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1 Introduction

The term premium on long-term nominal bonds compensates investors for in�ation and con-

sumption risks over the lifetime of the bond. A large �nance literature �nds that these risk

premiums are substantial and vary signi�cantly over time (e.g., Campbell and Shiller, 1991,

Cochrane and Piazzesi, 2005); however, the economic forces that can justify such large and

variable term premiums are less clear. Piazzesi and Schneider (2006) provide some economic

insight into the source of a large positive mean term premium in a consumption-based asset

pricing model of an endowment economy. Their analysis relies on two crucial features: �rst,

the structural assumption that investors have Epstein-Zin recursive utility preferences,1 and

second, an estimated reduced-form process for the joint determination of consumption and

in�ation. With these two elements, they show that investors require a premium for holding

nominal bonds because a positive in�ation surprise lowers a bond�s value and is associated

with lower future consumption growth. In such a situation, bondholders�wealth decreases just

as their marginal utility rises, so they require a premium to o¤set this risk. Using a similar

structure� characterized by both Epstein-Zin preferences and reduced-form consumption and

in�ation empirics� Bansal and Shaliastovich (2007) also obtain signi�cant time variation in the

term premium.

While these endowment economy results are illuminating, there are several reasons to re-

consider these questions in a dynamic stochastic general equilibrium (DSGE) framework. First,

endowment economy analyses rely on exogenous, reduced-form speci�cations for consumption

and in�ation that have no structural foundation and may not be stable over time (see, e.g.,

Benigno (2006)). In the 1970s, for example, oil shocks were unusually large, the correlation

between in�ation and output was unusually negative, and the term premium was unusually

high. A structural DSGE analysis can explain the relationship between these changes and can

model the term premium even in the presence of structural breaks, something a reduced-form

analysis cannot do. Second, endowment economy studies consider whether a particular spec-

i�cation for household preferences is consistent with asset prices, taking the macroeconomic

data as given; they are completely silent on the issue of whether their preference speci�cations

1 Early on, Kreps and Porteus (1978) established the theoretical framework for such recursive preferences,
which were further developed by Epstein and Zin (1989) and Weil (1989).
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are consistent with the macro data. This is a signi�cant concern: Lettau and Uhlig (2000)

argue that Campbell-Cochrane (1999) habits are inconsistent with the macroeconomic data de-

spite being consistent with the equity premium in an endowment economy setting. Our DSGE

analysis uses both asset prices and macro data to evaluate the overall success of the model.

Third, endowment economy results for asset prices may not carry over to the DSGE setting:

for example, Wachter (2006) matches the mean term premium in an endowment economy using

Campbell-Cochrane (1999) habits, but Rudebusch and Swanson (2008) show that these pref-

erences generate only a negligible term premium in a DSGE model, because households in the

DSGE setting can endogenously smooth consumption. That is, when households are hit by a

negative shock in a DSGE model, they can o¤set that shock by working more hours, which

allows them to smooth their marginal utility of consumption. Since the marginal utility of

consumption is smoother, assets are less risky.2 Finally, asset prices provide a check on the

implications of standard macroeconomic DSGE models: if these models are well-speci�ed, they

should be able to match basic asset pricing facts as well as basic facts about macroeconomic

quantities.

The basic asset pricing fact on which we focus is the risk premium on long-term nominal

bonds. The long-term bond premium has received less attention in the literature than the

equity premium, but it has a number of practical and theoretical advantages. From a practical

perspective, the value of long-term bonds outstanding in the U.S. (and in other countries) is far

larger than the value of equities. Central banks also use the yield curve to measure expectations

about monetary policy and in�ation, so understanding movements in bond risk premiums is

important for monetary policy. From a theoretical perspective, bonds are extremely simple to

model, consisting of only a constant nominal coupon on a default-free government obligation;

equities, in contrast, require modeling dividends and leverage, not to mention the possibility of

intangible capital, growth options, and other complications. Relative to the equity premium, the

bond premium also provides an additional metric with which to assess model performance: for

example, Boldrin, Christiano, and Fisher (2001) show that the presence of capital immobility in

a two-sector DSGE model can account for the equity premium because it increases the variance

of the price of capital and its covariance with consumption; however, this mechanism cannot

2 Boldrin, Christiano, and Fisher (2001) also stress this di¤erence between endowment economies and DSGE
models in accounting for the equity premium.
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explain a long-term bond premium, which involves the valuation of a constant nominal coupon

on a default-free government bond. Finally, the bond premium is closely related to the behavior

of in�ation and nominal rigidities, which are crucial and still unresolved aspects of the current

generation of DSGE models.

The underlying form of our DSGE model closely follows the standard speci�cation of these

models in the literature (e.g., Woodford, 2003, Christiano, Eichenbaum, and Evans, 2005, Smets

and Wouters, 2003) and, notably, contains an important role for nominal rigidities in order to

endogenously describe the behavior of in�ation, short-term nominal interest rates, and long-term

nominal bonds. We evaluate the model based on its ability to match both basic macroeconomic

moments (e.g., the standard deviations of consumption and in�ation) and basic bond pricing

moments (e.g., the means and volatilities of the yield curve slope and bond excess holding period

returns). In order to match the bond pricing facts, we augment the standard DSGE model in

two ways. First, we assume that households in the model have Epstein-Zin preferences, so risk

aversion can be modeled independently from the intertemporal elasticity of substitution.3 Such

a separation allows the model to match risk premiums even in the face of the intertemporal

substitution possibilities associated with a variable labor supply. Second, we assume that agents

in the model face long-run economic risks, as in Bansal and Yaron (2004).4 However, because

we are pricing a nominal asset, we consider not just long-run real risk, but also long-run nominal

risk, in the sense that the central bank�s long-run in�ation objective may vary over time, as in

Gürkaynak, Sack, and Swanson (2005).5

Together, these two key ingredients� Epstein-Zin preferences and long-run economic risk�

allow our model to replicate the bond pricing facts without compromising its ability to �t the

macroeconomic facts. Intuitively, our model is identical to �rst order to standard macroeconomic

DSGE representations because the �rst-order approximation to Epstein-Zin preferences is the

same as the �rst-order approximation to standard expected utility preferences. Furthermore,

the macroeconomic moments of the model are not very sensitive to the additional second- and

3 Van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramírez (2008) also price bonds in a DSGE
model with Epstein-Zin preferences, although their model treats in�ation as an exogenous stochastic process
and thus su¤ers from some of the same drawbacks as Piazzesi and Schneider (2006) and Bansal and Shaliastovich
(2007).

4 Bansal and Yaron (2004) show that uncertainty about the economy�s long-run growth prospects can play
an important role in generating sizable equity risk premiums.

5 Gürkaynak, Sack, and Swanson (2005) �nd that the excess sensitivity of long-term bond yields to macro-
economic announcements appears to be due to �nancial markets expecting some degree of pass-through from
near-term in�ation to the long-term in�ation outlook.
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higher-order terms introduced by Epstein-Zin preferences, while risk premiums are una¤ected by

�rst-order terms and completely determined by those second- and higher-order terms. Therefore,

by varying the Epstein-Zin risk-aversion parameter while holding the other parameters of the

model constant, we are able to �t the asset pricing facts without compromising the model�s

ability to �t the macroeconomic data.

Our analysis has implications for both the macroeconomics and �nance literatures. For

macroeconomics, our results suggest a path to transform the standard DSGE model into a

complete description of the economy. As a theoretical matter, asset prices and the macroecon-

omy are inextricably linked; indeed, as emphasized by Cochrane (2007), asset markets are the

mechanism by which capital is allocated e¢ ciently across �rms and by which consumption and

investment are allocated e¢ ciently across time and states of nature. Therefore, any correctly

speci�ed DSGE model must be capable of matching interest rates and other asset prices as well

as consumption and in�ation. For �nance, our analysis can illuminate the earlier reduced-form

results with a structural economic interpretation. We also suggest a resolution to a long-standing

puzzle in the bond-pricing literature (Backus, Gregory, and Zin, 1989, and Den Haan, 1995);

namely, why does the yield curve slope upward? If interest rates are low during a recession, then

bond prices should be high when consumption is low; as a result, long-term bonds should carry

an insurance-like, negative risk premium and the yield curve should� counterfactually� slope

downward. In our DSGE model, the yield curve slopes upward because technology shocks cause

in�ation to rise persistently when consumption falls, so long-term nominal bonds lose rather

than gain value in recessions, implying a positive risk premium. More generally, any shock that

causes in�ation to move persistently and inversely to output, including a markup shock or an

oil price shock, will tend to imply such a positive term premium.

The remainder of the paper proceeds as follows. Section 2 generalizes a standard DSGE

model to the case of Epstein-Zin preferences. Section 3 presents results for this model and

shows how it is able to match the term premium without impairing the model�s ability to �t

macroeconomic variables. Section 4 introduces a model with enhanced long-run economic risks,

which improves the model�s overall �t to the data. Section 5 concludes. A brief technical

appendix provides additional details of how general DSGE models can be extended to the case

of Epstein-Zin preferences and solved.
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2 A DSGE Model with Epstein-Zin Preferences

In this section, we generalize the simple, stylized DSGE model of Woodford (2003) to the case

of Epstein-Zin preferences. We show how to price long-term nominal bonds in this model and

present a variety of measures of the term premium and long-term bond risk.

2.1 Epstein-Zin Preferences

It is standard practice in macroeconomics to assume that a representative household chooses

state-contingent plans for consumption, c, and labor, l, so as to maximize expected utility:

maxE0

1X
t=0

�tu(ct; lt); (1)

subject to an asset accumulation equation, where � 2 (0; 1) is the household�s discount fac-

tor and the period utility kernel u(ct; lt) is twice-di¤erentiable, concave, increasing in c, and

decreasing in l. The maximand in equation (1) can be expressed in �rst-order recursive form

as:

Vt � u(ct; lt) + �EtVt+1; (2)

where the household�s state-contingent plans at time t are chosen so as to maximize Vt.

In this paper, we follow the �nance literature and generalize (2) to an Epstein-Zin speci�-

cation:

Vt � u(ct; lt) + �
�
EtV

1��
t+1

�1=(1��)
; (3)

where the parameter � can take on any real value.6 If u � 0 everywhere, then the proof of

Theorem 3.1 in Epstein and Zin (1989) shows that there exists a solution V to (3) with V � 0.

If u � 0 everywhere, then it is natural to let V � 0 and reformulate the recursion as:

Vt � u(ct; lt)� �
�
Et(�Vt+1)1��

�1=(1��)
: (4)

The proof in Epstein and Zin (1989) also demonstrates the existence of a solution V to (4) with

V � 0 in this case.7 When � = 0, both (3) and (4) reduce to the standard case of expected

6 The case � = 1 corresponds to Vt = u(ct; lt) + � exp(Et log Vt+1) for the case u � 0, and Vt = u(ct; lt) �
� exp[Et log(�Vt+1)] for u � 0.

7 We exclude the case where u is sometimes positive and sometimes negative, although for local approxima-
tions around a deterministic steady state with in�nitesimal uncertainty, this case does not present any particular
di¢ culties.
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utility (2). When u � 0 everywhere, higher (lower) values of � correspond to greater (lesser)

degrees of risk aversion. When u � 0 everywhere, the opposite is true: higher (lower) values of

� correspond to lesser (greater) degrees of risk aversion.

Note that, traditionally, Epstein-Zin preferences over consumption streams have been written

as: eVt � �c�t + �
�
EteV e�

t+1

��=e��1=�
; (5)

but by setting Vt = eV �
t and � = 1� e�=�, this can be seen to correspond to (3). Moreover, the

form (3) has the advantage that it allows us to consider standard DSGE utility kernels involving

both labor and inelastic intertemporal substitution (� < 0), which the form (5) cannot easily

handle.

The key advantage of using Epstein-Zin utility (3) is that it breaks the equivalence between

the inverse of the intertemporal elasticity of substitution and the coe¢ cient of relative risk

aversion that has long been noted in the literature regarding expected utility (2)� see, e.g.,

Mehra and Prescott (1985) and Hall (1988). In (3), the intertemporal elasticity of substitution

over deterministic consumption paths is exactly the same as in (2), but now the household�s

risk aversion to uncertain lotteries over Vt+1 can be ampli�ed by the additional parameter �, a

feature which is crucial for allowing us to �t both the asset pricing and macroeconomic facts

below.8

We now turn to the utility kernel u. For simplicity, we adopt the usual DSGE speci�cation

(e.g., Woodford, 2003):

u(ct; lt) �
ct
1�


1� 

� �0

l1+�t

1 + �
; (6)

which allows for tractable modeling of nominal wage as well as price rigidities� an essential

ingredient of many models in this literature. If 
 > 1, then (6) is everywhere negative and V is

de�ned by (4). If 
 � 1, then there are two main approaches to ensure that the utility kernel u

is everywhere positive. The �rst is to add a constant:

u(ct; lt) �
ct
1�


1� 

� �0

l1+�t

1 + �
+
�0l

1+�

1 + �
; (7)

where l denotes the household�s time endowment. Note, however, that additive shifts of the

8 Indeed, the linearization or log-linearization of (3) is exactly the same as that of (2), which turns out to be
very useful for matching the model to macroeconomic variables, since models with (2) are already known to be
able to �t macroeconomic quantities reasonably well. We will return to this point in Section 3, below.
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utility kernel, as in (7), are nonneutral and a¤ect the household�s attitude towards risk, except

for the special case of expected utility, � = 0. (This will become apparent when we derive the

household�s stochastic pricing kernel, below.) The second approach is to use (6) but impose

that there is some subsistence level c � 0 for consumption below which households cannot go.

By setting c high enough, we can ensure that u is positive over the range of admissible values

for c and l. Of these two approaches, we will generally opt for the latter when we consider the

case 
 < 1 in the estimation below.

2.2 The Household�s Optimization Problem

We now turn to the representative household�s optimization problem under Epstein-Zin prefer-

ences. We assume that households are representative and choose state-contingent consumption

and labor plans so as to maximize (3) subject to an intertemporal-�ow budget constraint, spec-

i�ed below. We will solve the household�s optimization problem as a Lagrange problem with

the states of nature explicitly speci�ed. To that end, let s0 2 S0 denote the initial state of the

economy at time 0, let st 2 S denote the realizations of the shocks that hit the economy in

period t, and let st � fst�1; stg 2 S0 � St denote the initial state and history of all shocks up

through time t. We de�ne stt�1 to be the projection of the history s
t onto its �rst t components;

that is, stt�1 is the history s
t as it would have been viewed at time t � 1, before time-t shocks

have been realized.

Households have access to an asset whose price is given by pt;st > 0 in each period t and state

of the world st. In each period t, households choose the quantity of consumption ct;st, labor

lt;st, and asset holdings at;st that will carry through to the next period, subject to a constraint

that the household�s asset holdings at;st are always greater than some lower bound a � 0,

which does not bind in equilibrium but rules out Ponzi schemes. Households are price takers in

consumption, asset, and labor markets, and face a price per unit of consumption of Pt;st, and

nominal wage rate wt;st. Households also own an aliquot share of �rms and receive a per-period

lump-sum transfer from �rms in the amount dt;st. The household�s �ow budget constraint is

thus:

pt;stat;st + Pt;stct;st = wt;stlt;st + dt;st + pt;stat�1;stt�1 : (8)

The household�s optimization problem is to choose a sequence of vector-valued functions,
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[ct(s
t); lt(s

t); at(s
t)] : S0 � St ! [c;1] � [0; l] � [a;1), so as to maximize (3) subject to the

sequence of budget constraints (8). For clarity in what follows, we assume that s0 and st can

take on only a �nite number of possible values (i.e., S0 and S have �nite support), and we let

�s� jst, � � t � 0, denote the probability of realizing state s� at time � conditional on being in

state st at time t.

The household�s optimization problem can be formulated as a Lagrangean, where the house-

hold chooses state-contingent plans for consumption, labor, and asset holdings, (ct;st ; lt;st ; at;st),

that maximize V0 subject to the in�nite sequence of state-contingent constraints (3) and (8),

that is, maximize:

L � V0;s0 �
1X
t=0

X
st

�t;st

8<:Vt;st � u(ct;st ; lt;st)� �

 X
st+1

�st+1jstV
1��
t+1;st+1

!1=(1��)9=;�
1X
t=0

X
st

�t;stfpt;stat;st + Pt;stct;st � wt;stlt;st � dt;st � pt;stat�1;stt�1g: (9)

The household�s �rst-order conditions for (9) are then:

@L
@ct;st

: �t;stu1j(ct;st ;lt;st ) = Pt;st�t;st ;

@L
@lt;st

: ��t;stu2j(ct;st ;lt;st ) = wt;st�t;st ;

@L
@at;st

: �t;stpt;st =
X

st+1�st
�t+1;st+1pt+1;st+1 ;

@L
@Vt;st

: �t;st = ��stjstt�1�t�1;stt�1

0@ X
est�stt�1

�estjstt�1V 1��
t;est

1A�=(1��)

V ��
t;st ; �0;s0 = 1:

Letting (1+rt+1;st+1) � pt+1;st+1=pt;st, the gross rate of return on the asset, making substitutions,

and de�ning the stationary Lagrange multipliers e�t;st � ��t��1stjs0�t;st and e�t;st � ��t��1stjs0�t;st,

these become:

@L
@ct;st

: e�t;stu1j(ct;st ;lt;st ) = Pt;ste�t;st (10)

@L
@lt;st

: �e�t;stu2j(ct;st ;lt;st ) = wt;ste�t;st (11)

@L
@at;st

: e�t;st = �Et;ste�t+1;st+1(1 + rt+1;st+1) (12)

@L
@Vt;st

: e�t;st = e�t�1;stt�1(Et�1;stt�1V 1��
t;est )�=(1��)V ��

t;st ; e�0;s0 = 1: (13)
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These �rst-order conditions are very similar to the expected utility case except for the intro-

duction of the additional Lagrange multipliers e�t;st, which translate utils at time t into utils at
time 0 , allowing for the �twisting�of the value function by 1� � that takes place at each time

1; 2; : : : ; t. Note that in the expected utility case, e�t;st = 1 for every t and st, and equations (10)
through (13) reduce to the standard optimality conditions. Similarly, linearizing (10) through

(13) separates out e�t;st and causes � to drop out, so to �rst order, (10) through (13) are identical
to the expected utility case.

Substituting out for e�t;st and e�t;st in (10) through (13), we get the household�s intratemporal
and intertemporal (Euler) optimality conditions:

�u2j(ct;st ;lt;st )
u1j(ct;st ;lt;st )

=
wt;st

Pt;st

u1j(ct;st ;lt;st ) = �Et;st(Et;stV
1��
t+1;st+1)

�=(1��)V ��
t+1;st+1 u1j(ct+1;st+1 ;lt+1;st+1 )(1 + rt+1;st+1)Pt;st=Pt+1;st+1 :

Finally, let ps
�

t;st, t � � , denote the price at time t in state st of a state-contingent bond that

pays one dollar at time � in state s� and 0 otherwise. If we insert this state-contingent security

into the household�s optimization problem, we see that, for t < � :

ps
�

t;st = �Et;st(Et;stV
1��
t+1;st+1)

�=(1��)V ��
t+1;st+1

u1j(ct+1;st+1 ;lt+1;st+1 )
u1j(ct;st ;lt;st )

Pt;st

Pt+1;st+1
ps

�

t+1;st+1 : (14)

That is, the household�s (nominal) stochastic discount factor at time t in state st for stochastic

payo¤s at time t+ 1 is given by:

mt;st;t+1;st+1 �
 

Vt+1;st+1

(Et;stV
1��
t+1;st+1)

1=(1��)

!��
�u1j(ct+1;st+1 ;lt+1;st+1 )

u1j(ct;st ;lt;st )
Pt;st

Pt+1;st+1
: (15)

Despite the twisting of the value function by 1 � �, the price ps
�

t;st nevertheless satis�es the

standard relationship,

ps
�

t;st = Et;stmt;st;t+1;st+1mt+1;st+1;t+2;st+2 p
s�

t+2;st+2

= Et;st mt;st;t+1;st+1mt+1;st+1;t+2;st+2 � � � m��1;s��1;� ;s� ;

and the asset pricing equation (14) is linear in the future state-contingent payo¤s, so that

we can price any compound security by summing over the prices of its individual constituent

state-contingent payo¤s.
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2.3 The Firm�s Optimization Problem

To model nominal rigidities, we assume that the economy contains a continuum of monopo-

listically competitive intermediate goods �rms indexed by f 2 [0; 1] that set prices according

to Calvo contracts and hire labor from households in a competitive labor market. Firms have

identical Cobb-Douglas production functions:

yt(f) = Atk
(1��)

lt(f)
�; (16)

where k is a �xed, �rm-speci�c capital stock and At denotes an aggregate technology shock

that a¤ects all �rms.9 We have suppressed the explicit state-dependence of the variables in

this equation and in the remainder of the paper to ease the notational burden. The technology

shock At follows an exogenous AR(1) process:

logAt = �A logAt�1 + "At ; (17)

where "At denotes an independently and identically distributed (i.i.d.) aggregate technology

shock with mean zero and variance �2A:

Firms set prices according to Calvo contracts that expire with probability 1� � each period.

When the Calvo contract expires, the �rm is free to reset its price as it chooses, and we denote

the price that the �rm f sets in period t by pt(f). There is no indexation, so the price pt(f) is

�xed over the life of the contract. In each period � � t that the contract remains in e¤ect, the

�rm must supply whatever output is demanded at the contract price pt(f), hiring labor l� (f)

from households at the market wage w� .

Firms are collectively owned by households and distribute pro�ts and losses back to house-

holds each period. When a �rm�s price contract expires, the �rm chooses the new contract price

pt(f) to maximize the value to shareholders of the �rm�s cash �ows over the lifetime of the

contract (equivalently, the �rm chooses a state-contingent plan for prices that maximizes the

value of the �rm to shareholders). That is, the �rm maximizes:

Et

1X
j=0

�jmt;t+j [pt(f)yt+j(f)� wt+jlt+j(f)] ; (18)

9 Woodford (2003), Altig, Christiano, Eichenbaum, and Lindé (2004), and others have emphasized the im-
portance of �rm-speci�c �xed factors for generating a level of in�ation persistence that is consistent with the
data. Firm-speci�c capital stocks also help to match the term premium as well as the persistence of in�ation.
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where mt;t+j is the representative household�s stochastic discount factor from period t to t+ j.

The output of each intermediate �rm f is purchased by a perfectly competitive �nal goods

sector that aggregates the continuum of intermediate goods into a single �nal good using a CES

production technology:

Yt =

�Z 1

0

yt(f)
1=(1+�)df

�1+�
: (19)

Each intermediate �rm f thus faces a downward-sloping demand curve for its product:

yt(f) =

�
pt(f)

Pt

��(1+�)=�
Yt; (20)

where Pt is the CES aggregate price per unit of the �nal good:

Pt �
�Z 1

0

pt(f)
�1=�df

���
: (21)

Di¤erentiating (18) with respect to pt(f) yields the standard optimality condition for the

�rm�s price:

pt(f) =
(1 + �)Et

P1
j=0 �

jmt;t+jmct+j(f)yt+j(f)

Et
P1

j=0 �
jmt;t+jyt+j(f)

: (22)

where mct(f) denotes the marginal cost for �rm f at time t:

mct(f) �
wtlt(f)

�yt(f)
: (23)

2.4 Aggregate Resource Constraints and the Government

To aggregate up from �rm-level variables to aggregate quantities, it is useful to de�ne cross-

sectional price dispersion, �t:

�
1=�
t � (1� �)

1X
j=0

�jpt�j(f)
�(1+�)=��; (24)

where the occurrence of the parameter � in the exponent is due to the �rm-speci�city of capital.

We de�ne Lt, the aggregate quantity of labor demanded by �rms, as:

Lt �
Z 1

0

lt(f)df: (25)

Then Lt satis�es:

Yt = �
�1
t AtK

1��
L�t ; (26)
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where K = k is the capital stock. Equilibrium in the labor market requires that Lt = lt, labor

demand equals the aggregate labor supplied by the representative households.

In order to study the e¤ects of �scal shocks, we assume that there is a government sector in

the model that levies lump-sum taxes Gt on households and destroys the resources it collects.

Government consumption follows an exogenous AR(1) process:

logGt = �G logGt�1 + "Gt ; (27)

where "Gt denotes an i.i.d. government consumption shock with mean zero and variance �
2
G.

Although agents cannot invest in physical capital in this version of the model, we do assume

that an amount �K of output each period is devoted to maintaining the �xed capital stock.

Thus, the aggregate resource constraint implies that

Yt = Ct + �K +Gt; (28)

where Ct = ct, the consumption of the representative household.

Finally, there is a monetary authority in the economy which sets the one-period continuously-

compounded nominal interest rate it according to a Taylor-type policy rule:

it = �iit�1 + (1� �i)
�
log(1=�) + log �t + gy(Yt � Y )=Y + g�(log �t � log ��)

�
+ "it; (29)

where log(1=�) is the steady-state real interest rate in the model, Y denotes the steady-state

level of output, �� denotes the steady-state rate of in�ation, "it denotes an i.i.d. stochastic

monetary policy shock with mean zero and variance �2i , and �i, gy, and g� are parameters.
10

The variable �t denotes a geometric moving average of in�ation:

�t = ���t�1 + (1� ��)�t; (30)

where current-period in�ation �t � log(Pt=Pt�1) and we set �� = 0:7 so that the geometric

average in (30) has an e¤ective duration of about four quarters, which is typical in estimates of

the Taylor rule.11

10 In equation (29) (and equation (29) only), we express it, �t, and 1=� in annualized terms, so that the
coe¢ cients g� and gy correspond directly to the estimates in the empirical literature. We also follow the lit-
erature by assuming an �inertial�policy rule with i.i.d. policy shocks, although there are a variety of reasons
to be dissatis�ed with the assumption of AR(1) processes for all stochastic disturbances except the one asoci-
ated with short-term interest rates. Indeed, Rudebusch (2002, 2006) and Carrillo, Fève, and Matheron (2007)
provide strong evidence that an alternative policy speci�cation with serially correlated shocks and little gradual
adjustment is more consistent with the dynamic behavior of nominal interest rates.
11 Including the usual four-quarter moving average of in�ation in the policy rule adds three lags (�t�1, �t�2,

and �t�3) as state variables, while our geometric average adds only one lag (�t�1). All results are very similar
for either speci�cation.
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2.5 Long-Term Bonds and the Term Premium

The price of any asset in the model economy must satisfy the standard stochastic discounting

relationship in which the household�s stochastic discount factor is used to value the state-

contingent payo¤s of the asset in period t+1. For example, the price of a default-free n-period

zero-coupon bond that pays one dollar at maturity satis�es:

p
(n)
t = Et[mt+1p

(n�1)
t+1 ]; (31)

where mt+1 � mt;t+1, p
(n)
t denotes the price of the bond at time t, and p(0)t � 1, i.e., the time-t

price of one dollar delivered at time t is one dollar. The continuously-compounded yield to

maturity on the n-period zero-coupon bond is de�ned to be:

i
(n)
t � �1

n
log p

(n)
t : (32)

In the U.S. data, the benchmark long-term bond is the ten-year Treasury note. Thus, we wish

to model the term premium on a bond with a duration of about ten years. Computationally, it

is inconvenient to work with a zero-coupon bond that has more than a few periods to maturity;

instead, it is much easier to work with an in�nitely-lived consol-style bond that has a time-

invariant or time-symmetric structure.12 Thus, we assume that households in the model can

buy and sell a long-term default-free nominal consol which pays a geometrically declining coupon

in every period in perpetuity. The nominal consol�s price per one dollar of coupon in period t,

which we denote by ep(n)t , then satis�es:
ep(n)t = 1 + �cEtmt+1ep(n)t+1; (33)

where �c is the rate of decay of the coupon on the consol. By choosing an appropriate value for

�c, we can thus model prices of a bond of any desired Macaulay duration or maturity n, such

as the ten-year maturity that serves as our zero-coupon benchmark in the data.13 Finally, the

12 We have also veri�ed that all of our results continue to hold with zero-coupon bonds as well as the consol.
However, solving the model with zero-coupon bonds takes much (eight to ten times) longer than solving the
model with the consol, because solving for the 40-quarter zero-coupon bond price essentially requires solving for
zero-coupon bond prices of all maturities from one to 40 quarters. The consol can be solved by adding just one
�rst-order recursive equation to the model.
13 As �c approaches 0, the consol behaves more like cash� a zero-period zero-coupon bond. As �c approaches

1, the consol approaches a traditional consol with a �xed (nondepreciating) nominal coupon, which, under our
baseline parameter values below, has a duration of about 25 years. By setting �c > 1, the duration of the consol
can be made even longer.
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continuously-compounded yield to maturity on the consol, e{(n)t , is given by:
e{(n)t � log

 
�cep(n)tep(n)t � 1

!
: (34)

Note that even though the nominal bond in our model is default-free, it is still risky in

the sense that its price can covary with the household�s marginal utility of consumption. For

example, when in�ation is expected to be higher in the future, then the price of the bond

generally falls, because households discount its future nominal coupons more heavily. If times

of high in�ation are correlated with times of low output (as is the case for technology shocks

in the model), then households regard the nominal bond as being very risky, because it loses

value at exactly those times when the household values consumption the most. Alternatively, if

in�ation is not very correlated with output and consumption, then the bond is correspondingly

less risky. In the former case, we would expect the bond to carry a substantial risk premium

(its price would be lower than the risk-neutral price), while in the latter case we would expect

the risk premium to be smaller.

In the literature, the risk premium or term premium on a long-term bond is typically ex-

pressed as the di¤erence between the yield on the bond and the unobserved risk-neutral yield for

that same bond. To de�ne the term premium in our model, then, we �rst de�ne the risk-neutral

price of the consol, bp(n)t : bp(n)t � Et
1X
j=0

e�it;t+j�jc; (35)

where it;t+j �
Pj

n=0 in. Equation (35) is the expected present discounted value of the coupons

of the consol, where the discounting is performed using the risk-free rate rather than the house-

hold�s stochastic discount factor. Equivalently, equation (35) can be expressed in �rst-order

recursive form as: bp(n)t = 1 + �ce
�itEtbp(n)t+1; (36)

which directly parallels (33). The implied term premium on the consol is then given by:

 
(n)
t � log

 
�cep(n)tep(n)t � 1

!
� log

 
�cbp(n)tbp(n)t � 1

!
; (37)

which is the di¤erence between the observed yield to maturity on the consol and the risk-neutral

yield to maturity. For a given set of structural parameters of the model, we will choose �c so
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that the bond has a Macaulay duration of n = 40 quarters, and we will multiply equation (37)

by 400 in order to report the term premium in units of annualized percentage points rather

than logs.

The term premium in equation (37) can also be expressed more directly in terms of the

stochastic discount factor, which can be useful for gaining intuition about how the term premium

is related to the various economic shocks driving our DSGE model. First, use (33) and (36) to

write the di¤erence between the consol price and the risk-neutral consol price as:

ep(n)t � bp(n)t = �c(Etmt+1ep(n)t+1 � Etmt+1Etbp(n)t+1);
= �c

h
Covt(mt+1; ep(n)t+1) + Etmt+1Et(ep(n)t+1 � bp(n)t+1)i ;

= �c

h
Covt(mt+1; ep(n)t+1) + e�itt Et(ep(n)t+1 � bp(n)t+1)i ;

= Et

1X
j=0

e�it;t+j�t+j+1c Covt+j(mt+j+1; ep(n)t+j+1); (38)

Equation (38) makes it clear that, even though the bond price depends only on the one-period-

ahead covariance between the stochastic discount factor and next period�s bond price, the term

premium depends on this covariance over the entire lifetime of the bond.14

Of course, the term premium is usually written as the di¤erence between the yield on the

long-term bond and the risk-neutral yield on that bond. From (37),

 
(n)
t = log

�
1� 1=bp(n)t �� log �1� 1=ep(n)t � ;

� �1
p
(n)2
t

(ep(n)t � bp(n)t );
=

�1
p
(n)2
t

Et

1X
j=0

e�it;t+j�t+j+1c Covt+j(mt+j+1; ep(n)t+j+1); (39)

where p(n)t denotes the nonstochastic steady-state bond price.15 Intuitively, the term premium

is larger the more negative is the covariance between the stochastic discount factor and the price

of the bond over the lifetime of the bond.
14 An exactly analogous expression holds for the case of a zero-coupon bond.
15 The �rst-order approximation on the second line of (39) is useful for gaining intuition and is a good

approximation because the bond prices bp(n)t and ep(n)t are about 40 for the parameterizations of the model we
consider below. However, when we solve for the term premium in the model numerically, our solution will include
the second- and third-order as well as the �rst-order terms.
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2.6 Alternative Measures of Long-Term Bond Risk

Although the term premium is the cleanest conceptual measure of the riskiness of long-term

bonds, it is not directly observed in the data and must be inferred using term structure models

or other methods. Accordingly, the literature has also focused on two other directly observed

empirical measures that are closely related to the term premium: the slope of the yield curve

and the excess return to holding the long-term bond for one period relative to the one-period

short rate.

The slope of the yield curve is simply the di¤erence between the yield to maturity on the

long-term bond and the one-period risk-free rate, it. The slope is an imperfect measure of the

riskiness of the long-term bond because it can vary in response to shocks even if all investors in

the model are risk-neutral. However, on average, the slope of the yield curve equals the term

premium, and the volatility of the slope provides us with a noisy measure of the volatility of

the term premium.

A second measure of the riskiness of long-term bonds is the excess one-period holding

return� that is, the return to holding the bond for one period less the one-period risk-free

rate. For the case of an n-period zero-coupon bond, this excess return is given by:

x
(n)
t � p

(n�1)
t

p
(n)
t�1

� eit�1 : (40)

The �rst term on the right-hand side of (40) is the gross return to holding the bond and the

second term is the gross one-period risk-free return. For the case of the consol in our model,

the excess holding period return is a bit more complicated, since the consol pays a coupon in

period t� 1 and then depreciates in value by the factor �c, so the excess holding period return

is given by:

ex(n)t � �cep(n)t + eit�1ep(n)t�1 � eit�1 : (41)

Again, the �rst term on the right-hand side of (41) is the gross return to holding the consol and

includes the one-dollar coupon in period t � 1 that can be invested in the one-period security.

As with the yield curve slope, the excess returns in (40) and (41) are imperfect measures of the

term premium because they would vary in response to shocks even if investors were risk-neutral.

However, the mean and standard deviation of the excess holding period return provide popular

measures of the average term premium and the volatility of the term premium.
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2.7 Model Solution Method

A technical issue in solving the model above arises from its relatively large number of state vari-

ables: At�1, Gt�1, it�1, �t�1, �t�1, and the three shocks, "At , "
G
t , and "

i
t, make a total of eight.

16

Because of this high dimensionality, discretization and projection methods are computationally

infeasible, so we solve the model using the standard macroeconomic technique of approximation

around the nonstochastic steady state� so-called perturbation methods. However, a �rst-order

approximation of the model (i.e., a linearization or log-linearization) eliminates the term pre-

mium entirely, because equations (33) and (36) are identical to �rst order. A second-order

approximation to the solution of the model produces a term premium that is nonzero but con-

stant (a weighted sum of the variances �2A, �
2
G, and �

2
i ). Since our interest in this paper is

not just in the level of the term premium but also in its volatility and variation over time, we

compute a third-order approximate solution to the model around the nonstochastic steady state

using the algorithm of Swanson, Anderson, and Levin (2006). For the baseline model above with

eight state variables, a third-order accurate solution can be computed in just a few minutes on a

standard laptop computer, and for the more complicated speci�cations we consider below with

long-run risks, a third-order solution can be computed in 20 or 30 minutes. Additional details

of this solution method are provided in Swanson, Anderson, and Levin (2006) and Rudebusch,

Sack, and Swanson (2007).

Once we have computed an approximate solution to the model, we compare the model and

the data using a standard set of macroeconomic and �nancial moments, such as the standard

deviations of consumption, labor, and other variables, and the means and standard deviations

of the term premium and the alternative measures of long-term bond risk described above.

One method of computing these moments is by simulation, but this method is slow and, for

a nonlinear model, the simulations can sometimes diverge to in�nity. We thus compute these

moments in closed form, using perturbation methods. In particular, we compute the uncon-

ditional standard deviations and unconditional means of the variables of the model to second

order.17 For the term premium, the unconditional standard deviation is zero to second order,

16 The number of state variables can be reduced a bit by noting that Gt and At are su¢ cient to incorporate
all of the information from Gt�1, At�1, "Gt , and "

A
t , but the basic point remains valid, namely, that the number

of state variables in the model is large from a computational point of view.
17 To compute the standard deviations of the variables to second order, we compute a fourth-order accurate

solution to the unconditional covariance matrix of the variables and then take the square root along the diagonal.
Note that a third-order accurate solution for X and Y is su¢ cient to compute the product E[XY ] to fourth
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so we compute the unconditional standard deviation of the term premium to third order. This

method yields results that are extremely close to those that arise from simulation, while at the

same time being quicker and more numerically robust.

3 Comparing the Epstein-Zin DSGE Model to the Data

We now investigate whether the standard DSGE model, extended to the case of Epstein-Zin

preferences as developed in the previous section, is consistent with the most basic features of the

macroeconomic and �nancial market data. We �rst investigate the behavior of the model under

a baseline set of parameter values and then vary those parameters to �nd the best possible �t

of the model to the data.

3.1 Model Parameterization

The baseline parameter values that we use for our simple New Keynesian model are reported in

Table 1 and are fairly standard in the literature (e.g., Levin, Onatski, Williams, and Williams,

2005). We set the household�s discount factor, �, to .99 per quarter, implying a steady-state

real interest rate of 4.02 percent per year. We set households�utility curvature with respect to

consumption, 
, to 2, implying an intertemporal elasticity of substitution (IES) in consumption

of 0.5, which is consistent with estimates in the micro literature (e.g., Vissing-Jorgensen, 2002),

but we will also estimate this parameter below. Households�utility curvature with respect to

labor, �, is set to 1.5, implying a Frisch elasticity of 2/3, which is also in line with estimates

from the microeconomics literature (e.g., Pistaferri, 2003). We discuss the parameter � and its

relationship to the coe¢ cient of relative risk aversion in Section 3.2.

We set �rms�output elasticity with respect to labor, �, to .7, �rms�steady-state markup, �,

to .2 (implying a price-elasticity of demand of 6), and the Calvo frequency of price adjustment,

�, to .75 (implying an average price contract duration of four quarters), all of which are standard

in the literature. We set the steady-state capital-output ratio in the model to 2.5 (where output

is annualized), and the capital depreciation rate to 2 percent per quarter (implying a steady-

state investment-output ratio of 20 percent). Government purchases are assumed to consume

order, when X and Y have zero mean (as in a covariance).
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Table 1
Baseline Parameter Values for the Simple DSGE Model

� .99 �i .73 K=(4Y ) 2.5

 2 g� .53 �K=Y .2
� 1.5 gy .93 G=Y .17
� �73 �A .9
� .7 �G .9
� .2 �2A .012

� .75 �2G .0042

�2i .0042

memo:
quais-CRRA 75

�0 .5479
�c .9848

17 percent of output in the steady state. The monetary policy rule coe¢ cients are taken from

Rudebusch (2002) and are also typical of those in the literature. The shock persistences �A and

�G are set to .9, as is common, and the shock variances �
2
A, �

2
G, and �

2
i are set to .01

2, .0042, and

.0042, respectively, consistent with typical estimates in the literature. Finally, the parameter

�0 is chosen to normalize the steady-state quantity of labor to unity and the parameter �c is

chosen to set the Macaulay duration of the consol in the model to ten years, as discussed above.

3.2 The Coe¢ cient of Relative Risk Aversion

The degree of household risk aversion is a crucial parameter for our analysis becuase it directly

measures the compensation a household requires in order to hold a risky asset. In previous stud-

ies of Epstein-Zin preferences, computing household risk aversion is typically straightforward,

because those studies exclude labor (being in an endowment economy rather than a DSGE

setting) and are homothetic� that is, the quantity of consumption demanded in each period

depends linearly on the household�s initial wealth. For example, when u(ct; lt) = c1�
t =(1� 
),

and shocks have a multiplicative e¤ect on wealth, then the household�s value-to-go Vt in each

period is equal to a constant (function of parameters) timesW 1�

t , whereWt denotes beginning-

of-period household wealth. In that case, the expectation in (3) is over W (1��)(1�
)
t+1 , and it is
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common to refer to 1� (1��)(1�
) as the household�s coe¢ cient of relative risk aversion with

respect to gambles over next-period wealth.18

In contrast, the value function for the household�s optimization problem in our DSGE model

is much more complicated. First, the utility kernel is not homothetic due to the presence of

labor;19 second, the shocks in the model do not enter multiplicatively with respect to wealth; and

third, the household�s true wealth includes human as well as physical capital. For these reasons,

the household�s value function is not simply separable in wealth� in fact, the household�s value

function has multiple state variables and, as discussed by Kihlstrom and Mirman (1974), it

is di¢ cult to de�ne risk aversion when there is more than one good or more than one state

variable. As a result, there is no standard or even unambiguous quantitative measure of risk

aversion in our model.20

In order to compare our model and results to the endowment economy literature, we thus

report the quasi-CRRA, 1 � (1 � �)(1 � 
). The interpretation of this coe¢ cient is that, if

labor in our model were held �xed, and if utility were homothetic, and if all the shocks in

the model were multiplicative with respect to wealth, then the CRRA in the model would be

the quasi-CRRA that we report. In the baseline parameterization of our model given in Table

1, the Epstein-Zin coe¢ cient � is set to �73, and 
 is 2, which implies a quasi-CRRA of 75.

This may seem like a high baseline value, but we will also estimate a high value in the �best

�t�exercise below, and it will be helpful for gaining intuition for our results to have a baseline

quasi-CRRA that is similarly high.

We emphasize, however, that there are many reasons why this quasi-CRRA is not a very

good measure of households� true attitudes toward risk in our model. For example, if we

consider gambles over current-period consumption, ct, holding future consumption and current

and future labor �xed, the household behaves as if its CRRA were simply 
, the same as in

18 Recall that when 
 > 1, risk aversion is decreasing in � and � < 0 corresponds to preferences that are
more risk averse than expected utility; when 
 < 1, risk aversion is increasing in � and � > 0 corresponds to
preferences that are more risk averse than expected utility.
19 For the household�s preferences to be homothetic, the quantity of consumption and leisure demanded in each

period must scale linearly with wealth. This is not the case for any standard utility kernel with consumption and
leisure because leisure is bounded above by the household�s time endowment. In particular, nonhomotheticity
is not speci�c to the additively separable utility kernel (6).
20 However, see Swanson (2009) for some recent work on this issue. We do know from Epstein and Zin (1989)

that, for u (ct; lt) � 0 everywhere, higher values of � correspond to greater risk aversion. The issue here is that
we have no easy way to quantify the degree of risk aversion in our model in a way that one could compare to
the empirical literature.
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the expected utility case and far less than the quasi-CRRA of 75.21 That is, if we think of

laboratory experiments using small rewards as a¤ecting only current-period consumption and

not future labor supply or consumption, then households in our model would exhibit a risk

aversion of 
 = 2 in those experiments. For analogous gambles over next-period consumption,

ct+1, the household behaves as if its CRRA were 
+� c1�
=V , which is about 25 percent higher

than 
 under our baseline parameterization, but still much less than the quasi-CRRA.22 Even

for gambles over steady-state consumption, c (that is, the household�s level of consumption in

every period, holding labor �xed), the household behaves as if its CRRA were 
 + ��
1�� c

1�
=V ,

which is about 55, a high number yet still substantially less than the quasi-CRRA. Thus, the

quasi-CRRA is at best only a very rough measure of households�attitudes toward risk in the

model.

Even taking the quasi-CRRA in our model at face value, Barillas, Hansen, and Sargent

(2008) show that high risk aversion in an Epstein-Zin speci�cation is isomporphic to a model

in which households have low risk aversion but a moderate degree of uncertainty about the

economic environment. In other words, one of the reasons our simple DSGE model requires

a high quasi-CRRA to �t the empirical risk premiums is that households in our model have

perfect knowledge about all of the equations of the model, the model�s parameter values, and so

on. Thus, the quantity of risk in our model is much smaller than in the U.S. economy and, as

a result, the household�s aversion to risk in our model must be correspondingly higher in order

to �t the data.

In addition, Malloy, Moskowitz, and Vissing-Jorgensen (2008) show that the consumption of

stockholders is more volatile than the consumption of nonstockholders. As a result, the required

level of risk aversion in a representative-agent model like ours is higher than the level of risk

aversion that would be required in a model that recognized that asset-holders have more variable

consumption than households that do not hold assets. In other words, our simple, representative-

agent DSGE model again may understate the true quantity of risk that bondholders in the U.S.

economy face. Since our model understates the quantity of risk faced by U.S. households, it

requires a higher degree of risk aversion in order to match the risk premiums in the data.

21 That is, letting ct = c� + �", the Arrow-Pratt coe¢ cient is �ct(@2Vt=@�2)=(@Vt=@c�) = 
. Kreps and
Porteus (1978) also noted that gambles over current period consumption are viewed the same by a household
with generalized recursive preferences as they are by a household with expected utility preferences.
22 In our model, C

1�

=(1�
)
V

= (1� �)=
�
1� 1�


1+�
�
1+�

Y
C

�
' :0073, where bars denote steady-state values.
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Taken together, these observations suggest that our baseline value for the quasi-CRRA in

the model, and the high value that we will estimate below, are not unreasonable and could be

reduced greatly if one were to increase the uncertainty and risks faced by bondholders in the

model to more realistic levels.

3.3 Model Results

We report various model-implied moments in Table 2, along with the corresponding empirical

moments for quarterly U.S. data from 1960 to 2007. The �rst set of rows reports a set of basic

macroeconomic moments that the model should be able to match, while the second set of rows

reports a set of basic �nancial moments.23 Additional information about the model moments

and parameter values are reported in the last two sets of rows of the table.

The empirical moments in the �rst column of Table 2 are relatively standard and were

computed as follows: consumption, C, is real personal consumption expenditures from the U.S.

national income and product accounts, labor, L, is total hours of production workers from

the Bureau of Labor Statistics (BLS), and the real wage, wr, is total wages and salaries of

production workers from the BLS divided by total production worker hours and de�ated by

the GDP price index. Standard deviations were computed for logarithmic deviations of each

series from a Hodrick-Prescott trend and reported in percentage points. Standard deviations

for in�ation, interest rates, and the term premium were computed for the raw series rather than

for deviations from trend. In�ation, �, is the annualized rate of change in the quarterly GDP

price index from the Bureau of Economic Analysis. The short-term nominal interest rate, i,

is the end-of-month federal funds rate from the Federal Reserve Board, reported in annualized

percentage points. The short-term real interest rate, r, is the short-term nominal interest rate

less the realized quarterly in�ation rate at an annual rate. The ten-year zero-coupon bond

yield, i(40), is the end-of-month ten-year zero-coupon bond yield taken from Gurkaynak, Sack,

and Wright (2007). The term premium on the ten-year zero-coupon bond,  (40), is the term

premium computed by Kim and Wright (2005), in annualized percentage points.24 The yield

23 We omit output from the macro moments because our simple DSGE model has �xed capital and investment,
so output and consumption behave very similarly. The standard deviation of the long-term bond yield, i(40),
has some elements of both a �macro�and a ��nance�moment, but we will classify it as a macro moment for
the purposes of the table and this discussion.
24 Kim and Wright (2005) use an arbitrage-free, three-latent-factor a¢ ne model of the term structure to

compute the term premium. Alternative measures of the term premium using a wide variety of methods produce
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Table 2
Empirical and Model-Based Unconditional Moments

Model with Model with Model with
U.S. Data, Expected Epstein- EZ

Unconditional 1961-2007 Utility Zin Preferences
Moment Preferences Preferences (best �t)

sd[C] 1.19 1.40 1.46 2.12
sd[L] 1.71 2.48 2.50 1.89
sd[wr] 0.82 2.02 2.02 2.02
sd[�] 2.52 2.22 2.30 2.96
sd[i] 2.71 1.86 1.93 2.65
sd[r] 2.30 1.89 1.95 2.06
sd[i(40)] 2.41 0.52 0.57 1.17

mean[ (40)] 1.06 :010 .438 1.06
sd[ (40)] 0.54 .000 .053 .162

mean[i(40) � i] 1.43 �.038 .390 0.95
sd[i(40) � i] 1.33 1.41 1.43 1.59
mean[x(40)] 1.76 .010 .431 1.04
sd[x(40)] 23.43 6.52 6.87 10.77

distance to:
macro moments 6.63 6.30 4.13
�nance moments 9.48 6.22 2.56
all moments 16.11 12.53 6.68

memo:
quasi-CRRA 2 75 90

IES 0.5 0.5 0.5
� 1.5 1.5 1.7
� .75 .75 .7
�A 0.9 0.9 0.95
�A .01 .01 .007

All variables are quarterly values expressed in percent. In�ation, interest rates, the term pre-

mium ( ), and excess holding period returns (x) are expressed at an annual rate.

qualitatively similar results in terms of the overall magnitude and variability� see Rudebusch, Sack, and Swanson
(2007) for a detailed discussion and comparison of several methods.
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curve slope and one-period excess holding return are calculated from the data above and are

reported in annualized percentage points.

The second column of Table 2 reports results for the baseline version of our model with

expected utility preferences (that is, all parameters are the same as in Table 1, except that � = 0,

which implies expected utility preferences for the household). The model does a reasonable job

of matching the basic macroeconomic moments in the �rst seven rows of the table� indeed,

this is one of the main reasons these models have become so widely used in macroeconomics.

However, the term premium implied by the expected utility version of the model is both too

small in magnitude� the model implies a term premium of one basis point� and far too stable,

with an unconditional standard deviation less than one-tenth of one basis point. This basic

�nding of a term premium that is too small and far too stable relative to the data is extremely

robust with respect to wide variation of the model�s parameters (see Rudebusch and Swanson,

2008, for additional discussion and sensitivity analysis).

The third column of Table 2 reports results from the baseline parameterization of the model

with Epstein-Zin preferences and a quasi-CRRA of 75 (� = �73). Note that the model �ts all

of the macroeconomic variables just as well as the expected utility version of the model: that

is, even for relatively high levels of risk aversion, the dynamics of the macroeconomic variables

implied by the model are largely unchanged, a �nding that has also been noted by Tallarini

(2000) and Backus, Routledge, and Zin (2007). This is a straightforward implication of two

features of the model: �rst, the linearization or log-linearization of Epstein-Zin preferences (3)

is exactly the same as that of standard expected utility preferences (2), so to �rst order, these

two utility speci�cations are the same; and second, the shocks that we consider in the model

and which are standard in macroeconomics have standard deviations of only about one percent

or less, so a linear approximation to the model is typically very accurate.25

For asset prices, however, the implications of the Epstein-Zin and expected utility versions of

the model are very di¤erent, since risk premia in the model are entirely determined by second-

and higher-order terms. With Epstein-Zin preferences, the mean term premium is 43.8 basis

25 As the magnitude of � increases, second-order terms in the model become relatively more important for
the macroeconomic variables. Yet even for the case � = �73, second-order terms do not have a very large
e¤ect on the macroeconomic moments in the second column of Table 2. Intuitively, this is because V is both
�twisted�and �untwisted�by the factor (1��), so that much of the curvature that � introduces into the model
is e¤ectively neutralized. As a result, the parameter � only a¤ects the macro variables in the model through its
e¤ect on uncertainty, precautionary motives, and the like, and this has only a small e¤ect on the unconditional
moments we report in Table 2.
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points� almost �fty times higher than under expected utility� and the standard deviation of

the term premium is 5.3 bp, compared to less than 0.1 bp for expected utility.26 The �t of

the model to the yield curve slope and excess holding period return show similarly marked

improvements.

Figure 1 graphically illustrates the e¤ects of increasing the quasi-CRRA in the model by

plotting the mean term premium ( (40)) as a function of the quasi-CRRA, holding all the

other parameters of the model �xed at their baseline values. As the quasi-CRRA increases,

the mean term premium rises steadily, so that essentially any level of the term premium can

be attained by making households su¢ ciently risk-averse. This is not the case for expected

utility preferences� the dotted line in the �gure� because increasing the quasi-CRRA in that

version of the model simultaneously decreases the intertemporal elasticity of substitution (the

remaining parameters of the model are held �xed at their baseline values), and hence dampens

the volatility of consumption in the model at the same time that it increases risk aversion. The

net result is a maximum term premium of about 5 basis points, far less than the value in the

data. Thus, separating risk aversion from the intertemporal elasticity of substitution is crucial

for matching asset prices in the model.

The last column of Table 2 reports results from the �best �t�parameterization of the model

with Epstein-Zin preferences, where we search over a wide range of values to �nd the parameter-

ization that provides the closest joint �t of the model to both the macroeconomic and �nancial

moments in the data. The computational time required to solve the model for any given set of

parameter values is about 20 minutes, so it is generally infeasible to estimate all of the para-

meters of the model using maximum likelihood or Bayesian methods. Instead, we search over a

range of values for the six parameters listed at the bottom of Table 2 that are among the most

interesting and important for the term premium� namely, the quasi-CRRA, IES, �, �, �A, and

�A� to �nd the best �t to the macroeconomic and �nancial moments in Table 2.27 We de�ne

26 The mean and standard deviation of the term premium for a ten-year zero-coupon bond in the model are
similar: the term premium has a mean of 40.3 bp and an unconditional standard deviation of 2.5 bp. These
numbers are a few basis points less than for the ten-year-duration consol, but still far larger than we have been
able to obtain with standard or habit-based expected utility speci�cations (see, e.g., Rudebusch and Swanson,
2008). For the �best �t�parameterization of the model (the �nal column of Table 2), the corresponding numbers
are a mean term premium of 86.5 bp and standard deviation of 11.0 bp for the 10-year zero-coupon bond.
27 We conducted the search over the following sets of parameter values: quasi-CRRA 2 f1; 15; 30; 45; 60; 75; 90g,

IES 2 f:5; :7; :9; 1:1; 1:3; 1:5g, � 2 f:5; :8; 1:1; 1:3; 1:5; 1:7; 1:9; 2:2; 2:5g, � 2 f:65; :7; :75; :8g, �A 2 f:9; :95g, and
�A 2 f:003; :004; :005; :006; :007; :008; :009; :01; :015; :02g. These sets were chosen to encompass a wide range
of estimates in the literature. The parameter �A can be varied at little computational cost, and the other
parameters were distributed over a four-processor computer to reduce the overall computation time.
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the �best �t� to be the set of parameters that matches the equally-weighted sum of squared

deviations from the thirteen moments in the �rst column of Table 2 as closely as possible (with

one exception: we divide the standard deviation of the excess holding period return x(40) by

10 in order to give it roughly as much weight as the other moments in the column).28 The

distance between the model and the empirical macro moments, �nance moments, and both sets

of moments together are reported in the third set of rows in the table, above the parameter

values.

The best-�tting parameter values are reported at the bottom of the last column of Table 2.

These imply a mean term premium of about 106 basis points and a standard deviation of the

term premium of 16.2 basis points, a much better �t than the baseline model. To achieve this

�t, the estimation procedure picks high values for the quasi-CRRA, 90, and technology shock

persistence, �A = :95, and a low value for the IES, 0.5. All else equal, a high value for the

quasi-CRRA helps the model to �t the �nancial moments in the data, and the low value for the

IES helps to make real interest rates relatively more volatile and consumption relatively less

volatile, both of which help to �t the macro moments in the table. With these extreme values

for the quasi-CRRA, IES, and �A, holding the standard deviation of the technology shock �xed

at its baseline value would result in macroeconomic moments that are too volatile relative to

the data, so the estimation chooses a lower standard deviation, �A = :007. The values for �

and � are intermediate and well within the range of estimates in the literature.

3.4 The Importance of Technology Shocks for the Term Premium

We can gain insight into what features of the model are the most important for the term pre-

mium by examining the model�s impulse responses to shocks. The �rst column of Figure 2

reports the responses of consumption, in�ation, the long-term bond price, and the term pre-

mium in the model to a positive one-standard-deviation shock to technology, using the �best

�t�parameterization from Table 2. The second and third columns report analogous impulse

responses for one-standard-deviation shocks to government spending and monetary policy, re-

spectively.29 These impulse responses demonstrate that the correlations between consumption,

28 Minimizing the equal-weighted distance to these thirteen moments provides us with a consistent estimator
of our parameters, though it is not e¢ cient.
29 These impulse responses are computed using the methods described in Rudebusch, Sack, and Swanson

(2007). For consumption, in�ation, and the long-term bond price, the �rst-order terms are dominant and
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in�ation, and the long-term bond price depend on the type of structural shock.

Over the period 1952�2005, Piazzesi and Schneider (2006) �nd that a surprise increase

in U.S. in�ation� which lowers the value of nominal bonds� was typically followed by lower

consumption going forward. This relationship implies that long-term nominal bonds lose value

precisely when households desire consumption the most, resulting in a positive term premium

(cf. equation (39)). In the �rst column of Figure 2, we can see that a technology shock in our

structural model also has this feature: that is, in�ation falls (rises) while the long-term bond

price and future consumption both rise (fall). In contrast to technology shocks, government

spending and monetary policy shocks in our model imply a correlation between in�ation and

consumption that is exactly the opposite: in�ation, consumption, and long-term bond prices

all fall simultaneously in response to the shock. Thus, the relationship between in�ation and

consumption depends on the distribution of the underlying shocks that are driving the economy,

and the reduced-form in�ation-consumption correlation that Piazzesi and Schneider estimate

suggests that technology-type shocks predominated over their sample.

While technology shocks are also the most important driver of �uctuations in the macroeco-

nomic variables of our DSGE model, the contribution of technology shocks to the model�s term

premium is even more crucial. As can be seen in Figure 2, all three shocks imply a negative

covariance between the stochastic discount factor and the long-term bond price, and hence a

positive term premium, but that covariance is both much larger and much longer-lasting for

the technology shock. (This is primarily driven by the large and long-lasting e¤ect that the

technology shock has on in�ation in the model, which in turn has a large e¤ect on the long-term

bond price.) As a result, the technology shock is far more important for the term premium than

are the other two shocks, since its impact on the sum of the covariances in equation (39) is so

much larger. Thus, in our standard DSGE model as well as in Piazzesi and Schneider (2006),

technology shocks and the negative correlation between in�ation and consumption that they

generate are crucial for matching the term premium.

This observation provides an answer to a bond-pricing puzzle that dates back to Backus,

Gregory, and Zin (1989) and Den Haan (1995): namely, why does the yield curve slope upward?

According to the traditional line of thinking, if interest rates are low in a recession (when

provide a very good approximation, so only those (linear) terms are plotted. For the term premium, the impulse
response is zero to �rst and second order, so the third-order terms are dominant and are plotted in the �gure.
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consumption is low), then long-term bond prices should be high in a recession and hence long-

term bonds should carry an insurance-like, negative risk premium; that is, the yield curve

should slope downward rather than upward. In our New Keynesian DSGE model, a technology

shock causes in�ation to rise persistently at the same time that consumption falls, so long-term

nominal bonds lose value rather than gain value in recessions, as long as those recessions are

driven by technology shocks. Thus, our model resolves the puzzle by appealing to the behavior

of in�ation following a technology shock in standard New Keynesian DSGE models.30 More

generally, any shock that causes in�ation to move persistently and inversely to output, such as

a technology shock, a markup shock, or an oil price shock, will have similar implications for the

term premium.

A �nal point to note is that, not only does our simple model predict a term premium that is

positive on average, it also implies that the term premium is countercyclical� that is, all three

shocks in Figure 2 cause the term premium to rise at the same time that they cause consumption

to fall� consistent with a widely-held view in the macro-�nance literature that risk premiums

should be and are higher in recessions (e.g., Campbell and Cochrane, 1999, Cochrane, 2007,

Piazzesi and Swanson, 2008). Thus, not only is the term premium in our model large and

variable, it is consistent with this key business-cycle correlation.

3.5 Time-Varying Risk Aversion and Heteroskedasticity

Epstein-Zin preferences not only improve the model�s ability to match the level of the term

premium, they also greatly improve the model�s ability to generate a term premium that varies

over time. For the case of expected utility, the term premium in the model varies by less

than one-tenth of one basis point, and this result is extremely robust to varying the model�s

parameters over wide ranges. In contrast, our baseline Epstein-Zin speci�cation produces a

term premium with an unconditional standard deviation of 5.3 basis points, and the �best �t�

parameterization does even better, generating a term premium with a 16.2 basis point standard

deviation.

In order for the model to generate appreciable time-variation in the term premium, either the

30 Note that this analysis is for long-term nominal bonds rather than real bonds. If real interest rates are lower
in recessions, then the traditional line of reasoning still implies that the real yield curve should slope downward.
In fact, the evidence in Evans (1998) and Appendix B of Piazzesi and Schneider (2006) suggests that this is the
case.
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stochastic discount factor or the asset return, or both, must display conditional heteroskedastic-

ity.31 In our model, the exogenous driving shocks (technology, government purchases, monetary

policy) are all homoskedastic, but our DSGE model endogenously generates conditional het-

eroskedasticity in the stochastic discount factor and other variables. Intuitively, a second- or

higher-order solution to the stochastic discount factor and other variables in the DSGE model

includes terms of the form xt�1"t, the product of a state variable and a shock, and the conditional

variance of these terms varies with the state of the economy x.

With expected utility preferences, these second-order terms and the conditional heteroskedas-

ticity generated by the model are small. But with Epstein-Zin preferences, the size of these

second- and higher-order terms is much greater and leads to substantial endogenously-generated

heteroskedasticity in the stochastic discount factor, and hence in household risk aversion. For

example, in the expected utility version of the model, the standard deviation of one-step-ahead

innovations to the stochastic discount factor is 0.33 percent on average and ranges from 0.30

to 0.36 percent in times of high and low consumption, respectively.32 But for the baseline

Epstein-Zin version of our model, the stochastic discount factor has a one-step-ahead standard

deviation of 7.11 percent on average and ranges from 5.23 to 8.99 percent in periods of high

and low consumption, a much greater variability as well as much higher average level. This

substantial heteroskedasticity is what enables the Epstein-Zin version of our model to produce

time-varying risk aversion and a time-varying term premium.

From equations (6) and (15), the stochastic discount factor in the model is given by:

mt+1 � �

�
ct+1
ct

��
  
Vt+1

(EtV
1��
t+1 )

1=(1��)

!��
1

�t+1
: (42)

Although consumption growth and in�ation in the model exhibit a slight degree of heteroskedas-

ticity due to higher-order terms, by far the largest source of heteroskedasticity in (42) is the

term involving V . Intuitively, a negative technology shock in our model causes consumption
31 To see this, note that one measure of the risk premium on an asset is Et(mt+1pt+1) � e�itpt+1 =

Covt(mt+1; pt+1), the time-t price of the asset less the risk-neutral price. If the stochastic discount factor
and asset price are both conditionally homoskedastic, then so is the conditional covariance and hence the risk
premium.
32 As discussed above, the one-step-ahead standard deviation of the stochastic discount factor depends on the

state of the economy. Since we know the unconditional variances and covariances of the state variables in our
model, we can use these to derive the unconditional variance of the one-step-ahead standard deviation of the
stochastic discount factor. The square root of that number is about .0145 percent. Multiplying by �2 gives a
range of �:029 percent. The one-step-ahead standard deviation of the stochastic discount factor will lie within
this range about 95% of the time. The periods in which this standard deviation are high (low) are periods of
low (high) consumption.
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to fall by relatively more than output, because investment and government purchases in the

model are �xed (this is one of the nonhomotheticities of the model). Technology shocks, which

are multiplicative with respect to output, thus have an increasingly large e¤ect on consumption

as output and consumption decline. As a result, the e¤ective quantity of consumption risk

faced by households in the model rises as the state of the economy worsens, the one-step-ahead

variance of V increases as the state of the economy worsens, and risk premia become larger.

Note that the volatility and heteroskedasticity of V are greatly ampli�ed in (42) because of the

Epstein-Zin coe¢ cient �� = 73.

4 Long-Run Risk

The preceding section demonstrates that Epstein-Zin preferences can match both the basic

macroeconomic and �nancial moments in a DSGE framework. This success stands in sharp

contrast to habit-based speci�cations, which Jermann (1998), Lettau and Uhlig (2000), and

Rudebusch and Swanson (2008) found failed in the DSGE setting despite their successes in

endowment economy studies such as Campbell and Cochrane (1999) and Wachter (2006). How-

ever, the �t in the last two columns of Table 2 comes at the cost of a high value for the

quasi-CRRA in the model. In this section, we examine to what extent a long-run risk in the

model (such as long-run in�ation risk or long-run productivity risk) can help the model �t the

data with less reliance on a high quasi-CRRA.

4.1 Long-Run In�ation Risk

Since Bansal and Yaron (2004), the �nance literature has stressed the importance of long-run risk

in consumption growth. In contrast, there has been little attention devoted to long-run nominal

risks in the economy, speci�cally, time-variation in the economy�s long-run in�ation rate, even

though such risk would be very relevant for pricing nominal bonds. We therefore consider the

case where the monetary authority�s target rate of in�ation, ��t , varies over time. Certainly,

�nancial market perceptions of the long-run in�ation rate in the United States appear to have

varied considerably in recent decades: Kozicki and Tinsley (2001) show that survey data on

long-run in�ation expectations have varied substantially over the past 50 years, Rudebusch and
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Wu (2007, 2008) estimate a similar degree of variation in a macro-�nance no-arbitrage model,

and Gürkaynak, Sack, and Swanson (2005) �nd that the �excess sensitivity�of long-term bond

yields to macroeconomic announcements is consistent with �nancial markets perceiving the

long-run in�ation rate in the economy to be less than perfectly anchored.

From the point of view of modeling the term premium, long-run in�ation risk has a number

of advantages over long-run consumption risk. First, estimates of the low-frequency component

of consumption are extremely imprecise, so it is very di¢ cult to test empirically the direct

predictions of a Bansal-Yaron long-run consumption risk model with observable macroeconomic

variables. In contrast, survey data on long-run in�ation expectations are readily available and

show considerable variation. Second, the idea that long-term nominal bonds are risky because

of uncertainty about future monetary policy and long-run in�ation is intuitively appealing.

Third, estimates of the term premium in the �nance literature are low in the 1960s, high in the

late 1970s and early 1980s, and then low again in the 1990s and 2000s (e.g., Kim and Wright,

2005), which suggests that in�ation and in�ation variability are highly correlated with the term

premium, at least over these longer, decadal samples. Modeling the linkage between long-run

in�ation risk and the term premium thus seems to be a promising avenue for understanding

and modeling long-term bond yields.

Following the empirical evidence in Gürkaynak et al. (2005),we assume that ��t loads to

some extent on the recent history of in�ation:

��t = ����
�
t�1 + #��(�t � ��t ) + "�

�

t : (43)

There are two main advantages to using speci�cation (43) rather than a simple random walk or

AR(1) speci�cation with #�� = 0. First, (43) allows long-term in�ation expectations to respond

to current news about in�ation and economic activity in a manner that is consistent with the

bond market responses documented by Gürkaynak et al. Thus, #�� > 0 seems to be consistent

with the data.33 Second, if #�� = 0, then even though ��t varies over time, it does not do so

systematically with output or consumption; as a result, long-term bonds are not particularly

risky, in the sense that their returns are not very correlated with the household�s stochastic

discount factor. In fact, long-term bonds even have some elements of insurance in this case,

because a negative shock to "�
�
t leads the monetary authority to raise interest rates and depress

33 Gürkaynak et al. �nd that a value of #�� = :02 is roughly consistent with the bond market data.
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output at the same time that it causes long-term bond yields to fall and bond prices to rise,

which results in a negative term premium on the bond. By contrast, if #�� > 0, then a negative

technology shock today raises in�ation and long-term in�ation expectations and depresses bond

prices at exactly the same time that it depresses output, which makes holding long-term bonds

quite risky and helps the model to match the positive mean term premium we see in the data.

We add equation (43) to our DSGE model from the preceding section, setting the baseline

value of #�� = :02, which is consistent with the high-frequency bond market evidence in Gürkay-

nak et al. (2005). We set the baseline values for ��� and ��� equal to .99 and 5 basis points,

respectively, consistent with the Bayesian DSGE model estimates in Levin et al. (2005).

As can be seen in Figure 1, the e¤ects of the long-run in�ation risk on the term premium are

indeed substantial. As the quasi-CRRA is varied along the horizontal axis, holding the other

parameters of the model �xed at their baseline values, the term premium is always the highest

for the version of the model with long-run in�ation risk. That is, by making long-term bonds

in the model riskier, the model can generate any given level of the term premium with a lower

value for the quasi-CRRA than was possible without long-run in�ation risk.

Table 3 reports the macroeconomic and �nancial moments that result from introducing long-

run in�ation risk into our DSGE model. The �rst column repeats the empirical moments from

the U.S. data, and the second column reports results for a version of the model with long-run

in�ation risk and expected utility preferences (that is, with the parameters of the model set to

their baseline values, except for � = 0). The introduction of time-variation in �� makes the

macroeconomic variables a little more volatile on average, but the �t of the model to the macro

data is about as good overall as for the baseline model. The �t of the model to the �nancial

moments, however, is also no better� the term premium is still less than one basis point, and

its variation is still only about one-tenth of one basis point, far smaller than the data (and this

result is extremely robust to varying the parameters of the model over wide ranges). Intuitively,

long-run in�ation risk increases the quantity of nominal bond risk in the model, but households

simply aren�t risk-averse enough for that greater quantity of risk to have a noticeable e¤ect on

bond prices in the model.

With Epstein-Zin preferences, however, introducing long-run in�ation risk into the model

has substantial e¤ects. The third column of Table 3 reports results for the model with Epstein-
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Table 3
Empirical and Model-Based Unconditional Moments with Long-Run Risk

Model with Model with Model with
Unconditional U.S. Data, EU Preferences EZ Preferences EZ Preferences
Moment 1961-2007 and LR �� Risk and LR �� Risk and LR A� Risk

sd[C] 1.19 1.70 2.01 2.37
sd[L] 1.71 3.02 1.37 2.13
sd[wr] 0.82 2.40 1.52 1.81
sd[�] 2.52 3.65 3.25 2.95
sd[i] 2.71 3.32 2.94 2.86
sd[r] 2.30 2.39 1.71 1.55
sd[i(40)] 2.41 1.71 1.89 1.66

mean[ (40)] 1.06 :003 1.05 0.98
sd[ (40)] 0.54 .001 0.51 0.28

mean[i(40) � i] 1.43 �.10 0.96 0.89
sd[i(40) � i] 1.33 1.73 1.10 1.36
mean[x(40)] 1.76 .003 1.04 0.96
sd[x(40)] 23.43 13.07 11.64 12.20

distance to:
macro moments 6.62 2.48 3.88
�nance moments 7.80 2.18 2.27
all moments 14.42 4.67 6.15

memo:
quasi-CRRA 2 90 90

IES 0.5 1.1 0.5
� 1.5 0.5 1.5
� 0.75 0.65 0.8
�A .9 .95 �
�A .01 .005 .001
��� .99 .99 �
#�� .02 .015 �
��� 5bp 1bp �
�A� � � .97
�A� � � .005

All variables are quarterly values expressed in percent. In�ation and interest rates, the term

premium ( ), and excess holding period returns (x) are expressed at an annual rate.
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Zin preferences and long-run in�ation risk, where we have searched over values for ���, #��,

and ��� as well as the quasi-CRRA, IES, �, �, �A, and �A to �nd the best �t to the empirical

moments in the �rst column.34 Relative to the the second column, the term premium and other

�nancial moments generated by the model are much larger and much more in line with the

data. Relative to the case of no long-run risk� the last column of Table 2� the term premium

is far more variable once long-term in�ation risk is incorporated into the model.35 Intuitively,

when #�� > 0, technology (and other) shocks have an ever more persistent e¤ect on in�ation

because of the pass-through from �t to ��t , which makes long-term nominal bonds in the model

even more risky. As a result, the term premium in the model is larger and more volatile.

The estimation achieves this improvement in �t by choosing a high value for the quasi-CRRA,

which helps to �t the term premium and other �nancial moments with relatively moderate

consumption volatility. (Alternatively, the model with long-run in�ation risk can �t the macro

and �nancial moments just as well as the model without long-run risk, using a lower value for

the quasi-CRRA). The time-variation in �� makes the model as a whole more volatile, so the

estimation compensates for this by choosing a lower technology shock variance, �A = :005; the

greater degree of nominal volatility in the model due to time-varying ��, together with the

smaller degree of real volatility due to technology shocks, improves the overall �t of the model

to the macro moments. The estimation also prefers a higher value for the IES, 1.1, which helps

shift some of the volatility of consumption over to short-term real interest rates, in line with the

data, and a low value for � (a high Frisch elasticity of labor supply), which helps shift some of

the volatility of real wages over to labor. Finally, a low value for ��� �ts the data the best� as

discussed above, exogenous shocks to �� actually imply a lower term premium, all else equal,

because long-term nominal bonds in the model act like insurance against this particular type

of shock. It is the loading #�� of �� on current in�ation that makes time-variation in �� costly

in the model, not exogenous shocks to ��.

34 In addition to the range of parameter values considered in the previous section, we searched over values of
��� 2 f:98; :99; :995; :997; :998g, #�� 2 f0; :005; :01; :015; :02g, and ��� 2 f1; 2; : : : ; 15g basis points.
35 These results hold for a ten-year zero-coupon bond in the model as well: the term premium has a mean of

76.2 bp and a standard deviation of 39.7 bp. These are a few basis points less than for the consol, but the main
points in the text are all unchanged.
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4.2 Long-Run Productivity Risk

Finally, we investigate to what extent a long-run real risk could help to explain the �nancial

market moments in our model with less reliance on a high value for the quasi-CRRA. Bansal and

Yaron (2004) found that a relatively small but highly persistent long-run risk to consumption

can account for a variety of risk premium puzzles in an endowment economy framework. In our

DSGE setting, consumption is not an exogenous process, but we can model long-run real risk

in the economy as a long-run risk to productivity. Analogous to Bansal and Yaron, we thus

assume that the level of aggregate technology A has a small but highly persistent component

A� as well as an i.i.d. component:

logA�t = �A� logA
�
t�1 + "A

�

t ; (44)

logAt = logA
�
t + "At ; (45)

where the shocks "A
�

t and "At are uncorrelated white noise.
36 We then replace equation (17) of

our DSGE model with (44) and (45), holding �� �xed for simplicity, and search over the values

of �A�, �A�, and �A (as well as the quasi-CRRA, IES, �, and �) that �t the data the best.
37

The �nal column of Table 3 reports the results from incorporating this long-run risk into

our DSGE model. The model with long-run productivity risk does not �t the empirical macro-

economic moments as well as the model with long-run in�ation risk, but the �t to the �nancial

moments is about as good. Relative to the model without long-run risk� the last column of Ta-

ble 2� the �t to the macroeconomic variables is slightly better overall and the �t to the �nancial

moments is improved, particularly for the standard deviations of the term premium and excess

holding period return. As in the model without long-run risk, the estimation chooses a high

value for the quasi-CRRA, 90, and low value for the IES, 0.5. The long-run risk itself is chosen

to be only moderately persistent, �A� = :97, which �ts the macroeconomic data better than a

combination of a large i.i.d. technology shock together with a small but extremely persistent

process for A�.
36 See also Croce (2008). Bansal and Yaron (2004) and Croce use a di¤erence-stationary process to represent

long-run risk, while we use a very persistent but stationary process; thus, our speci�cation here may understate
the importance of long-run risks relative to those authors. Using a di¤erence-stationary process for technol-
ogy would require us to make major modi�cations to our baseline model speci�cation (e.g. by changing the
utility kernel), which would make comparing the results to the standard New Keynesian DSGE literature (e.g.
Woodford, 2003) di¢ cult. We thus leave this avenue for future research.
37 In addition to the range of parameter values considered in Section 3, we searched over values of �A 2

f:95; :96; :97; :98; :99; :995; :997g, values for �A� between .0001 and .007, and values for �A between 0 and .03.
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5 Conclusions

In stark contrast to our earlier work with habits (Rudebusch and Swanson, 2008), here we

have found that introducing Epstein-Zin preferences into a DSGE model is a very successful

strategy for matching both the basic macroeconomic and �nancial moments in the data. We are

able to obtain a large and volatile term premium in an otherwise standard, structural DSGE

model, thus generalizing the earlier endowment economy results in �nance. Our model o¤ers a

structural explanation for why the yield curve slopes upward (technology-type shocks that cause

in�ation and output to move in opposite directions), and endogenously generates conditional

heteroskedasticity in the stochastic discount factor� and hence a time-varying risk premium�

without relying on exogenous conditional heteroskedasticity in the driving shocks. Introducing

long-run risks into the model allows us to �t the data with a lower value for the quasi-CRRA,

or to �t the data even better for a given level of the quasi-CRRA.

Of course, many unresolved issues remain for exploration. Although we have restricted

attention in this paper to a simple, stylized DSGE model along the lines of Woodford (2003),

there is no reason why the methods of this paper cannot be applied to larger, more empirically

relevant DSGE models such as Christiano, Eichenbaum, and Evans (2005) and Smets and

Wouters (2003); indeed, preliminary research that we have conducted indicates that all of the

basic conclusions in the present paper carry over to these larger-scale and more fully-speci�ed

models. A related next step would go beyond matching sample moments and perform full

econometric estimation (and inference) of a DSGE model with Epstein-Zin preferences, as in van

Binsbergen, et al. (2008), but extended to include intrinsic nominal rigidities and endogenous

in�ation. Examining to what extent a DSGE model can jointly explain the risk premiums

on equity, real bonds, nominal bonds, and uncovered interest parity violations would also be

very interesting. Finally, the relationship between the variability or uncertainty surrounding

the central bank�s in�ation objective and the size and variability of the term premium warrants

further study, in our view. In short, there appear to be many fruitful avenues for future research

in this area.
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Appendix: Equations of the Model
The following equations show exactly how we incorporate Epstein-Zin preferences into our

otherwise standard DSGE model in �rst-order recursive form, and how bond prices and the

term premium are computed in the model. The Mathematica-style syntax of these equations

is consistent with the perturbation AIM algorithm of Swanson et al. (2006), which we use to

solve this system to third order around the nonstochastic steady state.

(* Value function and Euler equation *)
V[t] == C[t]^(1-gamma) /(1-gamma) - chi0 *L[t]^(1+chi) /(1+chi) + beta *Vkp[t],
C[t]^-gamma == beta *(Exp[Int[t]]/pi[t+1]) *C[t+1]^-gamma *(Vkp[t]/V[t+1])^alpha,

(* The following two equations de�ne the E-Z-W-K-P certainty equivalent term
Vkp[t] = (E_t V[t+1]^(1-alpha))^(1/(1-alpha)). It takes two equations to do this because
perturbation AIM sets the expected value of all equations equal to zero, E_t F(variables) = 0.
Thus, the �rst equation below de�nes Valphaexp[t] == E_t V[t+1]^(1-alpha). The second
equation then takes the (1-alpha)th root of this expectation.
Note: the literature often refers to 1 - (1-alpha)(1-gamma) as the CRRA, but that terminology is
only justi�able when the model has one state variable (wealth) and the model is homothetic. The
present model does not satisfy either of these conditions. Nevertheless, alpha is one measure of
risk aversion, as shown by Epstein and Zin.
Finally, the scaling and unscaling of Valphaexp[t] by the constant VAIMSS improves the numerical
behavior of the model; without it, the steady-state value of Valphaexp can be minuscule (e.g., 10^-50),
which requires Mathematica to use astronomical levels of precision in order to solve. *)
Valphaexp[t] == (V[t+1]/VAIMSS)^(1-alpha),
Vkp[t] == VAIMSS *Valphaexp[t]^(1/(1-alpha)),

(* Price-setting equations *)
zn[t] == (1+theta) *MC[t] *Y[t] + xi *beta *(C[t+1]/C[t])^-gamma *(Vkp[t]/V[t+1])^alpha

*pi[t+1]^((1+theta)/theta/eta) *zn[t+1],
zd[t] == Y[t] + xi *beta *(C[t+1]/C[t])^-gamma *(Vkp[t]/V[t+1])^alpha *pi[t+1]^(1/theta)

*zd[t+1],
p0[t]^(1+(1+theta)/theta *(1-eta)/eta) == zn[t] /zd[t],
pi[t]^(-1/theta) == (1-xi) *(p0[t]*pi[t])^(-1/theta) + xi,

(* Marginal cost and real wage *)
MC[t] == wreal[t] /eta *Y[t]^((1-eta)/eta) /A[t]^(1/eta) /KBar^((1-eta)/eta),
chi0 *L[t]^chi /C[t]^-gamma == wreal[t], (* no adj costs *)
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(* Output equations *)
Y[t] == A[t] *KBar^(1-eta) *L[t]^eta /Disp[t],
Disp[t]^(1/eta) == (1-xi) *p0[t]^(-(1+theta)/theta/eta)

+ xi *pi[t]^((1+theta)/theta/eta) *Disp[t-1]^(1/eta),
C[t] == Y[t] - G[t] - IBar, (* aggregate resource constraint, no adj costs *)

(* Monetary Policy Rule *)
piavg[t] == rhoin�avg *piavg[t-1] + (1-rhoin�avg) *pi[t],
4*Int[t] == (1-taylrho) * ( 4*Log[1/beta] + 4*Log[piavg[t]]

+ taylpi * (4*Log[piavg[t]] - pistar[t]) + tayly * (Y[t]-YBar)/YBar )
+ taylrho * 4*Int[t-1] + eps[Int][t], (* multiply Int, in�by 4 to put at annual rate *)

(* Exogenous Shocks *)
Log[A[t]/ABar] == rhoa * Log[A[t-1]/ABar] + eps[A][t],
Log[G[t]/GBar] == rhog * Log[G[t-1]/GBar] + eps[G][t],
pistar[t] == (1-rhopistar) *piBar + rhopistar *pistar[t-1] + gssload *(4*Log[piavg[t]] - pistar[t])

+ eps[pistar][t],

(* Term premium and other auxiliary �nance equations *)
Intr[t] == Log[Exp[Int[t-1]]/pi[t]], (* ex post real short rate *)
pricebond[t] == 1 + consoldelta *beta *(C[t+1]/C[t])^-gamma *(Vkp[t]/V[t+1])^alpha /pi[t+1]

*pricebond[t+1],
pricebondrn[t] == 1 + consoldelta *pricebondrn[t+1] /Exp[Int[t]],
ytm[t] == Log[consoldelta*pricebond[t]/(pricebond[t]-1)] *400, (* yield in annualized pct *)
ytmrn[t] == Log[consoldelta*pricebondrn[t]/(pricebondrn[t]-1)] *400,
termprem[t] == 100 * (ytm[t] - ytmrn[t]), (* term prem in annualized basis points *)
ehpr[t] == ( (consoldelta *pricebond[t] + Exp[Int[t-1]]) /pricebond[t-1] - Exp[Int[t-1]]) *400,
slope[t] == ytm[t] - Int[t]*400
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