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For most people, buying a house is one of
the most significant investment decisions of their
lifetimes. Economists have mainly focused on
the consumption aspects of this process. For
example, a typical model in urban economics
might frame the decision of where to live as
a discrete choice over a bundle of housing and
neighborhood attributes such as location, square
footage, schooling options, and crime levels.
The investment side of the problem has re-
ceived considerably less attention, a surpris-
ing omission since housing assets comprise ap-
proximately two-thirds of the average American
household’s financial portfolio, serve an impor-
tant role in saving for retirement and, as has be-
come increasingly apparent, can be quite risky.

This paper views housing markets from an
asset-pricing perspective, using finance theory to
relate the risk premium of a housing asset (the
difference between its expected return and the
return for a risk-free investment) to its exposure
to risk. As usual in finance, what matters for
the risk premium of a housing asset is its ex-
posure to systematic risk, not idiosyncratic risk.
In our model, there are two forms of systematic
risk to which housing assets are exposed: na-
tional risk (which is common to houses every-
where) and local risk (which affects all houses
within a given metropolitan area, but nowhere
else). Houses are said to be of the same type h if
they are located in the same metropolitan area
and have the same exposure to systematic risk.
Our main conclusions are that (1) houses of ev-
ery type face a common set of risk prices (��

for the national risk and �m for the local risk
specific to metropolitan area m) that, together
with appropriate measures of exposure to risk,
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account for the variation in risk-premiums across
housing types and (2) the parameters measuring
exposure to systematic risk factors can be esti-
mated using transactions data for repeat sales of
houses, data that are now readily available. We
also analyze a version of the model that takes
net rents rather than house values as the prim-
itives. This special case provides some intuition
regarding the impact of rent and risk premiums
on the growth of house values.

I. A Model of Housing Market Risk

The setting is a collection of N single-family
housing units located in M metropolitan areas.
Besides metropolitan location, houses are clas-
sified into K categories. We refer to a specific
pairing h D .m; k/ as a housing type, for exam-
ple a large house in Los Angeles. The model is
formulated as a system of stochastic differential
equations (SDE’s) driven by a multi-dimensional
Wiener process, using as a framework the stan-
dard “multidimensional market model” in fi-
nance (see Duffie (2001) or Shreve (2004)).

We assume that our national housing market
is observed over a time interval Œ0; T � � <, for
example the 20-year period Œ0; 20�. The price
process of house i of type h D .m; k/ is assumed
to be the solution to the SDE

(1) dV i
t D V i

t

h

˛hdt C �hdB i
t

i

Equation (1) expresses the instantaneous rate of
price appreciation dV i

t =V i
t of house i at time t

as the sum of an expected rate of price apprecia-
tion ˛hdt and a random shock �hdB i

t , where ˛h

(the drift) and �h (the volatility) are parameters
and dB i

t is the stochastic differential of a Wiener
process associated with house i . The stochastic
differential dB i

t is in turn assumed to be a linear
combination of three underlying risk factors,

(2) dB i
t WD

�h�

�h
dW �

t C
�hm

�h
dW h

t C
�hh

�h
dW i

t
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where dW �
t , dW m

t and dW i
t are stochastic

differentials of Wiener processes representing
national risk W �, local risk W m specific to
metropolitan area m, and idiosyncratic risk W i

specific to housing asset i . The parameters �h�,
�hm and �hh are covariation parameters that
measure the sensitivity of dB i

t to the national
risk factor, the local risk factor for metropolitan
area m and the idiosyncratic risk factor specific
to house i . The volatility parameter �h of equa-
tion (1) is linked to the covariation parameters
of equation (2) by the following identity,

(3) .�h/2 WD .�h�/2 C .�hm/2 C .�hh/2

The price process of every house is assumed to
be governed by a SDE of the form given by equa-
tions (1)–(3), all defined on a common filtered
probability space .˝; F ; F; P /.

Finance imposes equilibrium restrictions on
this collection of asset-price processes not by
equating supply and demand for each type of
asset nor by some other means of relating as-
set prices to fundamentals, but instead by im-
posing the hypothesis that in equilibrium every
possible opportunity for arbitrage has been elim-
inated: i.e., no self-financing portfolio comprised
of houses and the risk-free asset can make a pos-
itive profit with no risk of loss unless the ini-
tial investment is strictly positive a.s. (i.e., with
probability one).

The gain process Gi D .Gi
t /t2Œ0;T � associated

with housing asset i is defined by Gi
t D V i

t C Di
t

where Di
t WD

R t
0 �i

t dt and �i
t is the cash flow

(net of expenses) received by the owner of the
asset at time t . Thus Gi

t � Gi
0 is the sum of the

capital gain V i
t � V i

0 and the accumulated net

cash flow Di
t accruing to an investor holding the

asset over the interval Œ0; t �. For a landlord, �i
t

is simply the flow of rental income less expenses
for maintenance, repairs and the like, which we
will refer to as net rental flow. For a homeowner,
�i

t is the inputed net rental flow.1

The Fundamental Theorem of Asset Pricing
asserts that, provided the housing market elim-
inates all arbitrage opportunities, there exists
a pricing process Z D .Zt/t2Œ0;T � such that the

1Estimating �
i
t

for homeowners is more difficult

than for landlords. As we will see, no-arbitrage the-
ory provides a way around this problem.

risk-adjusted gain process ZGi for every housing
asset i is a martingale: i.e., for all s; t 2 Œ0; T �

such that t � s

E.Zi
tG

i
t j Fs/ D Zi

sGi
s

where Fs is the information set at time s for the
filtered probability space .˝; F ; F; P / on which
all of the stochastic processes in the model are
defined. When the price processes are as spec-
ified in equations (1)–(3), then the risk-pricing
process Z takes a simple form. It is the stochas-
tic process generated by the SDE

(4) dZt D �Zt

"

��dW �
t C

X

m

�mdW m
t

#

with Z0 D 1, where the summation is over all
metropolitan areas. The fact that ZGi is a mar-
tingale implies that this process, which itself is
generated by a SDE, must have zero drift. As-
sume the ratio �i

t =V i
t of net rent to house value

is the same for all housing assets of type h and
that this net rental yield ıh

t remains constant
over time.2Then

(5) ˛h C ıh D ���h� C �m�hm

for every housing type h. In the finance litera-
ture, equations (5), one for each asset type h, are
called the market-price-of-risk equations.3 The
left-hand side of equation (5) is the risk premium
of housing type h, the expected instantaneous
total return (i.e., capital gains plus net rental
yield) at time t , net of the risk-free rate. The
right-hand side is the total value of risk expo-
sure for a housing asset of type h, the sum of
the price �� of national risk times the exposure
�h� to that risk plus the price �m of local risk
times the exposure �hm to that risk.

Rather than multiplying the gain Gi
t by Zt ,

there is an equivalent way to adjust for risk by
changing the probability measure. The value ZT

of the pricing process at time T is a Radon-
Nikodym derivative d QP =dP that changes the
true probability measure P to an equivalent

2Shortly we provide a proof that, if net rents are
generated by a geometric Brownian motion, then the

net rental yield must be constant.
3See Shreve (2004).
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martingale measure (EMM). Under the EMM QP

the gain process Gi itself, rather than the risk-
adjusted gain process ZGi , is a martingale: i.e.,
for all s; t 2 Œ0; T � such that t � s

QE.Gi
t j Fs/ D Gi

s

where the tilde on the expectation sign indicates
that the conditional expectation is taken with
respect to QP . If probabilities are adjusted for
risk, assets can be priced “as though” investors
are risk neutral, even though they are not.

Establishing a connection between housing
value and net rental flow provides a nice illus-
tration of an arbitrage-based approach to asset
pricing. As usual, it is easier to establish a link
to fundamentals if we assume an infinite horizon,
so for the moment we replace the time set Œ0; T �

with the time set Œ0;1/. We take the discounted
net rental processes �i as the primitives of our
model, demonstrating below that this is equiva-
lent to a model in which the value processes V i

are the primitives. Although the analysis can
be generalized to handle time-varying parame-
ters, we assume drift and volatility are constant.
In a more general model, these net rental pro-
cesses might depend on the value households de-
rive from living in a particular house, including
its physical features, local amenities and labor
market opportunities.

When expectations are taken with respect to
the EMM, house values equal the expected dis-
counted value of future rents net of expenses.
For this reason, it is easier to analyze the con-
nection between value and net rent under the
probability measure QP . Letting �i

t denote the
flow of discounted net rent for house i at time t ,
suppose the process �i is a geometric Brownian
motion generated by the SDE

(6) d�i
t D �i

t ŒQ�
hdt C �hd QB i

t �

where QB i
t is a Wiener process under QP . The

stochastic differential d QB i
t is assumed to be a lin-

ear combination of national, local and idiosyn-
cratic risk factors,

(7) d QB i
t D

�h�

�h
d QW �

t C
�hm

�h
d QW m

t C
�hh

�h
d QW i

t

where QW �
t , QW m and QW i are Wiener processes

under QP (compare equations (1) and .2/ de-
scribing the SDE generating the value process
V i). In equation (6), Q�h is the drift of dis-

counted net rent under QP . Assume that Q�h < 0

and define the discounted value process V i by
V i

t D QE
�R1

t �i
u du j Ft

�

for t 2 Œ0; 1/. It follows

that V i
t D ��i

t =Q�h. Thus, under the probability
measure QP the net rental yield of a house of type
h is the same for all houses i of type h, and it is
time invariant. Because P and QP are equivalent
measures, this relationship also holds under P :
i.e.,

(8) ıh WD
�i

t

V i
t

D �Q�h .P -a.s/

Letting ıh D �Q�h in equation (5),

(9) ˛h D Q�h C ���h� C �m�hm

which offers an alternative perspective on the
market-price-of-risk equation. If risk-prices are
zero (so investors are in fact risk neutral) then

r C ˛h D r C Q�h: price appreciation on houses of
type h equals the risk-free rate plus the expected
rate of increase of net rent under the EMM. On
the other hand, if risk prices are positive and the
covariation parameters are positive, then

˛h � Q�h D ���h� C �m�hm > 0

House values appreciate at a more rapid rate
than Q�h to compensate for the risk.

What happens to the process �i under the
true probability measure P ? Girsanov’s Theo-
rem, used to derive equation (5), implies that

(10) d QB i
t D dB i

t C

 

˛h C ıh

�h

!

dt

Substituting (10) into (6) and using (8) to sim-
plify, we obtain d�i

t D �i
t Œ˛

hdt C �hdB i
t �: un-

der P the drift in �i matches the drift in V i .
Because V i is a scalar multiple of �i , under QP

dV i
t D V i

t ŒQ�hdt C �hd QB i
t �. Using (10) to substi-

tute for d QB i
t yields equation (1), the SDE for V i

under the true probability measure P .

We conclude that, in this special case where
net rent follows a geometric Brownian motion,
(1) the net rent to value ratio is constant for
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all houses of the same type and (2) the growth
rate dV i

t =V i
t of house value and the growth rate

d�i
t=�i

t of net rents are driven by the same pro-
cess. By restricting this infinite horizon model to
the interval Œ0; T �, these conclusions carry over
immediately to our original finite-horizon model.

II. Hedonic Returns

In contrast to purely financial assets such as
stocks or bonds, housing assets are heteroge-
neous and trade at very low frequency. How-
ever, data on repeat sales can be used to over-
come these problems. Assume that Œ0; T � is di-
vided into N intervals .tn�1; tn�, say months. Let
Ri WD log.V i

t =V i
s / denote the logarithmic return

for a housing asset of type h D .m; k/ that sells
at time s and again at time t , where the selling
times s; t 2 Œ0; T � are assumed rounded to the
beginning or end of a month. Define � i WD t � s,
the duration of repeat sale i , and let M i denote
the set of months covered by this repeat sale.
Define �tn WD tn � tn�1, the length of month n.
Similarly, let �W �

tn
and �W m

tn
denote the incre-

ments over month n of the Wiener processes W �

and W m respectively.
Solving the stochastic differential equation (1)

it is easy to show that

(11) Ri D 
h� i C
X

n2M i

rh
n C "i

where 
 i WD �.�hh/2=2, "i WD �hh.W i
t � W i

s /,
and

rh
n WD Œ˛h �

.�h�/2 C .�hm/2

2
��tn

C�h��W �
tn

C �hm�W m
tn

Let N h be the set of repeat sales of houses of
type h D .m; k/ over the time interval Œ0; T �. For
n D 1; 2; : : : ; N let Ifn2M i g be an indicator vari-
able that equals 1 if month n is covered by the
i th repeat sale and 0 otherwise. In regression
form equation (11) becomes

(12) Ri D 
h� i C

N
X

nD1

rh
n Ifn2M ig C "i

The coefficient rh
n in this regression is the por-

tion of the logarithmic return for month n that is
common to all housing assets of type h. We refer
to the monthly time series .rh

n /N
nD1 generated by

these regressions as hedonic returns.

Equation (12) bears more than a passing re-
semblance to the methods used by Karl Case and
Robert Shiller (1989) to construct housing price
indices. The differencing used to obtain the log-
arithmic return for the i th repeat sale allows for
fixed effects: the constant term V i

0 specific to
repeat sale i drops out of the expression for the
logarithmic return. Thus, the level of housing
prices is allowed to be quite heterogeneous, even
for houses of the same type. The homogeneity
we impose only requires that log returns (the
increment to log prices over a fixed interval of
time) for houses of the same type are drawn from
the same distribution. Because we see only a
single realization, in this regression the realiza-
tions of W �, W m and W i are fixed, but there
are N h random variables "i , one for each re-
peat sale. By definition of the Wiener processes
W i , the expectation E"i D 0 and the distur-
bances are independently distributed. Conse-
quently, the parameters of equation (11) can be
consistently estimated using OLS. Equation (11)
highlights two effects of duration on the return.
First, the variance of the disturbance term for
repeat sale i is .�hh/2� i . As in Case and Shiller,
this heteroskedasticity is easily handled. Sec-
ond, duration has a direct effect on the mean
return: the regression coefficient 
h on the du-
ration � i of the i th repeat sale provides an es-
timate of �.�hh/2=2 and hence an estimate for
�hh, the volatility of the idiosyncratic risk for a
housing asset i of type h. In this way, deriving
equation (11) from a continuous-time structural
model leads to a potentially important modifi-
cation to the classic Case-Shiller specification, a
mean correction for duration.

III. Estimating the Model

The market-price-of-risk equations (5) pro-
vide H linear equations (one for each house
type) in M C 1 unknowns (the price �� of na-
tional risk and M local risk prices �m). Using
the monthly hedonic returns of Section II to esti-
mate the covariation parameters �h� or �hm and
the price appreciation parameters ˛h is straight-
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forward.4 Estimating net rental yields ıh is
more difficult, especially for houses occupied by
homeowners rather than renters. Fortunately,
our structural model of risk pricing comes to the
rescue. If we know the risk prices �� and �m,
then estimates of ˛h, �h� and �hm allow us to
estimate ıh. From equation (5) for house type h

(13) ıh D ���h� C �m�hm � ˛h

All we require is that risk prices be identifiable.

If H > M , the parameters ˛h, �h� and �hm

are identified. It follows from equations (5) that
the risk prices are identifiable provided we can
estimate net rental yields for MC1 housing types
with at least one located in each metropolitan
area. Estimating net rental yields for rental
properties is relatively easy. Furthermore, if
houses of type h are occupied by homeowners
as well as rented, then the net rental yield im-
puted to homeowners must equal the net rental
yield earned by landlords: all of the parameters
of equation (5) except ıh are the same, so the
net rental yields must also agree. Thus, what we
require for identification is M C 1 housing types
for which some houses are rented, at least one
such type for each metropolitan area.

IV. Arbitrage

It is often asserted that arbitrage pricing does
not apply to housing markets because the major-
ity of transactions take place between individual
owner occupants and the existence of substantial
transactions and holding costs limit the ability
of other investors to take advantage of arbitrage
opportunities. But this view ignores the fact
that a number of stake-holders (banks, land-
lords, developers, and land-owners) have clear
financial interest in the market. The economic
decisions of these stake-holders impose discipline
on the market. The housing-related investments
they make compete with alternative potential
investments and consequently face the same risk
prices. So the landlord’s problem disciplines
house prices in segments of the market with sig-
nificant rental activity, owners of undeveloped
land that might be developed discipline the re-
turns for properties already in place, and the

4See our working paper (2009) for details.

financial interests of banks discipline the offers
buyers make to sellers.

Complex ownership structures arise in many
contexts. Fischer Black and Myron Scholes
(1973) and Robert Merton (1974) proposed a
simple model of corporate finance in which stock
is viewed as a call option giving equity-holders
the right (but not the obligation) to own the firm
provided they pay off the outstanding debt. The
BSM model of corporate finance seems at least
as relevant to financing a house. Compared to
corporations, houses are traded very frequently,
and repeat sales provide control for asset het-
erogeneity. Most housing assets, perhaps even
those “owned” by landlords, are highly lever-
aged, and the debt is usually held by large insti-
tutions. These institutions are by far the largest
stake-holders in residential real estate, they hold
large portfolios of houses, and they have the in-
centive and the power to make sure that the as-
sets backing this debt are correctly priced. The
fact that this debt has increasingly been repack-
aged into mortgage-backed securities and (sup-
posedly) hedged by credit-default swaps only
serves to reinforce the view that housing mar-
kets are sophisticated asset markets. The recent
market collapse suggests that our understanding
of how housing markets price risk is not as good
as it should be. This paper takes a step toward
improving that understanding.
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