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1 Introduction

In the past twenty years, the term structure literature has developed independently of

the macro-economic literature. While various arbitrage-free models have been shown to

account quite well for yields dynamics — including affi ne, quadratic and regime switches

models —these models have largely ignored the microfoundations of the stochastic discount

factor used by the market to price bonds. They have also largely ignored the fact that

the short term nominal interest rate, whose expected future values shape the whole yield

curve, also plays an important macroeconomic role as a monetary policy instrument.

Yet there is a clearly established empirical relationship between monetary policy and

the term structure of interest rates. For example, Mankiw and Miron (1986) points out

that the yield curve used to behave differently — i.e. in a way more consistent with the

so-called expectations hypothesis1 —before the founding of the Fed in 1913. Cochrane

(2008) highlights an even starker structural break in 1933, with the shift from the Gold

standard to an interest rate targeting regime. Contrary to the recent experience, long

bond yields were systematically below short rates before 1933; also, long yields were much

less volatile, and short rates much more volatile, than what is the case in post-WWII data.

Given the aforementioned stylised facts, monetary policy should play a central role

in models of the term structure of interest rates. On the one hand, accounting for such

relationship provides a structural link between the behaviour of the term structure and

developments in inflation and economic activity. On the other hand, the behaviour of the

yield curve can provide useful information on market perceptions of the monetary policy

rule followed by the central bank, insofar as the latter contributes to shape expected future

short rates and term premia.

Calibrated versions of a new generation of DSGE models have been shown to be ca-

pable of producing roughly realistic implications for some unconditional moments of the

term structure of interest rates, including slope and volatility, provided they are solved

using second-order approximations or higher (see e.g. Hördahl, Tristani and Vestin, 2008;

Ravenna and Seppala, 2007a, 2007b; Rudebusch and Swanson, 2009). In this paper,

we take these models further and explore their ability to match conditional moments of

macroeconomic and term structure data when they are estimated using full information

1"The expectations hypothesis, in the broadest terms, asserts that the slope of the term structure has

something to do with expectations about future interest rates" (Shiller, 1990, p. 644)
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methods.

One problem from this perspective is that models solved to a second-order approxima-

tion can only generate constant risk-premia, while the finance literature has highlighted

the importance of allowing for time-variation in risk premia to match the conditional fea-

tures of yields —see e.g. Dai and Singleton (2002). In order to allow for time-variation

in risk premia, we assume heteroskedasticity in the model’s structural shocks, i.e. time-

variation in the "amount of risk" faced by bond-holders at any point in time.2 We assume

that heteroskedasiticy takes the specific form of regime switching, because discrete regimes

are potentially more amenable to an economic interpretation. Moreover, the assumption

of regime switching has already been shown to help fit yields in the finance literature —

see Hamilton (1988), Naik and Lee (1997), Ang and Bekaert (2002a,b), Bansal and Zhou

(2002), Bansal, Tauchen and Zhou (2004), Ang, Bekaert and Wei (2008), Dai, Singleton

and Yang (2008), Bikbov and Chernov (2008) —and is also increasingly used in macroeco-

nomics following Sims and Zha (2007).

We demonstrate analytically that, when combined with a second order approximation

of the solution, this feature leads to changes in risk premia at the time of switches in

regimes. More specifically, regime changes generate variations in the prices of risk, which

are entirely consistent with the microfoundations of the model. While this mechanism does

not explain why risk premia vary, it forces their variation to be consistent with changes in

the volatility of macro variables.

The second novelty of our model is a generalisation of the preferences proposed by

Epstein and Zin (1989) and Weil (1990) to include habit persistence. Epstein-Zin-Weil

preferences are quite standard in the finance literature —see e.g. Campbell (1999) —and

they have already been successfully used to model yields in a partial equilibrium model

by Piazzesi and Schneider (2006) and, more recently, Bansal and Shaliastovich (2008).

Gallmeyer et al. (2007), Backus, Routledge and Zin (2007) and Rudebusch and Swanson

(2009) have used these preferences in calibrated models. Binsbergen et al. (2008) is

2The finance literature, especially in affi ne term structure models, emphasises instead time-variations in

risk premia due to changed in the "price of risk". Time variations in the price of risk can be produced within

general equilibrium models if they are solved up to a third order approximation (or higher). This approach

is pursued in Ravenna and Seppala (2007a, b), Rudebusch, Sack and Swanson (2007) and Rudebusch and

Swanson (2007, 2008). However, these papers are purely theoretical: the estimation of DSGE models

solved using third order approximations appears to be infeasible at this point in time.
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the only other application that we are aware of which estimates a DSGE model with

Epstein-Zin preferences. However, this paper relies on a benchmark RBC model and is

therefore not suitable to analyse the interaction between monetary policy, inflation risk

and consumption risk in the determinatino of risk premia.

Our empirical results are based on US data on aggregate consumption, inflation, the

short-term interest rate and yields on 1-year and 5-year yields. The sample period runs

from 1966Q1 until 2009Q1.

We find considerable support for a specification with regime switches. The residuals

of the model show clear signs of heteroskedasticity, which could not be accounted for in

a model with homoskedastic shocks. The model with regime switching can also fit yields

reasonably well.

Smoothed regimes are in line with one’s intuition. The variance of policy shocks

becomes higher at the time of the so-called "monetarist experiment" of the Fed. The

variances of technology shocks shows clear signs of the "Great moderation" after 1984, a

moderation which appears to have ended already at the beginning of the new millennium.

Concerning risk premia, we do find evidence of time variability in expected excess

holding period returns. Volatility in premia is especially high in the early eighties, and at

the beginning of the new millennium. We do not, however, detect clear signs of cyclical

fluctuations in risk premia. In addition, unconditional term premia are relatively small.

From the viewpoint of economic interpretation, the posterior mode of parameter es-

timates tends to be in line with standard results obtained in models estimated solely on

macro data. The most striking difference concerns the so-called interest rate smoothing

coeffi cient of the estimated policy rule. This coeffi cient is estimated to be larger than 1

and is therefore consistent with a so-called super-inertial policy rule. While this parameter

value is higher than typically estimated in models which ignore yields data, it is one of

the useful features to produce the relatively large movements in long-term yields observed

in the data.

Our model is related to a growing literature exploring empirically the term structure

implications of new-Keynesian models. The closest papers to ours is Doh (2006), which

also estimates a quadratic DSGE model of the term structure of interest rates with het-

eroskedastic shocks. However, Doh (2006) allows for additional non-structural parameters

to model the unconditional slope of the yield curve, while our approach is fully theoretically
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consistent. Another difference between the two papers is that heteroskedasticity in Doh

(2006) is modelled through ARCH shocks, while it is generated by regime switching in our

case. Andreasen (2008) shows that the estimation of a richer term structure model, which

includes capital accumulation, is feasible to second order. However, the model cannot

generate time-variation in risk premia because shocks are homoskedastic. Bekaert, Cho

and Moreno (2006) and De Graeve, Emiris and Wouters (2007) estimate the loglinearised

reduced form of DSGE models using both macroeconomic and term structure data. As in

Doh (2006), these papers do not impose theoretical restrictions on the unconditional slope

of the yield curve. In addition, they assume at the outset that risk-premia are constant.

2 The model

We rely on a relatively standard model in the spirit of Woodford (2003). The central

feature is the assumption of nominal rigidities.

We only deviate from the standard model in postulating that households’preferences

can be described by the non-expected utility specification proposed by Epstein and Zin

(1989) and Weil (1990). This specification is quite standard in the consumption-based

asset pricing literature and it has already been employed to analyse the term structure

of interest rate in a partial equilibrium model by Piazzesi and Schneider (2006). Here we

extend this specification to a general equilibrium model in which we also allow for habit

persistence in consumption and a labour-leisure choice —see also Backus, Routledge and

Zin (2004, 2005). Rudebusch and Swanson (2009) also use non-expected utility preferences

in a model similar to ours, but that paper relies on the assumption of homoskedastic shocks.

2.1 Households

We assume that each household i provides N (i) hours of differentiated labor services to

firms in exchange for a labour income wt (i)Nt (i). Each household owns an equal share

of all firms j and receives profits
∫ 1

0 Πt (j)dj.

As in Erceg, Henderson and Levin (2000), an employment agency combines households’

labor hours in the same proportions as firms would choose. The agency’s demand for each

household’s labour is therefore equal to the sum of firms’demands. The labor index Lt

has the Dixit-Stiglitz form Lt =

[∫ 1
0 Nt (i)

θw,t−1

θw,t di
] θw,t
θw,t−1

where θw,t > 1 is subject to
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exogenous shocks. At time t, the employment minimizes the cost of producing a given

amount of the aggregate labor index, taking each household’s wage rate wt (i) as given and

then sells units of the labor index to the production sector at the aggregate wage index

wt =
[∫ 1

0 w (i)1−θw,t di
] 1

1−θw,t . The employment agency’s demand for the labor hours of

household i is given by

Nt (i) = Lt

(
wt (i)

wt

)−θw,t
(1)

Each household i maximizes its intertemporal utility with respect to consumption, the

wage rate and holdings of contingent claims, subject to its labor demand function (1) and

the budget constraint

PtCt (i) + EtQt,t+1Wt+1 (i) ≤Wt (i) + wt (i)Nt (i) +

∫ 1

0
Ξt (j) dj (2)

where Ct is a consumption index satisfying

Ct =

(∫ 1

0
Ct (z)

θ−1
θ dz

) θ
θ−1

(3)

Wt denotes the beginning-of-period value of a complete portfolio of state contingent assets,

Qt,t+1 is their price, wt (i) is the nominal wage rate and Ξt (j) are the profits received from

investment in firm j. The price level Pt is defined as the minimal cost of buying one unit

of Ct, hence equal to

Pt =

(∫ 1

0
p (z)1−θ dz

) 1
1−θ

. (4)

Equation (2) states that each household can only consume or hold assets for amounts

that must be less than or equal to its salary, the profits received from holding equity in

all the existing firms and the revenues from holding a portfolio of state-contingent assets.

Households’preferences are described by the Kreps and Porteus (1978) specification

proposed by Epstein and Zin (1989). In that paper, utility is defined recursively through

the aggregator U such that

U
[
Ct,
(

EtV
1−γ
t+1

)]
=

{
(1− β)C1−σ

t + β
(

EtV
1−γ
t+1

) 1−σ
1−γ
} 1

1−σ
, σ, γ 6= 1 (5)

where β, σ and γ are positive constants. Using a specification equivalent to that in equation

(5), Weil (1990) shows that β is, under certainty, the subjective discount factor, but time

preference is in general endogenous under uncertainty. The parameter γ is the relative

risk aversion coeffi cient for timeless gambles. The parameter 1/σ measures the elasticity

of intertemporal of substitution for deterministic consumption paths.
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The distinguishing feature of the Epstein-Zin-Weil preferences, compared to the stan-

dard expected utility specification, is that the coeffi cient of relative risk aversion can differ

from the reciprocal of the intertemporal elasticity of substitution. In addition, Kreps and

Porteus (1978) show that, again contrary to the expected utility specification, the timing

of uncertainty is relevant in their class of preferences. The specification in equation (5)

displays preferences for an early resolution of uncertainty when the aggregator is convex

in its second argument, i.e. when γ > σ. Any source of risk will be reflected in asset

prices not only if it makes consumption more volatile, but also if it affects the temporal

distribution of consumption volatility.

We generalise the utility function in equation (5) by allowing for habit formation and a

labour-leisure choice. More specifically, time-t utility will not only depend on consumption

Ct but it will more generally be given by

ut = (Ct − hCt−1) · v (Nt)

where v (Nt) will be taken to equal v (Nt) = N −Nφ
t and the h parameter represents the

force of habits in the model: the higher h, the less utility is generated by a given amount

of current consumption.3 For h = 0, our preferences collapse to a special case of the class

of preferences defined in Uhlig (2007).

With our more general preferences specification, γ and σ are no-longer related one-

to-one to risk aversion and to the (inverse of the) elasticity of intertemporal substitution

of consumption, respectively. Swanson (2009) discusses the appropriate measures of risk

aversion in a dynamic setting with consumption and leaisure entering the utility function.

In the rest of this paper, we simply refer to γ and σ as utility parameters.

Each households i maximises

U [Ct (i) , Nt (i) ,EtVt+1] =

{
(1− β) [(Ct (i)− hCt−1 (i)) · v (Nt (i))]1−σ + β

(
EtV

1−γ
t+1

) 1−σ
1−γ
} 1

1−σ

subject to

PtCt (i) + EtQt,t+1Wt+1 (i) ≤Wt (i) + wt (i)Nt (i) +

∫ 1

0
Ξt (j) dj

3Guariglia and Rossi (2002) also use expected utility preferences combined with habit formation to study

precautionary savings in UK consumption. Koskievic (1999) studies an intertemporal consumption-leisure

model with non-expected utility.
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and

Nt (i) = Lt

(
wt (i)

wt

)−θw,t
where the choice variables are wt (i) and Ct (i).

To Bellman equation for this problem (abstracting from the i subscript to simplify the

notation) is

J (Wt, Ct−1) = max

{
(1− β) [(Ct − htCt−1) v (Nt)]

1−σ + β
[
EtJ

1−γ (Wt+1, Ct)
] 1−σ

1−γ

} 1
1−σ

−Λt

[
PtCt + EtQt,t+1Wt+1 −Wt − wtNt −

∫ 1

0
Ξt (i) di+ Tt

]
(6)

The appendix shows that the first order conditions can be written as

w̃t = −µw
v′ (Nt)

v (Nt)

[(Ct − hCt−1) v (Nt)]
1−σ

Λ̃t
(7)

Qt,t+1 = β
Λ̃t+1

Λ̃t

1

πt+1


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ

(8)

Λ̃t = (Ct − hCt−1)−σ [v (Nt)]
1−σ−βhEt (Ct+1 − hCt)−σ [v (Nt+1)]1−σ


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ

(9)

where Λ̃t ≡ ΛtPt (1− β)−1 J−σt and w̃t is the real wage w̃t ≡ wt/Pt and µw ≡ θw/ (θw − 1).4

The gross interest rate, It, equals the conditional expectation of the stochastic discount

factor, i.e.

I−1
t = EtQt,t+1 (10)

Note that we will focus on a symmetric equilibrium in which nominal wage rates are

all allowed to change optimally at each point in time, so that individual nominal wages

will equal the average wt.

Equations (8)-(9) highlight how our model nests the standard power utility case, in

which σ = γ and the maximum value function Jt disappears from the first order conditions.

The same equations also demonstrate that the parameter γ only affects the dynamics of

higher order approximations. To first order, the term
[
EtJ

1−γ
t+1

] γ−σ
1−γ

/Jγ−σt+1 in equations (9)

and (10) cancels out in expected terms.
4We introduced differentiated labour services in the model to be able to investigate a specification in

which µw,t could become an exogenous "cost-push" shock. This shock is turned off in the specification

used in the empirical analysis.
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2.2 Firms

We assume a continuum of monopolistically competitive firms (indexed on the unit interval

by j), each of which produces a differentiated good. Demand arises from households’

consumption and from government purchases Gt, which is an aggregate of differentiated

goods of the same form as households’consumption. It follows that total demand for the

output of firm i takes the form Yt (j) =
(
Pt(i)
Pt

)−θ
Yt. Yt is an index of aggregate demand

which satisfies Yt = Ct +Gt.

Firms have the production function

Yt (j) = AtL
α
t (j)

where Lt is the labour index Lt defined above.

Once aggregate demand is realised, the firm demands the labour necessary to satisfy

it Lt (j) = (Yt (j) /At)
1
α so that the total nominal cost function will be given by

TCt (j) = wt

(
Yt (j)

At

) 1
α

As a result, real marginal costs will be

mct (j) =
1

α

w̃t
At

(
Yt (j)

At

) 1−α
α

where nominal costs are deflated using the aggregate price level.

As in Rotemberg (1982), we assume the firms face quadratic costs in adjusting their

prices. This assumption is also adopted, for example, by Schmitt-Grohé and Uribe (2004)

and Ireland (1997). It is well-known to yield first-order inflation dynamics equivalent

to those arising from the assumption of Calvo pricing.5 From our viewpoint, it has the

advantage of greater computational simplicity, as it allows us to avoid having to include

an additional state variable in the model, i.e. the cross-sectional dispersion of prices across

firms.

The specific assumption we adopt is that firm j faces a quadratic cost when changing

its prices in period t, compared to period t− 1. Consistently with what is typically done

in the Calvo literature, we modify the original Rotemberg (1982) formulation for partial

5The two pricing models, however, have in general different welfare implications — see Lombardo and

Vestin (2008).
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indexation of prices to lagged inflation. More specifically, we assume that

ζ

2

(
P jt

P jt−1

− (Π∗t )
1−ι Πι

t−1

)2

Yt

where Π∗t is the inflation objective.

Firms maximise their real profits

max
P jt

Et

∞∑
s=t

Qt,s

P js Y j
s

(
P js
)

Ps
−
TCs

(
Y j
s

(
P js
))

Ps
− ζ

2

(
P js

P js−1

− (Π∗s)
1−ι Πι

s−1

)2

Ys


subject to

Yt (j) =

(
Pt (j)

Pt

)−θ
Yt

and to

Yt (j) = AtL
α
t (j)

Focusing on a symmetric equilibrium in which all firms adjust their price at the same

time, the first order condition for price setting can be written as

(θ − 1)Yt+ζ
(

Πt − (Π∗t )
1−ι Πι

t−1

)
YtΠt =

θ

α
w̃t

(
Yt
At

) 1
α

+EtQt,t+1ζ
(

Πt+1 −
(
Π∗t+1

)1−ι
Πι
t

)
Yt+1Πt+1

2.3 Monetary policy

We close the model with the simple Taylor-type policy rule

It =

(
Π∗t
β

)1−ρI (Πt

Π∗t

)ψ
Π
(
Yt
Y

)ψY
I
ρI
t−1e

ηt+1 (11)

where Yt is aggregate output, Π∗t is a stochastic inflation target and ηt+1 is a policy shock.

Some authors, notably Clarida, Galí and Gertler (2000) and Lubik and Schorfheide

(2004), have argued that the start of the Volcker era also signed a structural change in

US monetary policy, which resulted in a much stronger anti-inflation determination of the

Federal Reserve.

Here, we propose a different interpretation of Federal Reserve behaviour. We maintain

fixed the Taylor rule parameters, but allow for the possibility of changes in the inflation

target Π∗t . A lower anti-inflationary determination would therefore be captured by an

increase in the target. This formulation allows us to abstract from issues of equilibrium

determinacy when estimating the model.
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2.4 Market clearing

Market clearing in the goods market requires

Yt = Ct +Gt

In the labour market, labour demand will have to equal labour supply. In addition, the

total demand for hours worked in the economy must equal the sum of the hours worked

by all individuals. Taking into account that at any point in time the nominal wage rate

is identical across all labor markets because all wages are allowed to change optimally,

individual wages will equal the average wt. As a result, all households will chose to supply

the same amount of labour and labour market equilibrium will require that

Lt =

(
Yt
At

) 1
α

2.5 Exogenous shocks

In macroeconomic applications, exogenous shocks are almost always assumed to be (log-

)normal, partly because models are typically log-linearised and researchers are mainly

interested in characterising conditional means. However, Hamilton (2008) argues that a

correct modelling of conditional variances is always necessary, for example because infer-

ence on conditional means can be inappropriately influenced by outliers and high-variance

episodes. The need for an appropriate treatment of heteroskedasticity becomes even more

compelling when models are solved nonlinearly, because conditional variances have a direct

impact on conditional means.

In this paper, we assume that variances are subject to stochastic regime switches for

shocks other than the inflation target. More specifically, we assume a stochastic trend in

techology growth

At+1 = AtΞt+1

Ξt+1 = Ξ1−ρξΞ
ρξ
t e

εξt+1 , εξt+1 ≈ N
(
0, σξ,sξ,t

)
where Ξ is the long run productivity growth rate. We specify the exogenous government

spending process in deviation from the stochastic trend, so that

Gt
At

=

(
gY

A

)1−ρg (Gt−1

At−1

)ρg
eε
g
t εGt+1 ≈ N

(
0, σG,sG,t

)
11



where the long run level g is specified in percent of output, so that g ≡ G/Y . Finally, for

monetary policy shocks we assume

ηt+1 = eε
η
t+1 , εηt+1˜N

(
0, ση,sη,t

)
Π∗t+1 = (Π∗)1−ρΠ (Π∗t )

ρΠ eε
Π
t+1 , εΠ

t+1 ≈ N (0, σΠ)

Technology, government spending and monetary policy shocks have regime-switching

variances, namely

σξ,sξ,t = σξ,Lsξ,t + σξ,H (1− sξ,t)

G,sG,t = σG,LsG,t + σG,H (1− sG,t)

ση,sη,t = ση,Lsη,t + ση,H (1− sη,t)

and the variables sξ,t, sG,t, sη,t can assume the discrete values 0 and 1. For each variable

sj,t (j = ξ,G, η), the probabilities of remaining in states 0 and 1 are constant and equal

to pj,0 and pj,1, respectively.

We assume regime switches in these particular variances for the following reasons. The

literature on the "Great moderation" (see e.g. McDonnell and Perez-Quiros, 2000) has

emphasised the reduction in the volatility of real aggregate variables starting in the second

half of the 1980s. We conjecture that this phenomenon could be captured by a reduction

in the volatility of technology shocks in our structural setting. The heteroskedasticity

in policy shocks aims to capture the large increase in interest rate volatility in the early

1980s, the time of the so-called "monetarist experiment" of the Federal Reserve.6 Finally,

the finance literature has found a relationship between regimes identified in term-structure

models and the business cycle. In our model, this relationship could be accounted for by

regime switches of the volatility of demand (government spending) shocks.

2.6 Solution method

To solve the model, we exploit the recursive nature of bonds in equilibrium. We first

solve for all macroeconomic variables and then construct the prices of bonds of various

maturities.
6A similar assumption in made in Schorfeide (2005).
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2.6.1 Solving the macroeconomic system

We approximate the system around a deterministic steady state in which all variables are

detrended. Detrend variables are denoted by a tilde and defined as a ratio to At (with the

exception is Λ̃t, which is detrended by A−σt ). For example, detrended output is Ỹt ≡ Yt/At.

In the solution, we expand variables around their natural logarithms, which are denoted by

lower-case letters. The logarithm of a variable in deviation from its non-stochastic steady

state is denoted by a hat. For example, approximate (detrended) output is denoted by ̂̃yt.
For the solution, we collect all predetermined variables (including both lagged en-

dogenous predetermined variables and exogenous states) in a vector xt and all the non-

predetermined variables in a vector yt (note that yt is different from output yt).

The macroeconomic system can thus be written in compact form as

yt = g (xt, σ̃, st) (12)

xt+1 = h (xt, σ̃, st) + σ̃Σ (st)ut+1 (13)

st+1 = κ0 + κ1st + νt+1 (14)

for matrix functions g (·), h (·), and Σ (·), a vector st including the state variables that

index the discrete regimes, and a vector of innovations ut. In the above system, σ̃ is a

perturbation parameter (not to be confused with the parameter σ in the utility function).

Following Hamilton (1994), we can write the law of motion of the discrete processes st in

the form implied in equation (14) for a vector κ0 and a matrix κ1. The law of motion of

state sG,t, for example, is written as sG,t+1 = (1− pG,0) + (−1 + pG,1 + pG,0) sG,t+νG,t+1,

where νG,t+1 is an innovation with mean zero and heteroskedastic variance.

We seek a second-order approximation to the functions g (xt, σ̃, st) and h (xt, σ̃, st)

around the non-stochastic steady state, namely the point where xt = x and σ̃ = 0. Due to

the presence of the discrete regimes in the system, both the steady state and the coeffi cients

of the second order approximation could potentially depend on st. Since the discrete states

only affect the variance of the shocks, however, they disappear when σ̃ = 0 so that the

non-stochastic steady state is not regime-dependent. In a companion paper (Amisano and

Tristani, 2009b), we show that the second order approximation to the solution can be

written as

g (xt, σ̃, st) = F x̂t +
1

2

(
Iny ⊗ x̂′t

)
Ex̂t + ky,st σ̃

2
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and

h (xt, σ̃, st) = P x̂t +
1

2

(
Inx ⊗ x̂′t

)
Gx̂t + kx,st σ̃

2

where F , E, P and G are constant variances and only the vectors ky,st and kx,st are regime

dependent. As a result, regime switching plays no role to a first order approximation. It

only affects the means of endogenous variables.

2.6.2 Pricing bonds

Once the solution of the macroeconomic model is available, bond yields can be solved for

analytically.

Note that the stochastic discount factor can be rewritten in terms of detrended vari-

ables as

Qt,t+1 = β
1

Ξγt+1

˜̃
Λt+1˜̃
Λt

1

Πt+1


[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

] 1
1−γ

J̃t+1


γ−σ

This expression can be written more simply as

Qt,t+1 = β

←→
Λ t+1
←→
Λ t

1
←→
Π t+1

(15)

for

←→
Π t ≡ ΠtΞ

γ
t J̃

γ−σ
t

[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

]σ−γ
1−γ

←→
Λ t ≡ ˜̃

Λt

[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

]σ−γ
1−γ

Since these relationships are all loglinear, the law of motion for
←→
Π t and

←→
Λ t can

immediately be derived from those of Πt, Λ̃t, Ξt, J̃t and Dt ≡ EtΞ
1−γ
t+1 J

1−γ
t+1 . It follows that

←̂→
λ t = Fλx̂t +

1

2
x̂′tEλx̂t + kλ,st σ̃

2

←̂→π t = Fπx̂t +
1

2
x̂′tEπx̂t + kπ,st σ̃

2

where Fλ and Fπ are row vectors, and Eλ and Eπ are matrices. We can now compute

bond prices using the method in Hördahl, Tristani and Vestin (2008). The appendix shows

that, in log-deviation from its deterministic steady state, the approximate price of a bond

of maturity n, b̂t,n, can be written as

b̂t,n = FBn x̂t +
1

2
x̂′tEBn x̂t + kBn,st σ̃

2 (16)
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where FBn , EBn and kBn,st are defined through a recursion. Note that kBn,st changes

depending on the realisation of the discrete states, but matrices FBn and EBn are state-

independent.

3 Some properties of the model

3.1 The stochastic discount factor

The appendix shows that, to a second order approximation, the stochastic discount factor

in equation (8) can be written as

q̂t,t+1 = ∆
̂̃
λt+1 − σEtξt+1 − γ

(
ξ̂t+1 − Etξ̂t+1

)
− π̂t+1

− (γ − σ)
(
ĵt+1 − Et

̂̃
jt+1

)
− 1

2
(γ − σ) (γ − 1) Vart

[̂̃
jt+1

]
(17)

−1

2
(γ − σ) (γ − 1) Vart

[
ξ̂

2

t+1

]
− (γ − σ) (γ − 1) Covt

[
ξ̂t+1

̂̃
jt+1

]
When: (a) σ = 1; (b) there is no growth in the model and ξ̂t = 0 for all t; (c) temporary

utility depends on consumption only and ∆
̂̃
λt+1 = −∆ĉt+1, equation (17) boils down to

q̂t,t+1 = −∆ĉt+1 − π̂t+1 − (γ − 1)
(
ĵt+1 − Et

[
ĵt+1

])
− 1

2
(γ − 1)2 vart

[
ĵt+1

]
which corresponds to the case considered by Piazzesi and Schneider (2006). Finally, under

expected utility equation (17) collapses to

q̂t,t+1 = ∆
̂̃
λt+1 − σξ̂t+1 − π̂t+1

In the expected utility case, only the risk of unpredictable changes in future consumer

prices, in future detrended marginal utility, or in technology growth matter for the investor.

With Epstein-Zin preferences, the whole temporal distribution of future risks to de-

trended marginal utility and technology growth becomes relevant. In our case, similarly to

Uhlig (2007), detrended marginal utility is affected both by future detrended consumption

growth and by future levels of labour supply.

Following Restoy and Weil (1998) and Piazzesi and Schneider (2006), we can solve

out the value function as an infinite sum of future expected utility. The appendix derives

this representation. In general, the value function will be affected by expected future

productivity growth and the discounted future growth rates of consumption and of labour
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supply. The expected future change in consumption growth also matters because of habit

formation.

If we substitute the value of continuation utility in the stochastic discount factor (17),

the appendix shows that the stochastic discount factor can be rewritten as

q̂t,t+1 = −π̂t+1 − σ
(
ξ̂t+1 + ∆←̂→c t+1

)
+ φ (σ − 1)

Lφ

L− Lφ
∆l̂t+1

−σ βh

Ξσ − βh

[
∆←̂→c t+1 − Et+1∆←̂→c t+2 − φ

(
1− 1

σ

)
Lφ

L− Lφ
(

∆l̂t+1 − Et+1∆l̂t+2

)]
(18)

− (γ − σ)
∞∑
j=0

(
βΞ1−σ)j (Et+1 − Et)

[(
ξ̂t+1+j + ∆←̂→c t+1+j

)
− φ Lφ

L− Lφ
∆l̂t+1+j

]
+ s.o.t.

where s.o.t. denotes second order terms written explicitly in the appendix and, to first

order, ∆←̂→c t+1 = ∆̂̃ct+1 + h
Ξ−h

(
∆̂̃ct+1 + ∆ξ̂t+1 −∆̂̃ct).

To relate this equation to existing results in the literature, note that in the absence of

habits (h = 0) the second row in equation (18) disappears.

The first row in equation (18) is what we would obtain in a model with standard

preferences. The household would fear, in the sense of discounting at a smaller rate

and requesting a higher return on assets, negative realisations in the rates of technology

growth, consumption growth, and the rate of change in leisure. The latter effect would

disappear with log-preferences, when leisure becomes separable from consumption and

therefore irrelevant for asset pricing.

The third row in equation (18) arises because of Epstein-Zin preferences and it implies

that the household will also fear negative revision in the future discounted growth rates of

the same variable over the infinite future. Preference for an early resolution of uncertainty

(i.e. γ > σ) implies that this term is more relevant the more persistent are consumption

growth and/or leisure growth shocks.

In the general case with internal habits, the second row in equation (18) also plays a

role. The aforementioned effects are compounded with the fact that households do not just

care about the consumption level, but also about its deviations from the previous-period

level. This reduces the negative impact on the stochastic discount factor of persistent

consumption growth, because persistence also means that there will be smaller changes in

consumption growth —a positive outcome for a household with consumption habits.

Solving for bond prices in the general case is quite tedious. When φ = h = 0 and
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Ξt = 1, however, the appendix shows that the short term rate can simply be written as

ŷt,t+1 = σEt∆̂̃ct+1 + Etπ̂t+1 −
1

2
σ2Vart∆̂̃ct+1 −

1

2
Vartπ̂t+1 − σCovt

[
∆̂̃ct+1, π̂t+1

]
− (γ − σ)

σCovt

∆̂̃ct+1,

∞∑
j=0

βjEt+1∆̂̃ct+1+j

+ Covt

π̂t+1,

∞∑
j=0

βjEt+1∆̂̃ct+1+j


+

1

2
(γ − σ) (σ − 1) Vart

 ∞∑
j=0

βjEt+1∆̂̃ct+1+j

 (19)

Equation (19) helps to understand the role of γ and σ on the short rate. With expected

utility preferences, the terms in the second and third rows of the equation would be

equal to zero. We would be left with the usual Jensen’s inequality terms (the variance of

consumption growth and inflation), plus the risk premium due to surprise inflation when

the covariance between consumption and inflation is negative.

Epstein-Zin-Weil utility with σ = 1 — the case analysed in Piazzesi and Schneider

(2006) —introduces another source of risk premia. As shown in the second row of equation

(19), a nominal bond also commands a premium when inflation is correlated with bad

news about consumption growth over the indefinite future. Moreover, a precautionary

savings motive arises when consumption growth is correlated over time.

When σ > 1 the additional term in the third row of equation (19) affects the short

rate. A short-rate bond commands a premium also when the variance of news about future

consumption growth is high.

3.2 Regime switching and the variability of risk premia

The state-dependence of b̂t,n in equation (16) implies that bond risk premia will also

become state-dependent. In order to show this, it is useful to derive expected excess

holding period returns, i.e. the expected return from holding a n-period bond for 1 period

in excess of the return on a 1-period bond. To a second order approximation, the expected

excess holding period return on an n-period bond can be written as

ĥprt,n − ît = Covt

[←̂→π t+1, b̂t+1,n−1

]
− Covt

[
∆
←̂→
λ t+1, b̂t+1,n−1

]
This expression can be evaluated using the model solution to obtain

ĥprt,n − ît = σ̃2FBn−1ΣtΣ
′
t

(
F ′π − F ′λ

)
(20)
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where Σt ≡ Σ (st) and ΣtΣ
′
t is the conditional variance-covariance matrix depending on

vector st.

Equation (20) demonstrates that excess holding period returns change when there

is a switch in any of the discrete state variables. Since the conditional variance of

the price of a bond of maturity n can be written, to a second order approximation,

as Et

[
b̂t+1,n−1b̂

′
t+1,n−1

]
= σ̃2FBn−1ΣtΣ

′
tF
′
Bn−1

, it follows that we can define the (micro-

founded) price of risk for unit of volatility, or the "market prices of risk" ωt, as

ωt ≡ σ̃Σ′t
(
F ′π − F ′λ

)
(21)

Since Fπ and Fλ are vectors of constants, all terms in equation (21) would be constant

in a world with heteroskedastic shocks, in which Σt would also be constant. They becomes

time-varying in our model due to the possibility of regime switches, because the variance-

covariance matrix ΣtΣ
′
t is regime-dependent.

In the empirical finance literature, the market prices of risk are often postulated exoge-

nously using slightly different specifications. For example, Naik and Lee (1997), Bansal

and Zhou (2002) and Ang, Bekaert and Wei (2008) assume that the market prices of risk

are regime dependent, but the risk of a regime-change is not priced. On the contrary,

regime-switching risk is priced in Dai, Singleton and Yang (2008).

In our model, prices of risk are only associated with variables with continuous sup-

port. These prices change across regimes. If, for example, technological risk were not

diversifiable, then the price of risk associated with technology shocks would be higher in a

high-variance regime for technology shocks (and lower in a low-variance regime). This is

the regime-dependence of market prices of risk which is present in all the aforementioned

finance models. In our set-up, however, the prices of risk are additionally derived from the

model’s microfoundation, rather than allowed to vary as affi ne functions of the continuous

state variables of the model.

The risk of regime-switches is not priced because the possibility of changes in regime

does not have any impact on the Fπ and Fλ vectors. Regime switching risk would only be

priced if it affected some structural parameters. For example, one could thing of allowing

for changes in the parameters of the (11) as in Bikbov and Chernov (2008). We leave this

extension to future research.
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4 Empirical results

4.1 Estimation methodology

The system of equations (12) and (13) can be re-written as

yot+1 = cj +C1xt+1 +C2vech(xt+1x
′
t+1) +Dvt+1 (22)

xt+1 = ai +A1xt +A2vech(xtx
′
t) +Biwt+1 (23)

st v Markov switching (24)

where the vector yot includes all observable variables, and vt+1 and wt+1 are measurement

and structural shocks, respectively. In this representation, the regime switching variables

affect the system by changing the intercepts ai and cj , and the loadings for the of the

structural innovations Bi.(we indicate here with i the value of the discrete state variables

at t and with j the value of the discrete state variables at t+ 1).

If a linear approximation were used, we would be left with a linear state space model

with Markov switching (see Kim, 1994, Kim and Nelson, 1999, and Schorfheide, 2005).

Focusing on the case in which the number of continuous shocks (measurement and struc-

tural) is equal to the number of observables, the continuous latent variables could be

obtained via inversion of the observation equation (22). The system could then be written

as a Markov Switching VAR and the likelihood could be obtained using Hamilton’s filter

i.e. by integrating out the discrete latent variables

In the quadratic case, however, the likelihood cannot in general be obtained in closed

form. One possible approach to compute the likelihood is to rely on sequential Monte Carlo

techniques (see Amisano and Tristani, 2009a, for an application of these techniques in a

DSGE setting with homoskedastic shocks). The convergence of these methods, however,

can be very slow in a case, such as the one of our model, in which both nonlinearities and

non-Gaussianity of the shocks characterise the economy.

We thus adopt an extension of the filter which can be used in the linear case, when the

number of continuous shocks is equal to the number of observables (see Amisano and Tris-

tani, 2009b, for further details). The problem of filtering the latent variables through an

inversion of the quadratic observation equation (22) is that the inversion is not unique. At

each point in time, multiple values of the latent variables are consistent with the observa-

tion vector yot . In a scalar case and in the absence of measurement errors, for example, we
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would obtain the two solutions x(1),(2)
t = 1/2

(
−C1 ±

√
C2

1 − 4C2 (cj − yot )
)
/C2. In the

more general case of our model, we are going to use five series in the estimation process.

As a result, at each point in time we will have up to 16 solutions for each of the latent

variables.7

Rather than choosing arbitrarily a particular solution at each point in time, we compute

the likelihood taking all (real) solutions into account. We simply exploit the property that,

while equally likely based on the sole observation vector yot , the different solutions for xt

have different probability (or likelihood) conditional on xt−1. In a homoskedastic model,

the filtered values of our latent variables in t would simply be a weighted average of all xt

solutions, with weights given by their conditional probabilities. In our model with regime

switching, solutions for xt must be found for each of the regimes in st, and then weighed

by the probability of each regime.

Provided all solutions of the observation equation are found, this procedure produces

the exact likelihood of the quadratic system (22)-(23). To find all solutions, we rely

on homotopy continuation methods — see e.g. Judd (1998) and Morgan (1987). More

specifically, we rely on the PHCpack solver described in Verschelde (1999) and its Matlab

interface PHClab presented in Guan and Verschelde (2008). We discard all complex so-

lutions (which tend to be the majority) and compute the likelihood using the real ones.

If no real solutions are available at any point in time for a certain value of the parameter

vector, we impute to the likelihood a large negative value.

4.2 Data and prior distributions

We estimate the model on quarterly US data over the sample period from 1966Q1 to

2009Q1. Our estimation sample starts in 1966, because this is often argued to be the date

after which a Taylor rule provides a reasonable characterisation of Federal Reserve policy.8

7Given that four structural shocks enter the model, we are going to assume that one series is observed

with measurement error. The inversion for the measurement error is unique, because the measurement

error enters the model linearly.
8According to Fuhrer (1996), "since 1966, understanding the behaviour of the short rate has been

equivalent to understanding the behaviour of the Fed, which has since that time essentially set the federal

Funds rate at a target level, in response to movements in inflation and real activity". Goodfriend (1991)

argues that even under the period of offi cial reserves targeting, the Federal Reserve had in mind an implicit

target for the Funds rate.
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Concerning the macro-data, we focus on inflation and one measure of economic activity.

For the latter, we could in principle use GDP, but we prefer to focus on consumption,

given that our model abstracts from investment. Nevertheless, consumption in our model

captures all interest-sensitive components of private expenditure. As argued by Giannoni

and Woodford (2005), assuming habit persistence for the whole level of private expenditure

is a reasonable assumption, given that models with capital typically need adjustment

costs that imply inertia in the rate of investment spending. We therefore include in the

information set total real personal consumption per-capita and the consumption deflator

(from the FRED database of the St. Louis Fed). In addition, we use the 3-month nominal

interest rate and yields on 3-year and 5-year zero-coupon bonds (from the Federal Reserve

Board).

Prior distributions for our model are presented in Table 1.

Concerning regime switching processes, we assume beta priors for transition probabil-

ities. The distributions imply that persistences in each state are symmetric and have high

means. In the prior, we assume that the standard deviations of the structural shocks are

identical in the various states.

The priors for the standard deviation and persistence of shocks, as well as for the long

run growth rate of technology and for the long run inflation target, are centred on values

which allow us to roughly match unconditional data moments in the first 10 years of the

sample, given the other parameter.

For the policy rule, we use relatively loose priors centred around the classic Taylor

(1993) parameters for the responses to inflation and output, but we also allow for a mild

degree of interest rate smoothing. Finally, for the other parameters we use priors broadly

in line with other macro studies. For γ, we use a loose prior centred around a value a bit

higher than σ.

4.3 Posterior mode and goodness of fit

We do not yet have results based on the simulation of the posterior distribution. We only

report, in Table 1, results based on the posterior mode found through a maximisation

process using the simulated annealing method. Table 2 reports the unconditional moments

of the observable variables implied by the modal parameters and compares them to the

empirical moments of the same variables over our sample period.
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A few notable features are apparent from Table 1. The first one is that the γ parameter

is quite larger than σ, but it does not reach the levels around 50 which have been used

in other studies (e.g. Piazzesi and Schneider, 2006). Of course, the two estimates are not

directly comparable due to the presence of leisure in our utility function. Nevertheless,

our relatively low γ also reflects the fact that the unconditional term premium generated

by our model is small: Table 2 shows that the average spread between 5-year yields and

3-month rates is only equal to 15 basis points. While small by historical standards, this

result may also reflect the fact that the average slope is indeed quite small over our 43-year

sample: the spread between 5-year yields and the 3-month rate is only equal to 50 basis

points.

The other macro parameters in Table 1 are roughly consistent with other estimates

based solely on macro data. The main exception are the policy rule parameters, which

imply an aggressive reaction to inflation deviations from target and a degree of interest

rate smoothing which is consistent with superinertial policy — in the sense of Woodford

(2003). These coeffi cients imply that inflation is kept quite close to the target by the

central bank. The model therefore tends to explain the inflation rates observed in our

sample as induced by the central bank through a sequence of target shocks. The mode of

the standard deviation of the target shock is thus implausibly high. The very low modal

value of the inflation indexation parameter, which is consistent with micro-economic data,

is also a reflection of the fact that inflation deviations from target are short-lived.

While different from the values obtained in model estimated only on macro-data, the

very high interest rate smoothing parameter in the policy rule helps to match the behaviour

of the term structure. As observed in the data, it implies that relatively large movements

in long-term yields can be produced, for given movements in the short rate. Table 2

illustrates that a lower smoothing coeffi cient of 0.6 would reduce the variance of long-term

yields, relative to that of the short rate.

Concerning regime-switching parameters, the posterior mode of the transition prob-

abilities suggests that low-variance states are relatively more persistent for technology

growth and policy shocks. The opposite appears to be the case for government spend-

ing shocks but, as it will become apparent below, the low-variance regime for govenment

spending shocks is never observed in the data. The difference between estimated variances

between the two regimes is noticeable for all shocks.
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Table 2 also illustrates the relative contribution of habit persistence and of the Epstein-

Zin-Weil utility to produce our results.

Habit persistence helps to limit the volatility of consumption growth, which would

be much higher if h = 0. Without habit persistence, the model would also generate a

counterfactual, negative correlation of consumption growth. Similarly, imposing equality

between γ and σ would not change the unconditional variances produced by the model

(which are computed using first order approximations), but would reduce the term pre-

mium essentially to zero.

The last column in Table 2 also shows that a minor perturbation in the σ parameter

(from 2.5 to 3.3) would bring the model even closer to the data —provided β is also reduced

from 0.9978 to 00925 to offset the ensuing fall in the level of short and long term rates.

With these small changes, the unconditional slope would match the data almost exactly,

while other moments would not change significantly. It is therefore not unlikely that our

results could improve along this dimension, once we obtain estimates of the posterior mean

of the parameters.

4.4 Regime switches and risk premia

Figure 1 displays 1-step-ahead forecasts and realised variables. This figure shows that

the model can track yields and inflation data relatively well. More specifically, the model

can fit reasonably well the 5-year rate, which is the only model variable observed with

error. The standard deviation of measurement errors is around 28 basis points, thus not

exceedingly higher than in more flexible term structure models estimated using only yields

data. One-step-ahead forecast errors are however larger for consumption growth.

Figure 1 also illustrates the clear heteroskedasticity in the residuals. In the early

eighties, for example, there are clear increases in the variance of forecast errors. Our

assumption of regime-switching in the variance of shocks helps the model to capture these

patterns in the data.

Figures 2 displays filtered estimates of the discrete states together with the offi cial

NBER recession dates. In the figure, 1 denotes the low-variance state, 0 the high-variance

state.

No changes in the variance of government spending shocks are detected in the sample.

Government spending is always in the high-variance regime.
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The regime associated with the policy shock tracks quite well the Fed’s monetarist ex-

periment. This state hovers between the high and low variance regimes over the seventies,

then jumps to the high variance regime in 1980 and remains there until 1983; it then drifts

back to the low-variance regime over most of the remaining the sample (with marginal

exceptions).

The variance of productivity growth shocks can be associated with the Great mod-

eration in output volatility starting in the mid-1980s. The state moves between high

and low-variance regimes in the seventies, then sticks to the low variance regime over the

eighties and nineties. Some evidence of an end of the Great moderation is visible at the

beginning of the new millennium.

The various states can be composed to define 8 possible combinations of regimes. This

is done to construct Figures 3, which display expected excess holding period returns as

defined in equation (20).

Excess returns are increasing in the maturity of bonds and hover around levels of

50 basis points at the 5-year maturity. The notable features emerging from Figure 3 is

that regime-switching can induce a non-negligible amount of variability in expected excess

holding period returns over time. This is a desirable feature to explain observed deviations

of the data from features consistent with the expectations hypothesis (see e.g. Dai and

Singleton, 2002). Variability is especially high at the time of the monetarist experiment

in the early 1980s. This is also encouraging, because deviations of yields from values

consistent with the expectations hypothesis are known to be particularly marked during

the Volcker tenure. For example, Rudebusch and Wu (2006) note that the performance of

the expectations hypothesis improves after 1988 and until 2002.

The variability of expected excess holding period returns increases again at the begin-

ning of the new millennium.

5 Conclusions

We have estimated the second order approximation of a macro-yield curve model with

Epstein-Zin-Weil preferences, in which the variance of structural shocks is subject to

changes of regime.

Our preliminary empirical results support the regime switching specification. Different
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regimes can fit the heteroskedasticity of economic variables. Estimated regimes also bear

an intuitively appealing structural interpretation. Finally, changes in regimes generate

nonnegligible changes in risk premia.

The inclusion of yields data in the estimation set does not alter the basic functioning

of the macro-model. Most parameters are estimated to be close to the values obtained

in other studies, in which solely macro data enter the econometrician’s information set.

The main exception is the interest rate smoothing coeffi cient in the monetary policy rule,

which is found to be much higher than in studies which do not look at yields data. A high

value of this coeffi cient helps to generate persistence in the short rate, hence to transmit

movements in the policy rate to long-term yields.
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Appendix

A The household problem

Using the definitions U1,t ≡ ∂U
[
ut,
(

EtV
1−γ
t+1

) 1
1−γ
]
/∂ut and U2,t ≡ ∂U

[
ut,
(

EtV
1−γ
t+1

) 1
1−γ
]
/∂
(

EtV
1−γ
t+1

) 1
1−γ
,

we can write the first order conditions for the optimum as

ΛtPt = U1,tv (Nt)− hEtU1,t+1v (Nt+1)U2,t


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ

U1,t (Ct − hCt−1) v′ (Nt) = Λt
1− θw
θw

wt

Qt,t+1 =
Λt+1

Λt
U2,t


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ

(25)

plus the envelope conditions

JW,t = Λt

JC,t = −hU1,tv (Nt)

where we also defined Jt ≡ J (Wt, Ct−1), JC,t ≡ ∂J (Wt, Ct−1) /∂Ct−1.

Note that the two derivatives U1,t and U2,t can be rewritten as

U1,t = (1− β)

{
(1− β) (Ct − hCt−1)1−σ [v (Nt)]

1−σ + β
[
EtJ

1−γ
t+1

] 1−σ
1−γ
} σ

1−σ
(Ct − hCt−1)−σ [v (Nt)]

−σ

and

U2,t

[
EtJ

1−γ
t+1

] σ
1−γ

= β

{
(1− β) (Ct − hCt−1)1−σ [v (Nt)]

1−σ + β
[
EtJ

1−γ
t+1

] 1−σ
1−γ
} σ

1−σ

Moreover, at the optimum, the maximum value function will obey the recursion

Jt =

{
(1− β) [(Ct − hCt−1) v (Nt)]

1−σ + β
[
EtJ

1−γ
t+1

] 1−σ
1−γ
} 1

1−σ

Using these equations, we can rewrite the FOCs in the text as

w̃t = −v
′ (Nt)

v (Nt)

θw
θw − 1

[(Ct − hCt−1) v (Nt)]
1−σ

Λ̃t

and

Qt,t+1 = β
Λ̃t+1

Λ̃t

1

πt+1


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ
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where

Λ̃t ≡ [v (Nt)]
1−σ (Ct − hCt−1)−σ−βhEt [v (Nt+1)]1−σ (Ct+1 − hCt)−σ


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ

and w̃t ≡ wt/Pt.

Note that in the absence of labour-leisure choice (v (Nt) = 1 for all t), we would obtain

Qt,t+1 =
β

πt+1

Λ̃t+1

Λ̃t


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ

Λ̃t ≡ (Ct − hCt−1)−σ − βhEt (Ct+1 − hCt)−σ


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ

If habits were also set to zero, we would go back to the standard Epstein-Zin-Weil case

Qt,t+1 =
β

πt+1

(
Ct+1

Ct

)−σ
[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−σ

Λ̃t = C−σt

Finally, when γ = σ

w̃t = −v
′ (Nt)

v (Nt)

θw,t
θw,t − 1

[(Ct − hCt−1) v (Nt)]
1−σ

Λ̃t

Qt,t+1 =
β

πt+1

Λ̃t+1

Λ̃t

Λ̃t = [v (Nt)]
1−σ (Ct − hCt−1)−σ − βhEt [v (Nt+1)]1−σ (Ct+1 − hCt)−σ

B The approximate stochastic discount factor

Equation (6) in Piazzesi and Schneider (2006) derives the stochastic discount factor for a

model with non-expected utility, exogenous labour supply, exogenous consumption process

and σ = 1. A similar expression can be derived in our model.

In order to approximate the model around a deterministic steady state, we first detrend

all variables by the growing level of technology. More specifically, for the stochcastic

discount factor we obtain

Qt,t+1 = β
1

Ξγt+1

˜̃
Λt+1˜̃
Λt

1

Πt+1


[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

] 1
1−γ

J̃t+1


γ−σ
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where Ξt is the rate of growth of technology,
˜̃
Λt = Λ̃t/A

−σ
t and J̃t = Jt/A

−σ
t .

Note that using the definition Dt ≡ EtΞ
1−γ
t+1 J̃

1−γ
t+1 the stochastic discount factor can be

rewritten as

Qt,t+1 = β
1

Ξγt+1

˜̃
Λt+1˜̃
Λt

1

Πt+1

D 1
1−γ
t

J̃t+1

γ−σ

or

qt,t+1 = lnβ − γξt+1 + ∆λ̃t+1 − πt+1 + (γ − σ)

(
1

1− γ dt − jt+1

)
and in deviation from the steady state

q̂t,t+1 = ∆
̂̃
λt+1 − γξ̂t+1 − π̂t+1 + (γ − σ)

(
1

1− γ d̂t −
̂̃
jt+1

)
To second order

d̂t = (1− γ) Et
̂̃
jt+1 + (1− γ) Etξ̂t+1 +

1

2
(1− γ)2 Vart

[̂̃
jt+1

]
+

1

2
(1− γ)2 Vart

[
ξ̂

2

t+1

]
+ (1− γ)2 Covt

[
ξ̂t+1

̂̃
jt+1

]
so that

q̂t,t+1 = ∆
̂̃
λt+1 − σEtξt+1 − γ

(
ξ̂t+1 − Etξ̂t+1

)
− π̂t+1 − (γ − σ)

(̂̃
jt+1 − Et

̂̃
jt+1

)
−1

2
(γ − σ) (γ − 1)

(
Vart

[̂̃
jt+1

]
+ Vart

[
ξ̂

2

t+1

]
+ 2Covt

[
ξ̂t+1

̂̃
jt+1

])
(26)

When σ = 1 this expression boils down to

q̂t,t+1 = ∆
̂̃
λt+1 − Etξt+1 − γ

(
ξ̂t+1 − Etξ̂t+1

)
− π̂t+1

− (γ − 1)
(̂̃
jt+1 − Et

̂̃
jt+1

)
− 1

2
(γ − 1)2 Vart

[̂̃
jt+1

]
−1

2
(γ − 1)2 Vart

[
ξ̂

2

t+1

]
− (γ − 1)2 Covt

[
ξ̂t+1

̂̃
jt+1

]
which corresponds to the case considered by Piazzesi and Schneider (2006) when there is

no growth and temporary utility depends on consumption only so that ∆
̂̃
λt+1 = −∆ĉt+1.

We now wish to rewrite J̃t in terms of its consumption and labour determinants. Recall

that

J̃1−σ
t = (1− β)←→c 1−σ

t

(
L− Lφt

)1−σ
+ βD̃

1−σ
1−γ
t

where we have defined the consumpion surplus ←→c t ≡ C̃t − hC̃t−1/Ξt.

Note that

←̂→c t ≡
1

Ξ− h

(
Ξ̂̃ct − ĥ̃ct−1 + hξ̂t

)
− 1

2

hΞ

(Ξ− h)2

(̂̃ct − ̂̃ct−1 + ξ̂t

)2
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and

∆←̂→c t+1 ≡
1

Ξ− h

(
Ξ∆̂̃ct+1 − h∆̂̃ct + h∆ξ̂t+1

)
−1

2

hΞ

(Ξ− h)2

[(
∆̂̃ct+1 + ξ̂t+1

)2
−
(

∆̂̃ct + ξ̂t

)2
]

Define further ũt ≡ ←→c t

(
L− Lφt

)
. The second order approximation of ũt is

̂̃ut = ←̂→c t − φ
Lφ

L− Lφ
l̂t − φ2Lφ

L− 1
2L

φ(
L− Lφ

)2 l̂2t
so that

∆̂̃ut+1 = ∆←̂→c t+1 − φ
Lφ

L− Lφ
∆l̂t+1 − φ2Lφ

L− 1
2L

φ(
L− Lφ

)2 (l̂2t+1 − l̂2t
)

Using these definitions, the value function can be expanded to second order as

̂̃
jt =

(
1− βΞ1−σ) ̂̃ut +

βΞ1−σ

1− γ
̂̃
dt + (1− σ)

(
1− βΞ1−σ) βΞ1−σ

1− γ
̂̃
dt̂̃ut

+
1

2
(1− σ)

(
1− βΞ1−σ)βΞ1−σ̂̃u2

t +
1

2

1− σ
(1− γ)2βΞ1−σ (1− βΞ1−σ) ̂̃d2

t

or substituting out d̂t

̂̃
jt − ̂̃ut = βΞ1−σEt

[̂̃
jt+1 + ξ̂t+1 − ̂̃ut+1 + ∆̂̃ut+1

]
+

1− γ
2

βΞ1−σVart

[̂̃
jt+1 + ξ̂t+1

]
+

1

2
(1− σ)

(
1− βΞ1−σ)βΞ1−σ

(
Et

[̂̃
jt+1 + ξ̂t+1 − ̂̃ut+1 + ∆̂̃ut+1

])2

(27)

Note that without growth this simplifies to

̂̃
jt − ̂̃ut = βEt

[̂̃
jt+1 − ̂̃ut+1 + ∆̂̃ut+1

]
+ β

1− γ
2

Vart

[̂̃
jt+1

]
+

1− σ
2

β (1− β)
(

Et

[̂̃
jt+1 + ξ̂t+1 − ̂̃ut+1 + ∆̂̃ut+1

])2

which for ̂̃ut = ĉt corresponds to Piazzesi and Schneider (2006), except for the second

order squared term.

To solve equation (27) forward, note that second order terms can be evaluated using

the first order approximation

̂̃
jt − ̂̃ut = βΞ1−σEt

[̂̃
jt+1 + ξ̂t+1 − ̂̃ut+1 + ∆̂̃ut+1

]
Hence

Vart

[̂̃
jt+1 + ξ̂t+1

]
= Vart

[ ∞∑
i=0

(
βΞ1−σ)i Et+1

[
ξ̂t+1+i + ∆̂̃ut+1+i

]]
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and

(
Et

[̂̃
jt+1 + ξ̂t+1 − ̂̃ut+1 + ∆̂̃ut+1

])2

=

( ∞∑
i=0

(
βΞ1−σ)i Et

[
ξ̂t+1+i + ∆̂̃ut+1+i

])2

First order terms imply

Et

[̂̃
jt+1 + ξ̂t+1 − ̂̃ut+1 + ∆̂̃ut+1

]
=

1− γ
2

Et

∞∑
j=1

(
βΞ1−σ)j Vart+jEt+1+j

[ ∞∑
i=0

(
βΞ1−σ)i (ξ̂t+1+j+i + ∆̂̃ut+1+j+i

)]

+
1− σ

2

(
1− βΞ1−σ) ∞∑

j=1

(
βΞ1−σ)j Et

( ∞∑
i=0

(
βΞ1−σ)i Et+j

[
ξ̂t+1+j+i + ∆̂̃ut+1+j+i

])2


+

∞∑
j=0

(
βΞ1−σ)j Et

[
ξ̂t+1+j + ∆̂̃ut+1+j

]
Putting everything together and using the second order approximation for ∆̂̃ut+1

̂̃
jt − ̂̃ut

=

∞∑
j=0

(
βΞ1−σ)j+1

Et

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j − φ2Lφ

L− 1
2L

φ(
L− Lφ

)2 (l̂2t+1+j − l̂2t+j
)]

+
1− γ

2

∞∑
j=0

(
βΞ1−σ)j+1

EtVart+jEt+1+j

∞∑
i=0

(
βΞ1−σ)i(ξ̂t+1+j+i + ∆←̂→c t+1+j+i − φ

Lφ

L− Lφ
∆l̂t+1+j+i

)
+

1− σ
2

(
1− βΞ1−σ)Ψ1,t

where

Ψ1,t ≡
∞∑
j=0

(
βΞ1−σ)j+1

Et

( ∞∑
i=0

(
βΞ1−σ)i Et+j

[
ξ̂t+1+j+i + ∆←̂→c t+1+j+i − φ

Lφ

L− Lφ
∆l̂t+1+j+i

])2


and

←̂→c t ≡
1

Ξ− h

(
Ξ̂̃ct − ĥ̃ct−1 + hξ̂t

)
− 1

2

hΞ

(Ξ− h)2

(̂̃ct − ̂̃ct−1 + ξ̂t

)2

Note that for σ = 1

̂̃
jt − ̂̃ut =

∞∑
j=0

βj+1Et

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j − φ2Lφ

L− 1
2L

φ(
L− Lφ

)2 (l̂2t+1+j − l̂2t+j
)]

+
1− γ

2

∞∑
j=0

βj+1EtVart+jEt+1+j

[ ∞∑
i=0

βi
(
ξ̂t+1+j+i + ∆←̂→c t+1+j+i − φ

Lφ

L− Lφ
∆l̂t+1+j+i

)]
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For σ = 1 and φ = 0

̂̃
jt − ←̂→c t =

∞∑
j=0

βj+1Et

[
ξ̂t+1+j + ∆←̂→c t+1+j

]

+
1− γ

2

∞∑
j=0

βj+1EtVart+jEt+1+j

[ ∞∑
i=0

βi
(
ξ̂t+1+j+i + ∆←̂→c t+1+j+i

)]

For σ = 1 and φ = 0 and also ξ̂t = 0 for all t

̂̃
jt − ←̂→c t =

∞∑
j=0

βj+1Et∆
←̂→c t+1+j

+
1− γ

2

∞∑
j=0

βj+1EtVart+jEt+1+j

[ ∞∑
i=0

βi∆←̂→c t+1+j+i

]

To use this expressions in the stochastic discount factor of equation (26), note that

variances and convariances can be evaluated using the first order approximation

̂̃
jt = ←̂→c t − φ

Lφ

L− Lφ
l̂t +

∞∑
j=0

(
βΞ1−σ)j+1

Et

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
As a result,

Vart

[̂̃
jt+1

]
= Et

[̂̃
j

2

t+1

]
−
(

Et

[̂̃
jt+1

])2

= Vart

[
ξ̂t+1

]
+ Vart

 ∞∑
j=0

(
βΞ1−σ)j Et+1

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
−2Covt

ξ̂t+1,

∞∑
j=0

(
βΞ1−σ)j Et+1

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
and

Covt

[
ξ̂t+1

̂̃
jt+1

]
= Et

[
ξ̂t+1

̂̃
jt+1

]
− Et

[
ξ̂t+1

]
Et

[̂̃
jt+1

]
= −Vart

[
ξ̂t+1

]
+Et

[
ξ̂t+1

]
(Et+1 − Et)

∞∑
j=0

(
βΞ1−σ)j [ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
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Finally

̂̃
jt+1 − Et

̂̃
jt+1

= − (Et+1 − Et) ξ̂t+1 + (Et+1 − Et)

∞∑
j=0

(
βΞ1−σ)j [ξ̂t+1+j + ∆←̂→c t+1+j

]

− (Et+1 − Et)

∞∑
j=0

(
βΞ1−σ)j [φ Lφ

L− Lφ
∆l̂t+1+j + φ2Lφ

L− 1
2L

φ(
L− Lφ

)2 (l̂2t+1+j − l̂2t+j
)]

+
1− γ

2
(Et+1 − Et)

∞∑
j=0

(
βΞ1−σ)j+1

Ψ2,t+1+j

+
(1− σ)

(
1− βΞ1−σ)
2

(Et+1 − Et)
∞∑
j=0

(
βΞ1−σ)j+1

Ψ2
3,t+1+j

where

Ψ2,t+1+j ≡ Vart+1+jEt+2+j

[ ∞∑
i=0

(
βΞ1−σ)i(ξ̂t+2+j+i + ∆←̂→c t+2+j+i − φ

Lφ

L− Lφ
∆l̂t+2+j+i

)]

and

Ψ3,t+1+j ≡ Et+1+j

∞∑
i=0

(
βΞ1−σ)i [ξ̂t+2+j+i + ∆←̂→c t+2+j+i − φ

Lφ

L− Lφ
∆l̂t+2+j+i

]
Hence

q̂t,t+1 = ∆
̂̃
λt+1 − σξ̂t+1 − π̂t+1 − (γ − σ)

∞∑
j=0

(
βΞ1−σ)j (Et+1 − Et)

[
ξ̂t+1+j + ∆←̂→c t+1+j

]

+ (γ − σ)
∞∑
j=0

(
βΞ1−σ)j (Et+1 − Et)

[
φ

Lφ

L− Lφ
∆l̂t+1+j + φ2Lφ

L− 1
2L

φ(
L− Lφ

)2 (l̂2t+1+j − l̂2t+j
)]

− (γ − σ)
1− γ

2

∞∑
j=0

(
βΞ1−σ)j+1

(Et+1 − Et) Ψ2,t+1+j

− (γ − σ)
(1− σ)

(
1− βΞ1−σ)
2

∞∑
j=0

(
βΞ1−σ)j+1

(Et+1 − Et) Ψ2
3,t+1+j

−1

2
(γ − σ) (γ − 1) Vart

[
ξ̂t+1

]
(28)

−1

2
(γ − σ) (γ − 1) Et

[
ξ̂t+1

] ∞∑
j=0

(
βΞ1−σ)j (Et+1 − Et)

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]

−1

2
(γ − σ) (γ − 1) Vart

 ∞∑
j=0

(
βΞ1−σ)j Et+1

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
+ (γ − σ) (γ − 1) Covt

ξ̂t+1,
∞∑
j=0

(
βΞ1−σ)j Et+1

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
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or

q̂t,t+1 = ∆
̂̃
λt+1 − σξ̂t+1 − π̂t+1

− (γ − σ)

∞∑
j=0

(
βΞ1−σ)j (Et+1 − Et)

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
+ s.o.t

where s.o.t. denotes second order terms in equation (28). Using the first order approxi-

mation

∆
̂̃
λt+1 = − Ξσ

Ξσ − βh

[
σ∆←̂→c t+1 + φ (1− σ)

Lφ

L− Lφ
∆l̂t+1

]
+

βh

Ξσ − βh

[
σEt+1∆←̂→c t+2 + φ (1− σ)

Lφ

L− Lφ
Et+1∆l̂t+2

]
we can finally rewrite the stochastic discount factor as

q̂t,t+1 = −σξ̂t+1 − π̂t+1

− σ

Ξσ − βh

(
Ξσ∆←̂→c t+1 − βhEt+1∆←̂→c t+2

)
− φ 1− σ

Ξσ − βh
Lφ

L− Lφ
(

Ξσ∆l̂t+1 − βhEt+1∆l̂t+2

)
− (γ − σ)

∞∑
j=0

(
βΞ1−σ)j (Et+1 − Et)

[
ξ̂t+1+j + ∆←̂→c t+1+j − φ

Lφ

L− Lφ
∆l̂t+1+j

]
+ s.o.t

where to first order

∆←̂→c t+1 ≡
1

Ξ− h

(
Ξ∆̂̃ct+1 − h∆̂̃ct + h∆ξ̂t+1

)
Note that for ξt = φ = h = 0 this simplifies to

q̂t,t+1 = −σ∆̂̃ct+1 − π̂t+1 − (γ − σ) (Et+1 − Et)
∞∑
j=0

βj∆̂̃ct+1+j −
1

2
(γ − σ) (γ − 1) Vart

∞∑
j=0

βjEt+1∆̂̃ct+1+j

+
(γ − σ) (γ − 1)

2
(Et+1 − Et)

∞∑
j=0

βj+1Vart+1+jEt+2+j

∞∑
i=0

βi∆̂̃ct+2+j+i

+
(γ − σ) (σ − 1)

2
(1− β) (Et+1 − Et)

∞∑
j=0

βj+1

( ∞∑
i=0

βiEt+1+j∆̂̃ct+2+j+i

)2

which is as in equation (6) of Piazzesi and Schneider (2006) when σ = 1.

To a second order approximation, the short rate is given by

ŷt,t+1 = −Etq̂t,t+1 −
1

2
Vartq̂t,t+1

where, again in the ξt = φ = h = 0 case,

Etq̂t,t+1 = −σEt∆̂̃ct+1 − Etπ̂t+1 −
(γ − σ) (γ − 1)

2
Vart

 ∞∑
j=0

βjEt+1∆̂̃ct+1+j


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and

Vartq̂t,t+1 = σ2Vart∆̂̃ct+1 + Vartπ̂t+1 + 2σCovt

[
∆̂̃ct+1, π̂t+1

]
+ (γ − σ)2 Vart

 ∞∑
j=0

βjEt+1∆̂̃ct+1+j


+2 (γ − σ)σCovt

∆̂̃ct+1,
∞∑
j=0

βjEt+1∆̂̃ct+1+j

+ 2 (γ − σ) Covt

π̂t+1,
∞∑
j=0

βjEt+1∆̂̃ct+1+j


Hence

ŷt,t+1 = σEt∆̂̃ct+1 + Etπ̂t+1 −
1

2
σ2Vart∆̂̃ct+1 −

1

2
Vartπ̂t+1 − σCovt

[
∆̂̃ct+1, π̂t+1

]
+

1

2
(γ − σ) (σ − 1) Vart

 ∞∑
j=0

βjEt+1∆̂̃ct+1+j


− (γ − σ)

σCovt

∆̂̃ct+1,

∞∑
j=0

βjEt+1∆̂̃ct+1+j

+ Covt

π̂t+1,

∞∑
j=0

βjEt+1∆̂̃ct+1+j


C Solution for bond prices

Recall that

xt+1 = P x̂t +
1

2

(
Inx ⊗ x̂′t

)
Gx̂t + kx,st σ̃

2 + σ̃Σtut+1

st+1 = κ0 + κ1st + νt+1

←̂→
λ t = Fλx̂t +

1

2

(
Iny ⊗ x̂′t

)
Eλx̂t + kλ,st σ̃

2

←̂→π t = Fπx̂t +
1

2

(
Iny ⊗ x̂′t

)
Eπx̂t + kπ,st σ̃

2

where P is a nx×nx matrix, G is a n2
x×nx matrix, kx,s is an nx×1 vector (whose elements

are state dependent), Σt ≡ Σ (st) is a nx × nu matrix, Fλ and Fπ are 1 × nx vectors, Eλ
and Eπ are nx × nx matrices, and finally kλ,s and kπ,s are (state dependent) scalars.

C.1 1-period bonds

To derive the price of 1-period bonds, note first that a second order approximation to the

stochastic discount factor is

q̂t,t+1 = (Fλ − Fπ) x̂t+1 +
1

2
x̂′t+1 (Eλ − Eπ) x̂t+1 − Fλx̂t −

1

2
x̂′tEλx̂t − kπ,sσ̃2
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or

q̂t,t+1 = ((Fλ − Fπ)P − Fλ) x̂t +
1

2
(Fλ − Fπ)

(
Inx ⊗ x̂′t

)
Gx̂t

+
1

2
x̂′tP

′ (Eλ − Eπ)P x̂t −
1

2
x̂′tEλx̂t

+σ̃2 (Fλ − Fπ) kx,s − kπ,sσ̃2

+σ̃ (Fλ − Fπ) Σtut+1 +
1

2
σ̃x̂′tP

′ (Eλ − Eπ) Σtut+1

+
1

2
σ̃u′t+1Σ′t (Eλ − Eπ)P x̂t +

1

2
σ̃2u′t+1Σ′t (Eλ − Eπ) Σtut+1

To second order, the price of a 1-period bond is

b̂t,1 = −it = Et [q̂t+1] +
1

2

(
Et
[
q̂2
t+1

]
− (Et [q̂t+1])2

)
for which we need

Et
[
q̂2
t+1

]
− (Et [q̂t+1])2 = σ̃2 (Fλ − Fπ) ΣtΣ

′
t (Fλ − Fπ)′

and

Et [q̂t,t+1] = (Fλ − Fπ)P x̂t +
1

2
(Fλ − Fπ)

(
Inx ⊗ x̂′t

)
Gx̂t + σ̃2 (Fλ − Fπ) kx,s

+
1

2
x̂′tP

′ (Eλ − Eπ)P x̂t +
1

2
σ̃2Et

[
u′t+1Σ′t (Eλ − Eπ) Σtut+1

]
−Fλx̂t −

1

2
x̂′tEλx̂t − kπ,sσ̃2

Now note that, for any matrix A and vector x,

E
[
x′Ax

]
= E

[
vec
(
x′Ax

)]
= E

[
x′ ⊗ x′

]
vec (A)

=
(
vec
(
E
[
xx′
]))′

vec (A)

where the vec operator transforms a matrix into a vector by stacking its columns. It

follows that

Et
[
u′t+1Σt

′ (Eλ − Eπ) Σtut+1

]
= (vec (I)) vec

(
Σ′t (Eλ − Eπ) Σt

)
= tr

(
Σt
′ (Eλ − Eπ) Σt

)
where tr represents the trace, i.e. the sum of the diagonal elements of a matrix.
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Hence,

b̂t,1 = ((Fλ − Fπ)P − Fλ) x̂t + σ̃2 ((Fλ − Fπ) kx,s − kπ,s)

+
1

2
σ̃2tr

(
Σ′t (Eλ − Eπ)t

)
+

1

2
σ̃2 (Fλ − Fπ) ΣtΣ

′
t (Fλ − Fπ)′

+
1

2
x̂′t
(
P ′ (Eλ − Eπ)P − Eλ

)
x̂t +

1

2
(Fλ − Fπ)

(
Inx ⊗ x̂′t

)
Gx̂t

Finally, note that

(Fλ − Fπ)
(
Inx ⊗ x̂′t

)
Gx̂t = (Fλ − Fπ)


x̂′t 0 · · · 0
0 x̂′t · · · 0
...

...
. . .

...
0 0 · · · x̂′t

Gx̂t

=
[

(Fλ,1 − Fπ,1) x̂′t (Fλ,2 − Fπ,2) x̂′t · · · (Fλ,nx − Fπ,nx) x̂′t
]
Gx̂t

=
[
x̂′t (Fλ,1 − Fπ,1)G1 + x̂′t (Fλ,2 − Fπ,2)G2 + · · ·+ x̂′t (Fλ,nx − Fπ,nx)Gnx

]
x̂t

= x̂′t

 nx∑
j=1

(Fλ,j − Fπ,j)Gj

 x̂t
where Fλ,i and Fπ,i denote the i-th elements of vectors Fλ and Fπ, respectively, and Gi

denotes the i-th nx × nx matrix which are vertically stacked to make up G. We can

therefore rewrite the 1-period bond as

b̂t,1 = FB,1x̂t +
1

2
x̂′tEB,1x̂t + kB,1,sσ̃

2

where

FB1 ≡ (Fλ − Fπ)P − Fλ

kB1,s ≡ (Fλ − Fπ) kx,s − kπ,s + tr
(
Σ′t (Eλ − Eπ) Σt

)
+ (Fλ − Fπ) ΣtΣ

′
t (Fλ − Fπ)′

EB1 ≡ P ′ (Eλ − Eπ)P − Eλ +

nx∑
j=1

(Fλ,j − Fπ,j)Gj

Note also that, by construction, b̂t,1 = −ît, so FB1 = −Fi, EB1 = −Ei and kB1,s =

−ki,s. Note that this definition also allows us to rewrite q̂t,t+1 as

q̂t,t+1 = FB,1x̂t +
1

2
x̂′tEB1 x̂t + σ̃2 ((Fλ − Fπ) kx,s − kπ,s)

+σ̃ (Fλ − Fπ) Σtut+1 + σ̃x̂′tP
′ (Eλ − Eπ) Σtut+1 +

1

2
σ̃2u′t+1Σ′t (Eλ − Eπ) Σtut+1

C.2 2-period bonds

2-period bond prices can be written as (up to a second order approximation)

b̂t,2 = b̂t,1 + Et

[
b̂t+1,1

]
+

1

2
Vart

[
b̂t+1,1

]
+ Covt

[
q̂t+1, b̂t+1,1

]
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Based on 1-period prices, we can derive

Et

[
b̂t+1,1

]
= FB1P x̂t +

1

2
FB1

(
Inx ⊗ x̂′t

)
Gx̂t +

1

2
x̂′tP

′EB1P x̂t

+FB1kx,sσ̃
2 + σ̃2kB1,s +

1

2
σ̃2tr

[
Σ′tEB1Σt

]
and

Et

[
b̂t+1,1b̂

′
t+1,1

]
− Et

[
b̂′t+1,1

]
Et

[
b̂t+1,1

]
= σ̃2FB1Σ′tΣ

′
tF
′
B1

Et

[
b̂t+1,1q̂

′
t+1

]
− Et

[
b̂t+1,1

]
Et
[
q̂′t+1

]
= FB1ΣtΣ

′
t (Fλ − Fπ)′

It follows that

b̂t,2 = FB2 x̂t +
1

2
x̂′tEB2 x̂t + kB2,sσ̃

2

where

FB2 = FB1 (I + P )

EB2 = EB1 + P ′EB1P +

nx∑
j=1

FB1,jGj

kB2,s = kB1,s + FB1kx,s + tr
(
Σ′tEB1Σt

)
+ FB1ΣtΣ

′
tF
′
B1

+ 2FB1ΣtΣ
′
t (Fλ − Fπ)′

C.3 n-period bonds

Using the same procedure, we find that n-period bond prices can be written as

b̂t,n = FBn x̂t +
1

2
x̂′tEBn x̂t + kBn,sσ̃

2

where for n > 1

FBn = FB1 + FBn−1P

EBn = EB1 + P ′EBn−1P +

nx∑
j=1

FBn−1,jGj

kBn,s = kB1,s + kBn−1,s + FBn−1kx,s + tr
(
Σ′tEBn−1Σt

)
+FBn−1ΣtΣ

′
tF
′
Bn−1

+ 2FBn−1ΣtΣ
′
t (Fλ − Fπ)′
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