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Section 1: Introduction 

 
The general fascination with hurricanes is in large part attributable to their potentially 

devastating destructiveness. For instance, Hurricane Andrew in August 1992 demolished 

large parts of the southeastern part of Florida, where the total cost has been estimated to have 

been at least US$20 billion dollars. An important part of the damages due to hurricanes is of 

course due to destruction of residential property. In the case of Hurricane Andrew, for 

example, it is believed that around 25,000 homes were completely destroyed while another 

100,000 were damaged (Fronstin and Holtmann, 1994). More recently, Ewing et al. (2007, p. 

315) point out that Hurricane Katrina in August 2005: 

 “…wreaked havoc on the United States. The total impact of this killer storm 

in all of its human and environmental dimensions will not be determined for several 

years. Estimates of the monetary impact indicate that Katrina was the costliest storm 

in U.S. history. More than a million Gulf Coast residents were displaced by the 

storm.” 

Ewing et al. (2009) cite insured losses of $81 billion and a death toll (including indirect 

deaths) of over 1,800 lives. 

 

A large exogenous shock to housing supply such as a hurricane may, of course, have 

considerable implications for the real estate market, although the a priori net effect is not 

clear.2  On the one hand, the shortage in supply is likely to cause an increase in prices in the 

short run. In other words, markets surge from a housing shortage immediately following a 

storm and then correct in the medium and long term as supply gradually returns to prior 

levels.  At the same time, however, hurricanes may cause enough disruption to local 

economic activity so as to negatively affect income and consequently the demand for 

housing, at least in the short run.3  Moreover, if in response to the hurricane strike, current or 

                                                 
2 Belasen and Polachek (2008) similarly note that the effect of hurricanes on wages and employment in local 

labour markets is not obvious, a priori.  
3 Strobl (2009) found that an average destructive hurricane caused per capita economic growth rates in US 

coastal counties to fall by 0.8 percentage points, but then partially recover by 0.2 percentage points. While the 

pattern is qualitatively similar at the state level, the net effect over the long term is negligible.  
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potential homeowners update their subjective probability of a hurricane strike occurring, this 

may reduce the attractiveness of hurricane-prone areas and reduce housing demand even in 

the long-run. 

 

While there are a now a handful of studies of the impact of hurricane strikes on 

housing prices, the empirical evidence is rather inconclusive.  For instance, Bin and Polasky 

(2004) study residential property values in Pitt County, North Carolina between 1992 and 

2002 using a hedonic price model and find that the flooding due to Hurricane Floyd in 1999 

reduced the market value of houses inside floodplain areas.  On the other hand, focusing on 

much larger areas, Graham and Hall (2001), Beracha and Prati (2008), and Speyrer and 

Ragas (1991) find no discernable effect of hurricane strikes on house prices.  In contrast, 

Aqeel (2009) using difference-in-difference pooled OLS regressions and quarterly data for 75 

MSAs from 2000 to 2008, finds that that Hurricane Katrina caused house prices in directly 

affected areas to rise by about 7 per cent, with a smaller increase in nearby areas.   

 

Taking a slightly different approach, Hallstrom and Smith (2005) focus on the impact 

of hurricanes on house prices in nearby but unaffected counties and discover that house prices 

dip by as much as 19 per cent in a hedonic pricing model, suggesting that there is a proximity 

effect due to the updating of subjective beliefs on the probability of occurrence. Carbone, 

Hallstrom and Smith (2006) obtain similar results. Using a difference in difference model and 

repeat home sales data, they find that Hurricane Andrew in 1992 significantly reduced the 

increase in home prices from 1993 to 2000 in areas of two coastal counties in Florida which 

are prone to storm surge flooding, consistent with increased perception of risk on the part of 

the public.4   

 

In this paper, we re-examine this effect of hurricanes on house prices in US coastal 

cities. We make three contributions to the literature.  Firstly, we use a more general house 

price model than other studies. Our model includes both short run house price and income 

dynamics, as well as long run equilibrium correction terms. These short and long run terms 

                                                 
4 The two counties are Dade County, where the majority of the damage caused by Hurricane Andrew occurred, 

and Lee County, which was largely unaffected.  
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are the so-called “bubble builder” and “bubble burster” effects found in almost all 

econometric house price models (e.g. Abraham and Hendershott, 1996).  In addition, we 

model the effect of hurricane strikes on both house prices and incomes. In our model 

hurricanes have a direct effect on house prices and an indirect effect via a fall in local 

incomes.  

 

Secondly, previous studies have modeled hurricane strikes solely in terms of whether 

or not they affected a local area. However, hurricanes are large spatial phenomena and their 

destructive effect varies over time and across space. For example, the same hurricane will 

have different destructive effects in different areas depending on where these areas are 

located relative to the ‘eye’ of the hurricane, the hurricane’s maximum wind speed at the time 

and the level of local property exposed. In this paper we capture these effects using a 

hurricane destruction index. The index is based on a monetary loss equation, local wind speed 

estimates derived from a physical wind field model as well as local exposure characteristics. 

This hurricane destruction index dominates a simple hurricane incidence indicator.  

 

Thirdly, our annual, panel dataset of coastal areas (CBSA’s) covers a longer time 

period, more areas and includes more hurricanes strikes than many other studies. Using this 

dataset and our index of hurricane destructiveness, we are able to estimate and test quite 

general dynamic models. Our basic model is a two equation, dynamic equilibrium correction 

panel model for house prices and incomes with area and time fixed effects. Our results show 

that the typical hurricane strike raises real house prices for a number of years, with a 

maximum effect of between 3 to 4% three years after occurrence. There is also a small 

negative effect on real incomes. These results are stable across models and sub-samples.    

 

The remainder of the paper is as follows.  In the next section we provide a brief 

description of hurricanes and their destructive power.  Section 3 describes the construction of 

our hurricane destruction proxy.  In Section 4 we outline the data sources used in the 

empirical analysis.  Our econometric specification and subsequent results are contained in the 

Section 5. Finally we conclude in Section 6.  
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2. Some Basic Facts about Hurricanes and their Destructive Power 

 

A tropical cyclone is a meteorological term for a storm system, characterized by a low 

pressure system center and thunderstorms that produce strong winds and flooding rain, which 

generally first forms, and hence its name, in tropical regions of the globe.5 Depending on 

their location and strength, tropical cyclones are referred to by various other names, such as 

hurricane, typhoon, tropical storm, cyclonic storm, and tropical depression.  Tropical storms 

in the North Atlantic Basin, as we study here, are termed hurricanes if they are of sufficient 

strength.6 Their season can start as early as the end of May and last until the end of 

November, although it generally takes place between July and October.   

 

--- Figure 1 About Here --- 

 

We depict a radar composite picture of Hurricane Andrew, which made landfall in 

Florida on August 24 in 1992, as a typical example of a hurricane in Figure 1. In terms of its 

structure, a hurricane will generally harbor an area of sinking air at the center of circulation, 

known as the ‘eye, where weather in the eye is normally calm and free of clouds.7  Outside of 

the eye curved bands of clouds and thunderstorms move away from the eye wall in a spiral 

fashion, where these bands are capable of producing heavy bursts of rain, wind, and 

tornadoes.  One may want to note that a hurricane can affect a large area surrounding its eye 

and that its structure is not symmetric.  As a matter of fact, hurricane strength tropical 

cyclones are on average about 500 km wide, although their size can vary considerably.   

 

Physical damage due to hurricanes typically takes a number of forms.  Firstly, the 

strong winds associated with the storm may cause considerable structural damage to 

buildings as well as crops.  Secondly, the high winds pushing on the ocean’s surface can 

                                                 
5 The term "cyclone" derives from the cyclonic nature of such storms, with counterclockwise rotation in the 

Northern Hemisphere and clockwise rotation in the Southern Hemisphere. 
6 In order to be considered a tropical storm, the storm must have maximum wind speed of at least 55 km/hr.  To 

be upgraded to a hurricane these speeds must reach at least 119 km/hr. 
7 National Weather Service (October 19, 2005). Tropical Cyclone Structure. JetStream - An Online School for 

Weather. National Oceanic & Atmospheric Administration. 
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cause the water near the coast to pile up higher than the ordinary sea level, and this effect 

combined with the low pressure at the center of the weather system and the bathymetry of the 

body of water results in storm surges.  Generally these surges are the most damaging aspect 

of hurricanes.  In particular, storm surges can cause severe property damage, as well as 

destruction and salt contamination of agricultural areas.8  Such flooding may extend up to 

40km or more from the coast for maximum strength storms.  Finally, there is generally strong 

rainfall associated with a hurricane, which can also result in extensive flooding and, in sloped 

areas, landslides.  One may want to note that while the latter two effects are not directly 

related to wind, the extent of damage to these is highly correlated with the wind speed of a 

hurricane.   

 

3. A Hurricane Destruction Proxy 

 

Ewing et al. (2005) used a simply incidence dummy to investigate the impact of 

hurricanes on local housing prices.  However, the extent of their destruction is unlikely to be 

uniform across localities, but will depend on the position relative to the eye, the maximum 

wind speed, direction of movement, and local characteristics, amongst other things.9   In 

order to take account of the complex nature of hurricanes we thus here, as in Strobl (2009), 

avail of a proxy of local wind speed experienced that is derived from a model of the spatial 

structure and movement of hurricanes, and hence of wind speeds experienced directly along 

the track as well as locations around it.  We then translate these local wind speeds into a 

proxy of local destruction.  More precisely, Emanuel (2005) noted that both the monetary 

losses in hurricanes as well as the power dissipation of these storms are related to their 

maximum observed wind speed.  Consequently, he proposed an index of hurricane damages 

based on a simplified version of a power dissipation equation: 

(1) 
0

pdi v dt
τ λ= ∫           

                                                 
8 Yang (2007).    
9 In the case of tornados, De Silva et al. (2008) highlight the spatial dependence in housing losses due to 

tornadoes.  
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where V is the maximum sustained wind speed, τ is the lifetime of the storm as accumulated 

over time intervals t, and λ is a parameter that relates local wind speed to the local level of 

damage.   

 

We modify this index to obtain a proxy of damages due to hurricanes at the city level 

using census tract data. Let i and j denote city i and census track 1 ij N= …   respectively.   

More precisely, the total destruction due to the 1 itr K= …  storms that affected city i at time t 

is defined as  : 

(2) 
1 1

i iN K

i t i j t i j r t
j r

hurr w v λ

= =

= ∑∑       

where i j r tv  is an estimate of the wind speed due to storm r observed in census tract j of city i 

at time t.  The 'si j tw  are weights assigned according to characteristics of the affected census 

tracks. They capture geographical differences within areas, in terms of the potential exposure 

if a hurricane were to strike.  Given data for v and w and a value for λ, equation (2) provides 

us with a local level proxy of hurricane damages that enables us to quantify the impact of 

hurricane strikes on local housing prices. In the next section we discuss the main data sources 

that we used to construct our hurricane destructiveness index. 

  

3. Data 

 

3.1 Geographic Area of Study 

 

Only a small proportion of the total geographic land mass of the US, namely areas   

relatively close to the coast, is normally affected by hurricanes since hurricanes quickly lose 

speed once they make a landfall.  Moreover, as noted earlier, most hurricane damage is 

caused by storm surges in coastal areas.  We thus specifically focus our analysis on US 

coastal areas in the North Atlantic Basin Region. In terms of the level of spatial unit of our 

analysis, we are restricted by the spatial level of aggregation of the home price data, 

described in greater detail below. The most disaggregated home price data are available at the 

core based statistical area (CBSA) level. CBSAs consists of (i) metropolitan statistical areas, 

which have at least one urbanized area of 50,000 or more population and an adjacent territory 
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that has a high degree of social and economic integration with the core in terms of 

commuting ties, and (ii) micropolitan statistical areas which contain an urban core of between 

10,000 and 50,000 individuals.  We identified ‘coastal’ CBSA’s using the list of coastal 

counties generated by the Strategic Environmental Assessments Division of the National 

Oceanic and Atmospheric Administration (NOAA).  Accordingly, coastal counties are 

defined as those which have at least 15 per cent of their land in the coastal watershed10 or that 

comprise at least 15 per cent of a coastal cataloging unit.  If a CBSA intersects at least one 

coastal county, we classify it as a coastal CBSA.   

 

3.2 House Prices 

 

Our measure of house prices within CBSAs is the Office of Federal Housing 

Enterprise Oversight’s (OFHEO) quarterly housing price index (HPI).  The HPI is a measure 

of the movement of single-family house prices at the CBSA level. It is a weighted repeat-

sales index, derived from the average price changes in repeat sales or refinancing of the same 

properties.  As such, it is the most geographically comprehensive house price indicator for the 

US.      

 

3.3 Personal Income  

 

We use the Bureau of Economic Analysis’ (BEA) estimates of per capita, local 

personal income.  Personal income in the BEA data is defined as the income received by all 

persons from all sources, and constitutes the sum of net earnings by place of residence, rental 

income of persons, personal dividend income, personal interest income, and personal current 

transfer receipts as taken from IRS tax returns. We convert these nominal values to constant 

2005 dollars using the US consumer price index. Finally, we also use the BEA’s estimate of 

US national level per capita personal income, in constant 2005 dollars. 

 

                                                 
10 A coastal watershed is composed of all lands within Esturaine Drainage Areas (EDA) or Coastal Drainage 

Areas (CDA) in the NOAA’s Coastal Assessment Framework.   
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The BEA discusses how natural disasters are likely to be accounted for in their 

personal income estimates.  In particular they argue that natural disasters will generally have 

two major effects on the data. Firstly, there will be destruction of property, where property 

losses net of the associated insurance claims will be incorporated as one-time effects.  In this 

regard, damage to property of household enterprises will reduce proprietors’ income and 

rental income by the amount of uninsured losses, measured by consumption of fixed capital 

less of business transfers.  Damage to consumer goods, on the other hand, will affect personal 

current transfer receipts net of the amount of insured losses of these goods.  The second effect 

of natural disasters is likely to be a disruption of the flow of income in the economy as 

normal economic activity is interrupted.  This will generally be embedded within the data on 

which the personal income estimates are based. For example, many industries in the directly 

affected area will experience a reduction in earnings as production is interrupted, while for 

others there may be an increase.  

 

3.4.1 Population weights 

 

We use local population shares as a proxy for the relative local exposure to 

hurricanes. More specifically, our census tract level population shares (i.e. the w’s in equation 

(2) above) are from the decennial population censuses in 1970, 1980, 1990 and 2000, linearly 

interpolated to obtain annual values for intervening years.    

 

3.4.2 Hurricane Wind Speed 

 

Since historical data on hurricanes normally only provide wind speeds at locations 

over which the eye of the hurricane passes, one needs to estimate wind speeds for areas 

surrounding the eye. Russel (1968) initiated the use of Monte Carlo simulation methods to 

estimate local hurricane wind speeds and a large number of studies since then have used this 

approach.11  The basic methodology in all of these studies has been to take site specific 

statistics of key hurricane parameters (including the radius to maximum wind speed, heading, 

translation speed, and the coast crossing position or distance to closest approach);   

                                                 
11 See, for instance, Batts et al. (1980) and Vickery and Twisdale (1995).  
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incorporate the sample path data into a mathematical model of hurricane wind speeds along 

these paths; select random draws from the historical data; simulate the model and record the 

average simulated wind speeds in areas around the eye of the hurricanes.   

 

Here we use wind speed data generated from a new wind field model that is arguably 

superior to previous methods.12 This model now provides the underlying data for hurricane 

loss modeling in the well known HAZUS software.13  In this model, the full track of a 

hurricane is modeled, beginning with its initiation over the ocean and ending with its final 

dissipation.  In essence, the model has two main components: (a) a mean flow wind model 

that describes upper level winds, and, (b) a boundary layer model that allows one to estimate 

wind speeds at the surface of the earth over a set of rectangular nested grids, given the 

estimated upper level wind speeds.   

 

The mean flow model underlying the HAZUS data is that developed by Vickery et al.  

(2000). This solves the full nonlinear equations of motion of a translating hurricane and then 

parameterizes them for use in simulations.  Compared to previous approaches, this allows for 

a more accurate characterization of asymmetries in fast-moving hurricanes.  The boundary 

layer model of Vickery et al. (2008) is based on a combination of velocity profiles computed 

using dropsond data and a linear hurricane boundary layer model. It produced better estimates 

of the effect of the sea-land interface in reducing wind speeds and a more realistic 

representation of the wind speeds near the surface. Extensive verification, via comparisons of 

simulated and actual hurricane wind speeds, showed that this new wind speed model provides 

a good representation of hurricane wind fields (FEMA, 2007).  In the most recent release of 

HAZUS (version MR3), the model was implemented at the census tract level to generate 

maximum hurricane wind speeds per tract (if these were at least 50 miles per hour). The 

model uses historical hurricane track data for all tropical storms between 1900 and 2005 that 

                                                 
12 See FEMA (2007). 
13 HAZUS is a GIS-based natural hazard loss estimation software package developed and freely distributed by 

FEMA.   
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were at least SS category 3 at the time of US landfall, as recorded in the HURDAT 

database.14  

 

3.4.3 Estimation of λ 

 

An important input variable in equation (2) is λ, the parameter that links wind speed to 

its level of destruction, as derived from equation (1).  In this regard Emanuel (2005) noted 

that monetary damage figures of hurricanes tended to increase in the cubic power of the 

maximum observed wind speed. This suggests that λ should be approximately equal to 3.  

However, it should be noted that his proposed ‘cubic’ relationship between monetary 

damages and wind speed is based only on a few rudimentary calculations by Southern (1979) 

for Australia.  

 

In contrast, Nordhaus (2006) conducts a more comprehensive statistical analysis and 

shows that data for the US suggest that the relationship between wind speed and damages is 

closer to the 8th power.  More specifically, he takes data on total costs and maximum wind 

speeds for a set of 20th century hurricanes. He then regresses the log of the cost per hurricane, 

normalized by US GDP, on the logged maximum wind speed and finds a coefficient of 

around eight. However, total US GDP is unlikely to be a good normalization for costs, since 

hurricanes typically affect areas close to the coast, which constitute only a small proportion 

of the US.  Moreover, the relative local wealth that was affected is likely to have changed 

substantially over the period, as coastal communities have grown in size and income.15  

Given that many of the hurricanes in the latter half of the 20th century were particularly 

strong, neglecting these features is likely to bias his estimate of λ upward. For example, if 

you regress the log of the normalized cost values in Pielke et al. (2008) - who use real 

hurricane damages normalized with regard to the population and wealth of the affected 

counties only - on the log of the maximum observed hurricanes wind speeds in Nordhaus 

                                                 
14 The HURDAT database consists of six-hourly positions and corresponding intensity estimates in terms of 

maximum wind speed of tropical cyclones in the North Atlantic Basin over the period 1851-2006 and is the 

most complete and reliable source of North Atlantic hurricanes. 
15 See Rappaport and Sachs (2003). 
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(2006), the estimated coefficient implies that costs rise to the 3.8th and not to the 8th power of 

wind speed.   

 

Given the arguable shortcomings of both Emmanuel’s (2005) and Nordhaus’ (2006) 

estimates, we use the detailed information in the HAZUS dataset, which lists wind speeds at 

the census tract level by affected counties, to generate a more accurate estimate of λ. We 

estimate a log-linear equation relating damages to maximum wind speed: 

(3) ( )
1

ln ln
r tN

r t r t r j t j r t r t
j

DAMAGES N w Vλ ε
=

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑

 

where the subscripts j, r and t refer census tract j, hurricane r and time t respectively.  

r tDAMAGES  is the total monetary hurricane damage, r tN  is the number of census tracts 

affected, j r tV  is the local wind speed estimate, r j tw  is the share of total affected population 

that is resident in affected county j and r tε  is a random error term. In estimating (3), the 

parameter of interest is λ . Our hurricane damage figures are from Landsea and Pielke 

(2008). Information on which census tracts were affected, as well as the corresponding wind 

speed estimates, are from the HAZUS dataset. The local population shares of the affected 

census tracts were calculated using our interpolated census data. 

   

For the 1970 to 2005 period, estimating (3) produced a statistically significant 

estimate of 3.35 for λ. This is much lower than the value obtained by Nordhaus (2006). We 

investigated the possibility that our lower estimated λ  is due to our shorter time span by re-

estimating (3) over the period 1900 to 2005. Given the sparse information on population size 

at the census tract level prior to 1960, this limited us to estimating a county level version of 

equation (3), which produced a marginally higher estimate of λ of 3.52, much smaller than 

Nordhaus’ (2006) estimate of 8 or so. Since our estimates of λ are close to the value of 3 

proposed by Emmanuel (2005), we set λ equal to 3.   

 

Using a value of λ greater than unity implies that local damages increase more than 

proportionally with the wind speed.  For instance, for λ=3, if there are two regions with a 

single inhabitant, then the one which is exposed to winds of 240 km/hr (level 4 on the SS 
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scale) is assumed to experience almost 14 times as much damage as the one that was 

subjected to winds of only 120 km/hr (level 1 on the SS scale).    

 

3.5 Sample 

 

The limited OFHEO data on local area house prices means that our econometric 

analysis is limited to a sub-sample of all coastal CBSAs.  More specifically, we have annual 

data from 1988 to 2005 for 99 CBSAs, spread over 19 coastal states, for all of the variables 

listed above.  We depict these in grey in Figure 2.  

 

--- Figure 2 About Here --- 

 

We have local wind field (speed) estimates for the 13 hurricanes in the HURDAT 

database that made the HAZUS cut-off criteria, cited above, in the 18 years from 1988 to 

2005.16  We depict the tracks of these 13 hurricanes in Figure 2. Two points are noteworthy. 

Firstly, various counties along the whole coastline were affected, especially in Florida, 

Alabama, Mississippi, Louisiana, and Texas. Secondly, most hurricanes lose wind speeds 

fairly quickly, and are not considered hurricanes or even tropical storms once they leave the 

coastal area.      

 

3.6 The Hurricane Destruction Proxy 

 

To demonstrate the role of the individual wind speed V and population sharea 

components in our hurricane damage proxy, HURR, we consider the example of Hurricane 

Andrew, shown in Figure 1.  It first made landfall in Miami-Dade County in Florida on the 

24th of August 1992 and then crossed into southwest Louisiana.  Hurricane Andrew is 

considered to be the second-most-destructive hurricane in U.S. history17, and the last of three 

Category 5 hurricanes that made U.S. landfall during the 20th century.   Wind speeds during 

landfall reached over 115 miles per hour and storm surges as high as 5.2 meters were 
                                                 
16 These are Hugo [1989], Andrew [1992], Opal [1995], Fran [1996], Bret [1999], Charley [2004], Frances 

[2004], Jeanne [2004], Ivan [2004], Dennis [2005], Wilma [2005], Katrina [2005], and Rita [2005].  
17 It was the most destructive hurricane until the arrival of Katrina in 2005. 
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recorded in Southern Florida.  In terms of damage, Andrew caused around $26.5 billion 

worth ($38.1 billion in 2006 US dollars), with most of that damage cost in south Florida.  

 

--- Figures 3 and 4 About Here --- 

 

 Hurricane Andrew’s complete track as taken from HURDAT is shown in Figure 3, 

where again the red portion of the line indicates when the storm was of hurricane intensity.  

As can be seen, Andrew maintained hurricane strengths even as it made a second landfall in 

Louisiana, but then was reclassified as a tropical storm once it left the state.  The wind speeds 

generated from the HAZUS wind field model for Florida for the CBSAs in our sample along 

with the actual hurricane tract (the dotted purple line) are shown in Figure 4, where darker 

shading indicates stronger wind speeds. These correspond fairly well to what one would 

expect for Florida from the radar composite image of the hurricane given in Figure 1. The 

highest wind speeds were experienced along the track of the hurricane18, but even CBSAs 

over 180km away from the actual track of the hurricane eye were subject to potential wind 

damage.19  

 

--- Figures 5 and 6 About Here ---  

 

As an example of the impact of single hurricane on these, we graph our measure of 

hurricane destructiveness, HURR, in Figure 5, where darker shading indicates higher values.  

While most of the damage is found along the hurricane’s path, it is obvious that other 

counties, both neighboring and further away, were also affected. In Florida, almost all of the 

southern tip was affected, while in Louisiana large parts of the state was subject to damaging 

wind speeds. In addition, a small part of Mississippi was affected when Andrew first entered 

the state.  Finally, we show the mean value of HURR for all CBSAs in our sample over our 

sample period 1988 to 2005 in Figure 6.  Accordingly, almost all counties were affected at 

least once since the beginning of our sample period.  Most destruction was, unsurprisingly 

given Figure 6, suffered in Florida, Alabama, Mississippi, Louisiana, and Texas.    

                                                 
18 The highest wind speed of approximately 157 miles per hour was calculated to be in Dade county. 
19 For example, census tracts within Broward County at the time of landfall experienced up to 92 miles per hour. 
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4. Econometric Model and Estimation Results 

 

Our basic model is a two equation, dynamic equilibrium correction model for log real 

house prices, ln ithp , and log real per capita personal disposable income ln ity , where the 

subscripts i and t refer to CBSA i and year t respectively.  Both variables are (1)I , i.e. have 

a unit root. However the panel unit root / cointegration tests in Table 1 show that, at the 

CBSA level, (i) log real house prices and real income, ln ithp  and ln ity , are cointegrated 

with a long run elasticity of house prices w.r.t income of 1.5, and (ii) log real income at the 

CBSA and national level, ln ity  and ln US
ty , are also cointegrated with a unit coefficient. 

The long run cointegrating coefficients of 1.5 and 1 were specified a priori, but these 

restrictions are   easily “accepted” by the data and in line with the consensus view in the 

literature.20  

 

--- Table  1 About Here --- 

 

Inter alia, the two equation system allows hurricanes to affect both house prices and 

incomes, and in turn, incomes to affect house prices. Following Abraham and Hendershott 

(1996), our house price equation has both “bubble builder” (lagged house price 

appreciation) and “bubble burster” (equilibrium correction) terms. The parsimonious 

version of the two equation model is:  

 

(4) 
( )

( )1

1 1 11 12 1 13 1

4
1 1 1 1 10

2 2 21 1 22 1
4

2 1 2 20

ln ln ln ln

ln 1.5ln

ln ln ln

ln ln
t

it i t it it it

it it s it s its

it i t it it

US
it s it s its

hp y hp y

hp y hurr u

y hp y

y y hurr u

α α β β β

γ δ

α α β β

γ δ
−

− −

− − −=

− −

− −=

Δ = + + Δ + Δ + Δ

− − + +

Δ = + + Δ + Δ

− − + +

∑

∑

 

 

                                                 
20 Our finding that log real house prices and incomes are cointegrated at the CBSA level is consistent with the 

findings of Malpezzi (1999), but at odds with those of Gallin (2006). Ideally, one would like to estimate a more 

general model of long run house prices, possibly along the lines of Capozza et al. (2004). 
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where ithp  = CBSA real house price, ity  = CBSA real per capita personal income, US
ty  = 

US real per capita personal income, ithurr = local hurricane destructiveness index 

(population weighted hurricane wind speed cubed) and the 'su  are white noise random error 

terms. The model has a two way (CBSA and year) fixed effects structure represented by the 

α  parameters. The iα  CBSA fixed effects pick up area specific effects, whilst the tα year 

dummies pick up any common time varying factors, such as changes in US personal 

incomes and changes in interest rates.  

 

The β  terms in equation (4) capture the short run dynamics. We started with a 

general, unrestricted model with four lags in ln ithpΔ  and ln ityΔ . We then eliminated 

insignificant lags to obtain the parsimonious version of the model set out above.  The 

equilibrium correction / long run cointegration terms are the terms with the γ  coefficients. 

Finally, current and four, unrestricted lags of the hurricane destructiveness index are 

included in both equations to pick up the current and lagged effects of hurricanes on real 

house prices and real incomes.  

 

--- Table 2 About Here --- 

 

 The model was estimated in TSP (Hall and Cummins, 2005) using the least squares 

dummy variables method for the year effects, which is equivalent to the panel fixed effects 

method. The results are set out in Table 2. The t statistics in parentheses are based on 

heteroscedastic robust standard errors. The lagged ln ithpΔ  and ln ityΔ  variables are 

correctly signed and highly significant, both from an economic and statistical point of view. 

Significant short run house price and income dynamics are a common feature of most 

estimated house price models. The two equilibrium correction terms, 1 1ln 1.5lnit ithp y− −−  

and 
11ln ln

it

US
ity y

−− − , are also highly significant, although the estimated speeds of adjustment 

of real house prices and real incomes to their long equilibria are relatively slow, at 0.09 and 

0.17 respectively.   
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The majority of the estimated coefficients on the weighted hurricane wind speed 

cubed variables are statistically significant. In the short run, the estimated hurricane 

destructiveness coefficients in the house price equation are initially positive (lags 0 to 2) 

and then turn negative (lags 3 and 4), suggesting that hurricanes raise house prices for a 

number of years.  

 

--- Figure 7 About Here --- 

 

In order to get a better feel for the results, Figure 7 show the simulated the effect of a 

typical hurricane on real house prices and real incomes. The figure shows the simulated 

deviations of real house prices and real per capita personal income from their baseline paths 

when an average hurricane strike occurs at time 0. The simulation results are based on OLS 

two way fixed effect estimation results set out in Table 2.  

 

Figure 7 suggests that a typical hurricane raise real house prices in the CBSA for quiet 

a few years.21 It also has a small negative, albeit rather persistent, effect on real incomes. 

The maximum effect on house prices shows up two to three years after the hurricane occurs, 

when real house prices are about 4% higher than they would otherwise be. The economic 

rationale for these results is that, in the short to medium run, most hurricanes reduce the 

effective housing stock (or housing services produced by the housing stock) proportionately 

more than they reduce the population living in the area, which drive up the real price of 

houses (e.g. Vigdor, 2008). However, our findings are at odds with the recent findings of 

Ewing et al. (2007) who, inter alia, model the change in nominal house prices in three 

hurricane prone areas without including any equilibrium correction terms in their model to 

tie down the long run equilibrium.22 

                                                 
21 Ceteris paribus, the long run level of real house prices in a CBSA is likely to be negatively affected by the 

incidence of hurricanes. However, we cannot identify this effect in our model since the CBSA fixed effects 

capture all CBSA time invariant, specific effects.  
22 Ewing et al. (2007) model the quarterly change (log first differences) in nominal house prices in Corpus 

Christ, TX, Miamai FL and Wilmington TC. Their explanatory variables are the lagged change in nominal 

house prices, the current changes in state and national nominal house prices, the current change in nominal state 
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--- Table 3 About Here --- 

 

 In order to check the robustness of our results, we split the sample into two arbitrary 

subsamples based on CBSA number and compared the estimates (Table 3) and simulated 

effects of a hurricane on real house prices and incomes (Figure 8). The results are reassuring 

– the estimation results are fairly similar and the simulated effects of a hurricane are almost 

identical in the two subsamples. In our model, ln ithpΔ  depends on current ln ityΔ , inter alia, 

so endogeneity bias may be an issue. As a check, we estimated our model using GMM and 

obtained very similar estimates of the effects of a hurricane (Figure 9).  

 

--- Figures 8 and 9 About Here --- 

 

Finally, we estimated a general, unrestricted vector equilibrium correction (VEC) 

model i.e. a vector autoregression (VAR) with equilibrium correction terms. The VEC model 

is: 

(5) 
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4 4
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4 4
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y hurr uδ
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The common explanatory are the two way (CBSA and year) fixed effects, four lags of 

ln ithpΔ  and ln ityΔ , the two equilibrium correction terms i.e. 1 1ln 1.5lnit ithp y− −−  and 

11ln ln
it

US
ity y

−− − , as well as the current value and four lags of ithurr , the cubed population 

weighted hurricane wind speed variable.  

 

To preserve space, the VEC model estimation results are not presented here. 

However, the simulated effects of a typical hurricane from the VEC model are qualitative 

                                                                                                                                                        
personal income and hurricane specific dummies as explanatory variables. Apart from the use of nominal 

variables and the absence of equilibrium correction terms, endogeneity bias is likely to be an issue. 
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similar to those from our basic model (Figure 9), i.e. the typical hurricane raises real house 

prices and, to a lesser extent, reduces real incomes for a few years. However, the VEC results 

suggest that the maximum rise in real house prices is about 3%, as opposed to 4%. In 

addition, the VEC results suggest that real house prices and real incomes undershoot by about 

1% in year, and only revert slowly to their long run values.   

 

5. Conclusion 

  

In this paper we examined the impact of hurricanes on house prices in US coastal 

cities.  A priori, the effects can go either way and the existing empirical evidence is mixed. 

We make three contributions to the literature. Firstly, we construct a measure of local 

hurricane destructiveness that is based on a hurricane wind field model and local exposure 

characteristics. This measure dominates simple hurricane dummy variable indicators. 

Secondly, we estimate a more general house price model than other studies. Our model 

includes both short run dynamics and long run equilibrium correction terms. In our model 

hurricanes have a direct effect on house prices and an indirect effect via the fall in local 

incomes that occurs when hurricanes strike. Thirdly, our annual, panel dataset of coastal areas 

covers a longer time period (1988 to 2005), more areas (99 CBSAs  spread over 19 coastal 

states) and includes more hurricanes strikes (13 hurricanes)  than most other studies.  

 

Using this dataset and our index of hurricane destructiveness, we are able to estimate 

and test fairly general dynamic models. Our basic model is a two equation, dynamic 

equilibrium correction panel model for house prices and incomes with area and time fixed 

effects. Our results show that the typical hurricane strike in our sample raises real house 

prices for a number of years, with a maximum effect of between 3 to 4% three years after 

occurrence. There is also a small negative effect on real incomes. These results are stable 

across models and sub-samples.  Thus, hurricanes play an important role in the real estate 

market of US coastal cities. 
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Table 1: Panel Unit Root / Cointegration Tests for CBSA Log Real House Prices and Income  
 

ln 1.5lnit ithp y−  ln ln
t

US
ity y−  Test  

 Test Statistic P Value Test Statistic P Value 
     
Common Unit Root (Levin, Lin & Chu)  -7.93 0.0 -15.86 0.00 
Individual Unit Root (Im, Pesaran & Shin) -4.73 0.0  -3.70 0.00 
Individual Unit Root (Augmented Dickey Fuller ADF) 281.1 0.0 247.2 0.01 
Individual Unit Root (Phillips Perron PP) 419.8 0.0 241.0 0.02 

      
No. of Observations 1979 / 2175 (PP) 2778 / 2976 (PP) 
No. of CBSA’s 99 98 
 
Notes: The tests are calculated using two lags and Newey-West bandwidth selection using a Bartlett kernel. The P values for the Levin et 
al. and Im et al. tests are computed using the asymptotic normal distribution. The P values for the ADF and PP tests are calculated using 
the asymptotic chi-squared distribution. 
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Table 2: OLS Two-Way Fixed Effects Panel Data Results 
 

Real House Prices Real Income 
Dependent Variable ln ithpΔ  ln ityΔ  
   

0.581 0.066 
1ln hp−Δ  

(16.74) (4.94) 
0.227  ln ityΔ  
(5.77)  
0.265 0.180 

1ln ity −Δ  
(4.82) 5.633 
-0.091  

1 1ln 1.5lnit ithp y− −−  
(8.72)  

 -0.170 
1 1ln ln US

it ity y− −−  
 (8.44) 

0.021 -0.023 /100ithurr  
(2.96) (1.63) 
0.044 0.012 

1 /100ithurr −  
(5.40) (2.89) 
0.033 -0.004 

2 /100ithurr −  
(2.58) (0.92) 
-0.008 -0.010 

3 /100ithurr −  
(1.19) (2.48) 
-0.022 -0.006 

4 /100ithurr −  
(3.62) (1.51) 

   
CBSA Fixed Effects Yes Yes 
Year Fixed Effects Yes Yes 
   
Std. Error 0.029 0.020 
Adjusted R2  0.731 0.412 
LM Heteroscedasticity (P Value)  0.00 0.19 
Durbin Watson  1.78 1.68 

 
Notes: The model includes CBSA and year fixed effects. The t statistics in parentheses are 
based on heteroscedastic robust standard errors. The panel is unbalanced with 2069 
observations on 99 CBSA’s with a minimum of 4 and a maximum of 27 observations per 
CBSA. 
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Table 3: Sub-Sample Results – OLS Two-Way Fixed Effects  
 

Dependent Variable 
Real House Prices 

ln ithpΔ  
Real Income 

ln ityΔ  
     
Subsample I II I II 
     

0.543 0.618 0.064 0.081 
1ln hp−Δ  

(10.73) (17.14) (3.90) (3.21) 
0.242 0.203   ln ityΔ  
(5.32) (5.77)   
0.279 0.213 0.207 0.158 

1ln ity −Δ  
(3.97) (2.76) (5.20) (3.01) 
-0.101 -0.095   

1 1ln 1.5lnit ithp y− −−  
(5.74) (6.60)   

  -0.156 -0.213 
1 1ln ln US

it ity y− −−  
  (6.76) (6.98) 

0.011 0.030 -0.017 -0.033 /100ithurr  
(1.49) (2.53) (1.87) (1.08) 
0.033 0.048 0.013 0.013 

1 /100ithurr −  
(2.60) (4.74) (2.30) (1.66) 
0.020 0.046 -0.009 0.001 

2 /100ithurr −  
(1.36) (2.32) (1.48) (0.20) 
0.006 -0.012 -0.010 -0.010 

3 /100ithurr −  
(0.84) (0.96) (2.22) (1.57) 
-0.018 -0.026 -0.003 -0.009 

4 /100ithurr −  
(2.70) (2.56) (0.59) (1.55) 

     
CBSA Fixed Effects Yes Yes Yes Yes 
Year Fixed Effects Yes Yes Yes Yes 
     
Std. Error 0.030 0.019 0.027 0.020 
Adjusted R2  0.654 0.410 0.775 0.432 
LM Hetero. (P Value) 0.00 0.92 0.00 0.00 
Durbin Watson  1.82 1.84 1.74 1.56 
     
Sample Size 1038 1031 
No. of CBSA’s 51 48 
No. of Obs per CBSA 4 - 27 11 - 27 

 
Notes: See Table 2.
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Figure 1: Radar composite of Andrew making landfall August 24, 1992, at Dade 
County, Florida 
 

 
 

Figure 2: Coastal Cities and Hurricane Sample 
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Figure 3: Track of Hurricane Andrew 
 

 
Figure 4: Speed Distribution of Hurricane Andrew in Florida 
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Figure 5: Value of Hurricane Destructiveness (HURR) for Hurricane Andrew 

 
Figure 6: Average Value of Hurricane Destructiveness (HURR), 1988-2005 
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Figure 7 

Simulated Effect of a Hurricane on House Prices and Incomes 

(Average Population Weighted Wind Speed Hurricane) 
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Notes: The figure shows the simulated deviations of real house prices and real per capita 

personal income from their baseline paths when an average wind speed hurricane occurs at 

time 0. The simulation results are based on OLS two way fixed effect estimation results set 

out in Table 2.  



  30

Figure 8 

Sub-Sample Simulation Results 
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Notes: See notes to Figure 7. The simulation results are based on the OLS subsample 

estimation results set out in Table 3. 
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Figure 9 

OLS, GMM and VEC Simulation Results 
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Notes: See notes to Figure 7. 


