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Abstract

We illustrate the effects of heterogeneous beliefs about disasters on the equity premium

and individual agents’ trading activities. When investors disagree about the chances or

severity of disasters, those optimistic investors may insure the pessimists against their

disaster risk exposure. Due to the highly non-linear relationship between the consump-

tion losses during a disaster and the risk premium, a small amount of risk sharing can

significantly attenuate the effect that disasters have on the equity premium. Thus, the

equity premium will remain low even when the economy is predominantly occupied by

pessimistic investors, but jump up following a disaster. The effects of risk sharing be-

come stronger when the differences in beliefs are large, or when the optimistic agents

also have lower risk aversion. Other interesting predictions of the model include a non-

monotonic relationship between the equity premium and the size of the disaster insurance

market, as well as a negative relationship between the equity premium and the amount

of disagreements about disasters.
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1 Introduction

In this paper, we illustrate how heterogeneous beliefs about rare disasters affect asset prices

and risk premia. Research by Rietz (1988), Longstaff and Piazzesi (2004), Barro (2006) and

others show that the threat of rare economic disasters that cause severe losses in output

and consumption can have large impact on the equity premium. However, the likelihoods

of disasters or the size of their impact are difficult to estimate with a relatively short sam-

ple of historical data, which suggests that there are likely to be significant disagreements

among market participants about the frequency and severity of disasters. We show that,

with complete markets, such disagreements generate strong risk sharing motives among the

investors, which can substantially lower the equity premium in the economy, even when it is

predominantly populated by those who are pessimistic about disaster risks.

The setting is an exchange economy with two types of investors, whose beliefs on disasters

can differ in various ways. For example, the optimists might think the probability of disasters

is very low (e.g., once every 1000 years), while the pessimists believe disasters occur much

more frequently (e.g., once every 60 years). Alternatively, they might disagree about the

potential impact of a disaster on output and consumption. We assume that markets are

complete, so that the agents can trade contingent claims and achieve optimal risk sharing.

The equilibrium asset prices and risk premia depend on the beliefs and the distribution of

wealth among the optimistic and pessimistic agents.

Our analysis centers around the following questions. First, how sensitive are asset prices

to risk sharing in the presence of heterogeneous beliefs about disaster risks? In particular,

if we introduce a small amount of optimistic agents into an economy originally occupied by

pessimists, would they have any sizable impact on prices and the equity premium? Conversely,

if the pessimists have the most extreme beliefs about disasters that are still “consistent with

the data” (we specify the criterion for admissability later), can they have a large impact on

asset prices with little wealth? Finally, how would such heterogeneity in beliefs affect the

trading activities among agents in different instruments?

We show that a small amount of optimists can substantially change the level of equity

premium and its dynamics in the economy. This result holds whether the disagreement is
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about the intensity or impact of disasters. When we calibrate the beliefs of one agent using

international data (from Barro (2006)) and the other using only consumption data from the

US (where disasters have been relatively mild), raising the fraction of total wealth for the

second agent from 0 to 10% lowers the equity premium from 4.4% to 2.0%. The decline in the

equity premium becomes even faster when the pessimistic agent becomes more pessimistic,

or when the optimistic agent also has lower risk aversion. On the flip side, if the share of

total wealth the pessimistic agents own is small, even if they have the most extreme beliefs

about disasters (which is bounded by the data and model), in equilibrium they might actually

demand a negative premium for holding consumption claims.

The key reasons behind this result are the following: (1) the equity premium is derived

almost entirely from jump (disaster) risks, (2) high prices for jump risk induce aggressive risk

sharing, and (3) there is a highly nonlinear relationship between risk premium and disaster

risks. First, in our economy, as is typically the case in standard power utility models, there

is very little compensation for brownian risk due to the low volatility of consumption and

moderate levels of risk aversion. Consequently, the equity premium derives primarily from

disaster risk, and the compensation for bearing disaster risk must be high. For example, if

there is a single type of disaster resulting in a 40% loss to the consumption claim and the

equity premium due to disaster risk is 4%, then the annual premium for a disaster insurance

contract which pays $1 when disaster strikes must be at least 10 cents.

Second, the high premium for disaster risk and high prices for disaster insurance provide

a strong motivation for risk sharing when agents have different beliefs about disasters. In a

benchmark case of our model, the pessimists may be willing to pay up to 13 cents per $1 of

coverage, even though the payoff probability is only 1.7% under their own beliefs, or 0.1%

under the beliefs of the optimistic agents. Such high prices induce the optimists to underwrite

insurance contracts with notional value up to 40% of their total wealth, despite the risk of

losing 70% of their consumption if a disaster strikes.

Third, the disaster risk premium is highly non-linear in the size of disasters, so that even

small amounts of risk sharing may have significant effects on risk premia. Since disasters

are rare, in order for them to have significant impact on the risk premium ex ante, marginal

utility in the disaster states needs to rise substantially as the size of the consumption drop
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increases. As a result, the equity premium is sensitive to changes in the size of individual

consumption losses during a disaster. For example, if the pessimistic agents manage to

reduce their consumption loss in a disaster by 10% (in logs), the corresponding reduction in

risk premium is 1 − e−.1γ , or 33% when γ = 4. Thus, a small number of optimistic agents

aggressively selling disaster insurances can reduce the disaster risk exposure of the pessimistic

agents enough to significantly lower the equity premium they demand.

Our model thus explains why the market risk premium can remain low even though

the majority of market participants are becoming more concerned with the risks of major

disasters. Before a disaster strikes, the optimistic investors gain more wealth by selling

disaster insurance, which gradually drives down the equity premium. However, when a

disaster occurs, these optimists will lose a large fraction of their wealth, and their risk sharing

capacity will be greatly reduced. As a result, the equity premium will jump up significantly.

A number of other interesting results arise from our analysis. First, we show that histor-

ical consumption data combined with simple economic restrictions can provide meaningful

bounds on agents’ beliefs about disasters. The data is quite informative about the mean

of consumption growth, but less so about the frequencies of disasters, which suggests that

disagreements about rare disasters should be an important source of heterogeneity in beliefs

in asset pricing. Second, changes in the distribution of wealth among agents with different

beliefs drive the fluctuations in the equity premium, volatility of stock returns, and riskfree

rates in our model, and that heterogeneous beliefs about disasters can generate sizable vari-

ations in equity premium. Interestingly, our model predicts that the equity premium is not

necessarily increasing in the weighted average probability of disasters under the beliefs of

market participants, and that the equity premium can be higher when there is less disagree-

ment among market participants. Third, similar to Longstaff and Wang (2008), who establish

a link between asset prices and the size of the market of riskless money market funds, our

model predicts a non-monotonic relationship between the equity premium and the size of the

disaster insurance market.

The amount of risk sharing in our complete markets model, as measured by the disaster

insurance trading, can be extreme at times. In practice, implementing such trades can be

difficult due to moral hazard. Even exchange trading and daily mark-to-market will not

3



eliminate the counterparty risks associated with these contracts, because disasters will lead

to sudden large changes in prices. If we were to limit the ability for agents to share risk (e.g.,

by imposing collateral constraints for selling catastrophe bonds or shorting the stock), the

equilibrium consumption of the pessimistic agent will become more risky, which raises the

equity premium.

Another possible way to reduce the effects of heterogeneous beliefs is through ambiguity

aversion. As Hansen (2007) and Hansen and Sargent (2009) show, if investors are ambiguity

averse, they deal with model/parameter uncertainty by slanting their beliefs pessimistically.

In the case with disaster risks, confronting the agents with the same model uncertainty

facing econometricians could lead to agents behave as if they believe the disaster probabilities

are high, even though their actual priors might suggest otherwise. This could reduce the

heterogeneity of the distorted beliefs among agents, thus limiting the effects of risk sharing.

We leave these implications to future research.

This paper contributes to the disaster risk literature, which goes back to the work of

Rietz (1988). Barro (2006, 2009) has reinvigorated this literature by providing international

evidence that disasters have been frequent and severe enough to have a large impact on the

equity premium. A series of recent studies demonstrate that disaster risks can also help match

a wide range of facts in financial markets, including asset volatility, return predictability,

corporate bond spreads, option pricing, exchange rates, etc. Among these studies are Liu,

Pan, and Wang (2005), Gabaix (2009), Wachter (2009), Farhi and Gabaix (2009), and others.

The majority of these studies adopt a representative-agent framework. The few exceptions

include Dieckmann and Gallmeyer (2005), Bates (2008), and Dieckmann (2009). The paper

closest to ours is Dieckmann (2009), who also study a model of heterogenous beliefs about

disasters under both complete markets and incomplete markets. He only considers the case

of log utility and constant disaster risks, where risk sharing has limited effects on the equity

premium.

Our paper builds on the literature of heterogeneous beliefs models. See Basak (2005) for

a survey. Recent developments on heterogeneous beliefs and asset pricing include Kogan,

Ross, Wang, and Westerfield (2006), Buraschi and Jiltsov (2006), Yan (2008), David (2008),

Dumas, Kurshev, and Uppal (2009), Xiong and Yan (2009), among others. Our main finding
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is related to the results of Kogan, Ross, Wang, and Westerfield (2006), who show that irra-

tional traders can still have large price impact when their wealth becomes negligible. Our

affine heterogeneous beliefs model provides a tractable yet flexible framework, through the

generalized transform results of Chen and Joslin (2009), to study the implications of very

general forms of heterogeneity in beliefs about disasters. In the special case with constant

disaster probability, we derive closed form solutions for prices, risk premia, and portfolio

positions for the cases where relative risk aversion γ > 1. We also provide explicit parameter

restrictions for asset prices to be finite.

Finally, we also compare our results to models of heterogeneous preferences. Among the

works on this topic are Dumas (1989), Wang (1996), Chan and Kogan (2002), and more

recently Longstaff and Wang (2008). When the risk aversions are sufficiently different, we

show that the effects on the equity premium are similar to the case with heterogeneous

beliefs. Moreover, combing lower risk aversion with optimistic beliefs can make the effects of

risk sharing on the equity premium particularly strong.

The rest of the paper is organized as follows. Section 2 presents our basic model of

heterogeneous agents and disasters, beginning first with a review of a benchmark single

agent economy. Section 3 introduces bounds on beliefs consistent both the historical data

and asset prices. Section 4 analyzes the effect of heterogeneity in beliefs. Section 5 compares

the results with the model of heterogeneous risk aversion. Section 6 concludes.

2 Model Setup

We first present the results of the general model where agents have both heterogeneous

beliefs and preferences, and the disaster risk is time-varying.1 Then we review the results for

a special case with homogeneous agents and constant disaster risks.

1This model is a special case of the affine heterogenous beliefs model in Chen and Joslin (2009).
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2.1 Disasters and Heterogenous Agents

We consider a continuous-time, pure exchange economy. There are two agents (A, B), each

being the representative of her own class. Agent A believes that the aggregate endowment is

Ct = ecc
t+cd

t , where cc
t is the diffusion component of log aggregate endowment, which follows

dcc
t = ḡdt + σcdBc

t , (1)

and cd
t is a pure jump process whose jumps arrive with stochastic intensity λt,

dλt = κ(λ̄ − λt)dt + σλ

√

λtdBλ
t , (2)

and the jump size has distribution νA. We summarize Agent A’s beliefs with the probability

measure PA.

Agent B believes that the probability measure is PB, which we shall suppose are equivalent

to that of Agent A. She may disagree about the growth rate of consumption, the likelihood

of disasters or the distribution of the severity of disasters when they occur. We assume that

the two agents are aware of each others’ beliefs, but nonetheless “agree to disagree”.2

Specifically, Agent B’s beliefs are characterized by the Radon-Nikodym derivative ηt ≡

(dPB/dPA)t, where

ηt = eat+bcc
t−It , (3)

It =

∫ t

0

(

bḡ +
1

2
b2σ2

c + λt

(

λ̄B

λ̄A
− 1)

))

dt , (4)

and at is a pure jump process whose jumps are coincident with the jumps in cd
t and have size

∆at = log

(

λ̄B

λ̄A

dνB

dνA

)

. (5)

Here, dνB

dνA will be a function of the disaster and will reflect the disagreement about the

distribution of disaster; dνB

dνA will be large (small) for the disasters that agent B thinks are

2We do not explicitly model learning about disasters. Given the nature of disasters, such learning will
likely be quite slow, and the main source of disagreements will be the priors.
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relatively more (less) likely than agent A.

The variable ηt expresses Agent B’s differences in beliefs in that when ηt is high, Agent B

believes an event is more likely than Agent A thinks. Thus a, b reflect Agent B’s pessimism

or optimism regarding the likelihood of disasters and the growth rate of consumption. Under

agent B’s beliefs, the expected growth rate of consumption without jumps is ḡ + σ2
c b, and a

disaster occur with intensity λt ×
λ̄B

λ̄A . Agent B believes that the disasters have distribution

νB (which is equivalent to νA). Whenever disasters occur, the Radon-Nikodym derivative

jumps by the ratio of the likelihood of the particular disaster under the two agents beliefs.

Thus this specification of beliefs about disasters is quite flexible. Agent B not only can

disagree with Agent A on the average frequency of disasters, but also the likelihoods for

disasters of different magnitude, which effectively makes her disagree on on the distribution

of jump size conditional on a disaster. This setting remains within the affine family as

Xt = (cc
t , c

d
t , log ηt, λt) follow a jointly affine process where the moment generating function

of the jumps in Xt can be computed using the moment generating function of the disasters

and (5).

We assume that the agents are infinitely lived and have constant relative-risk aversion

utility over life time consumption:

U i(Ci) = Ei
0

[
∫ ∞

0
e−ρit

(Ci
t)

1−γi

1 − γi
dt

]

, (6)

for i = A,B. We suppose also that markets are complete and agents are endowed with some

fixed share of aggregate consumption (θA, θB = 1 − θA).

The equilibrium allocations can be characterized as the solution of the following planner’s

problem, specified under the probability measure PA,

max
CA

t , CB
t

EA
0

[∫ ∞

0
e−ρAt (C

A
t )1−γA

1 − γA
+ ζ̃te

−ρBt (C
B
t )1−γB

1 − γB
dt

]

, (7)

s.t. CA
t + CB

t = Ct, (8)
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where ζ̃t ≡ ζηt is the stochastic Pareto weight for Agent B. The first order conditions imply

e−ρAt(CA
t )−γA = ζ̃te

−ρBt(CB
t )−γB , (9)

which together with the market clearing condition (8) gives the equilibrium consumption

allocations as implicit functions

CA
t = fA(ζ̂t)Ct , (10)

CB
t = (1 − fA(ζ̂t))Ct . (11)

where ζ̂t = e(ρA−ρB)tCγA−γB
t ζ̃t.

The stochastic discount factor under Agent A’s beliefs, Mt, is given by

Mt = e−ρAt(CA
t )−γA = e−ρAtfA(ζ̂t)

−γAC−γA

t . (12)

Then, we can solve for ζ through the life-time budget constraint for one of the agents (see

Cox and Huang (1989)), which is linked to the initial allocation of endowment.

Since our emphasis is on heterogeneous beliefs about disasters, for the remainder of this

section we focus the case where there is no disagreement about the distribution of Brownian

shocks, and the two agents have the same preferences.3 In this case, b = 0, γA = γB = γ,

ρA = ρB = ρ. The equilibrium consumption share simplifies to

fA(ζ̃t) =
1

1 + ζ̃
1
γ

t

. (13)

From the stochastic discount factor, we can also compute the riskfree rate

rt = ρ + γḡ −
1

2
γ2σ2

c − λt



Et



eγ∆cd
t

fA
(

ζ̃te
∆at

)

fA(ζ̃t)



− 1



 , (14)

where at is given in (5) and fA(ζ̃t) is given in (13).

We see that as a disaster of size d occurs, ζ̃t is multiplied by λ̄A

λ̄B
dνB

dνA (d). If the agent is

3In Section 5, we investigate the case with heterogeneous preferences.
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pessimistic in the sense that λ̄B > λ̄A and νA stochastically dominates νB , the pessimistic

agent will have a higher weight in the planner’s problem when severe disasters occur so that

their (relative) consumption increases. These equilibrium allocations are realized through

competitive trading by the agents. We consider the following three types of securities: (1)

a risk-free money market account, (2) a claim to aggregate consumption, and (3) a series of

disaster insurance contracts with 1 year maturity, which pay $1 on the maturity date if a

disaster of size d occurs within the year.

The price of the aggregate endowment claim is

Pt =

∫ ∞

0
Et

[

e−ρτ Mt+τ

Mt
Ct+τ

]

dτ , (15)

which can be viewed as a portfolio of zero coupon consumption claims

MtP
t+T
t = Et[e

−ρT Mt+T Ct+T ]

= e(1−γ)ct−T (ρ+ḡ(1−γ)− 1
2
σ2

c (1−γ)2× (16)

Et

[

e(1−γ)cd
t+T

(

1 + (ζ0e
log ηt+T )

1
γ

)γ]

.

Under our assumption of integral γ, the final term will take the form as a sum of expec-

tations of the form

eαiT Et[e
(1−γ)cd

t+T +βi log ηt+T )] = eAi(T )+(1−γ)cd
t +βi log ηt+Bi(T )λt , (17)

where (Ai, Bi) satisfy a simplified version of the familiar Riccati differential equations

Ḃi = −
λ̄B

λ̄A
βi − κBi +

σ2
λ

2
B2

i + (φ(〈1 − γ, βi〉) − 1) , B0(0) = 0 . (18)

Ȧi = κθBi + αi , Ai(0) = 0 , (19)

where φ is the moment generating function of jumps in 〈cd
t , at〉. It follows that price/consumption

ratios vary only with the stochastic weight ζ̃t and the disaster intensity:

P t+T
t = Cth

T (λt, ζ̃t) . (20)
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Since the stochastic weight, ζ̃t, does not depend on the brownian shock (due to our assumption

that agents only disagree about disasters), the price-consumption ratio is independent of

these shocks as well. In the case that λt is constant, the price of the consumption claim

further reduces to closed form solutions. Similar equations are also found for the price of the

equilibrium consumption of Agent A and Agent B. See Appendix for details.

With stochastic disaster risk, in order for prices to be finite in the heterogeneous-agent

economy, it is necessary and sufficient that prices are finite under each agent’s beliefs in

a single-agent economy (see Appendix B for a proof). The conditions can be found by

considering the attracting fixed point of (18). Finite prices require, for the parameters of

both agents perceived consumption processes, that the following two inequalities hold:

0 < κ2 − 2σ2
λ(φd(1 − γ) − 1), (21)

0 > κθ
κ −

√

κ2 + 2σ2
λ(1 − φi(1 − γ))

σ2
λ

− ρ + (1 − γ)ḡ +
1

2
(1 − γ)2σ2

c , (22)

where φd is the moment generating function of jumps in cd
t . The first inequality reflects

the fact that the volatility of the disaster intensity cannot be too large relative to the rate

of mean reversion or the convexity effect induced by the possibility of large values of the

intensity will generate zero coupon equity prices that increase faster than than any possible

exponential discounting. The second inequality reflects that they must be enough discounting

to counteract the discount rate effects that growth and disasters induces in zero coupon equity

prices.

The disaster insurance security is priced similarly through the stochastic discount factor.

For the simple case of a single type of disaster, we can compute the price of disaster insurance

by considering the counting processes, Nt, which counts the number of disasters that have

occurred:

MtP
DI
t = Et[Mt+11{Nt+1>Nt}]

= Et[Mt+1] − Et[Mt+1|Nt+1 = Nt] Pr(Nt+1 = Nt). (23)

In the case the λt is constant, this reduces to a particularly simple expression. For the general
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case, we use the transform analysis of Duffie, Pan, and Singleton (2000). See Appendix for

details.

Finally, we can compute the expected excess return of the various securities under the

probability measure Pi (i = A,B). In each case, we make use of the risk-neutral dynamics to

compute the expected excess return for a price process that has the form P o
t = h(cc

t , c
d
t , ζ̃t).

In the case of single disaster type, the expected excess return is of the form

ept = σ2
c∂cch + λirPi − λQrQ, (24)

where rm is the return, conditional on a disaster occurring, under the measure m. The risk

neutral intensity, λQ, is simply Ei
t−[Mt/Mt−]λi

t. In the more general case, we simply average

this formula over the conditional disaster distribution νi, taking into account, where again

the conditional disaster distribution under the risk-neutral measure, νQ, is computed directly

from the stochastic discount factor.

In the remainder of the paper, we report the equity premium relative to the probability

measure of the pessimist, PA. One interpretation for picking PA as the reference probability

measure is that the pessimist has the correct beliefs, and we are studying the impact of the

incorrect beliefs of an optimist on asset prices.

2.2 Homogeneous agents and constant disaster risk

When agents have the same preferences and beliefs about disasters, and that the disaster

intensity λt is constant, we recover the basic version of the representative agent rare disaster

model. We first review this case before presenting the results of the heterogeneous-agent

model.

The aggregate endowment process is a special case of the process in Section 2, where cd
t is

now a pure jump process with constant intensity λ and moment generating function (MGF) ϕ

for the jump size distribution. The stochastic discount factor, Mt, is given by Mt = e−ρtC−γ
t .

From the stochastic discount factor we can compute the constant riskfree rate

rt = −
DM

M
= ρ + γḡ −

1

2
γ2σ2

c + λ(ϕ(−γ) − 1). (25)
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Additionally, the stochastic discount factor allows us to easily compute the risk neutral

dynamics, which facilitates the computation and interpretation of excess returns. Under

Q, the risk-neutral measure,

dct = (ḡ − σ2
cγ)dt + σcdBQ

t + dJQ
t , (26)

where disasters arrive with intensity λQ = ϕ(−γ)λ under this measure and have distribution

with moment generating function ϕQ(s) = ϕ(s − γ)/ϕ(−γ). When the riskfree rate and

disaster intensity are close to zero, the risk-neutral disaster intensity λQ can be approximately

viewed as the value of a one-year disaster insurance contract that pays $1 when a disaster

occurs within a year.4

The risk adjustments for the jumps are quite intuitive. If consumption drops during

a disaster, then ϕ(−γ) > 1 for γ > 0, so that disasters occur more frequently under the

risk-neutral measure. Moreover, the risk-adjusted distribution of jump size conditional on

a disaster is dvQ/dv = e−γ∆c/ϕ(−γ), which slants the probabilities towards large jumps,

making severe disasters more likely.

The price of the claim to aggregate dividends is

Pt = Et

[∫ ∞

0
e−ρτ Mt+τ

Mt
Ct+τdτ

]

=
Ct

θ
,

where

θ = ρ − (1 − γ)ḡ −
1

2
(1 − γ)2σ2

c − λ(ϕ(1 − γ) − 1), (27)

and prices are finite if and only if θ > 0.

Finally, the instantaneous expected excess return of the aggregate dividend claim is

Et

[

dPt

Pt
+

Ct

Pt
dt

]

/dt − rt = γσ2
c − λEν

[

(e−γ∆c − 1)(e∆c − 1)
]

= γσ2
c −

[

λQ(ϕQ(1) − 1) − λ(ϕ(1) − 1)
]

. (28)

4The value of the disaster insurance is D1
t = Et

[

∫ t+1

t
λQe−(r+λQ)(s−t)ds

]

. When r and λQ are close to 0,

D1
t ≈ λQ.
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Thus, the expected excess return arises from (1) exposure to brownian risk and (2) exposure

to jump risk. The risk premium for exposure to jumps reflects both the increased likelihood

of disasters under Q, λQ (relative to λ), and also the increased severity of losses for a given

disaster under Q, ϕQ(1)− 1 (relative to ϕ(1)− 1). Importantly, the risk premium rises expo-

nentially with the size of the consumption drops. Thus, a small reduction in the consumption

exposure to disasters (especially the most severe ones) could have large impact on the risk

premium. This mechanism is key to the results of the heterogeneous agents model.

3 Bounds for Extreme Beliefs

While the beliefs of individual agents about consumption growth and disasters are not directly

observable, historical consumption data as well as simple economic restrictions can provide

guidance on how extreme these beliefs could be, which helps with the calibration of our

model. We define an admissible belief as satisfying the following conditions: (i) the price of

consumption claim under the belief is finite, and (ii) the belief cannot be rejected by the data

at a given significance level α.

We consider whether an agent with a given null hypothesis about either the growth rate

of consumption or the likelihood of disasters would be able to reject this hypothesis using

historical data. Figure 1 plots the p-value associated with different beliefs about the expected

growth rate ḡ in a Gaussian model (no disasters) and beliefs about λ in a constant disaster

risk model. The p-value in the Gaussian case, given in the left axis, reflects the highest

significance level at which one could not reject the null that the true growth rate is below

the observed historical value by an amount specified in the top axis, based on 120 years of

data. The diagonal line plots the effect of such pessimism on the equity premium (right axis)

for base parameters of γ = 4 and σc = 3%. The p-value falls rapidly, reaching 1% when the

expected growth rate is just 0.8% below the historical mean. We see that such tiny difference

in beliefs has little impact on asset prices: even if the pessimistic agents own all the wealth,

the corresponding equity premium under the optimistic agents’ beliefs is only 1.3%. In order

to get a large premium (say 4%), the beliefs of the pessimistic agents have to be so extreme

that it is difficult to reconcile with the data.
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Figure 1: Bounds for extreme beliefs. The left panel plots the p-value for various disaster
intensities (bottom axis) and mean growth rates of consumption (top axis) based on 120 years
of data. The right panel plots the maximum disaster size that gives finite prices for various
disaster intensities.

One might argue that there can be more disagreement about the growth rates of dividend

than consumption, which can generate high risk premium for claims on dividends as opposed

to consumption. However, this assumption implies that at least for some agents the long run

growth rate of consumption will differ from that of dividends, which means that consumption

and dividends can not be cointegrated, a reasonable restriction that is supported empirically.

In contrast, the model of heterogeneous beliefs about disasters shows more promise. The

disaster we consider later in the paper are in fact significantly more severe than those observed

in US history, where consumption has never declined more than 10% in a given year. If we

make an extreme assumption that no disasters have occurred over the last 120 years, then the

p-value is the probability of observing no disasters assuming the true intensity is consistent

with the agents’ beliefs (bottom axis). Figure 1 shows that λ = 4% roughly corresponds to

a p-value of 1%, which provides an upper bound on how frequent disaster can be within the

set of admissible beliefs.

While consumption data has no information about the size of disasters that have not
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occurred in the past, we can bound the jump size using the parameter restrictions given in

Section 2. For example, in the case with deterministic disaster size, with γ = 4 and λ = 4%,

the largest admissible drop in consumption during a disaster is 35% (d̄ = 0.43).

Compared with the Gaussian model, models of heterogeneous beliefs about disasters have

a better chance in matching the equity premium. Again assuming that the pessimistic agent

owns all the endowment and have the most extreme version of admissible beliefs (λ = 4% and

d̄ = 0.5), the equity premium under the optimistic agents’ beliefs is 8%. Next, we investigate

what happens to asset prices when pessimistic agents no longer have all the wealth.

4 Heterogeneous Beliefs: Constant Disaster Risk

In this section, we analyze the effects of heterogeneous beliefs for rare disasters on asset prices

and consumption allocations. To cleanly demonstrate the effects of heterogeneous beliefs and

the risk-sharing mechanism, we first keep the risk of rare disasters constant, i.e., λt = λ̄.

We consider two natural examples of disagreements about rare disasters, one where agents

disagree about the frequencies of disasters, the other where they disagree about the size of

disasters. After analyzing these two cases, we then extend the model by calibrating the beliefs

to the US and international data on disasters.

4.1 Example I: Disagreement about the Frequency of Disasters

In the first example, we assume that the disaster size is deterministic, dt = d̄, and the two

agents disagree about the frequencies of disasters (λ). We set d̄ = −0.51 so that the MGF

ϕ(−γ) in this model matches the calibration of Barro (2006) for γ = 4. This d̄ is admissible

according to Figure 1. It implies that aggregate consumption falls by 40% when a disaster

occurs.5 Agent A (pessimist) believes that disasters occur with intensity λA = 1.7%, which

is also taken from Barro (2006). The remaining parameters are ḡ = 2.5%, σc = 2%, and

ρ = 3%. Agent B (optimist) believes that disasters are much less likely, λB = 0.1%, but she

agrees with Agent A on the size of jump in aggregate consumption given a disaster as well

5This value is higher than the average disaster size in Barro (2006) due to the fact that larger but more
rare jumps can have big impact on the MGF, especially when γ is large.
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Figure 2: Disagreement about the frequency of disasters. The left panel plots the
equity premium under the pessimist’s beliefs as a function of the wealth share of the optimist.
The right panel plots the jump-risk premium for the pessimist. We consider two sets of beliefs
for the pessimist: λA = 1.7% and λA = 2.5%.

as the Brownian risks in consumption. She also has the same preferences as Agent A.

Figure 2 shows the conditional equity premium under Agent A’s beliefs, as well as the

jump-risk premium for Agent A. If all the wealth is owned by the pessimistic agent, the

equity premium is 4.7%, and the riskfree rate is 1.3%. The left panel shows that the equity

premium falls as we allocate more wealth in this economy to the more optimistic agent, who

views the chances of disasters as negligible (once every thousand years).

Qualitatively, this fact is as expected. Without much disaster risk, Agent B demands a

very low equity premium. When she has all the wealth, this premium is only 0.43% under her

own beliefs, or −0.21% under the pessimist’s beliefs. While we expect the premium to fall

as we endow Agent B with more wealth, the speed at which the premium falls is impressive.

When the optimistic agent owns 10% of the total wealth, the equity premium has fallen from

4.7% to 2.7%. When the wealth of the optimist reaches 20%, the equity premium falls to just

1.7%.
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To understand the behavior of the equity premium, we can decompose the premium:

ept = γσ2
c + λPA

(

λQ
t

λPA
− 1

)(

h(ζ̃te
ad̄)ed̄

h(ζ̃t)
− 1

)

. (29)

The first term γσ2
c is the standard compensation for bearing brownian risk. Heterogeneity

has no effect on this term since the agents agree about the brownian risk. Given the value

of risk aversion and consumption volatility we consider, this term has negligible effect on the

premium. The second term reflects the compensation for disaster risks. It can be further

decomposed into three factors. The first factor, λPA , is independent of the wealth distribution.

The second,
λQ

t

λPA
− 1, gives the relative jump of the stochastic discount factor at the time

of a disaster, where λQ is the risk-neutral disaster intensity (the same for both agents with

complete markets). The ratio λQ
t /λPA is often referred to as the jump-risk premium. The

third factor is the return of the consumption claim in a disaster, which is due to changes in

consumption as well as the price-consumption ratio.

How does the wealth distribution affect the jump-risk premium? In this example,

λQ
t /λPA

t = e−γ∆cA
t ,

where ∆cA
t is the jump size of the equilibrium log consumption for Agent A in a disaster,

which could be very different from the jump size in aggregate endowment due to trading. The

jump-risk premium is large when the economy is entirely occupied by the pessimistic agent.

Without trading, the jump in the equilibrium log consumption for Agent A will be d̄, which

generates a jump-risk premium of 7.7. As we show earlier, λQ is approximately the premium

of a one-year disaster insurance with notional value $1. Thus, λQ/λPA = 7.7 corresponds

to an annual premium of 13 cents for $1 of protection against a disaster event that occurs

with probability 1.7%. This premium falls rapidly as the optimistic agent’s wealth increases.

When the optimist owns 20% of total wealth, the jump-risk premium drops to 4.2. According

to equation (29), such a drop in the jump-risk premium alone will cause the equity premium

to fall by more than half to 2.2%, which accounts for the majority of the change in the

premium (from 4.7% to 1.7%).
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The additional change in the premium is due to the return of the consumption claim

in a disaster becoming less sensitive to disasters as the optimist’s wealth increases. With

CRRA utility, the effect of the fall in riskfree rate can exceed that of the rise in the risk

premium following a disaster, which raises the price-consumption ratio. In the region where

the optimist has low wealth, this effect gets stronger as her wealth increases, thus offsetting

more of the losses in consumption and resulting in a less negative return in the consumption

claim. Wachter (2009) finds similar results in a representative agent rare disaster model with

time-varying disaster probabilities and CRRA utility. However, our decomposition above

shows that the reduction of the jump-risk premium is the main reason behind the fall in

premium.

As the formula of the jump-risk premium clearly shows, reduced compensation for disaster

risk for the pessimist comes from reduced consumption exposure to disasters, which is the

result of optimal risk sharing. Since the optimist views disasters as very unlikely events,

she is willing to trade away their claims in the future disaster states in exchange for higher

consumption in normal times. For example, she will find selling an $1 disaster insurance to

the pessimist and collecting a 13 cents premium a lucrative trade. However, her capacity

for underwriting such insurance is limited by her wealth, as she needs to ensure that her

consumption/wealth is positive in all future states, in particular when a disaster occurs (no

matter how unlikely such an event is). In fact, she stays away from this limit imposed by the

wealth constraint because the more disaster insurance she sells, the more her consumption

falls in the disaster states, which makes her less willing to take on additional disaster risks.

The more wealth the optimistic agent has, the more disaster insurance she is able to sell

without making her consumption too risky when a disaster strikes. Such a mechanism can

substantially reduce the disaster risk exposure of the pessimistic agent in equilibrium.

If the disaster risk premium from a “mild” version of pessimism about disaster risks can

be offset by an optimistic agent with limited wealth, can we improve the model performance

by making the pessimist more pessimistic? The dash-lines in Figure 2 plot the results when

Agent A believes that λ = 2.5% (everything else equal), which according to Figure 1 is still

“reasonable” (with p-value of 8%). The results are striking. While the equity premium

becomes significantly higher (6.8%) when the pessimistic agent owns all the wealth in the
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economy, it falls to 4.1% with just 2% of total wealth allocated to the optimistic agent

(already lower than the previous case with λA = 1.7%), and is below 1% when the wealth

of the optimistic agent exceeds 8.5%. As the wealth of the optimistic agent grows higher,

the premium can even become negative. While part of the sharp fall in equity premium

(especially near the left boundary) is due to the price-consumption ratio effect that is specific

to CRRA utility, the lower jump-risk premium is also important. For example, when the

optimist has 10% of total wealth, the jump-risk premium falls to 4.0, which will drive the

premium down to 3.1% ( 60% of the total fall).

Another interesting implication of this comparative static exercise is that, holding the

average belief constant (weighted by wealth share), increasing the disagreement between the

two agents can drive the equity premium lower. This is because the amount of risk sharing

becomes larger as the beliefs of the two agents become more different, which can dominate

the effect of more pessimism for the pessimist.

To better examine the risk sharing mechanism between agents, we compute their portfolio

positions in the aggregate consumption claim, disaster insurance, and the money market

account. The first thing to notice is that each agent will hold a constant proportion of the

consumption claim. Intuitively, this is because they agree on the brownian risk and share

it proportionally. Disagreement over disaster risk is resolved through trading in the disaster

insurance market, which is financed by the money market account.

Figure 3 Panel A plots the notional value of the disaster insurance sold by the optimistic

agent as her share of total wealth. This shows the degree to which the optimist insures the

pessimist against the disaster event. The dash-line plots the maximum amount of disaster

insurance (as a fraction of her wealth) the optimist can sell subject to her budget constraint.

When the optimist has very little wealth, the notional value of the disaster insurance she

sells is about 35% of her wealth. This value initially rises and then falls as the optimist

gains more wealth. The reason is that when the optimist has little wealth, the pessimist has

great demand for disaster insurance and is willing to pay a high premium, which induces the

optimist to sell more insurance relative to her wealth. As the optimist gets more wealth, risk

sharing improves, and the premium on the disaster insurance falls, so that the optimist is no

longer as aggressive (relative to her wealth) in underwriting the insurance.
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Figure 3: Risk sharing: λA = 1.7%. Panel A and B plot the total notional value of disaster
insurance relative to the wealth of the optimist and total wealth in the economy. Panel
C plots the consumption share for the optimist in equilibrium. Panel D compares the two
agents’ consumption drops in a disaster with that of the aggregate endowment.

This graph also helps us judge whether the risk sharing in equilibrium is too “extreme”. At

its peak, the amount of disaster insurance sold by the optimist is about half of the maximum

amount that she can underwrite while still keeping her wealth positive with probability 1,

which might appear quite reasonable. However, in reality, underwriters of disaster insurance

will likely be required to collateralize their promises to pay in the disaster states. According

to the model, all the wealth is from the claim on future endowment income, which might be

not be used as collateral (just as labor income cannot be used as collateral). We will have

more discussion of the collateral constraint later.

Panel B plots the size of the disaster insurance market (the total notional value normalized

by total wealth). Naturally, the size of this market is zero when either agent has all the
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wealth, and the market is the biggest when wealth is close to be evenly distributed. At its

peak, the notional value of the disaster insurance market is about 16% of the total wealth of

the economy. Notice that the model generates a non-monotonic relation between the size of

the disaster insurance market and the equity premium. The premium is high when there is

a lot of demand for disaster insurance but little supply, and is low when the opposite is true.

In either case, the size of the disaster insurance market will be small.

Panel C plots the equilibrium consumption shares of the optimistic agent for different

wealth distributions. The 45-degree line corresponds to the case of no trading. The optimist’s

consumption share is above the 45-degree line, especially when her wealth is small, suggesting

that she is consuming a larger share of total consumption than her endowment in the non-

disaster states. However, the price for getting more to consume in normal times is more

exposure to the fall in consumption when disaster strikes.

Panel D shows the impact of a disaster on the equilibrium consumption of the two agents.

To see how aggressive the optimist is in betting on disaster risks, consider that, when she has

little wealth, she will suffer a 70% loss in consumption in the event of a disaster (compared

to 40% drop in aggregate consumption). The optimist is willing to face this catastrophic

downside risk because she thinks disasters are rare and the price of disaster insurance is very

high. As for the pessimistic agent, the less wealth she possesses, the more disaster insurance

she buys relative to her wealth. This will gradually lower her disaster risk exposure, and can

eventually turn the disaster insurance into a speculative position, which actually makes her

consumption jump up (as high as 20%) during a disaster. This “over-insurance” explains

why the equity premium under the pessimist’s beliefs can turn negative when the optimist

has most of the wealth.

Panel D also helps explain why the equity premium falls so rapidly as the optimist gets

more wealth. While the pessimist’s consumption downfall in a diaster gets reduced gradually,

the jump-risk premium falls at an exponential rate, which then causes the equity premium

to fall at an exponential rate as well. This effect will be stronger when the agents are more

risk averse.

When Agent A has more pessimistic beliefs, trading between the two agents also becomes
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Figure 4: Risk sharing: λA = 2.5%. Panel A and B plot the total notional value of disaster
insurance relative to the wealth of the optimist and total wealth in the economy. Panel
C plots the consumption share for the optimist in equilibrium. Panel D compares the two
agents’ consumption drops in a disaster with that of the aggregate endowment.

more active. Figure 4 shows the results. The price of disaster insurance rises significantly

compared to the case of mild pessimism. Naturally, the amount of disaster insurance sold

(both relative to the wealth of the optimistic agent and to total wealth in the economy)

also becomes higher than the case of milder pessimism. The equilibrium consumption shares

is now significantly more nonlinear, especially in the region where the wealth share of the

optimist is low. Moreover, a disaster now has an even bigger impact on the consumption

of the optimistic agent. On the other hand, the pessimistic agent will buy insurance more

aggressively, which reduces her exposure to diaster risks at a faster pace. This is evident

in the plot of the consumption drop in a disaster. Compared to Figure 3, the reduction in

consumption drop is considerably faster near the left boundary. When the pessimist has
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little wealth, trading can result in an upward jump of up to 35% in her consumption when a

disaster arrives.

Thus, having an agent who is more pessimistic about disasters does not necessarily drive

up the equity premium in the economy. The pessimist will pay more for disaster insurance,

which presents a better trading opportunity for the optimistic agent and increases the amount

of insurance she provides. More risk sharing can then lead to safer consumption stream for

the pessimistic agent and make the equity premium lower.

A final question for this example is whether the effect of risk sharing on the equity

premium becomes stronger or weaker as the size of disaster increases. On the one hand,

for larger disasters, the equity premium becomes more sensitive to changes in the size of

consumption drops, which means the premium will decline more for the same amount of risk

sharing between the agents. On the other hand, the optimist will be increasingly reluctant

to take on extra losses in the disaster state because her marginal utility rises exponentially in

the (log) size of consumption losses. To study the net effects, we increase d̄, yet keep the risk

premium for the pessimist in the single-agent case as well as the relative difference in beliefs

unchanged (by lowering λA and keeping λB/λA fixed). Our results show that the second

effect dominates. The decline in equity premium becomes closer to linear as d̄ gets larger,

and the amount of risk sharing becomes smaller.

4.2 Example II: Disagreement about the Size of Disasters

Having examined disagreement about the likelihoods of disasters, we next study how dis-

agreement about the distribution of disaster sizes affects asset pricing. For simplicity, we

assume that when a disaster occurs, the fall in aggregate consumption follows a binomial

distribution, with the possible drop being 10% and 40%. Both agents agree on the intensity

of a disaster (λ = 1.7%). Agent A (pessimist) assigns a 99% probability to a 40% drop in

aggregate consumption, thus having essentially the same beliefs as in the previous example.

On the contrary, Agent B (optimist) believes that disasters are much less severe. She assigns

only a 1% probability to a 40% drop, but 99% probability to a 10% drop. The rest of the

parameter values are the same as in Example I.
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Figure 5: Disagreement about the size of disasters. The left panel plots the equity
premium under the pessimist’s beliefs. The right panel plots the jump-risk premium for the
pessimist. The values of p1 in the two cases specify the probability that Agent B assigns to
the smaller disaster (with size −10%) conditional on a disaster occurring.

Figure 5 plots the conditional equity premium and jump-risk premium in this case, both

of which are again under the pessimist’s probability measure PA. When the pessimist has

all the wealth, the equity premium is 4.6% (almost the same as in Example I). Again, the

equity premium falls rapidly as we starts to shift wealth to the optimist. The premium falls

by almost half to 2.4% when the optimist owns just 5% of total wealth, and becomes 1.4%

when the optimist’s share of total wealth grows to 10%. Similarly, the jump-risk premium

falls from 7.6 to 4.4 with the optimist’s wealth share reaching 10%, which by itself will lower

the premium to 2.4%. Finally, the effects of risk sharing become smaller as the disagreement

on the jump size distribution is reduced (we do so by increasing the probability that Agent

B assigns to a 40% drop).

This example shows that in terms of asset pricing, introducing an agent who disagrees

about the severity of disasters is quite similar to introducing one who disagrees about the fre-

quency of disasters. In either case, the optimistic agent will aggressively insure the pessimistic

agent against the severe diasters, which drives down the equity premium exponentially.
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4.3 Calibrating Disagreement: Is the US Special?

The two examples we have presented so far are quite stylized in the way disagreements are

modelled. In this section, we extend the analysis to a more realistic model of beliefs on

disasters. The way we calibrate the beliefs of the two types of agents is as follows. Agent A

believes that the US is no different from the rest of the world in its disaster risk exposure.

Hence her beliefs are calibrated using cross-country consumption data. Agent B, on the other

hand, believes that the US is special. She forms her beliefs on disaster risk using only the

US consumption data.

An important contribution of Barro (2006) is to provide detailed accounts of the major

consumption declines cross 35 countries in the twentieth century. Rather than directly using

the empirical distribution from Barro (2006), we estimate a truncated Gamma distribution

for the log jump size6 from Barro’s data using maximum likelihood (MLE). Our estimation is

based on the assumption that all the disasters in the sample were independent, and that the

consumption declines occurred instantly.7 We also bound the jump size between 5% and 75%.

In comparison, the smallest and largest declines in per capital GDP in Barro’s sample are 15%

and 64%, respectively. The disaster intensity is still λA = 1.7%. The remaining parameters

are the mean growth rate and volatility of consumption without a diaster, ḡ = 2.5% and

σc = 2%, which are consistent with the US consumption data post WWII.

As for Agent B, we assume that she agrees with the values of ḡ and σc, but we estimate the

truncated Gamma distribution of diaster size using MLE from annual per-capita consumption

data in the US 1890-2008.8 Over the sample of 119 years, there are three years where

consumption falls by over 5%. Thus, we set λB = 3/119 = 2.5%. Alternatively, we can

estimate λB jointly with the jump size distribution, which will make jumps more frequent

and have smaller sizes.

Panel A of Figure 6 plots the probability density functions of the log jump size distri-

6The truncated Gamma distribution has PDF f(d; α, β|d, d) = f(d; α, β)/
(

F (d; α, β) − F (d; α, β)
)

, where
f(x; α, β) and F (x;α, β) are the PDF and CDF of the standard Gamma distribution with shape parameter α
and scale parameter β.

7These assumptions are debatable. For example, many of the major declines cross European countries are
in WWI and WWII. Moreover, many of the declines spanned several years. See Donaldson and Mehra (2008)
for more discussions on the issue of observation frequency.

8The data is taken from Robert Shiller’s web site http://www.econ.yale.edu/∼shiller/data.htm
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Figure 6: Calibrated Disagreements: International vs US Experiences. Panel A
plots the truncated Gamma distribution Γ(α, β|d, d) for the two agents. We assume d = 5%,
d = 75%. Panel B plots the equilibrium consumption drops for the two agents given the size
of the disaster. Panel C and D plot the equity premium and jump-risk premium under Agent
A’s beliefs.

butions for the two agents, which are very different from each other. The solid line is the

distribution fitted to the international data on disasters. The average log drop is 0.36, which

is equivalent to 30% drop in the level of consumption. In the US data, the average drop

in log consumption is only 0.075, or 7.3% in level. In addition, Agent A’s distribution has

much fatter left tailers than Agent B’s. Thus, while Agent A assigns significantly higher

probabilities than B to large disasters (where consumption drops by 15% or more), Agent B

assigns more probabilities to small disasters, especially those ranging 5% − 12%.

Such differences in beliefs lead the two agents to insure each other against the types
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of disasters they fear more about. Such trading can be implemented with a continuum of

disaster insurance contracts with coverage specific to the disaster size. Panel B plots drops

in the equilibrium consumption (level) for the two agents when disasters of different sizes

occur, assuming that Agent B (the optimist) owns 10% of total wealth. The graph shows

that through disaster insurances, Agent A is able to reduce her consumption downfall in large

disasters (comparing the solid line to the dotted line). For example, her own consumption will

only fall by 24% in a disaster where aggregate consumption falls by 40%, a sizable reduction

especially considering the small amount of wealth that Agent B has. At the same time, she

also provides insurances to Agent B on smaller disasters, which increases her consumption

losses when such disasters strike. This trading strategy is somewhat analogous to a “bear

put spread” in option trading. Agent B’s consumption drops are close to a mirror image of

Agent A’s. However, the changes are magnified both for large and small disasters due to her

small wealth share.

Panel C shows the by-now familiar exponential drop in the equity premium as the wealth

share of the optimist increases. The equity premium is 4.4% for a population entirely consisted

of agents who form their beliefs about disasters based on international data, but drops to

2.0% when just 10% of total wealth is allocated to the agents who form their priors using

only the US data. The main reason for the lower equity premium is due to the decrease of the

jump-risk premium (plotted in Panel D), which falls from 6.5 to 4.0. This effect alone drives

the equity premium to 2.4%. Finally, it is interesting to notice that the jump-risk premium

is no longer monotonic in the wealth share of Agent B. This is due to the fact that when

Agent A has little wealth, she would be selling insurances for small disasters so aggressively

that the effect of bigger losses in small disasters can dominate the effect of smaller losses in

bigger disasters.

In summary, the results from this calibrated model of heterogeneous beliefs about disasters

demonstrate that our main findings on how risk sharing quickly reduces the equity premium

are robust to general specifications of disagreements.
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Figure 7: The effects of heterogeneous risk aversion. The left panel plots the equity
premium when the agents have the same beliefs but different risk aversion. The right panel
plots the joint effects of heterogeneous beliefs and heterogeneous risk aversion. In the three
scenarios the two agents have risk aversion γA = 4, γB = 2.

5 Heterogeneous Risk Aversion

Intuitively, besides heterogeneous beliefs, heterogeneity in risk aversion should also be able to

induce risk sharing among agents and reduce the equity premium in the equilibrium. Recall

that in the case when disaster size is constant, the jump-risk premium is λQ
t /λPA

t = e−γ∆c,

which is just as sensitive to changes in disaster size ∆c as it is to changes in the relative risk

aversion γ. Thus, we expect that heterogeneous risk aversion can have similar effects on the

equity premium as heterogeneous beliefs on disasters.

To check this intuition, we consider the following special case of the model. Agent A is

the same as in Example I with constant disaster size: λA = 1.7%, γA = 4. Agent B has

identical beliefs about disasters but is less risk averse: λB = 1.7%, γB < γA. The left panel

of Figure 7 plots the equity premium as a function of Agent B’s wealth share for two levels of

γB . The equity premium does decline as Agent B’s wealth share rises. However, the decline

is slow and closer to being linear. When γB = 2, in order for the equity premium to fall by

2%, the wealth share of the less risk-averse agent needs to rise from 0 to 30%. The decline in

the equity premium becomes faster as we further reduce the risk aversion of Agent B (see the
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dash line), but the non-linearity is still less pronounced than in the cases with heterogeneous

beliefs.

Combining heterogenous beliefs about disasters and different risk aversion can amplify

risk sharing and accelerate the decline in the equity premium. As shown in the right panel,

if Agent B believes disasters are less likely than does Agent A, and she happens to be less

risk averse, the equity premium falls even faster. Consider the case where Agent B believes

disasters only occur once every hundred years (dotted line). With 20% of total wealth, she

drives the equity premium down by almost a half to 2.5%.

6 Concluding Remarks

We illustrate the equilibrium effects of reasonable disagreement about disasters on risk premia

and trading activities of agents. When agents disagree about disaster risk, optimist may

insure pessimist agents against their disaster risk. Because of the highly non-linear effect

of disaster on risk premia, disagreement and the related trading activities greatly attenuate

the effect of disasters on the equity premium. Our analysis suggests a potentially important

role in such models for market incompleteness where agents may not be able to effectively

hedge such risks. While we model disagreement through a fixed prior, additional channels

such as parameter uncertainty, learning, and ambiguity aversion may also have important

consequence in the model of heterogeneous beliefs about disasters.
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Appendix

A Securities’ prices and portfolio positions

In this appendix we present the expressions of first agent’s consumption claim price, catastro-

phe bond price, and the equilibrium portfolio positions. Closed-form expressions are obtained

in the following simple setting where agents have same relative risk aversion gamma, and

constant-size disasters.

Price of Agent A’s consumption claim

PA
t =

∫ ∞

t
Et

[

Mt+T

Mt
CA

t+T

]

dT

where by expanding the binomial

Et

[

Mt+T CA
t+T

]

= Et

[

e−ρ(t+T )(CA
t+T )1−γ

]

= e−ρ(t+T )Et

[

(

1 + (ζ̃t+T )1/γ
)1−γ

C1−γ
t+T

]

= e−ρ(t+T )C1−γ
t

γ−1
∑

k=0





γ − 1

k



Et

[

(ζ̃t+T )k/γC1−γ
t+T

C1−γ
t

]

Plugging in the explicit expressions for aggregate consumption Ct and state price density Mt,

we obtain Price of Agent A’s consumption claim

PA
t = Ct

γ−1
∑

k=0

αA
k,t

βA
k

with

αA
k,t ≡





γ − 1

k





(ζ̃t)
k/γ

(1 + (ζ̃t)1/γ)γ

βA
k ≡ ρ + (γ − 1)ḡ −

1

2
σ2

c (γ − 1)2 − λ̄(e(γ−1)d̄+ ka
γ − 1) +

λ̄k

γ
(ea − 1) (30)

The restriction βA
k > 0 is needed to ensure finite value for PA,t.
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Price of catastrophe bond

Let PDI
t,t+T denotes the price of disaster insurance (or catastrophe bond) which pays 1$ at

maturity time t+T if there was at least one disaster taking place in the time interval (t, t+T ).

In the main text we consider disaster insurance PDI
t of maturity T = 1 in particular.

PDI
t,t+T = Et

[

Mt+T

Mt
1(Nt+T >Nt)

]

=
e−ρT

(CA
t )−γ

Et

[

(CA
T )−γ1(Nt+T >Nt)

]

(31)

=
e(−ρ−γḡ+ 1

2
γ2σ2

c )T

(1 + (ζ̃t)1/γ)γ
Et[e

γd̄∆NT (1 + (ζ̃t+T )1/γe(a∆NT −λ̄T (ea−1))/γ)γ1(∆NT >0)]

=
e(−ρ−γḡ+ 1

2
γ2σ2

c )T

(1 + (ζ̃t)1/γ)γ
{Et[e

γd̄∆NT (1 + (ζ̃t+T )1/γe(a∆NT −λ̄T (ea−1))/γ)γ ]

−(1 + (ζ̃t)
1/γe−λ̄T (ea−1)/γ)γProb(∆NT = 0)}

where ∆NT ≡ Nt+T − Nt is number of disasters taking place in [t, t + T ], and Prob(∆NT =

0) = e−λ̄T is the probability that no such disaster did happen. Again by expanding the

binomial (1 + (ζ̃t+T )1/γe(a∆NT −λ̄T (ea−1))/γ)γ , and then computing the expectation of each

resulting term, we obtain

PDI
t,t+T =

aT

(1 + (ζ̃t)1/γ)γ
{[

γ
∑

k=0

bk,T (ζ̃t)
k/γ ] − e−λ̄T (1 + (ζ̃t)

1/γe−λ̄T (ea−1)/γ)γ}

where

aT = e(−ρ−γḡ+ 1
2
γ2σ2

c )T

bk,T =





γ

k



 e−λ̄kT (ea−1)/γeλ̄T [e
(γd+ ak

γ )
−1]

Equilibrium portfolio positions

In the current case of constant jump size with two dimensions of uncertainties (Brownian

motion and disaster jump), the market is complete when agents are allowed to trade contin-

gent claims on aggregate consumption (stock) Pt, money market account RFBt and disaster

insurance PDI
t . We can use generalized Ito lemma on jump-diffusion price processes PA

t , Pt,

PDI
t to write generically (where indexes b and j respectively correspond to Brownian and

31



jump shocks)

dPA
t = σPA,bdBt + σPA,j + O(dt) (32)

where σPA,b = PAσc; σPA,j = PA
t+ − PA

t−

dPt = σP,bdBt + σP,j + O(dt) (33)

where σP,b = Pσc; σP,j = Pt+ − Pt−

dPDI
t = σDI,bdBt + σDI,j + O(dt) (34)

where σDI,b = 0; σDI,j = RFBt,t+T − PDI
t

where the sensitivity of catastrophe bond with respect to the jump is derived from the fact

that, immediately after the jump, the catastrophe bond will surely pays 1$ at maturity, so

its post-jump price is equal to that of a riskfree bond RFBt,t+T of the same maturity.

From another perspective, the self-financing property of agent A’s portfolio {θA
P,t, θ

A
DI,t, θ

A
RFB,t}

(these are agent A’s positions in stock, disaster insurance and instantaneously risk-free bond

respectively):

dPA = θA,P
t dSt + θA,DI

t dPDI
t + θA,RFB

t dRFBt + O(dt)

= #dt + (θA,P
t θA,DI

t )





σP,b σP,j

σDI,b σDI,j









dBt

∆Nt



 (35)

By identifying the diffusion and jump parts of dPA in (32), (35) we have

(θA,P
t θA,DI

t )





σP,b σP,j

σDI,b σDI,j



 = (σPA,b σPA,j) ⇒





θ1,P
t

θ1,DI
t



 =





σP,b σDI,b

σP,j σDI,j





−1



σPA,b

σPA,j



(36)

We need the “sensitivities” σP,b, σDI,b, σP,j, σDI,j , σPA,b, σPA,j in (32), (33), (34) to determine
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the portfolio positions.





θA,P
t

θA,DI
t



 =





σP,b 0

σP,b σDI,j





−1



σPA,b

σPA,j



 =





σPA,b

σP,b

−σP,jσPA,b

σP,bσDI,j + σPA,j

σDI,j





And agent A’s position in money market account

θA,RFB
t = PA

t − θA,P
t Pt − θA,DI

t PDI
t (37)

We note in particular, from (32), (33) we have σPA,b = P1σc, σP,b = Pσc, so stock position is

θ1,P
t = σPA,b

σP,b =
P A

t

Pt
, or value fraction invested in stock of agent 1 is always one

θA,P
t Pt

PA
t

= 1

Thus from (37), agent 1’s position is riskless bond is θ1,RFB
t = −θ1,DI

t PDI
t . Agent B’s

portfolio positions can be found from market clearing condition: θB,P = 1 − θA,P ; θB,DI =

−θA,DI; θB,RFB = −θA,RFB.

B Boundedness of prices

This appendix discusses the boundedness of securities prices in general heterogeneous-agent

economy. As claimed in the main text, as long as agents have different but equivalent beliefs,

necessary and sufficient condition for finite price of a security in heterogeneous-agent economy

is that this price be finite under each agent’s beliefs in a single-agent economy. The proof

proceeds as follows.

Suppose that the security pays dividend stream Dt (which can be either continuous or

discrete in time). Let us denote S, SA, SB its prices in heterogeneous-agent, and single-agent
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economies respectively.

SA
t = Et

[

∫ ∞

0

ζ̃A
t+τC−γA

t+τ

ζ̃A
t C−γA

t

Dt+τdτ

]

SB
t = Et

[

∫ ∞

0

ζ̃B
t+τC−γB

t+τ

ζ̃B
t C−γB

t

Dt+τdτ

]

St = Et

[

∫ ∞

0

ζ̃A
t+τ (CA

t+τ )
−γA

ζ̃A
t (CA

t )−γA
Dt+τdτ

]

= Et

[

∫ ∞

0

ζ̃B
t+τ (C

B
t+τ )−γB

ζ̃B
t (CB

t )−γB
Dt+τdτ

]

where the last equality is a consequence of the FOC in heterogenous-agent economy.

Necessary condition S < ∞ ⇒ SA, SB < ∞: This is immediate by noting that since

individual consumptions are always non-negative 0 ≤ CA
t+τ , CB

t+τ ≤ Ct+τ ∀τ , we have

ζ̃A
t+τ (C

A
t+τ )−γA

≤ ζ̃A
t+τC

−γA

t+τ ,

and thus SA
t is finite whenever St is finite. By identical reason, SB

t is finite whenever St is

finite.

Sufficient condition SA, SB < ∞ ⇒ S < ∞: This is straightforward by noting that, for

any fixed number k ∈ (0, 1) (without loss of generality, we can e.g. fix k = 0.5 to visualize

this):

CA

C
< k ⇔

(CA)−γA

C−γA
> k−γA

⇒
CB

C
> 1 − k ⇔

(CB)−γB

C−γB
< (1 − k)−γB

and vice versa. That is, at any moment t+ τ , the integrand of price S is always bounded (up

to a finite factor) by either the integrand of SA or SB . Now as both SA, SB are finite, S is

also finite.9

9The technical point that sum of possibly infinite numbers of same-direction inequalities remain an in-
equality of same direction is assured simply by the boundedness of both SA, SB.

34



References

Barro, R. J., 2006, “Rare disasters and asset markets in the twentieth century,” The Quarter

Journal of Economics, 121, 823–866.

Basak, S., 2005, “Asset Prices with Heterogenous Beliefs,” Journal of Banking & Finance,

29, 2849–2881.

Bates, D. S., 2008, “The Market for Crash Risk,” Journal of Economic Dynamics and Control,

32, 22912321.

Buraschi, A., and A. Jiltsov, 2006, “Model Uncertainty and Option Markets with Heteroge-

neous Beliefs,” Journal of Finance, 61, 2841–2897.

Chan, Y. L., and L. Kogan, 2002, “Catching Up with the Joneses: Heterogeneous Preferences

and the Dynamics of Asset Prices,” Journal of Political Economy, 110, 1255–1285.

Chen, H., and S. Joslin, 2009, “Generalized Transform Analysis of Affine Processes And Asset

Pricing Applications,” Working Paper, MIT.

Cox, J. C., and C. Huang, 1989, “Optimum Consumption and Portfolio Policies When Asset

Prices Follow a Diffusion Process,” Journal of Economic Theory, 49, 33–83.

David, A., 2008, “Heterogeneous Beliefs, Speculation, and the Equity Premium,” Journal of

Finance, 63, 41–83.

Dieckmann, S., 2009, “Rare Event Risk and Heterogeneous Beliefs: The Case of Incomplete

Markets,” Working Paper.

Dieckmann, S., and M. Gallmeyer, 2005, “The equilibrium allocation of diffusive and jump

risks with heterogeneous agents,” Journal of Economic Dynamics and Control, 29, 1547–

1576.

Donaldson, J., and R. Mehra, 2008, “Risk Based Explanations of the Equity Premium,” in

R. Mehra (ed.), Handbook of the Equity Risk Premium, Elsevier, Amsterdam, Netherlands.

Duffie, J. D., J. Pan, and K. Singleton, 2000, “Transform Analysis and Asset Pricing for

Affine Jump-Diffusions,” Econometrica, 68, 1343–1376.

35



Dumas, B., 1989, “Two-Person Dynamic Equilibrium in the Capital Market,” Review of

Financial Studies, 2, 157–188.

Dumas, B., A. Kurshev, and R. Uppal, 2009, “Equilibrium Portfolio Strategies in the Presence

of Sentiment Risk and Excess Volatility,” Journal of Finance, 64, 579–629.

Farhi, E., and X. Gabaix, 2009, “Rare Disasters and Exchange Rates,” Working papers,

National Bureau of Economic Research, Inc.

Gabaix, X., 2009, “Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles

in Macro-Finance,” Working paper, National Bureau of Economic Research, Inc.

Hansen, L., and T. J. Sargent, 2009, “Fragile Beliefs and the price of uncertainty,” University

of Chicago, working paper.

Hansen, L. P., 2007, “Beliefs, Doubts and Learning: Valuing Macroeconomic Risk,” American

Economic Review, 97, 1–30.

Kogan, L., S. A. Ross, J. Wang, and M. M. Westerfield, 2006, “The Price Impact and Survival

of Irrational Traders,” Journal of Finance, 61, 195–229.

Liu, J., J. Pan, and T. Wang, 2005, “An Equilibrium Model of Rare-Event Premia and Its

Implication for Option Smirks,” Review of Financial Studies, 18, 131–164.

Longstaff, F., and J. Wang, 2008, “Asset Pricing and the Credit Market,” Working Paper,

UCLA and MIT.

Longstaff, F. A., and M. Piazzesi, 2004, “Corporate earnings and the equity premium,”

Journal of Financial Economics, 74, 401–421.

Rietz, T. A., 1988, “The Equity Premium: A Solution,” Journal of Monetary Economics, 22,

117–131.

Wachter, J., 2009, “Can time-varying risk of rare disasters explain aggregate stock market

volatility?,” University of Pennsylvania, working paper.

Wang, J., 1996, “The Term Structure of Interest Rates in a Pure Exchange Economy with

Heterogenous Investors,” Journal of Financial Economics, 41, 75–110.

36



Xiong, W., and H. Yan, 2009, “Heterogeneous Expectations and Bond Markets,” Review of

Financial Studies, forthcoming.

Yan, H., 2008, “Natural Selection in Financial Markets: Does It Work?,” Management Sci-

ence, 54, 1935–1950.

37


	Introduction
	Model Setup
	Disasters and Heterogenous Agents
	Homogeneous agents and constant disaster risk

	Bounds for Extreme Beliefs
	Heterogeneous Beliefs: Constant Disaster Risk
	Example I: Disagreement about the Frequency of Disasters
	Example II: Disagreement about the Size of Disasters
	Calibrating Disagreement: Is the US Special?

	Heterogeneous Risk Aversion
	Concluding Remarks
	Securities' prices and portfolio positions
	Boundedness of prices

