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Abstract: This paper rationalizes �rm�s motivation to build directed links with each other and formalizes
the dynamic formation process that generates the observed network structure in the citation network. Random

meeting of customers and �rms in the di¤erentiated goods market are unlikely to result in perfect match between

demand and supply, but the �rm can earn commission fee by redirecting the customer to another �rm who are

able to serve the demand, only if these two �rms are connected by social linkage. Therefore each �rm wants to

know more �rms, so that they can earn more commission fee. On the other hand, every �rm also desires to be

known by more other �rms in order to gain more redirected customers.

The model extends the dynamic formation of non-directed network model in Jackson and Rogers (2007)

into directed network and results in various structure features that exhibit in actual directed networks. I then

estimate the model�s parameters using �rm citation panel data from the NBER Patent Citation Database.

Using the estimated parameters I simulate the model to generate arti�cial sectoral citation networks and show

that the simulated network structure is similar to the network structures observed in the data.
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1 Introduction

The literature on dynamic network formation has primarily been concerned with understanding the formation

of non-directed networks. It has been successful in explaining many empirical characteristics observed in actual

social networks.2 However, in reality, many networks transferring goods and information �ows are directed.

Examples of such networks are websites connected by hyperlinks, people connected by phone call or emails,

and �rms connected by patent citations. In such �directed� networks, two nodes connected by one link are

not symmetric but play di¤erent roles: initiator and receiver. People who send emails are not symmetric with

those receiving them; patent citers are not the same as those being cited, etc. In fact, for most networks, the

symmetry of nodes is at best a simplifying assumption. There has, up to now, been no model of dynamic

network formation for directed networks. Any such model would have to provide insights into what leads sel�sh

individuals to engage in network building, and to match the observed triple power-law degree distributions of

networks, i.e. the in-degree, out-degree, and total-degree all follow power-law degree distribution.

This paper builds a dynamic model of directed network formation and demonstrates its application to a

real-world directed network: �rm citation network. The model uses pro�t sharing between a �rm who has

access to a customer and a �rm who knows the technology to produce to explain individual �rms�incentives to

1University of British Columbia, Department of Economics, 997 - 1873 East Mall, Vancouver BC, Canada, V6T 1Z1. april-
cai@interchange.ubc.ca. http://grad.econ.ubc.ca/aprilcai

2Jackson and Rogers (2007) summarize 5 characteristics: (1) small average shortest distance between nodes, (2) positive clustering
coe¢ cients (Clustering coe¢ cients measures how often two nodes with common friend are also friends), (3) power-law degree
distribution (A quantity x obeys a power law if it is drawn from a probability distribution p(x) / x��, where � is a constant
parameter of the distribution known as the exponent or scaling parameter. In real world situations the scaling parameter typically
lies in the range 2 < � < 3, although there are occasional exceptions, (4) positive correlation between degrees of linked nodes, and
(5) negative correlation between local clustering coe¢ cient of a node�s neighborhood and the node�s degree.
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build directed networks. When �rms and customers are randomly matched, a representative �rm may not be

able to produce what its customer wants, but can gain by referring this customer to another �rm who knows

how to produce it. The preconditions are that �rms know what others in the network produce and can pro�t,

perhaps via commission fees, for directing consumers towards them. I represent "�rm i knows what �rm j

produces" as a directed link pointing from �rm i to �rm j in the network. With pro�t sharing as the form

of commissions, �rms want to know more other �rms, so that they earn more commission fees, while at the

same time get known by more other �rms in order to obtain re-directed customers. In equilibrium, the dynamic

process of network formation is decided by �rm�s trade o¤ between the bene�t and cost in building networks.

Joharia, Mannorb and Tsitsiklis (2006) uses cost compensation to explain why private post o¢ ces build directed

networks to deliver mail packages, but their model is a static one.

Standing on the shoulders of giant�s, this paper extends the dynamic network formation of non-directed

network in Holme and Kim (2002), Vazquez (2003), and Jackson and Rogers (2007) (JR henceforth) into

directed network. 3 In non-directed network, nodes build new link either by network-based method (knowing

friend�s friend) or randomized method (knowing random unknown people). In directed network, there is another

layer of complexity within network-based network formation method: the two directions of links. Nodes build

new link via both old links in the same direction and old links in the opposite direction at di¤erent success

rates. The �rst success rate depends on node�s tendency to keep its current role as an initiator or receiver in

the network; the second success rate relies on node�s possibility to switch its current role to the opposite role

in the network. According to Kesten (1973), when the success rates in building new links through di¤erent

methods are subject to i. i. d. "popularity" shocks, the in-degree, out-degree, and total-degree distributions all

converge to power-law distribution, as seen in the real directed networks. The inter-temporal causality between

two types of links in the bilateral network-based network formation is the key to generate the triple power-law

distribution.

The model can be extended to understand the dynamic formation of more complex networks, where there

are multiple types of nodes and links. For example, exporter-market network, buyer-seller network, etc. The

key to handle complex networks is modeling the inter-temporal causality between di¤erent types of links.

I then illustrate the application of the model by considering a �rm citation network panel data. I construct

the network data from the NBER Patent Citation Database for 42 sectors from 1985 to 1994. This is clearly

a directed network: one inter-�rm citation corresponds to one directed link from the citing �rm4 to the cited

�rm5 . With multiple years of data, I can observe the inter-temporal change in each sectoral citation network.

I can tell both the links that are newly built and the method by which the new link is built: whether the new

link is introduced by an old link in the same direction, introduced by an old link in the opposite direction or by

the random meeting of two previously unconnected nodes. Identifying the method through which a node builds

new connections allows me to infer the success rates of building new links via the di¤erent methods for each

node. By knowing the distribution of these success rates, I am able to simulate the dynamic network formation

process and compare the simulated networks with the real sectoral citation networks.

The simulation allows me to test whether the simple model about degree6 dynamic process also mimics other

structure features in the real networks. The simulated network for sector s starts from a randomly generated

network. Every period new links are built by a mixture of network-based and randomized network formation

3Network-based network formation means two unconnected nodes with common neighbor in last period connect with each other
this period, or knowing friend�s friend. Its opposite is randomized network formation, where randomly picked two nodes connect
with each other.

4The �rm who applies a patent and cites other existing patents.
5A �rm whose existing patents are cited by other patent applications.
6A node�s degree is the number of nodes that it directly connects with.
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methods. In the bilateral network-based network formation, every node introduces its unconnected friends to

each other. A representative node i at time t is assigned an i. i. d. "popularity draw" poxyit from the estimated

success rate distribution of building x type new link from y type old link in sector s, where x, y 2 (inward,
outward). A higher "popularity draw" poxyit means a y type old link is more likely to introduce node i an x type

new link. In the randomized network formation, two unconnected nodes i and j are randomly connected by a

link from i to j by possibility rs, which is the estimated success rate of random matching in sector s. Repeat

the above process for 50 periods, which is long enough for degree distributions to converge to power-law. The

simulated network matches actual network not only in degree distributions, but also in clustering coe¢ cients

and other structure features.

The rest of the paper is organized as follows. The model section describes �rm�s motivation to build directed

social network and the methods to build new links. The data section introduces the NBER Patent Citation

Data and illustrates how to infer the distribution of "popularity" draws in each network-formation method.

With the estimated distribution of "popularity" draws, I simulate arti�cial networks and compare them with

the real sectoral citation networks. Lastly, the conclusion summarizes the paper.

2 The Model

2.1 Firm�s Motivation

There are a continuum of �rms on [0; 1]. Each �rm plays two roles, one is the producer, and the other is the

dealer. As a producer, �rm i produces one unit of goods i 2 [0; 1] with one unit of labor. As a dealer, �rm i

may receive a query from a randomly matched customer j for goods j 2 [0; 1]. The customer j only accepts
the goods on

�
j � x

2 ; j +
x
2

�
, and pays P dollar for it. 0 < x� 1 represents customer�s tolerance to substitutes.

If i 2
�
j � x

2 ; j +
x
2

�
, �rm i serves customer j itself. Otherwise, �rm i plays as a dealer and checks other

producers on its contact Cit = fkj i knows kg at time t. If there exists one producer such that k 2 Cit and
k 2

�
j � x

2 ; j +
x
2

�
, dealer i introduces this customer to producer k and earns a commission fee �P . Producer

k earns (1� �)P �W . The wage rate is W normalized to 1. I assume the tolerance range x approaches 0, so

that no �rm knows enough producers to cover the entire product domain [0; 1]. Moreover, it is unlikely that

any two �rms in Cit serve overlapping markets.

I show that a �rm with more connections in the producer-dealer network has higher expected pro�t. Denote

the number of producers that i knows at time t (number of elements in Cit) as pit. Denote the number of

dealers who know i at time t (the number of �rms k that i 2 Ckt) as dit. Assume that a �rm randomly meets a

customer at a constant rate L. At time t, the expected pro�t for �rm i who knows pit producers and with dit
dealers knowing i is

�it = Lx [1 + �Ppit + ((1� �)P � 1) dit] : (1)

The �rst part of the pro�t happens when the random customer who meets �rm i accepts product i. The second

part origins from the commission fee, when the customer does not accept product i, but takes some product

produced by pit other �rms on �rm i�s contact list. The third part of the pro�t is from the business introduced

by dit dealers who know �rm i, when they can not serve their customers themselves.

When I describe this dealer-producer relation by a directed link, there is a directed link from �rm i to its

producer. In network theory, pit is called the out-degree of �rm i and dit is called the in-degree of �rm i. Firm

i�s pro�t (1) is linearly increasing in pit and dit.
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2.2 Methods to Build Network

Given the degree-dependent income �ow in (1), a pro�t maximizing �rm wants to expand its connections with

other �rms. In order to acquire information about more producers, �rm i can (1a) know a new producer k from

a current producer j (j 2 Cit, k 2 Cjt and k =2 Cit); (2a) know a new producer k from a current dealer j (i 2 Cjt
and k 2 Cjt); (3a) randomly pick up a producer�s advertisement on the street. In order for more dealers to
know �rm i, �rm i can (1b) ask a current dealer j to forward �rm i�s information to j�s producer k (i 2 Cjt, k 2
Cjt and i =2 Ckt) ; (2b) ask a current producer j to forward �rm i�s information to a �rm j�s producer k(j 2 Cit
and k 2 Cjt); (3b) send its advertisement to a random �rm on the street. Methods (1a), (2a), (1b), and (2b)

belong to network-based network formation, where �rm i�s new connections built today depend on its position

in the old network yesterday. Meanwhile, methods (3a) and (3b) are called randomized network formation, in

which the new connections built today are independent of last period�s network topology.

The above methods to build network may involve di¤erent e¢ ciencies. In real social network, people usually

trust a friend�s friend more than a random person on the street, and network-based network formation is more

likely to happen through friends than the randomized method. In the �rm�s network here, network-based

methods (1a), (2a), (1b), and (2b) are targeted and may have high success rate. While randomized methods

(3a) and (3b) are aimless and may only work in very few occasions. Even among network-based methods (1a),

(2a), (1b), and (2b), one method can be more e¢ cient than the other.

2.3 Dynamic Network Formation Process

To exchange information with current producers and dealers, �rm i spends lpit hours listening and t
p
it hours

talking to a producer; ldit hours listening and t
d
it hours talking to a dealer; and l

r
it hours listening and t

r
it hours

talking to a random unknown �rm. While listening, �rm i receives information about more producers from

the talking �rm; while talking, �rm i broadcasts its own or other �rm�s information to the �rms which are

listening. I use 4yxijt to represent the number of new y gained by communicating with current x, in which x
2 fproducer, dealer, and random �rmg, y 2 fproducer, dealerg, i is the talker, j is the listener, and t is the time
period. For example, 4ppijt represents the number of new producers known when listening to current producer
j at time t.

Since the communication is bilateral, the outcome depends on the time inputs from both sides. Suppose

�rm j is �rm i�s producer, �rm k is �rm i�s dealer, 7and �rm r is a random unknown �rm to �rm i. The new

links built through di¤erent methods are as follows.

4ppjit = App
�
tdjt
��
(lpit)

�

4dpijt = Adp (t
p
it)
� �
ldjt
��

4pdkit = Apd (t
p
kt)

� �
ldit
��

4ddikt = Add
�
tdit
��
(lpkt)

�

4prilt = Apr (trrt)
�
(lrit)

�

4drilt = Adr (trit)
�
(lrrt)

�

Axy is the technology of knowing new x through current y, in which y 2 {producer, dealer, and random
�rm}, x 2 {producer and dealer}. � and � measures the listener�s and talker�s share in the communication

7Notice that meanwhile �rm i is also �rm j�s dealer and �rm i is �rm k�s producer.

4



outcome respectively. I need � + � < 1 to have Nash equilibrium conversation time input from both sides of

communication.

The �rm i maximizes �rm value by choosing hour inputs lpit, t
p
it, l

d
it, t

d
it, l

r
it, and t

r
it.

Vt (pit; dit) = max
flpit, tpit, ldit, tdit, lrit, and tritg

Lx [1 + �Ppit + ((1� �)P � 1) dit]

+�E [Vit+1 (pit+1; dit+1)]� pit (lpit + t
p
it)� dit

�
ldit + t

d
it

�
� It (lrit + trit)

such that

pit+1 = (1� �) pit +
X
j2Cit

App
�
tdjt
��
(lpit)

�
+ "ppit pit + (2)

X
i2Ckt

Apd (t
p
kt)

� �
ldit
��
+ "pdit dit +

X
r2I

Apr (t
r
rt)

�
(lrit)

�
+ "prit It (3)

dit+1 = (1� �) dit +
X
j2Cit

Adp (t
p
it)
� �
ldjt
��
+ "dpit pit + (4)

X
i2Ckt

Add
�
tdit
��
(lpkt)

�
+ "ddit dit +

X
r2I

Apr (t
r
it)
�
(lrrt)

�
+ "drit It (5)

Vt (pit; dit) is the �rm value a as function of its in-degree and out-degree. (2) and (4) are the network forma-

tion functions of out-degree and in-degree. � is the �rm�s discount rate. � is the depreciation rate of contact

information. In the general equilibrium, � is set to the average speed that dealers get to know new produc-

ers, so that the average number of producers per dealer is a constant overtime. Otherwise, when � is too

small, the network degenerates to a fully connected network; or when � is too big, the network breaks down.n
"ppit , "

pd
it , "

pr
it , "

dp
it , "

dd
it , and "

dr
it

o
are the i. i. d. zero mean shocks that �rm i receives in di¤erent types of social

activities at time t. They capture �rm i�s representative�s random communication productivity.

Firm i hires representatives to gain more connections, at the cost of the wage bill to representatives. In the

�rst order conditions (6) to (11), the expected marginal pro�t equals the marginal cost. Every �rm takes other

�rm�s time input as given.

lpit = (Vp�App)
1

1��
�
tdjt
� �

1�� (6)

ldit = (Vp�Apd)
1

1�� (tpkt)
�

1�� (7)

lrit = (Vp�Apr)
1

1�� (trrt)
�

1�� (8)

tpit = (Vd�Adp)
1

1��
�
ldkt
� �

1�� (9)

tdit = (Vd�Add)
1

1�� (lpkt)
�

1�� (10)

trit = (Vd�Adr)
1

1�� (lrrt)
�

1�� (11)

Vp (pit; dit) = PLx� + �E
�
Vp
�
pit+1; dit+1

��
(1� �) (12)

Vd (pit; dit) = Lx (P (1� �)�1) + �E
�
Vd
�
pit+1; dit+1

��
(1� �) (13)

An educated guess for the �rm value function is V (p; d) = vpp + vdd + u. From Bellman equations (12) and
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(12), I solve for vp and vd.

vp =
PLx�

1� � (1� �) (14)

vd =
Lx (P (1� �)� 1)
1� � (1� �) (15)

To �rm i, a producer�s (dealer�s) marginal value vp (vd) is the discounted value of future commission fee

(production pro�t). In �rst order conditions (6) to (11), �rm i exerts more e¤ort in making new producers

(dealers), when its marginal value vp (vd) is higher.

In Nash equilibrium, every �rm choose the same time input portfolio
�
lp�it , t

d�
it , l

d�
it , t

p�
it , l

r�
it , and t

r�
it

	
.

lp�it = (vp�App)
1��

1���� (vd�Add)
�

1���� (16)

td�it = (vd�Add)
1��

1���� (vp�App)
�

1���� (17)

ld�it = (vp�Apd)
1��

1���� (vd�Adp)
�

1����
(18)

tp�it = (vd�Adp)
1��

1���� (vp�Apd)
�

1����
(19)

lr�it = (vp�Apr)
1��

1���� (vd�Adr)
�

1����
(20)

tr�it = (vd�Adr)
1��

1����
(vp�Apr)

�
1����

(21)

Substituting Nash equilibrium time input (16) to (21) into the network formation functions (4) and (2) solves

the dynamic network formation processes for �rm i.�
pit+1
dit+1

�
= Ft

�
pit
dit

�
+Rt (22)

Ft =

 
F pp F pd

F dp F dd

!

F ppt = 1� � + (vp�App)
�

1���� (vd�Add)
�

1���� + "ppit

F pdt = (vp�Apd)
�

1���� (vd�Adp)
�

1���� + "pdit

F dpt = (vp�Apd)
�

1���� (vd�Adp)
�

1���� + "dpit

F ddt = 1� � + (vp�App)
�

1���� (vd�Add)
�

1���� + "ddit

Rt =

�(vp�Apr) �
1���� (vd�Adr)

�
1����

+ "prit

(vp�Apr)
�

1���� (vd�Adr)
�

1����
+ "drit

�
Notice that the expectation of matrix Ft is center-symmetric. That is because every �rm�s inputs are the same.

For example, �rm i spends as much time listening to its producer j as its dealer k listens to �rm i. Firm j

also spends as much time talking to �rm i as �rm i talks to �rm k. That is why the upper-left and lower-right

elements of E (F ) are the same. Similarly, the upper and lower elements of E (R) are symmetric, because �rm i

spends the same time listening (talking) to a random �rm as a random �rm spends listening (talking) to �rm i.
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Proposition 1 According to Kesten (1973), when f"ppit , "
pd
it , "

pr
it , "

dp
it , "

dd
it , and "

dr
it g are identically independent

distributed cross �rm and time, for 2 dimensional vector x with jxj = 1, as t ! 1, x0
�
pit
dit

�
follows Pareto

distribution �x.

By choosing x = (1; 0),(0; 1), and ( 1p
2
, 1p

2
), I can check on the distribution of out-degree (pit) in-degree (dit)

and total degree (pit + dit) of the network. Since the matrices F and R in (22) are symmetric, pit and dit have

the same Pareto distribution parameter �. Notice that Power-law distribution is the discrete time version of

Pareto distribution. Since the number of links are discrete numbers, the out-degree in-degree and total degree

exhibit Power-law distributions.

3 Data

3.1 Data Description

The NBER Patent Citation Database published by U. S. Patent O¢ ce reports patent applications in 42 broad

SIC classi�cations from 1962 to 2002. With multiple years, it allows me to track the inter-temporal change of

networks. With 42 sectors, it is also convenient to compare cross sectors. I use within-sector inter-�rm citations

made between U. S. �rms from 1985 to 1995 to construct sectoral citation network for 42 sectors.

Figure 1 shows the 3-dimentional graph of a real �rm citation network based on Refrigeration and Service

Industry Machinery sector during 1990-1994. Each berry represents a �rm; a link with arrow indicates a citation

from from the citing �rm to the cited �rm. There are numerous layers in the network: �rms with more links lie

closer to the center of the network, while �rms with fewer links stay in the pheriphery of the network.

The sectoral citation network is constructed as follows. Every �rm is a node in the network. Every citation

is a directed link pointing from the citing �rm to the cited �rm. At time t, an n by n adjacency matrix Mst

summarizes sector s�citation network, where n is the total number of �rms. Mst(i; j) = 1 if �rm i cites �rm

j; otherwise Mst(i; j) = 0. Firm i�s out-degree (number of outward links or producers pit in the model) is

the number of ones in the ith row of Mst: Firm i�s in-degree (number of inward links or dealers dit in the

model) is the number of ones in the ith column of Ms;t. The total number of inward and outward links is called

total-degree. Denote it as tit = pit + dit.

3.2 Stylized Facts about Citation Network

Newman (2003) and JR summarize 5 stylized facts that socially generated networks share. Sectoral �rm citation

networks have all these characteristics. Notice that these 5 facts are all static, not dynamic, features of networks.

I report (a), (d) and (e) in Table 1, (b) and (c) in Table 2.

(a) Average shortest distance between pairs of nodes is small.

(b) As with the other social networks, clustering coe¢ cients8 are larger than randomly generated networks.

(c) Power-law in-degree (d), out-degree (p), and total-degree (t) distribution (triple power-law).

(d) Positive sorting. Degrees and patent stocks of linked �rms are positively correlated. Average geographic

distance between the citing and the cited �rms are much shorter than average distance between two random

picked �rms in the same sector.

(e) The clustering among the neighbors of a given node is inversely related to the node�s degree.

8They measure how likely two nodes with a common connected node are also connected.

7



3.3 Degree Distribution Heterogeneity and Ratio r in JR

JR predicts that the network degree distribution is more heterogeneous and network structure is more clustered,

when nodes build more new links with a friend�s friend, and form fewer new links with a random node. Because

a connection with a friend�s friend is a type of "preferential attachment,�it makes nodes with more links today

get more new links tomorrow. In contrast, every node has an equal chance of building new links with random

nodes in the randomized network formation, which tends to eliminate current di¤erences in degree numbers.

The patent citation network with multiple years and 42 sectors permits me to test their prediction across sectors.

For sector s at time t, I estimate the key parameter rst in JR, the ratio of new links with a random node to

new links with a friend�s friend. On the other hand, I also estimate the power-law degree distribution parameter

�st and calculate three measures of clustering coe¢ cient C
TT
st , Cst, and C

Avg
st listed in JR. I give the details to

estimate rts, �inst , �
out
st , �

total
st , CTTst , Cst, and C

Avg
st in the Appendix A.

As predicted in their paper, in Figure (2a)-(2c), �inst , �
out
st , and �

total
st are higher (degree distribution is more

homogeneous), when rts is higher in sector s. In Figure (3a)-(3c), CTTst , Cst, and C
Avg
st are smaller, when rts is

higher in sector s.

3.4 Simulation

To test whether the network formation process speci�ed in model section mimics the real network formation

process, I simulate a directed network for every sector and compare the simulated network with the real sectoral

network. Before simulating, I need to estimate the distribution of random matrices Fs and Rs in (22) ,GFs (Fs)

and GRs (Rs), for every sector s. I give the details for estimating GFs (Fs) and GRs (Rs) in the Appendix B.

I then �t fFftg and fRftg with log-normal distribution. �s is set to be the average growth rate of new links.
The simple simulation process is as follows.

In the simulated network for sector s, there are N nodes.

{At time t = 0, the adjacency matrixMs0 is a sparse matrix with 5% ones and 95% zeros uniformly randomly

distributed.

[At time t > 0, ones inMst�1 have possibility �s to become zero, and possibility 1� �s to still be one inMst.

(A node i with more than two friends plays as a matchmaker. Suppose k is i�s outward friend, j is i�s inward

friend. With possibility F 11kt , k wants a new outward friend from i; with possibility F 12kt , k wants a new inward

friend from i. With possibility F 21jt , j wants a new outward friend from i; with possibility F 22jt , j wants a new

inward friend from i. Fkt and Fjt are random draws from GFs (Fs). If there are m requests for an inward friend,

and n requests for an outward friend, node i randomly matches n+m
2 pairs. If �rm i gets more requests for

inward link than requests for outward link or m > n (more requests for outward link than requests for inward

link or m < n), some node gets more than one new outward (inward) friend and some node gets zero new

outward (inward) friend. However, in ex ante, every node expects to match with the same number of inward

and outward friends.)9

Repeat the process within () for every node.

Randomly turn zeros in Mst�1 into ones with possibility E
�
R1s
�
.10

Calculate the clustering coe¢ cients CTTst (t), Cst (t), and C
Avg
st (t) and estimate the degree distribution pa-

rameters �inst (t), �
out
st (t), and �

total
st (t).]

Repeat the process within [] until t = 50. }

9The process in ( ) elaborates the network-based network formation. The random matrix Fs governs the likely hood that nodes
in sector s build new link through existing links.
10This line describes the randomized method of building new link. E (Rs) governs how likely two unknown nodes randomly

connect with each other.
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Repeat the process within {} for every sector.

In Figure 4a, 4b, 4c, 5a, 5b, and 5c, I compare the degree distribution parameters �inst (t), �
out
st (t), and

�totalst (t) as well as the clustering coe¢ cients CTTst (t), Cst (t), and C
Avg
st (t) in the simulated networks with their

value in real sectoral networks. Each dot represents a sector. The straight line is the 45 degree line. The �inst (t),

�outst (t), �
total
st (t), CTTst (t), Cst (t), and C

Avg
st (t) reported for simulated networks are the average value of last

20 periods. The values reported for real networks are the 5 year average from 1991 to 1995.

The simulated networks mimic the real network in terms of degree distributions and clustering coe¢ cients

(�inst (t), �
out
st (t), �

total
st (t), and CTTst (t) in Figure 4a, 4b, 4c, and 5a. Cst (t) and C

Avg
st (t) in simulated networks

deviate from their correspondents in real networks, but the rank across sectors are still retained. The more

clustered sectors in real world are still more clustered in the simulated world.

In Figure 6, I compare the simulated value and real value of the correlation between the clustering among

the neighbors of a given node and the node�s degree for all sectors. Although most sectors still have negative

correlation between the clustering among the neighbors of a given node and the node�s degree, the simulated

networks abandon the cross-sector rank among real networks.

Among the real networks, the more clustered sector also has more heterogeneous degree distribution (lower

�inst (t), �
out
st (t), and �

total
st (t)) as displayed in Figure 7a. In Figure 7b, I show that this rank is also maintained

in the simulated world.

In conclusion, the simulated sectoral networks have a structure similar as their correspondent�s real networks.

The cross-sector ranks in many structure measures are preserved in all but one case.

4 Conclusion

This paper extends the current literature in dynamic network formation to the directed network. The model

uses pro�t sharing to explain �rms�motivation to build directed networks. The �rm that has customer access

may not have the technology to produce what the consumer wants. With the directed network, the �rm with

customer access introduces the customer to the �rm that has the technology and gets a commission fee as an

incentive. The �rm�s trade-o¤ between the bene�t and cost of building new links through di¤erent methods

determines the dynamic network formation process.

The model extends the network-based network formation method in Jackson and Rogers (2007) by modeling

the inter-temporal causality between two types of links. A current link in one direction may introduce new links

in both directions. The inter-temporal causality between links in two directions is the key to generating triple

power-law degree distribution of in-degree, out-degree, and total-degree, as observed in real directed networks.

The empirical part of the paper constructs the sectoral �rm citation network from the NBER Patent Citation

Database and estimates the model parameters from the panel network data. The simulated networks have a

structure similar to the real ones. Meanwhile, it also proves the predictions in Jackson and Rogers (2007).

In the future research, the extended model can understand the dynamic formation of more complex networks

with multiple types of nodes and links.

5 Appendix A

To �t in RJ2007�s non-directed network environment, I ignore the direction in the citation networks and

treat them as non-directed networks. For sector s at time t, the adjacency matrix becomes M̂s;t(i; j) =

max (Ms;t (i; j) , Ms;t (j; i)). Firm i and �rm j are called "old friend" at time t, if i and j are connected at

9



both t and t � 1 (M̂s;t�1(i; j) = 1 and M̂s;t(i; j) = 1). Firm i and j are called "new friend" if �rm i does not

connect with �rm j at time t� 1, but i connects with j at time t (M̂s;t�1(i; j) = 0 and M̂s;t(i; j) = 1).

Conditional on �rm i and j are new friends, they are called "network-based new friend" or "friend�s friend"

to each other, if there exists at least one �rm k 6= i; j such that k is connected with both i and j at time t� 1
(M̂s;t�1(i; :)*M̂s;t�1 (:; j) � 1, where Ms;t�1 (i; :) is the ith row of matrix M̂s;t�1 and M̂s;t�1 (:; j) is the jth

column of matrix M̂s;t�1). Conditional on �rm i and j are new friends, they are called "random new friend" to

each other, if there is no such �rm k that is connected with both i and j at time t�1 (M̂s;t�1(i; :)�M̂s;t�1 (:; j) =

0).

Mathematically rs;t is calculated as:

rs;t =
nnz

h
not

�
M̂s;t�1 � M̂s;t�1

�
: � not

�
M̂s;t�1

�
: � M̂s;t

i
nnz

h
M̂s;t�1 � M̂s;t�1: � not

�
M̂s;t�1

�
: � M̂s;t

i : (23)

The numerator (denominator) in (23) is the number of new random (friend�s) friends made in sector s at

time t. nnz counts the number of none zero elements. The (i; j) element in M̂s;t�1 � M̂s;t�1 is the number

of common friends that �rm i and j share at time t � 1. not (M) replaces positive elements in M with

zeros, and replaces zeros with ones. Therefore the (i; j) element in not
�
M̂s;t�1 � M̂s;t�1

�
is one, if �rm i and

�rm j has no common friend at time t � 1, it is zero otherwise. The (i; j) element in not
�
M̂s;t�1

�
: � M̂s;t

is one, if �rm i and j are new friends to each other, it is zero otherwise. All together, the (i; j) element

in not
�
M̂s;t�1*M̂s;t�1

�
.*not

�
M̂s;t�1

�
.*M̂s;t is positive, if �rm i and j are "random new friends", it is zero

otherwise. Similarly, the (i; j) element in M̂s;t�1*M̂s;t�1.*not
�
M̂s;t�1

�
.*M̂s;t is positive, if �rm i and j are

"network-based new friends", it is zero otherwise.

Newman (2003) gives several ways to measure network clustering. Jackson and Rogers (2007) examines

three commonly used clustering coe¢ cients in the literature. They are:

CTT (Ms;t) =

P
i;j 6=i;k 6=i;jMs;t (i; j)Ms;t (j; k)Ms;t (k; i)P

i;j 6=i;k 6=i;jMs;t (i; j)Ms;t (j; k)
,

C (Ms;t) =

P
i;j 6=i;k 6=i;j M̂s;t (i; j) M̂s;t (j; k) M̂s;t (k; i)P

i;j 6=i;k 6=i;j M̂s;t (i; j) M̂s;t (j; k)
,

and

CAvg (Ms;t) =
1

n

X
i

P
j 6=i;k 6=i;j M̂s;t (i; j) M̂s;t (j; k) M̂s;t (k; i)P

j 6=i;k 6=i;j M̂s;t (i; j) M̂s;t (j; k)
.

They all measure the likelyhood that two nodes are connected, conditional on these two nodes are connected

with a common node. The �rst two de�nitions are the same when the network is non-directed. The third

de�nition gives an equal weight to every node; while the �rst two de�nitions give a bigger weight to the node

with more links.

To estimate �xs;t in sector s at time t, I run OLS regress of ln(1� Fs;t
�
dxf;t

�
) on ln(dxf;t), where x={in,out

and total}, Fs;t (dx) is the c. d. f. of x-degree distribution in sector s at time t. �̂
x
s;t is equal to the absolute

value of the OLS coe¢ cient before ln(dxf;t). Note that standard deviation of
n
ln(dxf;t)

o
is equal to 1

�̂xs;t
, which

measures the heterogeneity of x-degree distribution.
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6 Appendix B

In sector s0 �rm citation network, I identify the realization of Ff;t and Rf;t for node f at time t with the

following steps.

(1) Identify new friend.

If Ms;t (j; i) = 1 and Ms;t�1 (j; i) = 0, node j is node i�s new inward friend at time t. If Ms;t (i; j) = 1 and

Ms;t�1 (i; j) = 0, node j is node i�s new outward friend at time t. If Ms;t (j; i) = 1 and Ms;t�1 (j; i) = 1, node j

is node i�s old inward friend at time t.

(2) Identify the source of new friend.

Suppose node j is node i�s new inward friend at time t.

If there exists a node k, such that node k is an inward friend of node i, and inward or outward friend of node

j at time t� 1; then node j is node i�s new inward friend introduced by inward friend k. The total number of
such node j introduced by inward friend are denoted as �ddf;t.

If there exists a node k, such that node k is an outward friend of node i, and k is inward or outward friend

of node j at time t� 1 or j = k; then node j is node i�s new inward friend introduced by outward friend k. The
total number of such node j is denoted as �dpf;t.

If node i has both inward and outward common friends who are friend of j, then I attribute half to �dpf;t
and half to �ddf;t.

If node j and i do not have any type of common friend, then node j is node i�s random new friend and

belongs to �drf;t.

Similarly, new outward friend introduced by inward friend, outward friend, and random new friend �pdf;t,

�ppf;t, and �p
r
f;t are identi�ed.

(3) Estimate �, the possibility to drop an old link. If Ms;t (j; i) = 0 and Ms;t�1 (j; i) = 1, then the old link

between i and j is dropped at time t. Denote dropf;t as the number of inward link dropped by �rm f at time

t. In the entire network, the possibility to drop an old link is � =
P

f dropf;tP
f df;t�1

.

(4) Infer the elements in random matrix Ff;t and Rf;t. N is the total number of nodes in the network.

F 11f;t = 1� � +
�ppf;t
pf;t

;

F 12f;t =
�pdf;t
df;t

;

F 21f;t =
�dpf;t
pf;t

;

F 22f;t = 1� � +
�ddf;t
df;t

;

R1f;t =
�prf;t
N

;

R2ft =
�drft
N

:
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1 2 3 4 5 6 7 8
Patent 

Category

SIC87 

Code

Average Shortest 

Distance between 

Two Nodes

Correlation in 

Total Degree

Correlation in 

Patent Stock

Great Circle 
Distance between 
Random Nodes 
(Kilometer)

Great Circle 
Distance between 
Linked Nodes 
(Kilometer)

Correlation between 

Local Clustering and 

Total Degree
1 20 3.568 0.256 0.174 6941.487 1061.766 -0.059
2 22 4.161 0.335 0.274 6991.833 793.612 -0.057
6 281 4.347 0.223 0.259 6487.991 988.637 -0.052
7 286 4.897 0.334 0.309 7159.114 724.757 -0.062
8 282 3.833 0.262 0.219 6724.499 724.359 -0.048
9 287 4.065 0.326 0.317 6835.288 839.865 -0.059

11 284 3.311 0.318 0.285 6250.190 804.956 -0.051
12 285 4.130 0.189 0.222 6735.441 662.364 -0.048
13 289 5.133 0.374 0.216 6643.541 844.491 -0.056
14 283 3.888 0.198 0.143 6366.191 1498.119 -0.058
15 1329 3.249 0.175 0.276 6566.865 894.687 -0.051
16 30 3.311 0.250 0.367 6950.680 994.404 -0.057
17 32 5.817 0.336 0.428 6890.830 918.441 -0.061
19 331+ 2.903 0.215 0.127 6534.431 606.400 -0.036
20 333+ 3.484 0.267 0.197 6769.626 963.375 -0.021
21 34- 5.574 0.259 0.308 6766.991 1064.213 -0.058
23 351 3.580 0.159 0.370 6766.586 939.101 -0.063
24 352 5.963 0.270 0.285 7044.228 1033.380 -0.036
25 353 5.962 0.197 0.383 6777.036 918.523 0.000
26 354 5.424 0.180 0.296 6983.690 941.041 -0.048
27 357 3.580 0.167 0.191 6687.346 1618.286 -0.062
29 355 6.037 0.201 0.328 6648.464 891.189 -0.058
30 356 5.947 0.180 0.315 6695.607 929.471 -0.060
31 358 4.035 0.223 0.214 7215.740 1116.276 -0.025
32 359 1.675 0.294 0.243 6127.337 1262.372 -0.045
35 361+ 3.626 0.105 0.211 6974.893 1305.647 -0.050
36 362 3.978 0.152 0.246 7042.136 1016.173 -0.057
38 363 2.123 0.191 0.289 6359.496 670.735 -0.017
39 364 4.759 0.285 0.378 6888.798 1174.515 -0.057
40 369 4.059 0.233 0.299 6863.550 1238.117 -0.055
42 365 3.315 0.144 0.183 7250.125 1236.902 -0.061
43 366+ 4.280 0.170 0.251 6953.626 1325.210 -0.059
46 371 3.764 0.215 0.457 7060.468 944.429 -0.056
47 376 2.404 -0.061 0.249 7256.875 1975.178 0.212
49 373 1.967 0.268 0.102 6917.394 1721.915 0.056
50 374 3.891 0.115 0.273 5475.854 775.826 -0.045
51 375 2.238 0.194 0.199 6505.385 1770.709 0.191
52 379- 1.589 0.044 0.065 5743.242 1252.619        NaN
53 348+ 4.113 0.257 0.271 6884.717 1379.926 -0.018
54 372 2.872 -0.002 0.336 5551.671 1193.121 -0.053
55 38- 6.257 0.193 0.412 6945.959 1379.452 -0.058
56 99 6.860 0.277 0.270 6904.848 1336.209 -0.054 

Table 1 Stylized Facts (a), (d) and (e) for Firm Citation Networks 
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1 2 3 4 5 6 7 8
Patent 
Category

SIC87 
Code

mu-in mu-out mu-total CTT C Cavg

1 20 0.666 0.592 0.639 0.045 0.043 0.139
2 22 0.817 0.724 0.791 0.050 0.049 0.178
6 281 0.744 0.675 0.717 0.056 0.054 0.151
7 286 0.791 0.714 0.756 0.055 0.052 0.229
8 282 0.656 0.576 0.638 0.056 0.055 0.173
9 287 0.794 0.723 0.768 0.055 0.053 0.235

11 284 0.612 0.521 0.603 0.049 0.047 0.135
12 285 0.876 0.753 0.825 0.053 0.052 0.150
13 289 0.692 0.653 0.680 0.049 0.048 0.161
14 283 0.925 0.905 0.910 0.046 0.046 0.188
15 1329 0.568 0.508 0.551 0.041 0.040 0.122
16 30 0.888 0.849 0.866 0.054 0.051 0.243
17 32 0.867 0.749 0.829 0.050 0.050 0.174
19 331+ 0.885 0.720 0.837 0.023 0.022 0.055
20 333+ 0.850 0.714 0.804 0.038 0.041 0.085
21 34- 1.035 0.961 1.003 0.054 0.052 0.223
23 351 0.567 0.539 0.571 0.051 0.050 0.178
24 352 1.043 0.933 1.010 0.040 0.039 0.104
25 353 0.907 0.852 0.891 0.053 0.049 0.161
26 354 1.146 1.010 1.091 0.042 0.042 0.133
27 357 0.572 0.566 0.580 0.056 0.053 0.298
29 355 0.983 0.936 0.967 0.054 0.050 0.198
30 356 0.958 0.859 0.920 0.053 0.051 0.234
31 358 1.204 1.018 1.155 0.042 0.039 0.074
32 359 1.494 1.021 1.300 0.008 0.008 0.038
35 361+ 0.826 0.803 0.817 0.059 0.057 0.177
36 362 0.896 0.836 0.890 0.048 0.048 0.179
38 363 0.780 0.566 0.744 0.017 0.012 0.028
39 364 0.953 0.858 0.907 0.047 0.044 0.139
40 369 0.750 0.659 0.722 0.050 0.050 0.166
42 365 0.727 0.709 0.731 0.048 0.045 0.173
43 366+ 0.626 0.614 0.622 0.056 0.052 0.295
46 371 0.649 0.608 0.649 0.055 0.054 0.172
47 376 0.963 0.742 0.911 0.010 0.009 0.008
49 373 1.259 0.915 1.122 0.015 0.013 0.022
50 374 0.797 0.625 0.743 0.018 0.017 0.063
51 375 1.540 0.986 1.345 0.012 0.007 0.014
52 379- 1.157 0.683 1.005 0.000 0.000 0.000
53 348+ 0.867 0.741 0.844 0.034 0.036 0.069
54 372 0.809 0.689 0.782 0.015 0.015 0.059
55 38- 0.681 0.696 0.692 0.056 0.051 0.282
56 99 0.931 0.869 0.911 0.049 0.047 0.185  

Table 2 Stylized Facts (b) and (c) for Firm Citation Networks 
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Figure 2a 
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Figure 2b 
 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

M
u-

to
ta

ld
eg

re
e

Log(No. of Random New Friends/No. of Network-Based Friends)
 

Figure 2c 
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Figure 3a 
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Figure 3b 
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Figure 3c 
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Figure 4a 
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Figure 4b 
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Figure 4c 
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Figure 5a 
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Figure 5b 
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Figure 5c 
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Figure 6 
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Figure 7a 
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Figure 7b 
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