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In analyses of sponsored search auctions for
online advertising, it is customary to model the
dynamic game of incomplete information by con-
sidering a static games of complete information.
This approach is used in Edelman, Ostrovsky
and Schwarz (2007) (EOS), Varian (2007), and
the subsequent literature.

Modeling complex interactions in uncertain
environments as games of complete information
has a long history. For example, the Bertrand
model of oligopolistic competition posits that
companies know their competitors’ costs based
on their experience from prior interactions.

The use of a static game of complete informa-
tion often offers important benefits. For one, it is
tractable – avoiding complex multi-period infor-
mation sets in a dynamic game. Furthermore, a
suitably-chosen static game can capture impor-
tant characteristics of the underlying dynamic
game. When a game is repeated over an ex-
tended period, there is good reason to think par-
ticipants will learn many characteristics of their
counterparts – supporting the use of a complete
information model.

Yet the use of a static game of complete in-
formation is also unsatisfying. Analysis of the
static game offers no clear way to identify which
(if any) equilibria of the static game of complete
information are a relevant approximation of the
equilibria of the dynamic game of incomplete in-
formation.

In this paper, we consider a dynamic game
of incomplete information used to sell sponsored
search advertisements. We also consider a cor-
responding static game of complete information.
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We analyze the underlying dynamic game of in-
complete information, and we establish an upper
bound on the revenue of any equilibrium of any
dynamic game in this environment. We then ex-
clude equilibria of the corresponding static game
with revenue that exceeds this upper bound. See
Section D.

We use this equilibrium selection criteria to
assess optimal design of sponsored search plat-
forms that sell search engine advertising. We
characterize optimal reserve prices in sponsored
search auctions. We show that a search engine’s
optimal reserve price is independent of the num-
ber of bidders and independent of the rate at
which click-through rate declines over positions.
See Section E.

Our analysis of reserve prices also lets us as-
sess their welfare effects. We separate the effects
of reserve price increases into direct effects (caus-
ing the lowest value bidder to face a higher pay-
ment) and indirect effects (inducing other bid-
ders to increase their bids, thereby increasing
others’ payments). We show that most of in-
cremental revenue from setting reserve price op-
timally comes not from the low bidder’s direct
effect, and not from indirect effects on other low
bidders, but rather from the indirect effects on
high bidders. This result may appear counter-
intuitive because top bidders’ large valuations
place them, in an important sense, “furthest
from” the reserve price. See Section II.

I. Environment and Mechanisms

A. Environment

Our model for the sponsored search environ-
ment follows EOS. We consider a market for ad-
vertisements triggered by searches for a single
keyword. Each period, a slate of ads is shown to
users, and the world lasts for T periods. Each
position has a commonly-known click-through
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rate (CTR), and higher positions have higher
CTR. In expectation, an ad in position i receives
�i clicks per period, and the number of clicks de-
pends on position only. In a given period, each
ad can appear in at most one position.

There are N advertisers. Advertiser k values
a click at sk, which is k’s private information,
does not change over time, and does not depend
on the position where the ad appears. Bidder
values are i.i.d. drawn from a commonly-known
distribution with support [0, s], pdf f(.), and cdf
F (.) satisfying the regularity condition from My-
erson (1981). In particular, we assume virtual

valuation  (s) = s− 1−F (s)
f(s)

is decreasing in s.

The per-period payoff of advertiser k in posi-
tion i is �i(sk − pk), where pk denotes the pay-
ment per-click made by advertiser k in that pe-
riod. The total payoff of advertiser k is the sum
of k’s period payoffs, i.e.

∑T
t=1 �k(t)(sk − pk(t))

where k(t) denotes the position of advertiser k
in period t and pk(t) denotes the payment made
by advertiser k in period t.

B. The Dynamic Game of Incomplete
Information

We begin with a stylized model that captures
the dynamic aspects of the mechanism used in
practice. Search engines sell advertisements us-
ing real-time generalized second price (GSP)
auctions. As each search occurs, an auction is
conducted to determine which ads should be dis-
played to the corresponding user. Advertisers
are ranked based on bids: all else equal, the
higher the bid, the higher the position assigned
to the corresponding advertiser, and hence the
more clicks the advertiser receives. If there are
more positions than advertisers, a position is al-
located to all advertisers whose bid exceeds the
reserve price. The per-click payment of the ad-
vertiser in the bottom position equals the re-
serve price. For each other advertiser, the per-
click payment equals the bid of an advertiser
who is ranked one position lower. (For exam-
ple, the advertiser in the third position pays an
amount equal to the fourth-largest bid.) The
mechanisms used by Google, Yahoo!, and Mi-
crosoft adCenter build on this GSP approach
– though they add variations such as adjusting
prices based on ad quality. See e.g. Abrams and
Schwarz (2008).

Advertisers can change their bids at any time.
Each period, advertisers observe positions of
their competitors. By seeing other advertis-
ers’ positions, each advertiser updates its beliefs
about others’ valuations, influencing bids in fu-
ture periods. When choosing a bid, an advertiser
may consider how its action will influence future
play of other advertisers. Historic bid informa-
tion is relevant in equilibrium because an adver-
tiser’s best response depends on its expectation
of bidding behavior of other advertisers. This in-
formation structure creates a complex dynamic
game of incomplete information.

Our key observation is that we can establish
an upper bound on revenue in any equilibrium
of any dynamic game in this environment with-
out characterizing the equilibrium of a dynamic
game. Importantly, the environment is fairly
simple – letting us characterize an optimal mech-
anism for this environment, thereby bounding
revenue in any dynamic mechanism in this en-
vironment without solving for an equilibrium of
a dynamic game. An optimal mechanism is pre-
sented in Section D.

C. Approximation with a One-Shot Game
of Complete Information

The dynamic mechanism described above is
sufficiently complex that it is difficult or per-
haps impossible to solve analytically for an equi-
librium strategy. The literature on sponsored
search auctions sidesteps the complexity of the
dynamic game of incomplete information by
modeling it as a one shot game of complete in-
formation. The complete information game cor-
responding to the incomplete information game
retains payoffs and the actions exactly as in the
previous section. However, there are two impor-
tant differences: the complete information game
lasts only one period, and the per-click values of
all bidders are common knowledge. The justi-
fication for considering a complete information
model is that in a dynamic game of incomplete
information, players learn each others’ values,
making a complete information game a plausible
approximation of long-run outcomes. This jus-
tification follows longstanding practice in the in-
dustrial organization literature, modeling price
competition among firms as a one-shot game
with common knowledge of each firm’s produc-
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tion costs.

The one-shot game of complete information
has multiple equilibria. Some of these equilibria
can be ruled out by the envy-free restriction in-
troduced in EOS and Varian (2007). The envy-
free condition requires that no bidder wishes to
exchange positions with a bidder ranked above
him. Note that the payment of the advertiser
in position i − 1 equals the bid of advertiser i,
so envy freeness means that for each advertiser,
�i(sk−pk) ≥ �i−1(sk−bk) where pk is advertiser
k’s payment per click in his current position, and
bk is k’s current bid. EOS and Varian (2007)
show that the equilibrium with VCG-equivalent
payoffs yields the lowest revenues of all envy-free
equilibria. Both EOS and Varian identify the
lowest-revenue envy-free (LREF) equilibrium as
the most plausible. Varian offers an informal
argument for the LREF equilibrium, while the
main result of EOS shows that in a generalized
English auction, the LREF equilibrium is the
unique outcome. Cary et al. (2007) show that
if bidders play myopic strategies in a repeated
GSP auction, the system converges to the LREF
equilibrium. A number of subsequent papers use
the LREF equilibrium as the solution concept
for sponsored search auctions.

However, it remains uncertain whether the
LREF equilibrium is the “right” equilibrium to
select in GSP auctions. Thompson and Leyton-
Brown (2009) computationally explore the set
of all equilibria in complete information GSP.
Borgers et al. (2007) consider various Nash
equilibria of the complete information game and
suggest that a profit-maximizing search engine
should be able to coordinate bidders on a equi-
librium with revenue greater than LREF. How-
ever, our Proposition 4 shows that when a re-
serve price is chosen optimally, a search en-
gine cannot coordinate bidders on an equilib-
rium with revenues higher than in the LREF
equilibrium.

D. The Non-Contradiction Criteria
(NCC)

As long as the outcome of the incomplete in-
formation game quickly converges to an equi-
librium of the complete information game, one
can view a complete information game as a
valid approximation of the incomplete informa-

tion game. This suggests an equilibrium selec-
tion criteria: An equilibrium of complete infor-
mation game can be ruled out if there does not
exist an equilibrium of the corresponding game
of incomplete information that converges to the
same outcome. As a result, expected revenue
in a “plausible” equilibrium of complete infor-
mation game integrated over all possible real-
izations of bidder values cannot exceed the ex-
pected revenues in some equilibrium of the in-
complete information game. We call this the
Non-Contradiction Criteria (NCC).

Let us define NCC precisely. Denote by m
the perfect Bayesian equilibrium of the incom-
plete information game that yields the largest
expected revenue. Denote by Rm(T ) the ex-
pected revenue in equilibrium m in a world
that lasts T periods. Let R denote the (largest
possible) expected per period equilibrium rev-
enues in an incomplete information game R =
1
T

limT→∞Rm(T ). Consider equilibrium per-
period revenues in an equilibrium � of the com-
plete information game. Denote by r�(s) the
expected revenues in Nash equilibrium � of a
complete information GSP auction where values
of bidders are given by vector s.

DEFINITION 1: A NE � of a complete in-
formation game fails NCC if it generates
greater expected revenues than any equilib-
rium of the corresponding incomplete infor-
mation game. That is, � fails NCC if∫
s1
...

∫
sN
r�sf(s1)...f(sN )ds1...dsN>R.

The idea behind NCC differs from the logic of
most equilibrium refinements. Refinements such
as subgame perfection, perfect Bayesian equilib-
ria, and intuitive criteria result from ruling out
strategies that are consistent with NE yet im-
plausible in the actual game. In contrast, NCC
calls for comparing two distinct games, say G
and Γ. Γ is a game of complete information
that is believed to approximate the behavior of
players in a corresponding game of incomplete
information Ġ. Some equilibria of Γ may cor-
rectly capture behavior in G while others may
not. If we can establish some fact that is true in
any equilibrium of G (e.g. the upper bound on
equilibrium revenues), this fact can be used to
narrow the set of relevant equilibria of Γ. Note
that NCC is not a restriction on the set of equi-
libria in Γ; NCC says nothing about reasonable
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equilibria in Γ. Rather, NCC restricts equilibria
of Γ when Γ is meant to capture behavior in G.

We use NCC to analyze sponsored search ad-
vertising. But the underlying idea is general.
Many models of complete information games are
simplified representations of complex dynamic
games of incomplete information. In these cases,
the set of plausible equilibria of a static game
should be considered in the context of the cor-
responding incomplete information game. Our
insight is that even if the incomplete informa-
tion game is very complex, it may be possible
to bound the set of equilibria of the incomplete
information game.

E. Optimal Mechanism for the Incomplete
Information Environment

Even though the sponsored search environ-
ment allows for multistate dynamic mechanisms,
we will show that a one-shot generalized English
auction is an optimal mechanism.

To apply NCC, we must find an upper bound
on revenue in the dynamic mechanism. In this
section, we describe the optimal mechanism for
the incomplete information environment.

Consider the generalized English auction for
the incomplete information environment. The
auction is run once, and positions are allocated
for the entire game. Following EOS, imagine
a clock showing the current price, and contin-
uously increasing over time. The price begins
at the reserve price, and all advertisers willing
to pay at least the reserve price participate in
the auction. As the clock ticks upwards, adver-
tisers can drop out. The auction is over when
the next-to-last advertiser drops out. The last
remaining advertiser is placed in the best (high-
est) position.

In general, optimal auction design for the
sale of multiple heterogeneous objects remains
an open problem. However, the structure of
sponsored search makes it possible to extend
the single-object results of Myerson (1981) to
cover multiple items. Although the equilibrium
price per click is higher in top positions, each
advertiser’s value for each position can be de-
rived from a single variable – the advertiser’s
value per click. Ulku (2009) extends the Myer-
son framework to the case of multiple heteroge-
neous objects when bidders’ private information

is one-dimensional.1

Obtaining an optimal mechanism is a key
intermediate result in our analysis. Simi-
larly, Roughgarden and Sundararajan (2007)
and Athey and Elison (2009) also obtain an
optimal mechanism as an intermediate result,
but for entirely different purposes. Iyengar and
Kumar (2006) consider computational methods
to estimate optimal auctions when clickthrough
rates are arbitrary. In contrast, the structure of
clickthrough rates assumed in our model allows
us to obtain an analytic result.

The following proposition characterizes the
optimal mechanism2:

PROPOSITION 2: The generalized English
auction with reserve price r∗is an optimal
mechanism with reserve price r∗ that solves
r∗ − 1−F (r∗)

f(r∗) = 0.

PROOF:

The optimal direct revelation mechanism can
be characterized using the same technique as
in a single object case, except that the prob-
ability of receiving an object is replaced with
the expected number of clicks that a bidder re-
ceives. Denote xk(r) the expected number of
clicks received by bidder k when the realized vec-
tor of bidder values is given by r = (r1...rN),
and let f(r) denote the pdf of vector r and
tk(0) the expected payment of bidder k when his
value is zero. With this modification, formula
5.12 from Krishna (2002) gives seller revenues
in a direct revelation mechanism:

∑N
k=1 tk(0) +∫

r
(
∑N
k=1  (rk)xk(r))f(r)dr. Thus, only bidders

with positive virtual valuations are allocated a
positive expected number of clicks, and bidders
with higher virtual (and actual) valuations are
allocated higher positions. Thus, the generalized
English auction achieves the same allocation and
revenue as the optimal direct revelation mecha-
nism.

COROLLARY 3: The optimal reserve price in
the generalized English auction is independent of

1Thus, even if bidders differ in exogenous quality,
an optimal mechanism can be constructed.

2We thank Michael Ostrovsky for suggesting a
dramatic simplification of the version of this proof

that appeared in the 2006 draft of this paper.
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the number of bidders, number of slots being auc-
tioned, and the rate of decline in click-through
rate from position to position.

F. Applying NCC

Consider application of NCC to a complete
information GSP auction with reserve price r∗.

PROPOSITION 4: In a complete information
GSP auction with a reserve price of r∗, from
among all envy-free equilibrium only the lowest
revenue equilibrium survives NCC. Furthermore,
this equilibrium is unique.

PROOF:
According to EOS Theorem 1, all envy-free

equilibria of the GSP auction yield revenues that
are at least as large as revenue in the correspond-
ing VCG auction. Yet Proposition 2 shows that
these revenues equal the optimal revenue in the
incomplete information environment. All but
one envy-free equilibria of the complete infor-
mation GSP auction yield higher revenues than
R (optimal revenue for incomplete information
environment) and hence are ruled out by NCC.

II. Reserve Prices and Individual
Bidder Payoffs

In this section, we explore the impact of re-
serve prices in an equilibrium of the generalized
English auction where strategies are continuous
in player types.

A. Bidders’ Cost Increases

In this section, we will show that raising the
reserve price creates an indirect effect far larger
than the direct effect.

The reserve price directly affcts the lowest
bidder. As long as there are more positions
than bidders, the lowest bidder pays the re-
serve price.) The reserve price may also indi-
rectly affect other bidders because change in re-
serve price may impact equilibrium behavior of
all players.

Consider an increase in a reserve price by an
amount Δr = rnew − rold. Suppose that there
are more slots than advertisers, that n bidders
had values greater than rold, and that j bidders
dropped out as a result of the increase in reserve.

In the following proposition, we compare the
revenue increases resulting from a change in re-
serve price.

PROPOSITION 5: If a changed reserve price
leads j advertisers to drop out, then the total
payment of each remaining advertiser changes
by �n−jΔr.

SKETCH OF PROOF:
For the full proof, see the online appendix.
Advertiser n receives slot n and pays reserve

price r. Changing the reserve price by Δr =
r1 − r0 changes n’s total payment �nΔr.

Advertiser n − 1 pays a per-click fee pn−1 =
bn. With reserve price r, advertiser n bids bn =
sn− �n

�n−1
(sn− r). (See Theorem 2 of EOS.) So

the change in reserve price causes n − 1’s per-
click payment to change by

Δpn−1 = Δbn = b1n − b0n

= (sn − �n
�n−1

(sk − r1))

− (sn − �n
�n−1

(sk − r0))

=
�n
�n−1

Δr

Advertiser n − 1 receives �n−1 clicks, so
his total payment changes by �n−1Δpn−1 =
�n−1( �n

�n−1
Δr) = �nΔr.

Recursing upwards yields an identical cancel-
lation of terms at each step – hence the same to-
tal payment change, �nΔr, for each advertiser.

Now consider the case in which the changed
reserve r1 exceeds the valuations of the lowest j
advertisers. Unable to achieve a positive profit,
these advertisers exit. Advertiser n − j takes
the role of n in the preceding analysis, and each
advertiser’s total payment changes by �n−jΔr.

COROLLARY 6: If no advertisers drop out as
a result of a reserve price change, then the re-
serve price yields an identical dollar-for-dollar
change in the total payment of each advertiser.

COROLLARY 7: In a market with n bidders
bidding above the reserve price, a reduction in
reserve price has an indirect effect at least n− 1
times greater than the direct effect. (We say that
an advertiser is affected indirectly by a reduction
in reserve price if his payment before the reduc-
tion was strictly greater than the reserve price.)
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B. Welfare Implications

Under realistic assumptions, an optimal re-
serve price can yield a notable increase in search
engine revenue. For example, in October 2008,
Yahoo CEO Sue Decker stated in Yahoo’s Q3
2008 earnings call that Yahoo’s new reserve price
efforts were the “most significant” cause of the
11% increase in Yahoo’s revenue per search.

Through simulations, we have explored how
reserve price impacts both bidders and the seller.
The plot below shows results of simulations with
five advertisers whose values are drawn from a
log-normal distribution with mean 1 and stan-
dard deviation 0.25.

 

The graph reveals that moving from a zero
reserve price to optimal reserve price leads to a
small decline in total surplus and a significant
increase in search engine revenues.

III. Conclusion

In online search advertising auctions, reserve
prices are important – offering large revenue
benefits to sellers, along with large welfare ef-
fects for the market as a whole. But the effect
of reserve price can be opaque, particularly be-
cause it is not always straightforward to compare
“before” and “after” conditions. Our Proposi-
tion 5 assesses the distributional consequences,
revealing the counterintuitive across-the-board
effects of reserve price increases that might have
seemed to target low bidders exclusively.

Our paper also offers insight on equilibrium
selection. When one game is used to understand
results of another, careful comparison can yield
useful insights. This approach applies in many
contexts where a one-shot game offers a simpli-
fied view of repeated interactions, e.g. Cournot
and Bertrand models of industry competition.

We see this paper as an example of applied
theory. We address the important applied prob-
lem of setting an optimal reserve price in a large
and growing market, and our approach analyzes

mechanisms that are widely used. Yet our the-
oretical contribution – equilibrium selection cri-
teria – also grounds our results. Moreover, our
counterintuitive revenue finding – an indirect ef-
fect larger than the direct effect – stands at the
intersection of theory and application.
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IV. Online Appendix: Proof of
Proposition 5

PROPOSITION 5: If a changed reserve price
leads j advertisers to drop out, then the total
payment of each remaining advertiser changes
by �n−jΔr.

PROOF:

Setup. Advertisers are 1..n, and slots are
also 1..n. Initial reserve price r0 changes to some
new reserve price r1. Suppose for now that the
new reserve price r1 remains sufficiently low that
no advertiser is priced out of the market, i.e.
r1 ≤ sn.

Advertiser n. Advertiser n receives slot n
and pays the reserve price r. So when the re-
serve price increases from r0 to r1, advertiser
n’s per-click payment increases by Δr = r1−r0.
Advertiser n receives �n clicks, so advertiser n’s
total payment increases by �nΔr.

Advertiser n-1. The per-click fee pn−1 paid
by advertiser n−1 is determined by the per-click
bid bn of advertiser n. With reserve price r, ad-
vertiser n bids bn = sn − �n

�n−1
(sn − r). (This

is the base case of Theorem 2 of EOS.) So when
the reserve price changes from r0 to r1, adver-
tiser n− 1’s change in per-click payment equals
advertiser n’s change in per-click bid, which is

Δpn−1 = Δbn = b1n − b0n

= (sn − �n
�n−1

(sk − r1))

− (sn − �n
�n−1

(sk − r0))

=
�n
�n−1

Δr

Advertiser n − 1 receives �n−1 clicks. So when
the reserve price increases by Δr, advertiser n−
1’s total payment increases by �n−1Δpn−1 =
�n−1( �n

�n−1
Δr) = �nΔr.

Advertiser n-2 and the general case. Ad-
vertiser n− 2 pays a per-click fee pn−2 given by
bn−1. With reserve price r, advertiser n−1 bids
bn−1 = sn−1 − �n−1

�n−2
(sn−1 − bn). (This is the

general case of Theorem 2 of EOS.) So when the
reserve price changes from r0 to r1, advertiser

n− 1’s change in bid is

Δbn−1 = b1n − b0n

= (sn − �n−1

�n−2
(sk − b1n))

− (sn − �n−1

�n−2
(sk − b0n))

=
�n−1

�n−2
(b1n − b0n)

=
�n−1

�n−2
(Δbn)

=
�n−1

�n−2
(
�n
�n−1

(r1 − r0))

=
�n
�n−2

Δr

Advertiser n − 2 receives �n−2 clicks. So ad-
vertiser n − 2’s total payment increases by
�n−2Δbn−1 = �n−2

�n
�n−2

Δr = �nΔr. Recurs-

ing upwards to advertiser 1 confirms that each
advertiser’s total payment increases by the same
amount, �nΔr.

Reserve price that excludes one or more
advertisers. We now allow an increase in re-
serve price such that one or more advertisers is
priced out of the market (relaxing the assump-
tion in the first paragraph of the proof).

Suppose the increased reserve r1 exceeds ad-
vertiser n’s valuation sn. Then advertiser n can
never achieve a positive profit by buying ads; n
would have to pay more than his valuation. So n
exits. What about the other advertisers? Adver-
tiser n− 1 now takes on the role of n in the pre-
ceding analysis, and n−1’s payment per click in-
creases one-for-one with the reserve price (above
the point where n dropped out). Then n − 2
takes the role of n− 1 in the preceding analysis,
and similarly recursing upwards. If one adver-
tiser, n, drops out, then each advertiser’s total
payment increases by �n−1Δr. More generally,
if the increased reserve price leads j advertisers
to drop out, then each other advertiser’s total
payment increases by �n−jΔr.


