, and Gyger (2002), Brown, Goetzman, and Ibbotson (1999), Edwards and Cagalyan
(2001), and Kat and Menexe (2002) for evidence on hedge funds and Kaplan and Schoar (2004) for evidence
on private equity partnerships.
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The riskless bond is in zero net supply. The stock is a claim to the dividend stream δt and

is in unit supply. The price of the stock and the interest rate on the bond are qt and Rt

respectively.

Fund Managers. The economy is populated by two groups of fund managers i = 1, 2. We

assume each group is comprised of a continuum of managers with a total mass of one. All

managers derive utility from inter-temporal consumption, and have log utility. In period, t,

each manager determines the fraction ψit of beginning of period assets under management

wit she will receive as a fee. We assume the manager must consume her fee ψitw
i
t.

4 She then

invests the remaining (1− ψit)wit in a portfolio with αit share in the stock and (1− αit) share

in the bond. The return on the fund’s portfolio is

ρt+1

(
αit, st+1

)
≡ αit

(
qt+1(st+1) + δt+1(st+1)

qt
−Rt

)
+Rt,

The representative manager in group i solves the problem

max
{ψit,αit}

E

[∑
t

βt lnψitw
i
t

]
s.t. wit+1 = gi

(
Y i
t+1

)
wit+1,− (1)

where gi (·) is the incentive function,

wit+1,− ≡ ρt+1

(
αit, st+1

) (
1− ψit

)
wit

Y i
t+1(αit, st+1) ≡ ρt+1 (αit, st+1)(

qt+1(st+1)+δt+1(st+1)
qt

)
are the the assets under management at the end of the previous period (i.e., after the time

t+ 1 return has been realized, but before investors decide how much to allocate to the fund

to manage between t+ 1 and t+ 2) and the return on her portfolio relative to the market.

Clients. To close the model, we have to exogenously specify the decision of the owners

of the capital as their consumption-saving decision is given by the incentive function. In

particular, the owners of capital consume

δt + qt −
(
g1
(
Y 1
t+1

)
w1
t,− + g2

(
Y 2
t+1

)
w2
t,−
)
.

4The assumption that managers cannot invest their fees is a major simplification allowing us not to keep
track the private wealth of fund managers. Note also that on one hand, we are allowing ψt to be conditional on
any variable in the managers’ information set in t. That is, we do not constrain our attention to proportional
fees ex ante. On the other hand, our assumptions imply that fees are proportional in equilibrium, managers
effectively maximize capital under management and fees do not play any role in the portfolio decision.
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Incentive Functions. A fund’s assets under management at a beginning of a period are

proportional to assets under management at the end of the previous period. The proportion

gi(·) depends on a fund’s return relative to the market portfolio, and can be a nonlinear and

non-concave function of this relative return.

In particular, incentive functions belong to the following class:

wit+1 = Aim
(
Y i
t+1

)nim−1
wit+1,− if Y i

t+1 ∈ κim (2)

where nim ≥ 1, Aim > 0 and we pick M i − 1 positive and increasing ”kinks”, kim,m =

1, ...M i−1. The kinks divide the positive segment of the real line into M i segments, κi1, ...κ
i
M

defined as

κi1 ∈ [0, ki1)

κim = [kim−1, k
i
m)

κiM = [kiM−1,∞).

This specification allows for varying shapes across segments. For example, nim = 1 implies

in segment m the incentive function is flat. Similarly, nim = 2, 1 < nim < 2, nim > 2 imply

a linear, concave, and convex segment respectively. We can think of the relative size of the

nim coefficients across segments of i′s incentive function as the ”log-log convexity” of the

incentive function in the following sense. In each segment m

∂ ln gi
(
Y i
t+1

)
∂ lnY i

t+1

= nim,

therefore, if nim is increasing in m, ln gi (·) is convex in the log of the relative return. In this

sense, a specification with increasing elasticity can be interpreted as convexity in incentives.

Although our general approach would allow for discontinuities, throughout the analysis we

assume that the incentive function is continuous by imposing the restriction

Aim+1 = Aim
(
kim
)nim−nim+1 .

Note that with the choice of no kink and Ai = ni = 1 our structure nests the standard case

of an individual log-investor.

After characterizing the equilibrium in general, we will analyze possible equilibria in the

three following examples of increasing complexity.

8



Example 1 (no kink) For i = 1, 2

wit+1 = Ai
(
Y i
t+1

)ni−1
wit+1,− (3)

The incentive functions of the two groups can differ, but neither of the two has a kink.

We refer to managers with such constant elasticity incentive functions as mutual funds.

Example 2 (only hedge funds) Assume k ≥ 1, and n2 ≥ n1. For i = 1, 2

wit+1 =

A1

(
Y i
t+1

)n1−1
wit+1,− ifY i

t+1 < k

A1k
n1−n2

(
Y i
t+1

)n2−1
wit+1,− ifY i

t+1 ≥ k.
(4)

Since the two groups have the same incentive functions, effectively there is a single group.

The assumption that n2 ≥ n1 implies that the elasticity of the incentive function is higher

above the kind than below, implying an increasing elasticity incentive function.

We refer to a manager with such incentive function as a hedge fund.5 Intuitively, hedge

fund managers represent the group among which the financial press is constant search for

”stars”. When the relative return of one of the funds reaches a particular level, her perfor-

mance hits the headlines and the elasticity of her flow-performance relationship increases.

Accordingly, we will see that the significance of the kink in the results is to allow for increas-

ing elasticity as opposed to introducing non-differentiability.

Example 3 (hedge funds and mutual funds) Assume k ≥ 1, and n2 ≥ n1. For i = 1, 2

w1
t+1 =

A1

(
Y 1
t+1

)n1−1
w1
t+1,− ifY 1

t+1 < k

A1k
n1−n2

(
Y 1
t+1

)n2−1
w1
t+1,− ifY 1

t+1 ≥ k.
(5)

w2
t+1 = A

(
Y 2
t+1

)n−1
w2
t+1,−. (6)

Managers of type 1 are hedge funds, as in Example 2, while managers of type are mutual

funds, as in Example 1. Note that there are two alternative interpretation of the structure

in Example 2. We can see it as an example with two type of financial intermediaries, where

only one of them (the hedge fund) is subject to the pressure to show stellar performance for

the extra capital flow. A draw back of this interpretation is that here aggregate investment

is driven purely by the relative performance of intermediaries as opposed to any standard

5Our labeling of hedge funds and mutual funds is purely for presentational purposes. Pairing types of
financial institutions with the characteristics of their flow-performance functions is outside of the scope of
this paper.
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consumption smoothing arguments. However, an alternative interpretation comes if we set

A = 1, n = 2. This implies that mutual funds are in fact individual traders. They are not

subject to any in- or outflow of capital. Thus, instead of two financial intermediaries, we have

only one (hedge funds), but we have two types of individuals. There is an active group who

do not invest in the hedge fund, but trade directly and optimally on the financial market.

And there is an inactive group (clients) who invest only through hedge fund managers based

on their relative performance. The initial relative size of the two groups is arbitrary. This

second interpretation can be also applied to the general model. None of the qualitative

results change.

2.2 The Asymmetric Interior Equilibrium

In this section, we define the equilibrium, derive sufficient conditions for its existence and

provide some general characterizations. In the following sections we use these characteriza-

tion results to analyze in more detail Examples 1-3.

In our proposed equilibrium, there is a single state variable: the relative share of wealth

share of group 1:

ωt ≡
w1
t

w2
t + w1

t

.

We use the time script only when it is necessary to avoid confusion. Otherwise, variables

with no subscript refer to period t and we denote variables referring to t+1 period by prime.

We use the following definitions in our equilibrium concept.

Definition 1 An lh−portfolio is a portfolio, α, for which a fund’s return relative the the

market Yt+1 is in the l−th segment of the incentive function following a low shock st+1 = L

and in h-th segment following a high shock st+1 = H.

If α is an lh-portfolio, then

l =
M i∑
m=1

1{Yt+1(α,L)∈κim}m

h =
M i∑
m=1

1{Yt+1(α,H)∈κim}m.

In an asymmetric equilibrium managers in a given group i follow heterogeneous strategies.

However, we conjecture that in a given state ω there is a unique lh−portfolio which is optimal

for managers in group i. We refer to this locally optimal portfolio as αilh (ω). Therefore, to
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describe asymmetric strategy profiles it is sufficient to specify measures µilh (ω) of managers

in group i which choose corresponding αilh (ω) portfolios.6

Definition 2 A strategy profile P i (ω) is a triplet (Hi (ω) ,Mi (ω) ,Ai (ω)) where for any

ω:

• Hi (ω) is a set of lh index-pairs,

• Ai (ω) is a set of corresponding αilh(ω)-portfolios,

• Mi (ω) is a set of µilh (ω) : [0, 1]×Hi (ω)→ (0, 1] functions such that
∑

lh∈Hi(ω)

µilh (ω) =

1.

The above definition nests also the case where all managers of group i follow the same

strategy. In that case Hi (ω) and Ai (ω) are singletons, and µilh (ω) = 1 for lh ∈ Hi (ω) .

The next definition defines the asymmetric interior equilibrium.

Definition 3 An asymmetric interior equilibrium is a price process qs′(ω) for the stock

and R(ω) for the bond, a law of motion ω′ = Ωs′ (ω) for the relative wealth share of group 1,

and strategy profiles P i (ω) for i = 1, 2 such that

1. consumption choices ψi (ω) and trading strategies αilh (ω) are optimal for managers

given the equilibrium prices and the law of motion for the relative wealth share of group

1,

2. prices qs′(ω), and R(ω) clear both good and asset markets,

3. the law of motion for the relative share of group 1 is consistent with managers:

ω′ = Ωs′ (ω) .

2.2.1 Characterization and Existence

To characterize the equilibrium, it is useful to define the individual shape-adjusted probability

of a high state

ξilh ≡
pnih

pnih + (1− p)nil
, (7)

6Searching for asymmetric equilibria is necessary as there are very simple and intuitive cases where there
is no symmetric equilibrium. We will demonstrate this by Example 2 and 3.

11



and the the aggregate shape-adjusted probability of a high state

ξ̃ (ω) ≡ ω
∑

lh∈H1(ω)

µ1
lh (ω) ξ1

lh + (1− ω)
∑

lh∈H2(ω)

µ2
lh (ω) ξ2

lh. (8)

ξilh is simply the probability of a high state adjusted to the relative elasticity of the

incentive function in the high state, assuming that investor i forms an lh−portfolio. ξ̃ (ω)

is a weighted average of the individual shape adjusted probabilities. When the incentive

function elasticity is constant nih = nil and ξ̃ (ω) = ξilh = p.

We also define the end of period share of wealth of a given group i after a given shock s′

relative to the total, cum-dividend value as

W i
s′ (ω) =

∑
lh∈Hi(ω)

µilh (ω)Amlh(s′)

(
Y i
t+1(αilh(ω), s′

)nmlh(s′)−1
wit+1,−(αilh(ω), s′)

qs′ + δ′

and the aggregate version is

W̃s′ (ω) = W 1
s′ (ω) +W 2

s′ (ω) .

The representative manager in group i solves the problem

V
(
wit, ωt−1, st−1

)
= max

ψit,α
i
t

lnψitw
i
t + βE

(
V
(
wit+1, ωt, st

))
(9)

s.t.

wit+1 = gi
(
Y i
t+1

)
wit+1,−

In the sequel instead of tracking the stock price q (ω), and the stock price next period

qs′ (ω) , it is more convenient to track the price-dividend ratio

π (ω) =
q (ω)

δ
.

and the price dividend ratio next period

πs′ (ω) =
qs′ (ω)

δ′
.

The following proposition characterizes the equilibrium

Proposition 1 In an asymmetric interior equilibrium,
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1. the optimal consumption rule of agent i is

ψi (ω) = (1− β) , (10)

2. her optimal trading strategy is

αilh (ω) =
1− ξilh

1− yH(1+πH(ω))
R(ω)π(ω)

+
ξilh

1− yL(1+πL(ω))
R(ω)π(ω)

(11)

for some lh ∈ Hi (ω)

3. the value function is

V i
(
wit, ωt−1, st−1

)
=

1

1− β
lnwit + Λi (ωt−1, st−1) (12)

in any period t ≥ 1 and

V i
0

(
wi0, ω0, W̃0

)
=

1

1− β
lnwi0 + Λi

0

(
ω0, W̃0

)
(13)

in t = 0, where W̃0 is the initial total share of endowment of all managers.

4. the total share of capital of group i is

W 1
H (ω) = ω

∑
lh∈H1(ω)

µ1
lh (ω)A1

h

(
ξ1
lh

ξ̃ (ω)

)n1
h

. (14)

W 1
L (ω) = ω

∑
lh∈H1(ω)

µ1
lh (ω)A1

l

(
1− ξ1

lh

1− ξ̃ (ω)

)n1
l

(15)

W 2
H (ω) = (1− ω)

∑
lh∈H2(ω)

µ2
lh (ω)A2

h

(
ξ2
lh

ξ̃ (ω)

)n2
h

(16)

W 2
L (ω) = (1− ω)

∑
lh∈H2(ω)

µ2
lh (ω)A2

l

(
1− ξ2

lh

1− ξ̃ (ω)

)n2
l

, (17)

5. the price dividend ratio is

πs′ (ω) =
βW̃s′ (ω)

1− βW̃s′ (ω)
(18)

where W̃s′ (ω) = W 1
s′ (ω) +W 2

s′ (ω) is the total share of endowment of all managers,
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6. the interest rate is

R(ω) =
θ (ω)

π (ω)

where θ (ω) solves

ξ̃ (ω)
1

yH (1 + πH (ω))
+
(

1− ξ̃ (ω)
) 1

yL (1 + πL (ω))
=

1

θ (ω)
, (19)

7. the law of motion is

Ωs′ (ω) =
W 1
s′ (ω)

W̃s′ (ω)
. (20)

The following proposition describes sufficient conditions for existence of an asymmetric

interior equilibrium.

Proposition 2 The strategy profiles P i (ω) , prices πs′ (ω) , R (ω) and law of motion ω′ =

Ωs′ (ω) characterized by (12)-(20) form an asymmetric interior equilibrium, if for any ω

∈ [0, 1], and i = {1, 2}

1. for any l′h′ ∈ Hi (ω) and l′′h′′

p ln
Aih′′

(
ξi
l′′h′′

ξ̃(ω)

)ni
h′′

Aih′
(
ξi
l′h′

ξ̃(ω)

)nih + (1− p) ln
Ail′′
(

1−ξi
l′′h′′

1−ξ̃(ω)

)ni
l′′

Ail′
(

1−ξi
l′h′

1−ξ̃(ω)

)ni
l′
≤ 0 (21)

holds with equality whenever l′′h′′ ∈ Hi (ω) , and holds with strict inequality whenever

l′′h′′ /∈ Hi (ω).

2. for any lh ∈ Hi (ω) , αilh (ω), defined in (11), is an lh−portfolio, that is,

h =
M i∑
m=1

1
{
ξi
lh

ξ̃(ω)
∈κim}

m, and l =
M i∑
m=1

1
{

1−ξi
lh

1−ξ̃(ω)
∈κim}

m (22)

3. owners of capital consume a positive amount,

ω
∑

lh∈H1(ω)

µ1
lh (ω)A1

l

(
1− ξ1

lh

1− ξ̃ (ω)

)n1
l

+ (1− ω)
∑

lh∈H2(ω)

µ2
lh (ω)A2

l

(
ξ2
lh

ξ̃ (ω)

)n2
l

≤ 1(23)

ω
∑

lh∈H1(ω)

µ1
lh (ω)A1

h

(
ξ1
lh

ξ̃ (ω)

)n1
h

+ (1− ω)
∑

lh∈H2(ω)

µ2
lh (ω)A2

h

(
ξ2
lh

ξ̃ (ω)

)n2
h

≤ 1.(24)

14



We prove these propositions in the Appendix. Although the proof is relatively long, its

logic is simple. The difficulty of finding the equilibrium comes from the possible convexities

in the incentive function. In particular, as the problem might not be concave in the portfolio

choice, α, the first order condition might not be sufficient to find the equilibrium choice.

However, because of the interaction of log-utility and our piece-wise constant elasticity spec-

ification of the incentive function, there would not be such convexity issues, if the manager

should not have to consider the various segments of her incentive function. For example,

suppose we modify the incentive function of a manager in a way that regardless of her port-

folio she is compensated according to the parameters Ail, n
i
l ( Aih, n

i
h) after a low (high)

shock, where l (h) is a given segment of the original incentive function. Then the manager’s

problem has a well behaving first order condition. In fact, for given prices πs′ (ω) , R (ω) ,

her optimal portfolio is αilh (ω) defined in (11).

Now consider the following modified economy. Suppose that we modify the incentive

function of each manager in a similar way by choosing an lh index pair. This index pair

might be different across managers even within the same group. Think of the setsMi (ω) as

the distribution of lh index pairs across managers. Then all managers choose the portfolio

(11) for the given lh and prices πs′ (ω) , R (ω), consume according to (10), and their value

function indeed has the form of (12). Aggregating across their first order conditions and

imposing that their total holding of the stock has to sum up to 1, implies that prices satisfy

(19). The choice (11) and expression (19) imply that the relative return Y i
t+1 of a manager

with guess lh is
ξilh
ξ̃ (ω)

,
1− ξilh

1− ξ̃ (ω)
(25)

after a high shock and low shock, respectively. This in turn, gives expressions (14)-(17) and

the law of motion (20). Market clearing in the goods market implies the price-dividend ratio

(18). Finally, conditions (23)-(24) ensure that the consumption of the owners of capital is

non-negative. Thus, we have just established that expressions (12)-(20) is an equilibrium of

the modified economy.

Now consider the original economy. The equilibrium of the modified economy might not

be an equilibrium of the original economy because of two potential problems. First, some of

the αilh (ω)− portfolios with a measure µilh (ω) > 0 inMi (ω) might result in relative returns

which are not in the given lh segments of the original incentive function. That is, αilh (ω)

might not be an lh−portfolio under the equilibrium prices. Condition (22) makes sure that

this is not the case. Second, given that in the original economy the choice of the portfolio

influences at which segment of her incentive function the manager would be compensated,

the manager might prefer to deviate to another lh segment. Condition (21) ensures that

15



such deviation is not profitable.

Given Proposition 2, finding the equilibrium amounts to guessing and verifying on which

segments managers are likely to be evaluated for a given ω. That is guessing and verifying

a particular choice of Hi (ω) ,Mi (ω) . In Section 3, we illustrate this process by considering

Examples 1-3. This process is trivial in Example 1, because incentive functions have a single

segment. In Example 2, there is a limited number of combinations to consider as ω ≡ 1 and

there are only two segments. We also find the unique asymmetric interior equilibrium in the

more complex Example 3.

2.2.2 Distribution of returns and the Sharpe-ratio

Throughout the analysis, we are especially interested in the effect of incentives to the distri-

bution of returns, to the relative state-prices and to the resulting Sharpe-ratio. Expressions

derived in the following Proposition will help to discover these effects.

Proposition 3 In any given asymmetric interior−equilibrium

1. the distribution of relative returns is characterized by the distribution of lh−strategies

Mi (ω) and the corresponding relative returns. In particular, the one-period ahead

variance of relative return of a given manager i following an lh-strategy is

Ci
lh (ω) ≡ p (1− p)

(
ξilh
ξ̃ (ω)

− 1− ξilh
1− ξ̃ (ω)

)2

.

The cross-sectional dispersion can be characterized by the width of support of returns

in a given state

DH (ω) ≡ max
i

ξilh
ξ̃ (ω)

−min
i

ξilh
ξ̃ (ω)

DL (ω) ≡ max
i

1− ξilh
1− ξ̃ (ω)

−min
i

1− ξilh
1− ξ̃ (ω)

in the high state and low state respectively, and the mass following the particular strat-

egy, Mi (ω) .

2. the state price of the low state relative to the high state is

yH
yL
X (ω)
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where

X (ω) ≡
(1−ξ̃(ω))

1−p
ξ̃(ω)
p

1− βW̃L (ω)

1− βW̃H (ω)
.

3. the Sharpe-ratio is

S (ω) =
p

1
2 (1− p)

1
2 ‖yHX (ω)− yL‖

pyL + (1− p) yHX (ω)
. (26)

Although, we will gain most of the intuition about an asymmetric interior−equilibrium

through the examples, it is useful to note some properties already at this stage. First,

substituting (19) into (11) gives

αilh (ω) =

ξilh
ξ̃(ω)
− θ(ω)

yH(1+πH(ω))

1− θ(ω)
yH(1+πH(ω))

. (27)

The over or under exposure to the market risk depends on the size of the shape adjusted

probability ξilh relative to its aggregate counterpart ξ̃ (ω) . For example, if the sensitivity

to high states relative to low state is the same for all managers than ξilh = ξ̃ (ω) and each

manager holds the market. In general, managers with low relative sensitivity to high states

are underexposed to market risk and lend to managers with high sensitivity to the high

state. Importantly, ξilh depends jointly on the shape of the incentive function and the chosen

strategy. Second, the distribution of relative returns depends exclusively on the distribution

of relative size of ξilh and ξ̃ (ω) . Managers with low relative sensitivity to high states will do

relatively well in low states and badly in high states. Third, the price dividend ratio, (18),

is a monotonically increasing function of the share of the endowment the owners delegate

to managers in a given state, W̃s′ (ω) . If this share were 1 in all state, we would be back to

the standard Lucas-tree model with a constant price-dividend ratio of β
1−β . Finally, both the

deviation of relative state prices and the Sharpe ratio from the standard Lucas-tree case is

driven by the term X (ω) . Delegation increases the Sharpe-ratio and relative state prices if

and only if X (ω) is larger than 1. The term X (ω) is determined by the relative size of two

effects. We interpret the term
1− βW̃L (ω)

1− βW̃H (ω)

as the discount factor-effect. It is large when the average manager gets a higher share of the

endowment in the high state. In this case, she will appreciate a dollar less in the high state
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which pushes the relative state price and the Sharpe ratio up. We interpret the term

(1−ξ̃(ω))
1−p
ξ̃(ω)
p

(28)

as the capital-flow effect. The capital-flow effect is similar to the classic cash-flow effect in

asset pricing. Because of the incentive function, a dollar return in a given state might attract

more or less future capital flows. The term (28) shows the relative capital-flow generating

ability of a dollar in the low state versus the high state for the average manager. When the

incentive function of the average manager is relatively more sensitive in the high state, then

a dollar is more valuable in that state which pushes the relative state price and the Sharpe

ratio down. As the average manager tends to be richer in the state when a marginal dollar

attracts more capital, the capital-flow effect and the discount factor effect tend to drive state

prices in the opposite directions. As we will see, the direction of the aggregate effect can go

either way.

3 Three examples

In this section, we present three examples. With the help of the first example, we show

that if all agents’ have constant elasticity incentive functions, i.e., they are all mutual funds,

then agents do not trade and delegation does not affect the Sharpe ratio, even if incentive

functions differ in their convexity. By the second example, we show that if all agents are

identical, but each has an increasing elasticity incentive function, i.e., they are hedge funds,

then there is trade among identical agents leading to excess volatility in prices and dispersion

in returns. By the third example, we demonstrate how strategies and prices vary with the

relative wealth share of agents, if hedge funds trade with mutual funds. We also connect the

characteristics of returns to the skewness of the underlying dividend growth process.

3.1 Example 1: no kink

In this example incentive functions of the two type of fund managers differ, but both feature

constant elasticity throughout the positive segment of the real line as it is specified in (3).

Hence, the incentive function of any agent can be convex or concave, but it is never ”log-log

convex”. With this example, we demonstrate the importance of log-log convexity, that is,

increasing elasticity, versus convexity in our structure.

First note that with only a single segment in the incentive functions, conditions (21) and

(22) are automatically satisfied. Also, this specification implies that both the individual and
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the aggregate shape adjusted probability is p, ξilh = ξ̃ (ω) = p. Thus, (11) implies the same

strategy for all managers. By market clearing, this strategy must be that each manager

holds the market:

αi = 1.

Therefore, relative returns are always 1. Thus, A1, A2 ≤ 1 is sufficient to satisfy conditions

(23) and (24). The next corollary follows.

Corollary 1 If both incentive functions are described by a single segment, M = 1, and

A1, A2 ≤ 1, then an asymmetric interior equilibrium exists, where each agent holds the

market, αi = 1.

Note also that the law of motion and prices are deterministic and they depend only on

the share of endowment the owners delegate when each manager perform as the market,

A1, A2:

ΩH (ω) = ΩL (ω) =
A1ω

A1ω + A2 (1− ω)

πL (ω) = πH (ω) = β
A1ω + A2 (1− ω)

1− β (A1ω + A2 (1− ω))

θ (ω) =
(1 + π (ω))
p
yH

+ (1−p)
yL

=
1

1− β (A1ω + A2 (1− ω))

yHyL
yLp+ yH (1− p)

R (ω) =
1− (A1(1−ω)+ωA2)

βA1A2

β (A2 (1− ω) + ωA1)− 1

yHyL
yLp+ yH (1− p)

.

The relative wealth share, ω, and prices, πH (ω) , πL (ω) , R (ω) are time varying only to the

extent that A1 6= A2. When A1 = A2 = A, there is a single group of agents and the price

dividend ratio and the normalized interest rate simplify to

π = β
A

1− βA
, θ =

1

1− βA
yHyL

yLp+ yH (1− p)
,

which implies the constant interest rate

R =
θ

π
=

1

βA

yHyL
pyL + (1− p)yH

.

In contrast, if A1 > A2, then owners deterministically increase the wealth share of type 1

managers and as they do so, they increase the total endowment share of all managers. This

increases the price dividend ratio and decreases the interest rate R.
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Interestingly, the relative state price and the Sharpe ratio are not influenced by delegation,

because

X (ω) =
1− βW̃L (ω)

1− βW̃H (ω)
=

(1−ξ̃(ω))
1−p
ξ̃(ω)
p

= 1.

There is neither a discount rate effect nor a capital-flow effect for any A1, A2, n1, n2. Relat-

edly, the sensitivity parameters, ni, do not have any effect on the equilibrium. Convexity

does not matter in itself.7 This is because of the interaction of log utility and constant

elasticity incentive functions. The marginal utility from a dollar linearly increases in ni.

Given that ni is the same across states, the marginal rate of substitution is not affected by

ni. Thus, the marginal rate of substitution is the same for both agents. Hence, there are no

gains from trade.

3.2 Example 2: only hedge funds

In this example, we consider an economy with a single type of managers. These managers

have an increasing elasticity incentive function with a single kink as specified in (4), that is,

they are hedge funds.

3.2.1 Characterization and Existence

Given that there is only one type of managers, the wealth share is constant: ω = 1 and

we can omit ω and the reference to the type of manager, i, from every object. Because we

have a single kink, it makes sense to index the two segments of the incentive function as

A,B for the cases when the manager is compensated above and below the kink, respectively.

For example, a BA−strategy for given prices is an lh-strategy for which the manager is

compensated above the kink in the high state and below the kink in the low state. We show

that depending on the parameters, there is always a unique asymmetric interior equilibrium.

This equilibrium can be one of four different types.

In a BB equilibrium each manager invests all her wealth in the risky asset, αBB = 1,

and the equilibrium is very similar to the one of Example 1. There are also four types of

l′h′ − l′′h′′ equilibria where l′h′ − l′′h′′ = AB − BB,BA − BB,AB − BA,BA − AB. In an

l′h′ − l′′h′′ equilibrium, H = {l′h′, l′′h′′} and M = {µl′h′ , µl′′h′′}. This implies, after simplify

the notation and writing µ instead of µl′′h′′ , that µ proportion of managers follow an l′′h′′

strategy while 1− µ fraction of them follow an l′h′ strategy in a l′h′ − l′′h′′ equilibrium. As

7The importance of considering the utility function and the incentives was also pointed out by Ross
(2006).
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ω = 1, the aggregate shape adjusted probability, ξ̃ (ω) is a constant ξ̄ By (8),

ξ̄ = µξl′h′ + (1− µ) ξl′′h′′

which we can rewrite as

µ =
ξ̄ − ξl′′h′′
ξl′h′ − ξl′′h′′

(29)

where ξ1
l′h′ , ξ

1
l′′h′′ are defined in (7) and ξ̄ is determined by the condition that managers have

to be indifferent between the two strategies. As it is stated by (21) in Proposition 2, this

indifference condition is equivalent to

p ln
Ah′′

(
ξ
l′′h′′
ξ̄

)n
h′′

Ah′
(
ξ
l′h′
ξ̄

)nh + (1− p) ln
Al′′
(

1−ξ
l′′h′′

1−ξ̄

)n
l′′

Al′
(

1−ξ
l′h′

1−ξ̄

)n
l′
≡ 0. (30)

By substituting ξ̃ (ω) = ξ̄, expression (27) describes the equilibrium portfolios of hedge

funds following lh = l′h′, l′′h′′ strategies.

In the next proposition we show how the parameters determine the type of asymmetric

interior equilibrium.

Proposition 4 There are critical values p̂BA−BB (k,A1, n1, n2) , p̂BA−AB (k,A1, n1, n2) ∈(
0, 1

2

)
and k̂high (n2, n1) , k̂low (n2, n1) that

1. if k > k̂high, there is a unique asymmetric interior equilibrium and it is a BB equilib-

rium ,

2. if k̂low < k < k̂high, there is a unique asymmetric interior equilibrium and its type

depends on p as follows:

p ∈ (0, p̂BA−BB) p ∈ (p̂BA−BB, 1− p̂BA−BB) p ∈ (p̂BA−BB, 1)

BA−BB equilibrium BB equilibrium AB −BB equilibrium
.

3. if k < k̂low,there is a unique asymmetric interior equilibrium and its type depends on p

as follows:

p ∈ (0, p̂BA−AB) p ∈
(
p̂BA−AB,

1
2

)
p ∈

(
1
2
, 1− p̂BA−AB

)
p ∈ (1− p̂BA−AB, 1)

BA−BB equilibrium BA− AB equilibrium AB −BA equilibrium AB −BB equilibrium
.

Consider the parameters for which the equilibrium is of the l′h′ − l′′h′′ type. Our result

shows that increasing elasticity incentive functions create trading across ex-ante identical
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agents. The idea is that having opposite positions help the managers to being evaluated

above the kink at least in one of the states. If they were all to follow the same strategy,

their relative performance would be 1 and they would not get the extra capital flow in any

states. So in equilibrium, managers form two subgroups. One subgroup leverages up by

selling bonds to the other group. The first group is above the market after a high shock.

The other group has less exposure to the market risk, therefore they will be above the market

after a low shock. The excess return adjusts in a way that each manager is indifferent across

following any of the strategies.

It is useful to disentangle the role of various elements in hedge funds’ incentives in this

result. The incentive structure of hedge fund managers is a combination of the log-utility

and the flow-performance relationship described by the incentive function. The argument

of the incentive function is relative performance and it has a kink and increasing elasticity.

Which of these elements is critical? Which type of utility function would imply the same

result?

We argue that the critical property is that hedge funds’ portfolio decision problem is

not globally concave in α. Consider the following thought experiment. Suppose that the

economy is populated by individual traders living for two periods. In period 2, the economy

is in a high or a low state with equal probability. In period 1, each trader can place a bet

of size ρ on which state will realize, in period 2 each trader consumes her wealth. Trader’s

utility function is u (·) . Consider the following inequalities

1

2
(u (w1 + ρ) + u (w1 − ρ)) > u (w1)

1

2
(u (w1 − ρ) + u (w1 + ρ)) > u (w1) .

If both inequalities hold, then traders starting with wealth w1 are better off splitting up

and bet than not betting at all. Note that the inequalities do not hold for any ρ if u (·) is

concave, but holds for any ρ if it is convex. Note also, that if u (·) is convex than the left

hand side of both inequalities are increasing in ρ. The parallel with Example 2 is apparent.

There are gains from trade among hedge funds, because their increasing elasticity incentive

function imply a convex segment in their portfolio problem. However, if their incentives

would be globally convex, they would prefer to increase bets without bounds and there were

no equilibrium. Intuitively, the increasing elasticity incentive function introduces enough

convexity for trade, but logarithmic utility introduces enough concavity for the existence of

an equilibrium.
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3.2.2 Distribution of returns and the Sharpe-ratio

To understand better the effect of incentives on the distribution of returns, we analyze

comparative statics on kink, k. Note that a marginal increase on k hurts the manager in

two ways. First, it requires the manager to achieve higher relative return to reach the high-

elasticity segment. Second, it decreases her flows in the high-elasticity segment by decreasing

A2 as A2 = A1k
n1−n2 . The following Proposition states the results.

Proposition 5 Consider a marginal increase in k.

1. (volatility of relative returns) In any l′h′− l′′h′′ equilibrium, the variance of relative re-

turns, Clh, increases for the manager with larger exposure to the market, and decreases

for the manager with the smaller exposure to the market.

2. (cross-sectional dispersion of relative returns) The support of relative returns DH , DL

narrows in the smaller probability state and widens in the larger probability state. The

mass of hedge funds which over perform the market decreases in the smaller probability

state and increases in the larger probability state.

Turning to the price dividend ratio, the wealth share of hedge funds is given by (14), (15)

as

WH = W̃H = µAh′

(
ξl′h′

ξ̄

)nh
+ (1− µ)Ah′′

(
ξl′′h′′

ξ̄

)n
h′′

WL = W̃L = µAl′

(
1− ξl′h′
1− ξ̄

)n
l′

+ (1− µ)Al′′

(
1− ξl′′h′′

1− ξ̄

)n
l′′

.

Trivially, in this example the wealth share of hedge funds and the endowment share of all

funds, W̃s′ , is the same. As the wealth share depends on the shock s′, this is also true for

the equilibrium price dividend ratio

πs′ =
βW̃s′

1− βW̃s′

(31)

for s′ = L,H. The normalized interest rate is given by (19). Expression (31) show that the

increasing elasticity incentive function also creates return volatility. Asymmetric strategies

imply that the distribution of relative returns differ after a low shock and a high shock.

Therefore, both the share of the endowment delegated to each manager and the total share,

W̃s′ , varies with the shock. Thus, the price dividend ratio, (31), also varies with the shock.
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3.3 Example 3: the hedge fund and the mutual fund

In this example, we consider an economy with two types of fund managers. Managers in the

first group have increasing elasticity incentive functions as it is specified in (4). This type

of managers, whom we refer to as hedge funds, were the only participants in asset markets

in Example 2. Managers in the second group have constant elasticity incentive functions as

specified in (6). We refer to them as mutual funds. This example nests Example 2 when all

the capital is managed by hedge funds, ω = 1, and it is similar to Example 1, when all the

capital is managed by mutual funds, ω = 0.

3.3.1 Characterization and Existence

There is always a unique asymmetric interior equilibrium in this example. The types of

equilibria are similar to Example 2. In a BB equilibrium each manager invests all her

wealth in the risky asset,α1
BB = αBB = 1 regardless of the wealth share of hedge funds, ω.

There are also four types of l′h′ − l′′h′′ equilibria where l′h′ − l′′h′′ = AB − BB,BA −
BB,AB−BA,BA−AB. In an l′h′− l′′h′′ equilibrium hedge funds potentially follow asym-

metric strategies. That is, there is a µl′h′ (ω) and µl′′h′′ (ω) that H1 (ω) = {l′h′, l′′h′′} and

M1 (ω) = {µl′h′ (ω) , µl′′h′′ (ω)}. Similarly to Example 2, we simply notation by referring to

µl′′h′′ (ω) as µ (ω) and to µl′h′ (ω) as 1−µ (ω) . Contrast to Example 2, the set of hedge funds

following a particular strategy varies with the wealth share of hedge funds. In particular, in

each l′h′ − l′′h′′ equilibrium there is a threshold ω̂ ∈ (0, 1) that

µ (ω) =

{
1 if ω ≤ ω̂

µ̂ (ω) if ω > ω̂

}
. (32)

where µ̂ (ω) is a monotonically decreasing function. That is, each hedge fund follow the

same l′h′ strategy as long as their wealth share, ω, is relatively small, but an increasing

measure of them follows the l′′h′′ strategy as their wealth share increases. In any of the

equilibria, all mutual fund managers follow symmetric strategies.

The set of managers following the two equilibrium strategies determined similarly than

in Example 2. By (8)

ξ̃ (ω) = ω
(
µ (ω) ξ1

l′h′ + (1− µ (ω)) ξ1
l′′h′′

)
+ (1− ω) p.

Given that managers has to be indifferent between the two equilibrium strategies for any

ω > ω̂, just as in Example 2, for any ω > ω̂, ξ̃ (ω) is the constant ξ̄ determined by the
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indifference condition (30). Thus,by (8) and (32),

µ̂ (ω) =
ξ̄ − ωξ1

l′′h′′ − (1− ω) p

ω (ξ1
l′h′ − ξ1

l′′h′′)
.

For any, ω < ω̂, by (8) and (32),

ξ̃ (ω) = ωξ1
l′h′ + (1− ω) p.

Finally, ξ̃ (ω̂) = ξ̄ gives

ω̂ ≡ ξ̄ − p
ξ1
l′h′ − p

.

The following proposition states that the type of equilibria depends on the parameters

the same way as in Example 2.

Proposition 6 If managers in group 1 have incentives of the form (4), and managers in

group 2 have incentives of the form (6), then there is a unique asymmetric interior equi-

librium for any set of parameters. The type of the equilibrium depends on the parameters

exactly as it is stated in Proposition 4.

Consistently to Proposition 1, the portfolios of agents are given by (27) where lh =

l′h′, l′′h′′ for hedge funds, while prices and low of motion of ω are given by (18)-(20) with the

straightforward substitution of the equilibrium distribution of strategies of hedge funds and

mutual funds.

To see the intuition behind the equilibrium consider first the case when the wealth share of

hedge funds has a measure of zero, ω = 0. In this case all mutual funds hold the market just

as in Example 1 and their preferences determine equilibrium prices. Consider the decision

of the first hedge fund who enters the market. Because the hedge fund manager’s increasing

elasticity incentive function, her relative evaluation of a unit of marginal utility in the two

states differ from the relative evaluation of the mutual fund. Namely, she prefers a unit more

in the state when it generates more capital flow. Interestingly, she can decide which state

this should be. The hedge fund can sell bonds and leverage up, aiming for high relative

return and the corresponding extra capital flow after a high shock. Alternatively, she can

hold bonds aiming for the extra capital flow after a the low shock. The presence of the

kink implies that the problem (9) is non-concave in α. Thus, instead of comparing marginal

deviations, we have to compare two locally optimal portfolios. Proposition 6 shows that at

ω = 0, the hedge fund prefers to get the extra capital flow always in the lower probability

state. As ω increases, hedge funds affect prices more and more and make their preferred
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strategy less and less attractive up to the point of ω̂. From that point on hedge funds are

indifferent between the optimal l′h′-strategy and the optimal l′′h′′-strategy and follow an

asymmetric strategy.

3.3.2 Distribution of returns and the Sharpe-ratio

Consider again the result in Proposition 6 that as long as hedge funds follow a symmetric

strategy, they prefer to get the extra capital flow in the lower probability state. This implies

that the relative return of the hedge fund is always positively skewed: it is higher in the

lower probability state.We summarize this in the following corollary.

Corollary 2 In any lh = l′h′, l′′h′′ equilibrium, whenever ω < ω̂ the relative return of all

hedge funds is positively skewed.

3.3.3 Sharpe ratio

By the general analysis of an asymmetric interior equilibrium, the Sharpe ratio with delega-

tion is larger (smaller) than the Sharpe ratio without delegation if and only if

X (ω) =

1−ξ̃(ω)
1−p
ξ̃(ω)
p

1− βW̃L (ω)

1− βW̃H (ω)
> (<)1

in the given l′h′ − l′′h′′ equilibrium. Consider first the capital flow effect

1−ξ̃(ω)
1−p
ξ̃(ω)
p

.

For any ω < ω̂, this term is
ω

nl′
pnh′+(1−p)nl′

+ (1− ω)

ω
nh′

pnh′+(1−p)nl′
+ (1− ω)

.

It is 1 at ω = 0, and decreasing (increasing) if nh′ > nl′ . For example, for all sets of parameters

which result in l′h′ = BA, this term tends to decrease the Sharpe-ratio while if l′h′ = AB,

it tends to increase the Sharpe-ratio. For any ω > ω̂ the term is constant at the level

1−ξ̂
1−p
ξ̂
p

.
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Consider now the discount rate effect

1− βW̃L (ω)

1− βW̃H (ω)
.

The discount rate effect is 1 at ω = 0. For any ω < ω̂, hedge funds trade against mutual

funds, therefore their endowment shares, W 1
s′ (ω) and W 2

s′ (ω) moves into opposite directions.

Given that hedge fund incentives are log-convex while mutual fund incentives are log-linear,

typically (but not always) the change of the endowment share of hedge funds dominates that

of mutual funds in the aggregate term, W̃s′ (ω) . Therefore, whenever l′h′ = BA (l′h′ = AB)

the discount rate effect is increasing (decreasing) at ω = 0 and it is larger (smaller) than 1

for any ω < ω̂. As the following Lemma states, for ω > ω̂, the discount rate effect is always

monotonic in ω, but the sign of the derivative depends on the parameters.

Lemma 1 If, ω > ω̂, then the discount rate effect is monotonic in ω. In particular,

sgn

∂
(

1−βW̃L(ω)

1−βW̃H(ω)

)
∂ω

 = sgn ((aH − aL) + (bL − bH)− β (aHbL − bHaL))

where

aH = εAh′′

(
ξ1
l′′h′′

ξ̄

)nh′′
+ (1− ε)Ah′

(
ξ1
l′h′

ξ̄

)nh′
aL = εAl′′

(
1− ξ1

l′′h′′

1− ξ̄

)nl′′
+ (1− ε)Al′

(
1− ξ1

l′h′

1− ξ̄

)nl′
bH = A

(
p

ξ̄

)n
, bL = A

(
1− p
ξ̄

)n
ε =

ξ1
l′h′ − p

ξ1
l′h′ − ξ1

l′′h′′
.

Note that the above Lemma also determines whether the Sharpe ratio is pro-cyclical or

counter-cyclical in the region ω ∈ [ω̂, 1]. In that region the capital flow effect is constant

in ω, so the Sharpe ratio changes in line with the change of the discount factor effect. In

an equilibrium where l′h′ = BA (l′h′ = AB), a high shock always increases (decreases)

the wealth share of hedge funds, ω. Therefore, the Sharpe-ratio is countercyclical whenever

l′h′ = BA and
∂

(
1−βW̃L(ω)

1−βW̃H (ω)

)
∂ω

< 0 or when l′h′ = AB and
∂

(
1−βW̃L(ω)

1−βW̃H (ω)

)
∂ω

> 0. It is procyclical in

all other cases.

In terms of the general effect of delegation on the Sharpe-ratio, the above results im-

plies that whether delegation increases or decreases Sharpe ratio depends on two, generally
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opposing, forces. For example, in an l′h′ = BA equilibrium, a dollar in the high state gen-

erates more fund flows, because in this case managers are above the kink. This decreases

the Sharpe-ratio for any ω because the asset is more attractive with delegation than without

delegation for any ω. On the other hand, the average manager tends to can keep a larger

share in the high state, thus the asset is less attractive in terms of consumption smoothing.

This increases the Sharpe-ratio. Numerical simulations show that the net effect can go either

way.

4 Extensions

In this section we introduce two extensions. For both, our starting point is our last example

where a group of hedge funds and a group of mutual funds trade on the financial market. In

the first extension, we keep the incentive functions of mutual funds and hedge funds given,

but we let managers to pick their type. We are interested in stability conditions which

make both type of institutions coexist in equilibrium. In the second extension, we keep

the fraction of hedge funds and mutual funds as given but we introduce a second market

where the dividend growth process follows a different Bernoulli distribution. We assume

that managers have to pick one of the two markets at period 0 because of some fixed initial

capital investment. We are interested in the effect of incentives on managers’ preference

across markets.

4.1 Hedge funds or mutual funds?

In this part, we allow managers to pick whether they would like to operate as hedge fund

managers or as mutual fund managers. We allow them to switch types at period 0 taking

everyone else’s decision as given. This amounts to comparing the value functions of the two

type of fund managers at period 0. From (13), we define the difference in value functions as

∆Λ (ω0) ≡ V 1
0

(
w1

0, ω0, W̃0

)
− V 2

0

(
w2

0, ω0, W̃0

)
.

We show in the Appendix that the difference is indeed only a function of the initial share of

capital, ω0. There are three ways that an equilibrium can arise in this extended problem. If

∆Λ (0) < 0,

or

∆Λ (1) > 0
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then we have an equilibrium with only hedge funds or only mutual funds respectively. How-

ever, if a ω∗0 exists for which

∆Λ (ω∗0) = 0,

then we have an equilibrium where both type of agents coexists. We can also check whether

∂∆Λ (ω0)

∂ω0

|ω0=ω∗0
< 0,

holds, which we can interpret as a stability criterion. Intuitively, a small increase in ω0 from

ω∗0 would generate incentives for hedge fund managers to switch their type to mutual funds

and a small decrease in ω0 would generate opposite incentives. Thus, a perturbation on ω∗0

would generate incentives to push back the equilibrium to ω∗0.

The next proposition states simple and intuitive conditions on the incentive functions for

the existence of an equilibrium where both mutual funds and hedge funds coexists and the

stability criterion holds.

Proposition 7 For any other parameters there are finite thresholds
(
Âlow, Âhigh

)
that if

ln
A

(1−p)
h′ Apl′

A
∈
(
Âlow, Âhigh

)
(33)

then an equilibrium of the extended problem exists where mutual funds and hedge funds

coexist, i.e. ω∗0 ∈ (0, 1) If n1 ≤ n < n2 also holds, then there is a ω∗0 ∈ (0, 1) that

∂∆Λ (ω0)

∂ω0

|ω0=ω∗0
< 0.

Condition (33) simply states that for the coexistence of mutual funds and hedge funds,

the incentive functions cannot provide much better fund flows to one of the types in average.

For example, if A is very large compared to the geometric average of A1 and A2, then being

a mutual funds is much more attractive.

4.2 Negatively skewed or positively skewed market?

In this extension, we consider the choice of a given manager over the particular market

she wants to enter. To keep the exercise simple, we consider two markets which are fully

segmented after period 0. Think of each market as a country. Each country has its own

dividend process owned by a different set of clients. The type of each manager is given, but

at period 0, each can choose which market to enter. What we have in mind is that entering a
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particular market might require market specific fixed investment in terms of human capital

or in terms of collecting proprietary data and building market specific models. Therefore,

each manager prefer to specializes to a single country. Before, we consider the choice of the

manager, we analyze the two economies of opposite skewness in isolation.

4.2.1 Economies with opposite skewness

We compare two otherwise similar economies with positively skewed dividend growth process

in one of them, and negatively skewed dividend process in the other. In particular, we

pick a p > 1
2

and assume that the probability of the high state is p = 1 − p in the first

economy and p = p in the second economy. In the first economy, dividend growth is still

described by yH , yL, but we allow for a different dividend growth process in the second

economy characterized by y
H
, y

L
. This allows for various comparisons. For example, if

yH − yL = y
H
− y

L
then the variance of dividend growth is p

(
1− p

)
(yH − yL)2 in both

economies. One can also require that the mean growth rate also the same by satisfying

(1− p̄) yH + p̄yL = p̄y
H

+ (1− p̄) y
L
. Alternatively, one can require that in a case with no

delegation (A1 = A2 = A = n = n1 = n2 = 1), each manager would be indifferent between

the two economies. We will show that this amounts to the parameter restriction

(
1− p

)
ln
yH
y
L

+ p ln
yL
y
H

= 0.

In any case, the first market has positive skewness, while the second market has negative

skewness.

In the next Proposition we show that our framework admits a large degree of symmetry

between our two economies. In particular, when a manager would follow an BA strategy

in the first economy, then her optimal strategy is to follow AB in the second economy and

vice-versa. Also, what happens with the distribution of realized returns, law of motion of ω,

and the price dividend ratio in the low state in one economy, happens in the high state in

the other economy.

Proposition 8 There are critical values p̂BA−BB (k,A1, n1, n2) , p̂BA−AB (k,A1, n1, n2) ∈(
0, 1

2

)
and k̂high (n2, n1) , k̂low (n2, n1) that

1. if k > k̂high, there is a unique asymmetric interior equilibrium in both economies and

it is a BB equilibrium ,

2. if k̂low < k < k̂high, there is a unique asymmetric interior equilibrium in both economies
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and its type depends on p as follows:

p ∈
(

1
2
, 1− p̂BA−BB,

)
p ∈ (p̂BA−BB, 1)

p = p BB-equilibrium AB −BB equilibrium

p = 1− p BB-equilibrium BA−BB equilibrium

3. if k < k̂low,there is a unique asymmetric interior equilibrium in both economies and its

type depends on p as follows:

p ∈
(

1
2
, p̂BA−AB

)
p ∈ (p̂BA−AB, 1)

p = p AB −BA equilibrium AB −BB equilibrium

p = 1− p BA−BA equilibrium BA−BB equilibrium

.

Furthermore, denoting the variables and functions corresponding the second economy

by underline,

ξAB = 1− ξ
BA

ξ̃BA−BB (ω) = 1− ξ̃
AB−BB (ω) , ξ̃BA−AB (ω) = 1− ξ̃

AB−BA (ω)

and

W̃H (ω) = W̃L (ω)

πH (ω) = πL (ω)

ΩH (ω) = ΩL (ω) .

Let us turn to the Sharpe-ratio. Observe that without delegation the two economies have

generally different Sharpe ratio as

p
(
1− p

) 1
2 (yH − yL)(

1− p
)
y
L

+ p̄y
H

6=
p
(
1− p

) 1
2

(
y
H
− y

L

)
p̄yL +

(
1− p

)
yH

,

For the case with delegation, recall from (26) that the Sharpe ratio is

p
1
2 (1− p)

1
2 ‖yHX − yL‖

pyL + (1− p) yHX
.
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Observe that by the previous proposition,

X|p=1−p̄ =

1−ξ̃BA−l′′h′′ (ω)

p̄

ξ̃BA−l′′h′′ (ω)

1−p̄

1− βW̃L (ω)

1− βW̃H (ω)
=

1

X
=

ξ̃AB−l′′h′′ (ω)

p̄

1−ξ̃AB−l′′h′′ (ω)

1−p̄

1− βW̃L (ω)

1− βW̃H (ω)
.

This implies the following corollary.

Corollary 3 For any p 6= 1
2

and y
L
, y

H
, yH , yL and ω, whenever delegation increases the

Sharpe-ratio in a given economy, it also decreases the Sharpe ratio in the other economy.

In the next part, we turn to the choice of managers between the two economies.

4.2.2 The choice of managers

We compare the value functions on the two countries of a given hedge fund keeping the

relative capital, ω0 and the initial share of endowment, W̃0 the same across countries. This

implies the following proposition.

Proposition 9 If in both countries the relative capital, ω0 and the initial share of endow-

ment, W̃0, is the same, then

V i
0

(
wi0, W̃0, ω0

)
− V i

0

(
wi0, W̃0, ω0

)
=

β

(1− β)2

((
1− p

)
ln
yH
y
L

+ p ln
yL
y
H

)
.

Note that the difference in value functions across the two countries is independent of the

parameters of delegation, A1, A, k, n2, n1, n. This shows that an individual trader would pick

the same country as any type of a mutual fund or hedge fund. In equilibrium, the preference

on markets with different skewness is independent of the shape of the incentive function.

5 Conclusion

In this paper, we introduce delegation into a standard Lucas exchange economy. In our

model, all financial assets are traded by professional investors, but the endowment process

is owned by their clients. Fluctuations in capital under management are driven by the

exogenously specified incentive functions. We consider a rich set of possible shape of incentive

functions including examples with both convex and concave intervals. We allow for up to

two types of professional investors with managers with different incentives. We derive most

of the insights of the model by presenting three examples. We focus on two basic types

of financial institutions. Managers with an incentive function with increasing elasticity are
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referred to as hedge funds, while managers with incentive functions of constant elasticity are

referred to as mutual funds.

In our first example, we show that when only mutual funds populate the market, dele-

gation does not effect trading strategies or the Sharpe-ratio. This is the case, even if one

group of mutual fund managers have convex incentives, while the other group has concave

incentives. In our second example, we show that when the market is populated by only

identical hedge funds, hedge funds trade among each other, their returns are dispersed and

price-dividend ratios are excessively volatile. In our third example, we show that when hedge

funds and mutual funds trade with each other, hedge funds typically lends from mutual funds

if a recession is more likely than a boom, and borrows in the opposite case. Relative returns

of hedge funds are positively skewed. Finally, in general, delegation effects the Sharpe ratio

by two opposing channels leaving the aggregate effect ambiguous.

Our paper is a first step to understand the effects of delegation in standard asset pricing

models. There are a number of natural extensions. It would be useful to build a more

sophisticated model of endogenous formation of hedge funds vs. mutual funds. Second, by

deriving the decision of clients from a maximization problem, one could analyze the welfare

effects of the different type of financial intermediaries.
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6 Appendix

A Proof of Propositions 1 and 2

The logic of the proof is at is described in the main text. First we show that Proposition 1

described an equilibrium of a modified problem where managers are evaluated at a given l

segment of their incentive function after a low shock and after a given h segment after a high

shock. Then we show that under conditions described in Proposition 2, the equilibrium of

the modified problem is the equilibrium in the original problem. Finally, we show that the

A.1 Equlibrium in the modified problem

Fix the sets Mi (ω) ,Hi (ω). Modify the incentive functions of each manager in a way that

for any ω, for each lh ∈ Hi (ω), µilh (ω) measure of managers face the incentive function

wit+1 =

{
Aih
(
Y i
t+1

)nih−1
wit+1,− if st+1 = H

Ail
(
Y i
t+1

)nil−1
wit+1,− if st+1 = L

}
.

We show by a series of lemmas, that in this modified economy, expressions in Proposition

1characterize an equilibrium. We will use the observation that the market clearing on the

bond market implies

α1
(
w̄1 − c̄1

)
+ α2

(
w̄2 − c̄2

)
= q

ωα1 + (1− ω)α2 = 1. (34)

Lemma 2 Strategies (Mi (ω) ,Hi (ω) ,Ai (ω)) and Euler-equation (19) imply that the total

share of capital of each group after each shock is given by (14)-(17), law of motion of ω is

given by (20) and the price dividend ratio is given by.(18). Furthermore, relative returns are

given by (25).

Proof. By (11) and the market clearing conditions

w1 − c1 + w2 − c2 = q (35)

w1 − c1 =
(w1 − c1) q

w1 − c1 + w2 − c2
= ωq

w2 − c2 = β (1− ω) q.
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imply that the return of a manager in group 1 after a low shock at the end of the period is(
α1

(
δt+1 + qt+1

qt
−Rt

)
+Rt

)
=

= Rt

(
α1

(
δt+1 + qt+1

qtRt

− 1

)
+ 1

)
If st+1 = L, then this equal to

Rt

(
α1 (ω)

(
yL (1 + πL (ω))

θ (ω)
− 1

)
+ 1

)
= Rt

(1− ξi)
(
yL(1+πL(ω))

θ(ω)
− 1
)

1− yH(1+πH(ω))
θ(ω)

+
(
1− ξi

) =

= Rt

((
1− ξi

)( yL(1+πL(ω))
θ(ω)

− yH(1+πH(ω))
θ(ω)

1− yH(1+πH(ω))
θ(ω)

))
=

= Rt

((
1− ξi

)(yH (1 + πH (ω))− yL (1 + πL (ω))

yH (1 + πH (ω))− θ (ω)

))
Using that from (19), we can rewrite this as

(1− ξ1
lh)

1− ξ̃ (ω)

δt
qt
yL (1 + πL (ω)) . (36)

similarly, after a high shock it is

ξ1
lh

ξ̃ (ω)

δt
qt
yH (1 + πH (ω)) (37)

and for the manager in the second group it is

(1− ξ2
lh)

1− ξ̃ (ω)

δt
qt
yL (1 + πL (ω)) (38)

ξ2
lh

ξ̃ (ω)

δt
qt
yH (1 + πH (ω)) (39)

after a low shock and a high shock respectively. Thus, after a high shock

A

(
ρt+1 (α1

t )
qt+1+δt+1

qt

)n−1

ρt+1

(
α1
t

) (
wit − cit

)
= A

(
ξ1
lh

ξ̃ (ω)

)n−1
ξ1
lh

ξ̃ (ω)

δt
qt
yH (1 + πH (ω))

(
wit − cit

)
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integrating over all managers in group i it implies (14)-(17) and (20). For example,

ΩH (ω) =

=

∑
lh∈H1(ω)

µ1
lh (ω)A1

h

(
ξ1lh
ξ̃ (ω)

)n1
h

δtyH (1 + πH (ω))ω

∑
lh∈H1(ω)

µ1
lh (ω)A1

h

(
ξ1lh
ξ̃ (ω)

)n1
h

δtyH (1 + πH (ω))ω +
∑

lh∈H2(ω)

µ2
lh (ω)A2

h

(
ξ2lh
ξ̃ (ω)

)n2
h

(1− ω) (δtyH (1 + πH (ω)))β

=

=
W 1

H (ω)
W̃H (ω)

.

Note, that the market clearing condition for the good market is

δt+1 = (δt+1 + qt+1)
([

1− W̃s′ (ω)
]

+ (1− β) W̃s′ (ω)
)

= (δt+1 + qt+1)
(

1− βW̃s′ (ω)
)

which implies

πs′ (ω) =
qt+1

δt+1

=
βW̃s′ (ω)

1− βW̃s′ (ω)

Also, (36)-(39) imply the formula for the relative returns. For example, after a high shock

we get

αi
(
δt+1+qt+1

qt
−Rt

)
+Rt

δt+1+qt+1

qt

=

ξilh
ξ̃(ω)

δt
qt
yH (1 + πH (ω))

δt+1+qt+1

qt

=
ξilh
ξ̃ (ω)

.

Lemma 3 Strategies (Mi (ω) ,Hi (ω) ,Ai (ω)) and the market clearing condition (34) im-

plies (19).

Proof. By simple substitution

ω

∑
lh∈H1(ω)

µ1
lh (ω) ξ1

lh + (1− ω)
∑

lh∈H2(ω)

µ2
lh (ω) ξ2

lh

1− yL(1+πL(ω))
θ(ω)

+

+

ω

∑
lh∈H1(ω)

µ1
lh (ω)

(
1− ξ1

lh

)
+ (1− ω)

∑
lh∈H2(ω)

µ2
lh (ω)

(
1− ξ2

lh

)
1− yH(1+πH (ω))

θ(ω)

=

= ξ̃ (ω)
1

1− yL(1+πL(ω))
θ(ω)

+
(

1− ξ̃ (ω)
) 1

1− yH(1+πH(ω))
θ(ω)

= 1

which gives (19).

Lemma 4 In the modified economy, prices given by (18) and (19) imply that any manager

38



has a value function (12) and her consumption and portfolio choices are described by (10)

and (11).

Proof. For any t ≥ 1, conjecture that the value function has the form of

V i
(
wi, ωt−1, st−1

)
=

1

1− β
lnwi + Λi (ωt−1, st−1) .

Under our conjecture we can write problem as

V
(
wi, ωt−1, st−1

)
= max

αit,ψ
i
lnψiwi +

β

1− β
E
(

lnAmilh(s′)

(
Y i
t+1

)n
mi
lh(s′)−1

wit+1,−

)
+ βE (Λ (ωt, st+1))

ωt = Ωst (ωt−1, st−1)

for the given lh. Let us fix an arbitrary αit. The first order condition in ci has the form of

1

ψi
=

β

1− β
1

1− ψi

which gives

1− ψi = β

We rewrite the problem as

V
(
wi, ω, st

)
= max

αi
ln (1− β)wi+

+
β

1− β
p lnAh

(
ρt+1 (α1

t , H)
qt+1(H)+δt+1(H)

qt

)nh−1

ρt+1

(
α1
t , H

)
βwi+

+
β

1− β
(1− p) lnAl

(
ρt+1 (α1

t , L)
qt+1(L)+δt+1(L)

qt

)nl−1

ρt+1

(
α1
t , L
)
βwi

+ β (pΛ (ωt, H) + (1− p) Λ (ωt, L))

Note that this problem is strictly concave in α. The first order condition is

pnh

qt+1(H)+δt+1(H)
qt

−Rt

αi
(
qt+1(H)+δt+1(H)

qt
−Rt

)
+Rt

+

(1− p)nl

(
qt+1(L)+δt+1(L)

qt
−Rt

)
αi
(
qt+1(L)+δt+1(L)

qt
−Rt

)
+Rt

= 0
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which is equivalent to

ξilh

qt+1(H)+δt+1(H)
qt

−Rt

αi
(
qt+1(H)+δt+1(H)

qt
−Rt

)
+Rt

+ (40)

+
(
1− ξilh

) (
qt+1(L)+δt+1(L)

qt
−Rt

)
αi
(
qt+1(L)+δt+1(L)

qt
−Rt

)
+Rt

= 0.

Solving for αi gives αilh (ω) .

Define Ĥi (ω) which, for every ω, contains a single index pair lh, the one which is assigned

to the given manager in the modified economy.Substituting back αi and ψi into the value

function implies that our conjecture is correct with the choice of function Λ (ωt−1, st−1)

solving

Λ (ωt−1, st−1) = ln (1− β) + (41)

+ β
1

1− β
p ln

∑
lh∈Hi(ωt)

1
lh∈Ĥi(ωt)

Ah

(
ξ1
lh

ξ̃ (ωt)

)nh 1

πst (ωt−1)
yH (1 + πH (ωt)) β+

+ β
1

1− β
(1− p) ln

∑
lh∈Hi(ωt)

1
lh∈Ĥi(ωt)

Al

(
1− ξ1

lh

1− ξ̃ (ωt)

)nl 1

πst (ωt−1)
yL (1 + πL (ωt)) β

+ β (pΛ (ωt, H) + (1− p) Λ (ωt, L))

ωt = Ωst (ωt−1, st−1)

which has the conjectured form.

For the value function in period 0, suppose that we start the system at relative wealth

ω0 and and total wealth share W̃0. Thus, we can write the price dividend ratio in period 0

as

π0 (ω−1) =
W̃0

1− βW̃0

.
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Then we can run the same argument as in the case of t ≥ t, with the only change that we

from (41), we rewrite Λi (ωt−1, st−1) for period 0 as

Λi
0

(
W̃0, ω0

)
= ln (1− β) + (42)

+ β
1

1− β
p ln

∑
lh∈Hi(ω0)

1
lh∈Ĥi(ω0)

Aih

(
ξilh

ξ̃ (ω0)

)nih W̃0

1− βW̃0

yH
1

1− βW̃1 (H)
β+

+ β
1

1− β
(1− p) ln

∑
lh∈Hi(ω0)

1
lh∈Ĥi(ω0)

Ail

(
1− ξilh

1− ξ̃ (ω0)

)nil W̃0

1− βW̃0

yL
1

1− βW̃1 (L)
β

+ β
(
pΛi

0

(
ΩH (ω0) , W̃H (ω0)

)
+ (1− p) Λi

0

(
ΩL (ω0) , W̃L (ω0)

))
which gives the result.

A.2 Original problem

Here we show that the equilibrium of the modified problem is an equilibrium of the original

problem if conditions in Proposition 2 are satisfied.

For consistency, we need that the portfolio described by (11) is indeed an lh-portfolio.

That is, (22) has to be satisfied. Also, the consumption of clients has to be positive, which

implies the conditions (23) and (24). Finally, from (12) and (41), the payoff-difference from

a deviation from the assigned lh−portfolio, αil′h′ (ω) to another locally optimal αil′′h′′ (ω) is

given by the left hand side of (21). Thus, condition (21) ensures that a deviation from the

assigned strategy is suboptimal.

A.3 Proof of Proposition 3

The first part of the proposition is a trivial consequence of (25) and the structure of equi-

librium strategies. For the Sharpe ratio and relative state prices, observe that reading (19)

as E (φs) = 1
R

where φs is the state price, one can see that

φH =
ξ̃ (ω)

p

1
1

πst (ωt−1)
yH (1 + πH (ωt))

=
ξ̃ (ω)

p

1− βWH

1
πst (ωt−1)

yH

φL =

(
1− ξ̃ (ω)

)
1− p

1
1

πst (ωt−1)
yL (1 + πL (ωt))

=
ξ̃ (ω)

p

1− βWL

1
πst (ωt−1)

yL
.
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Writing X (ω) = φL
φH
.gives the Sharpe-ratio by

S (ω) =

√
V ar (φs)

E (φs)
=

p
1
2 (1− p)

1
2

∥∥∥∥(1−ξ̃ω)
1−p yH (1 + πHω)− ξ̃(ω)

p
yL (1 + πL (ω))

∥∥∥∥
ξ̃ (ω) yL (1 + πL (ω)) +

(
1− ξ̃ (ω)

)
yH (1 + πH (ω))

=

p
1
2 (1− p)

1
2

∥∥∥∥yH (1−ξ̃(ω))
1−p
ξ̃(ω)
p

1−βW̃L(ω)

1−βW̃H(ω)
− yL

∥∥∥∥
pyL + (1− p) yH

(1−ξ̃(ω))
1−p
ξ̃(ω)
p

1−βW̃L(ω)

1−βW̃H(ω)

=
p

1
2 (1− p)

1
2 ‖yHX (ω)− yL‖

pyL + (1− p) yHX (ω)
.

B Proof of Propositions 4, 6 and 8

We show that for a given set of parameters, the sufficient conditions in Proposition 2 hold

in the given equilibrium described by Proposition 4. In the first part, we introduce the

analytical formulas for deviations from the prescribed equilibrium strategies. In the second

part, we show that condition (21) holds for ω = 0. In the third part, we show that condition

(21) holds for ω > 0. In the last part, we show that condition (22) holds for any ω. We will

show that

k̂high ≡ exp

 ln n2

n1(
1− n1

n2

) + 1


k̂low = exp

(
n1 lnn1 + n2 lnn2 − (n2 + n1) ln n1+n2

2

n2 − n1

)
and p̂BA−BB and p̂BA−AB are given by the unique solution in

[
0, 1

2

]
of

∆BA−BB (p̂BA−BB) ≡ 0.

p̂BA−AB exp

(
∆BA−BB (p̂BA−AB)

p̂BA−AB (n2 − n1)

)
+ (1− p̂BA−AB) exp

(
∆AB−BB (p̂BA−AB)

(n2 − n1) (1− p̂BA−AB)

)
≡ 1,

respectively where

∆l1h1−l2h2 (p) ≡ p ln
Ah1

Ah2

(
ξ1
l1h1

p

)nh1(
ξ1
l2h2

p

)nh2
+ (1− p) ln

Al1
Al2

(
1−ξ1

l1h1

1−p

)nl1(
1−ξ1

l2h2

1−p

)nl2 .
Example 3 nests Example 2 by the choice of ω = 1, while the proof of Proposition 8 comes

by simple substitution of the different values of p. Therefore we provide only a single proof

for the three propositions.
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B.1 Differences in the value functions

Note that

1− β
β

(
V l1h1

l′h′−l′′h′′ (ω)− V l2h2

l′h′−l′′h′′ (ω)
)

=

p ln
Ah1

Ah2

(
ξ1
l1h1

ξ̃l′h′−l′′h′′

)nh1(
ξ1
l2h2

ξ̃l′h′−l′′h′′

)nh2
+ (1− p) ln

Al1
Al2

(
1−ξ1

l1h1

1−ξ̃l′h′−l′′h′′

)nl1(
1−ξ1

l2h2

1−ξ̃l′h′−l′′h′′

)nl2 =

= ∆l1h1−l2h2 (p) + p ln

(
p

ξ̃l′h′−l′′h′′

)nh1(
p

ξ̃l′h′−l′′h′′

)nh2
+ (1− p) ln

(
1−p

1−ξ̃l′h′−l′′h′′

)nl1(
1−p

1−ξ̃l′h′−l′′h′′

)nl2 .
which implies (for example)

V BA
BA−BB (ω)− V BB

BA−BB (ω) =

=

 ∆BA−BB (p)− p (n2 − n1) ln
(
ω n2

pn2+(1−p)n1
+ (1− ω)

)
for ω < ω̂BA−BB

∆BA−BB (p)− p (n2 − n1) ln
(
ω̂BA−BB

n2

pn2+(1−p)n1
+ (1− ω̂BA−BB)

)
otherwise


where ω̂BA−BB is defined as

∆BA−BB (p) ≡ p (n2 − n1) ln

(
ω̂

n2

pn2 + (1− p)n1

+ (1− ω̂)

)
Similarly,

V BA
BA−AB (ω)− V AB

BA−AB (ω) =

=



∆BA−AB (p)− (n2 − n1) p ln
(
ω n2

pn2+(1−p)n1
+ (1− ω)

)
−

(n2 − n1) (1− p) ln
(
ω n1

pn2+(1−p)n1
+ (1− ω)

) for ω < ω̂BA−AB

∆BA−AB (p)− (n2 − n1) p ln
(
ω̂BA−AB

n2

pn2+(1−p)n1
+ (1− ω̂BA−AB)

)
−

− (n2 − n1) (1− p) ln
(
ω̂BA−AB

n1

pn2+(1−p)n1
+ (1− ω̂BA−AB)

) otherwise


where ω̂BA−AB is determined by

∆BA−AB (p) ≡ (n2 − n1) p ln

(
ω

n2

pn2 + (1− p)n1

+ (1− ω)

)
−

− (n2 − n1) (1− p) ln

(
ω

n1

pn2 + (1− p)n1

+ (1− ω)

)
.
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B.2 ∆ (p) functions

In the following Lemmas we show that under the classification in Proposition 4, at least

when ω = 0, deviations to other locally optimal lh strategies are globally suboptimal.

Lemma 5 If

−
(

1− n1

n2

)
(ln k + 1)− ln

n1

n2

< 0

then V BA
x (0)− V BB

x (0) < 0 for all p. If

−
(

1− n1

n2

)
(ln k + 1)− ln

n1

n2

> 0

then there is a p̂BA−BB that V BA
x (0) − V BB

x (0) > 0 for all p < p̂BA−BB and V BA
x (0) −

V BB
x (0) < 0 for all p > p̂BA−BB. Furthermore, p̂BA−BB < (>)1

2
iff(

1

2
(n1 lnn1 + n2 lnn2)− (n2 + n1)

2
ln
n1 + n2

2

)
< (n2 − n1)

1

2
ln k

Proof. Note that

∆BA−BB (p) = − (n2 − n1) p ln k−n2p ln
((1− p)n1 + pn2)

n2

−(1− p)n1 ln
((1− p)n1 + pn2)

n1

.

Observe that

∆BA−BB (0) = 0

∆BA−BB (1) = − (n2 − n1) ln k

∂∆BA−BB (p)

∂p
= − (n2 − n1) ln k − (n2 − n1) ln ((1− p)n1 + pn2) + n2 lnn2 − n1 lnn1 − (n2 − n1)

∂2∆BA−BB (p)

∂2p
=

− (n2 − n1)2

((1− p)n1 + pn2)
< 0

Given that the second derivative is negative, if

∂∆BA−BB (p)

∂p
|p=0 < 0

then ∆BA−BB (p) is decreasing everywhere, while if

∂∆BA−BB (p)

∂p
|p=0 > 0
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then ∆BA−BB (p) is either increasing everywhere, or increasing until a given point and then

decreasing. As n1 < n2 implies ∆BA−BB (1) > 0, this implies that ∆BA−BB (p) > 0 for all p.

As n1 > n2 implies ∆BA−BB (1) < 0,

∂∆BA−BB (p)

∂p
|p=0 < 0

implies ∆BA−BB (p) < 0 for all p and

∂∆BA−BB (p)

∂p
|p=0 > 0

implies the existence of p̂ of the Lemma. The last part of the Lemma comes from the

observation that

∆BA−BB
(

1

2

)
= − (n2 − n1)

1

2
ln k +

[
1

2
(n1 lnn1 + n2 lnn2)− (n2 + n1)

2
ln
n1 + n2

2

]
where the term in the bracket is positive if n2 > n1, as the function x lnx is convex .

Lemma 6 If n1 > n2 then ∆AB−BB (p) > 0 for all p. If n2 > n1 and(
1− n1

n2

)
(ln k + 1) + ln

n1

n2

> 0

then V AB
x (0)− V BB

x (0) < 0 for all p. If n2 > n1 and(
1− n1

n2

)
(ln k + 1) + ln

n1

n2

< 0

then there is a p̂AB−BB that V AB
x (0) − V BB

x (0) > (<)0 for p > (<)p̂AB−BB. Furthermore

p̂AB−BB > (<)1
2
, iff

1

2
(n1 lnn1 + n2 lnn2)− (n1 + n2)

2
ln
n1 + n2

2
< (>)

1

2
(n2 − n1) ln k

Proof. Note that

∆AB−BB (p) ≡ − (1− p) (n2 − n1) ln k−pn1 ln
pn1 + (1− p)n2

n1

−(1− p)n2 ln
(pn1 + (1− p)n2)

n2

.
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The statement comes from simple analysis of the cases n2 > n1 and n2 < n1 observing that

∆AB−BB (0) = − (n2 − n1) ln k

∆AB−BB (1) = 0

∂∆AB−BB (p)

∂p
= (n2 − n1) (ln k + 1) + (n2 − n1) ln (pn1 + (1− p)n2) + n1 lnn1 − n2 lnn2

∂∆AB−BB (p)

∂p
|p=1 = (n2 − n1) (ln k + 1) + n2 ln

n1

n2

∂2∆AB−BB (p)

∂2p
= − (n1 − n2)2

(pn1 + (1− p)n2)
< 0

and that

∆AB−BB
(

1

2

)
= −1

2
(n2 − n1) ln k +

[
1

2
(n1 lnn1 + n2 lnn2)− (n1 + n2)

2
ln
n1 + n2

2

]

where the term in the bracket is positive if n2 > n1, as x lnx is a convex function.

Lemma 7 If (n2 − n1)
(

1
2
p− 1

)
> (<)0 then∆BA−AB (p) < (>)0.

Proof. Consider that

∆BA−AB (p) ≡ (n2 − n1) ((1− p)− p) ln k + ln

(
n1

((1−p)n1+pn2)

)(1−p)n1
(

n2

((1−p)n1+pn2)

)pn2

(
n2

((1−p)n2+pn1)

)(1−p)n2
(

n1

((1−p)n2+pn1)

)pn1
.

We need ∆ (p) > 0 for a BA equilibrium and ∆ (p) < 0 for an AB equilibrium. Observe

that

∆BA−AB (1) = − (n2 − n1) ln k

∆BA−AB (0) = (n2 − n1) ln k

∆BA−AB
(

1

2

)
= 0.

Also

∂∆ (p)

∂p
= [−2 (n2 − n1) ln k − 2n1 lnn1 + 2n2 lnn2 − 2 (n2 − n1)]

− (n2 − n1) [ln ((1− p)n1 + pn2) ((1− p)n2 + pn1)] .
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As n2 > n1 then ∆ (p) is positive at p = 0 and negative at p = 1. Given that it is a continuous

function, it’s derivative cannot be positive for all p ∈ [0, 1] . As the term in the second bracket

is maximal for p = 1
2
, monotonically increasing for p < 1

2
and monotonically decreasing for

p > 1
2

and the term in the first bracket is constant in p, there cannot be a minimum in

p ∈
(
0, 1

2

)
or a maximum at p ∈

(
1
2
, 0
)
. Thus, p > 1

2
implies ∆ (p) < 0 and p < 1

2
implies

∆ (p) > 0.

B.3 comparing thresholds ω̂

Now we proceed for ω > 0. In this part, we show that in a given l′h′− l′′h′′ equilibrium, there

is no lh 6= l′′h′′ that

V lh
l′h′−l′′h′′ (ω)− V l′h′

l′h′−l′′h′′ (ω) > 0

for any ω > 0. We already know that this is true for ω = 0. Given the monotonicity in ω of

any

V lh
l′h′−l′′h′′ (ω)− V l′h′

l′h′−l′′h′′ (ω)

functions, and given that for ω > ω̂, ξ̃ (ω) is constant, thus

V lh
l′h′−l′′h′′ (ω)

is also constant for any lh, we only have to show that in a l′h′ − l′′h′′ equilibrium,

ω̂l′h′−l′′h′′ < ω̂l′h′−lh

for any lh 6= l′′h′′, l′h′ where ω̂l′h′−lh is the ω̂ in a given l′h′ − lh equilibrium defined as

V lh
l′h′−l′′h′′ (ω̂l′h′−lh) = V l′h′

l′h′−l′′h′′ (ω̂l′h′−lh) .

This amounts to a comparison between ω̂BA−BB (p) and ω̂BA−AB (p) defined implicitly by the

functions

∆BA−BB (p) ≡ p (n2 − n1) ln

(
ω̂BA−BB

n2

pn2 + (1− p)n1

+ (1− ω̂BA−BB)

)
(43)

∆BA−AB (p) ≡ (n2 − n1) p ln

(
ω̂BA−AB

n2

pn2 + (1− p)n1

+ (1− ω)

)
−

− (n2 − n1) (1− p) ln

(
ω̂BA−AB

n1

pn2 + (1− p)n1

+ (1− ω̂BA−AB)

)
(44)
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Lemma 8 Suppose n2 > n1.If

n1 lnn1 + n2 lnn2 − (n2 + n1) ln n1+n2

2

n2 − n1

< ln k (45)

then ω̂BA−BB (p) < ω̂BA−AB (p) whenever the functions exist. If

n1 lnn1 + n2 lnn2 − (n2 + n1) ln n1+n2

2

n2 − n1

> ln k (46)

then there exist a p̂ < 1
2

that ω̂BA−BB (p) < ω̂BA−AB (p) for all p < p̂ and ω̂BA−BB (p)

> ω̂BA−AB (p) for all p > p̂

Proof. First, I show that the system

∆BA−BB (p) ≡ p (n2 − n1) ln

(
ω

n2

pn2 + (1− p)n1

+ (1− ω)

)
(47)

∆BA−BB (p)−∆BA−AB (p) = ∆AB−BB (p) = (n2 − n1) (1− p) ln

(
ω

n1

pn2 + (1− p)n1

+ (1− ω)

)
has no solution if (45) holds and a single solution (p̂, ω̂) where ω̂ = ω̂BA−BB (p̂) = ω̂BA−AB (p̂)

if (46) holds. For this, note that the system is equivalent to

exp

(
∆BA−BB (p)

p (n2 − n1)

)
≡

(
ω

n2

pn2 + (1− p)n1

+ (1− ω)

)
exp

(
∆AB−BB (p)

(n2 − n1) (1− p)

)
=

(
ω

n1

pn2 + (1− p)n1

+ (1− ω)

)
,

hence, any solution of the system has to satisfy

p exp

(
∆BA−BB (p)

p (n2 − n1)

)
+ (1− p) exp

(
∆AB−BB (p)

(n2 − n1) (1− p)

)
≡ 1.

From

∆BA−BB (p)

p (n2 − n1)
= − ln k − n2

n2 − n1

ln
((1− p)n1 + pn2)

n2

− (1− p)
p

n1

n2 − n1

ln
((1− p)n1 + pn2)

n1

∆AB−BB (p)

(1− p) (n2 − n1)
= − ln k − n2

n2 − n1

ln
(pn1 + (1− p)n2)

n2

− p

1− p
n1

n2 − n1

ln
pn1 + (1− p)n2

n1

observe that this function is symmetric in the sense that if

Π (p) ≡ p exp

(
∆BA−BB (p)

p (n2 − n1)

)
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then

Π̃ (p) ≡ Π (p) + Π (1− p) = p exp

(
∆BA−BB (p)

p (n2 − n1)

)
+ (1− p) exp

(
∆AB−BB (p)

(n2 − n1) (1− p)

)
.

Also

∂Π (p)

∂p
= e

∆BA−BB(p)

p(n2−n1)

1 + p
∂
(

∆BA−BB(p)

p(n2−n1)

)
∂p

 =

= e
∆BA−BB(p)

p(n2−n1)
1

p

n1

n2 − n1

ln
((1− p)n1 + pn2)

n1

> 0.

and

Π (0) = Π̃ (0) = Π̃ (1) =
1

k
< 1.

Thus, Π̃ (p) is increasing for p < 1
2

and decreasing for p > 1
2

and its maximum is at p = 1
2
. If

(45) holds, then

Π̃

(
1

2

)
= Π

(
1

2

)
< 1,

which implies that Π̃ (p) = 1 does not have a solution. However, if (46) holds, then Π̃ (p) = 1

has two solutions. If we denote the first by p̂ < 1
2

then the second one is (1− p̂) . However,

ω̂BA−BB (p) exists for a given p, only if ∆BA−BB (p) > 0. It is easy to ∆BA−BB (p̂) > 0, but

∆BA−BB (1− p̂) < 0. This concludes the proof.

B.4 Condition (22)

In this part we show that if in a given equilibrium, a given strategy characterized by (11)

for a given lh, is preferred to the BB strategy, then this implies that (11) is an lh portfolio.

1. V BA
BA (ω)− V BB

BA (ω) > 0 implies
pn2

pn2+(1−p)n1

ξBA(ω)
=

n2
pn2+(1−p)n1

ω
n2

pn2+(1−p)n1
+(1−ω)

> k

0 < V BA
BA (ω)− V BB

BA (ω) = V BA
BA (0)− V BB

BA (0)− p (n2 − n1) ln

(
ω

pn2

pn2 + (1− p)n1

+ p (1− ω)

)
=

= (n2 − n1) p ln

n2

((1−p)n1+pn2)

k
+ n1 ln

np2n
(1−p)
1

((1− p)n1 + pn2)
− p (n2 − n1) ln

(
ω

n2

pn2 + (1− p)n1

+ (1− ω)

)
=

= (n2 − n1) p ln

n2

((1−p)n1+pn2)

k
(
ω n2

pn2+(1−p)n1
+ (1− ω)

) + n1 ln
np2n

(1−p)
1

((1− p)n1 + pn2)

As
np2n

(1−p)
1

((1−p)n1+pn2)
< 1 because of the inequality of arithmetic and geometric means,

n2
((1−p)n1+pn2)(

ω
n2

((1−p)n1+pn2)
+(1−ω)

) >
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k must hold

2. V AB
AB (ω)− V BB

AB (ω) > 0 implies
(1−p)n2

(1−p)n2+pn1

1−ξAB(ω)
=

n2
(1−p)n2+pn1

ω
n2

(1−p)n2+pn1
+(1−ω)

> k

0 < V AB
AB (ω)− V BB

AB (ω) = V AB
AB (0)− V BB

AB (0)− (1− p) (n2 − n1) ln
(

1− ξ̃AB (ω̂)
)

=

= − (1− p) (n2 − n1) ln k − pn1 ln
pn1 + (1− p)n2

n1

− (1− p)n2 ln
(pn1 + (1− p)n2)

n2

−

− (1− p) (n2 − n1) ln

(
ω

n2

((1− p)n1 + pn2)
+ (1− ω)

)
=

= − (1− p) (n2 − n1) ln k − pn1 ln
pn1 + (1− p)n2

n1

− (1− p) (n2 − n1) ln
(pn1 + (1− p)n2)

n2

− (1− p)n1 ln
(pn1 + (1− p)n2)

n2

− (1− p) (n2 − n1) ln

(
ω

n2

((1− p)n1 + pn2)
+ (1− ω)

)
=

= (1− p) (n2 − n1) ln

n2

(pn1+(1−p)n2)

k
(
ω n2

((1−p)n1+pn2)
+ (1− ω)

) + n1 ln
np1n

1−p
2

(pn1 + (1− p)n2)

the second part is negative, so
n2

(pn1+(1−p)n2)(
ω

n2
pn2+(1−p)n1

+(1−ω)
) > k must hold.

3.V AB
BA−µ (ω)− V BB

BA−µ (ω) > 0 implies
(1−p)n2

(1−p)n2+pn1

1−ξBA(ω̂)
=

n2
(1−p)n2+pn1

ω̂
n1

(1−p)n2+pn1
+(1−ω̂)

> k for all ω > ω̂

0 < V AB
AB (ω)− V BB

AB (ω) = V AB
AB (0)− V BB

AB (0)− (1− p) (n2 − n1) ln
(

1− ξ̃BA (ω̂)
)

=

= − (1− p) (n2 − n1) ln k − pn1 ln
pn1 + (1− p)n2

n1

− (1− p)n2 ln
(pn1 + (1− p)n2)

n2

−

− (1− p) (n2 − n1) ln

(
ω̂

n1

((1− p)n1 + pn2)
+ (1− ω̂)

)
=

= − (1− p) (n2 − n1) ln k − pn1 ln
pn1 + (1− p)n2

n1

− (1− p) (n2 − n1) ln
(pn1 + (1− p)n2)

n2

− (1− p)n1 ln
(pn1 + (1− p)n2)

n2

− (1− p) (n2 − n1) ln

(
ω̂

n1

((1− p)n1 + pn2)
+ (1− ω̂)

)
=

= (1− p) (n2 − n1) ln

n2

(pn1+(1−p)n2)

k
(
ω̂ n1

((1−p)n1+pn2)
+ (1− ω̂)

) + n1 ln
np1n

1−p
2

(pn1 + (1− p)n2)

the second part is negative so
n2

(pn1+(1−p)n2)

k
(
ω̂

n1
((1−p)n1+pn2)

+(1−ω̂)
) > 1

4. V BA
AB (ω)− V BB

AB (ω) > 0 implies
pn2

pn2+(1−p)n1

ξAB(ω̂)
=

n2
pn2+(1−p)n1

ω̂
n1

pn2+(1−p)n1
+(1−ω̂)

> k
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0 < V BA
AB (ω)− V BB

AB (ω) = V BA
BA (0)− V BB

BA (0)− p (n2 − n1) ln

(
ω̂

n1

pn2 + (1− p)n1

+ (1− ω̂)

)
=

= (n2 − n1) p ln

n2

((1−p)n1+pn2)

k
+ n1 ln

np2n
(1−p)
1

((1− p)n1 + pn2)
− p (n2 − n1) ln

(
ω̂

n1

pn2 + (1− p)n1

+ (1− ω̂)

)
=

= (n2 − n1) p ln

n2

((1−p)n1+pn2)

k
(
ω̂ n1

pn2+(1−p)n1
+ (1− ω̂)

) + n1 ln
np2n

(1−p)
1

((1− p)n1 + pn2)

As
np2n

(1−p)
1

((1−p)n1+pn2)
< 1 because of the inequality of arithmetic and geometric means,

n2
((1−p)n1+pn2)(

ω̂
n1

pn2+(1−p)n1
+(1−ω̂)

) >
k must hold

C Other proofs

C.1 Proof of Proposition 5

The following Lemma and the definitions in Proposition 3 give the result.

Lemma 9 ∂ξ̄
∂k

is negative for BA−BB and BA−AB equilibria and positive for AB −BB
and AB −BA equilibria. ∂µ

∂k
< 0 for any equilibria.

Proof.

BA-BB Solving (30) explicitly yields

ξ̄ =
p

k

(
(n2)n2p(n1)n1(1−p)

(
1

n1(1− p) + n2p

)n2p+n1(1−p)
) 1

(n2−n1)p

AB-BB Solving (30) explicitly yields

ξ̄ = 1− 1− p
k

(
(n1)n1p(n2)n2(1−p)

(
1

n2(1− p) + n1p

)n1p+n2(1−p)
) 1

(−n1+n2)(1−p)

BA-AB Taking a derivative of (30) with respect to k yields

(((n2 − n1)(1− 2p))/k) > 0,

since p < 1
2

in a BAAB equilibrium.
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A derivative of (30) with respect to ξ̄ yield s

−((n1 − n2)(−ξ̄ + p(−1 + 2ξ̄)))/((−1 + ξ̄)ξ̄),

which has the same sign as

−(−ξ̄ + p(−1 + 2ξ̄)).

Since in a BA−AB equilibrium p < 1
2

(−ξ̄l′h′−l′′h′′+p(−1+2ξ̄l′h′−l′′h′′)) is decreasing in

ξ̄l′h′−l′′h′′ . Furthermore, it equals zero at p
(−1+2p)

< 0. Therefore, the derivative of (30)

with respect to ξ̄l′h′−l′′h′′ is positive.

The results then follows from the implicit function theorem.

AB-BA Taking a derivative of (30) with respect to k yields

(((n2 − n1)(−1 + 2p))/k) > 0,

since p > 1
2

in a ABBA equilibrium. A derivative of (30) with respect to ξ̄l′h′−l′′h′′

yields

((n1 − n2)(−ξ̄ + p(−1 + 2ξ̄)))/((−1 + ξ̄)ξ̄),

which has the same sign as

(−ξ̄ + p(−1 + 2ξ̄l′h′−l′′h′′)).

Specifically, the sign of the derivative is the same as the sign of

(−ξ̄ + p(−1 + 2ξ̄)).

Since p > 1
2

in an AB − BA equilibrium (−ξ̄ + p(−1 + 2ξ̄)) is increasing in ξ̄. Fur-

thermore, the lowest value of p
(−1+2p)

is attained at p = 1, implying that the derivative

with of (30) with respect to ξ̄ is negative.

The results then follows from the implicit function theorem.

Finally, by inspection of (29) the result for µ follows by combining the results for ξ̄ with

the fact that ξ1
l′h′ < ξ1

l′′h′′ in AB−BB and AB−BA equilibria and ξ1
l′h′ > ξ1

l′′h′′ in BA−BB
and BA− AB equilibria.
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C.2 Proof of Proposition 7

From (42) define

∆Λ (ω0) ≡ Λ1
0

(
W̃0, ω0

)
− Λ2

0

(
W̃0, ω0

)
.

Then the function ∆Λ (ω0) in the general case is defined by the recursion

∆Λ (ω0) = β
1

1− β
p ln

∑
lh∈H1(ω0) 1

lh∈Ĥ1(ω0)
A1
h

(
ξ1
lh

ξ̃(ω0)

)n1
h

∑
lh∈H2(ω0) 1

lh∈Ĥ2(ω0)
A2
h

(
ξ2
lh

ξ̃(ω0)

)n2
h

+ (48)

+β
1

1− β
(1− p) ln

∑
lh∈H1(ω0) 1

lh∈Ĥ1(ω0)
A1
l

(
1−ξ1

lh

1−ξ̃(ω0)

)n1
l

∑
lh∈H2(ω0) 1

lh∈Ĥ2(ω0)
A2
l

(
1−ξ2

lh

1−ξ̃(ω0)

)n2
l

+

+β (p∆Λ (ΩH (ω0)) + (1− p) ∆Λ (ΩL (ω0))) .

In the case of Example 3, in an l′h′ − l′′h′′ equilibrium it is

∆Λ (ω0) = β
1

1− β
p ln

Ah′
(

ξ1
l′h′

ξ̃l′h′−l′′h′′ (ω0)

)nh′
A
(

p

ξ̃l′h′−l′′h′′ (ω0)

)n + β
1

1− β
(1− p) ln

Al′
(

1−ξ1
l′h′

1−ξ̃l′h′−l′′h′′ (ω0)

)nl′
A
(

1−p
1−ξ̃l′h′−l′′h′′ (ω0)

)n +

+β (p∆Λ (ΩH (ω0)) + (1− p) ∆Λ (ΩL (ω0))) .

We rewrite this as

∆Λ (ω0) =
β

(1− β)2 (p lnAh′ + (1− p) lnAl′ − lnA) +
β

(1− β)2

(
p ln

(ξ1
l′h′)

nh′

(p)n
+ (1− p) ln

(1− ξ1
l′h′)

nl′

(1− p)n
)

+

+
β

1− β
p (n− nh′) ln ξ̃l′h′−l′′h′′ (ω0) + β

1

1− β
(1− p) (n− nl′) ln

(
1− ξ̃l′h′−l′′h′′ (ω0)

)
+

+β
(
p∆̂Λ (ΩH (ω0)) + (1− p) ∆̂Λ (ΩL (ω0))

)
where

∆̂Λ (ω0) =
β

1− β

(
p (n− nh′) ln ξ̃l′h′−l′′h′′ (ω0) + (1− p) (n− nl′) ln

(
1− ξ̃l′h′−l′′h′′ (ω0)

))
+(49)

+
β

1− β
β
(
p∆̂Λ (ΩH (ω0)) + (1− p) ∆̂Λ (ΩL (ω0))

)
.

Consider the next Lemma first

Lemma 10 1.
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2. If

∆̄Λ +
(
p (n− nh′) ln ξ̃l′h′−l′′h′′ (1) + (1− p) (n− nl′) ln

(
1− ξ̃l′h′−l′′h′′ (1)

))
and

∆̄Λ + (p (n− nh′) ln p+ (1− p) (n− nl′) ln (1− p))

have opposite signs, where

∆̄Λ = ln
A

(1−p)
h′ Apl′

A
+ p ln

(ξ1
l′h′)

nh′

(p)n
+ (1− p) ln

(1− ξ1
l′h′)

nl′

(1− p)n
(50)

then there is a ω∗0 ∈ (0, 1) .

3. if n1 ≤ n ≤ n2 then ∆Λ (1) < ∆Λ (0) .

Proof. Observe that ΩH (1) = ΩL (1) = 1, ΩH (0) = ΩL (0) = 0 and (??) implies that

∆̂Λ (1) =
β

(1− β)2

(
p (n− nh′) ln ξ̃l′h′−l′′h′′ (1) + (1− p) (n− nl′) ln

(
1− ξ̃l′h′−l′′h′′ (1)

))
∆̂Λ (0) =

β

(1− β)2 (p (n− nh′) ln p+ (1− p) (n− nl′) ln (1− p))

Thus, :

∆Λ (1) =
β

(1− β)2

(
∆̄Λ +

(
p (n− nh′) ln ξ̃l′h′−l′′h′′ (1) + (1− p) (n− nl′) ln

(
1− ξ̃l′h′−l′′h′′ (1)

)))
∆Λ (0) =

β

(1− β)2

(
∆̄Λ + (p (n− nh′) ln p+ (1− p) (n− nl′) ln (1− p))

)
.

As ∆Λ (ω0) is continuous in ω0, if ∆Λ (1) ∆Λ (0) < 0, there must be a ω∗0.

As

∆Λ (1)−∆Λ (0) =
β

(1− β)2

(
p (n− nh′) ln

ξ̄

p
+ (1− p) (n− nl′) ln

1− ξ̄
1− p

)
=

=
β

(1− β)2

(
p (n− nh′) ln

ω̂ξl′h′ + (1− ω̂) p

p
+ (1− p) (n− nl′) ln

1− (ω̂ξl′h′ + (1− ω̂) p)

1− p

)
,

if n2 ≥ n ≥ n1 then l′h′ = BA, implies
ω̂ξl′h′+(1−ω̂)p

p
> 1 >

1−(ω̂ξl′h′+(1−ω̂)p)

1−p and nh′ = n2

and nl = n1, so,
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β

(1− β)2

(
p (n− nh′) ln

ω̂ξl′h′ + (1− ω̂) p

p
+ (1− p) (n− nl′) ln

1− (ω̂ξl′h′ + (1− ω̂) p)

1− p

)
< 0

∆Λ (1) < ∆Λ (0) .

Also l′h′ = AB, then
ω̂ξl′h′+(1−ω̂)p

p
< 1 <

1−(ω̂ξl′h′+(1−ω̂)p)

1−p and nh′ = n1 and nl = n2, so

β

(1− β)2

(
p (n− nh′) ln

ω̂ξl′h′ + (1− ω̂) p

p
+ (1− p) (n− nl′) ln

1− (ω̂ξl′h′ + (1− ω̂) p)

1− p

)
< 0

∆Λ (1) < ∆Λ (0) .

This implies that there is at least one ω∗0 for which the stability criterion holds.

This lemma implies the proposition if we notice from the definition of (50) that for any

other parameters, we can pick a ln
A

(1−p)
h′ Ap

l′
A

to satisfy the conditions of the lemma.

C.3 Proof of Proposition 9

Consider the case of hedge funds. Consider the term Λ0

(
W̃0, ω0

)
in (13). Note that this

term in the first market where p = 1− p is

Λ1
0

(
W̃0, ω0

)
= ln (1− β) + (51)

+ β
1

1− β
(
1− p

)
lnA2

(
ξiBA
ξ̃ (ω0)

)n2 W̃0

1− βW̃0

yH
1

1− βW̃H (ω0)
β+

+ β
1

1− β
p lnA1

(
1− ξiBA

1− ξ̃ (ω0)

)n1 W̃0

1− βW̃0

1

1− βW̃L (ω0)
β

+ β
((

1− p
)

Λ
(

ΩH (ω0) , W̃H (ω0)
)

+ pΛ
(

ΩL (ω0) , W̃L (ω0)
))

while on the second market where p = p, it is

Λ1
0

(
W̃0, ω0

)
= ln (1− β) + (52)

+ β
1

1− β
p lnA1

(
1− ξiBA

1− ξ̃ (ω0)

)n1 W̃0

1− βW̃0

y
H

1

1− βW̃L (ω0)
β+

+ β
1

1− β
(
1− p

)
lnA2

(
ξiBA
ξ̃ (ω0)

)n2 W̃0

1− βW̃0

y
L

1

1− βW̃H (ω0)
β

+ β
(
pΛ
(

ΩL (ω0) , W̃L (ω0)
)

+
(
1− p

)
Λ
(

ΩH (ω0) , W̃H (ω0)
))
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Subtracting one from the other gives the result for hedge funds. For mutual funds the

proof is analogous with the substitution of ξlh = p, A1 = A2 = A and n1 = n2 = n.
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