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Abstract

Game theory is usually difficult to test precisely in the field because predictions typically
depend sensitively on features that are not controlled or observed. We conduct one such
test using field data from the Swedish lowest unique positive integer (LUPI) game. In the
LUPI game, players pick positive integers and whoever chose the lowest unique number
wins a fixed prize. Theoretical equilibrium predictions are derived assuming Poisson-
distributed uncertainty about the number of players, and tested using both field and
laboratory data. The field and lab data show similar patterns. Despite various deviations
from equilibrium, there is a surprising degree of convergence toward equilibrium. Initial
responses can be rationalized by a cognitive hierarchy model and convergence toward

equilibrium by a simple learning-by-imitation model.

JEL CLASSIFICATION: (72, C92, L83, C93.
KEYWORDS: Population uncertainty, Poisson game, QRE, congestion game, guessing

game, experimental methods, behavioral game theory, level-k.



1 Introduction

Game theory predictions are challenging to test with field data because those predictions
are usually sensitive to details about strategies, information and payoffs which are difficult
to observe in the field. As Robert Aumann pointed out: “In applications, when you want
to do something on the strategic level, you must have very precise rules...An auction is
a beautiful example of this, but it is very special. It rarely happens that you have rules
like that (cited in van Damme, 1998, p. 196).”

In this paper we exploit such a happening, using field data from a Swedish lottery
game. In this lottery, players simultaneously choose positive integers from 1 to K. The
winner is the player who chooses the lowest number that nobody else picked. We call
this the LUPI game, because the lowest unique positive integer wins.! Because strategies
and payoffs are known, the field setting is unusually well-structured compared to other
strategic field data on contracting, pricing, entry, information disclosure, or auctions. The
price one pays for clear structure is that the game does not very closely resemble any other
familiar economic game. Gaining structure at the expense of generality is similar to the
tradeoff faced in using data from game shows and sports to understand general strategic
principles.

This paper analyzes LUPI theoretically and reports data from the Swedish field expe-
rience and from parallel lab experiments. The paper has several theoretical and empirical
parts. The parts have a coherent narrative flow because each part raises some new ques-
tion which is answered by the next part. The overarching question, which is central to
all empirical game theory, is this one: What models of strategic thinking best explain
behavior in games?

The first specific question is Q1: What does an equilibrium model of behavior predict

in these games? To answer this question, we first note that the Nash equilibrium with

!'The Swedish company called the game Limbo, but we think LUPI is more mnemonic, and more apt
because in the typical game of limbo, two players who tie in how low they can slide underneath a bar do
not lose.



a fixed number of players is practically impossible to compute numerically. Furthermore,
the number of players is not the same each day; and the Nash equilibrium corresponding
to the empirically observed distribution of the number of players cannot be solved either.
However, we can try to approximate the equilibrium by applying the theory of Poisson
games.? In Poisson games, the number of players is Poisson-distributed (Myerson, 1998).?
Remarkably, assuming a variable number of players rather than a fixed number makes
computation of equilibrium simpler if the number of players is Poisson-distributed.

The number of players in the Swedish LUPI games actually varies too much from
day-to-day to match the cross-day variance implicit in the Poisson assumption. However,
the Poisson-Nash equilibrium is the only computable equilibrium benchmark. Field tests
of theory always violate some of the assumptions of the theory, to some degree; it is an
empirical question whether the equilibrium benchmark fits reasonably well despite resting
on incorrect assumptions. (We revisit this important issue in the conclusion after all the
data are presented.)

After deriving the Poisson equilibrium in order to answer Q1, we compare the Poisson
equilibrium to the field data. In our view, the equilibrium is surprisingly close (given its
complexity and counterintuitive properties). However, there are clearly large deviations
from the equilibrium prediction and some behaviorally interesting fine-grained deviations.
These empirical results raises question Q2: Can non-equilibrium behavioral models explain
the deviations when the game is first played?

The simple LUPI structure allows us to provide tentative answers to Q2 by compar-
ing Poisson-Nash equilibrium predictions with predictions of two parametric models of
boundedly rational play: quantal response equilibrium (QRE), and a level-k or cognitive
hierarchy (CH) approach. QRE and CH have been compared to Nash predictions in many

experimental studies, and they often explain deviations from Nash equilibrium in similar

2As Milton Friedman (1953) famously noted, theories with false assumptions could often predict well
(and, in economics, often do).

3This also distinguishes our paper from contemporaneous research on unique bid auctions by Eich-
berger and Vinogradov (2008), Houba, van der Laan and Veldhuizen (2008), Raviv and Virag (2009),
Rapoport, Otsubo, Kim and Stein (2007) and Gallice (2009) which all assume that the number of players
is fixed and commonly known.



ways (e.g., Rogers, Palfrey and Camerer, 2009). However, QRE and CH can be clearly
distinguished in LUPI games: QRE predicts too few low-number choices and CH predicts
too many low-number choices (compared to the Poisson-Nash). The field data tend to
favor the CH prediction.

The answer to Q2 naturally raises a third question Q)3: When there is initial non-
equilibrium behavior, do learning forces produce convergence toward equilibrium over time?
About 50,000 numbers were played in LUPI (on average) on 49 consecutive days. The
large number of players gives enough statistical power to study the rate of learning across
the time series in a game in which the structure does not vary, which most other field
studies cannot do. For example, several studies have used field data from tennis and soccer
to test mixed-strategy equilibrium predictions (Walker and Wooders, 2001, Chiappori,
Levitt and Groseclose, 2002, Palacios-Huerta, 2003 and Hsu, Huang and Tang, 2007).
These studies use highly experienced players and the studies on soccer pool data across
substantial spans of time to test the mixed equilibrium prediction powerfully. They do
not study how players learn to play a mixed equilibrium within their samples.*

Note that the LUPI data do not invite a natural application of individual-level learning
models like reinforcement, fictitious play, and EWA because we only observe an aggregate
set of choices. Therefore, we apply a simple imitation learning model that reflects the
basic features of the observed changes in number choices over 49 days.

In this narrative so far, we have discussed a new equilibrium approximation to LUPI
(addressing Q1), how well CH and QRE models fits the data (addressing Q2), and that

imitation learning tracks some basic properties of the data over time (addressing Q3).

4Chiappori, Levitt and Groseclose (2002) provide some suggestive evidence about learning by noting
that among the kickers with the most experience in their sample (those with eight or more kicks) only
one out of nine fails a randomness test at the 10% level. However, this is a crude test for learning effects
compared to our data, which compare a much larger sample of choices with day-by-day comparisons.
There is also a field study of randomization in gambling choices that are not strategic, and learning
is not measured (Sundali and Croson, 2006). Ockenfels and Roth (2004) discuss an interesting natural
experiment measuring learning about prices for a surprising new product. They studied prices for retailer-
copied “Iraq most wanted cards” originally produced by the US Department of Defense to help soldiers
identify high-value targets during the Iraq war. Retailers quickly copied the cards and offered decks for
$5.95; but retailer decks were also traded at a much higher “buy-it-now” (BIN) prices on eBay. They
found that BIN prices converged to the retail price in about 30 days.



Because the LUPI game is simple, it is easy to go a step further and run a lab experiment
that matches many of the key features of the game played in the field. The lab data
enable us to address one more question: QQ4: How well does behavior in a lab experiment
designed to closely match features of a field environment parallel behavior in the field?
Q4 is important because of an ongoing debate about lab-field parallelism in economics,
rekindled with some skepticism by Levitt and List (2007). We conclude that the basic
empirical features of the lab and field behavior are comparable. This close match adds to a
small amount of evidence of how well experimental lab data can generalize to a particular
field setting when the experiment was specifically intended to do so.

The ability to track decisions by each player in the lab also enables us to answer some
minor questions that cannot be answered by field data. For example, it appears that
imitation learning is operating at the individual level, sociodemographic variables do not
correlate strongly with performance, and there are not strong identifiable differences in
skill across players (measured by winning frequency).

Before proceeding, we mention an important caveat. LUPI was not designed by the
lottery creators to be an exact model of a particular economic game. However, it combines
some strategic features of interesting naturally-occurring games. For example, in games
with congestion, a player’s payoffs are lower if others choose the same strategy. Examples
include choices of traffic routes and research topics, or buyers and sellers choosing among
multiple markets. LUPI has the property of an extreme congestion game, in which having
even one other player choose the same number reduces one’s payoff to zero.® Indeed, LUPI
is similar to a game in which being first matters (e.g., in a patent race), but if players
are tied for first they do not win. One close market analogue to LUPI is the lowest
unique bid auction (LUBA; see Eichberger and Vinogradov, 2008, Houba et al., 2008,
Raviv and Virag, 2009 , Rapoport et al., 2007, and Gallice, 2009). In these auctions,

an object is sold to the lowest bidder whose bid is unique (or in some versions, to the

®Note, however, that LUPI is not a congestion game as defined by Rosenthal (1973) since the payoff
from choosing a particular number does not only depend on how many other players that picked that
number, but also on how many that picked lower numbers.



highest unique bidder). LUPI is simpler than LUBA because winners don’t have to pay
the amount they bid, and there are no private valuations and beliefs about valuations of
others. However, LUPI contains the same essential strategic conflict: between wanting to
choose low numbers and wanting to choose unique numbers.

Finally, the scientific value of LUPI games is like the scientific value of data from game
shows and professional sports, such as “Deal or No Deal” (e.g. Andersen, Harrison, Lau
and Rutstrom, 2008 and Post, van den Assem, Baltussen and Thaler, 2008). Like the
LUPT lottery, game shows and sports are not designed to be replicas of typical economic
decisions. Nonetheless, game shows and sports are widely studied in economics because
they provide very clear field data about actual economic choices (often for high stakes),
and they have simple structures that can be analyzed theoretically. The same is true for
LUPIL

The next section provides a theoretical analysis of a simple form of the LUPI game, the
Poisson-Nash equilibrium. Section 3 reports the basic field data and compare them to the
Poisson-Nash approximate benchmark. It also introduces quantal response equilibrium
and cognitive hierarchy behavior models, as well as learning, and asks whether they can

explain the field data. Section 4 describes the lab replication. Section 5 concludes the

paper.

2 Theory

In the simplest form of LUPI, the number of players, N, has a known distribution, the
players choose integers from 1 to K simultaneously, and the lowest unique number wins.
The winner earns a payoff of 1, while all others earn 0.°

In this section we analyze the game when players are assumed to be fully rational,

STn this stylized case, we assume that if there is no lowest unique number then there is no winner.
This simplifies the analysis because it means that only the probability of being unique must be computed.
In the Swedish game, if there is no unique number then the players who picked the smallest and least-
frequently-chosen number share the top prize. This is just one of many small differences between the
simplified game analyzed in this section and the game as played in the field, which are discussed further
below.



best-responding, and have equilibrium beliefs. We assume that the number of players N is
a random variable that has a Poisson distribution.” The Poisson assumption proves to be
easier to work with than a fixed N. In fact, the Nash equilibrium for arbitrary distributions
over N, including fixed N, is extremely difficult to compute for the Swedish LUPI lottery.
(Appendix A discusses the fixed-N equilibrium and why it is so much more difficult to
compute than the Poisson-Nash equilibrium.) The actual variance of N in the field data
is much larger than in the Poisson distribution so the Poisson-Nash equilibrium is only
a computable approximation to the correct (but incomputable) equilibrium. Whether it
is a good approximation will partly be answered by looking at how well the theory fits
the field data. In addition, we implement the Poisson distribution of N exactly in lab

experiments.

2.1 Properties of Poisson Games

In this section, we briefly summarize the theory of Poisson games developed by Myerson
(1998, 2000). The theory is then used in the next section to characterize the Poisson-Nash
equilibrium in the LUPI game.

Games with population uncertainty relax the assumption that the exact number of
players is common knowledge. In particular, in a Poisson game the number of players N

is a random variable that follows a Poisson distribution with mean n. We have

e~ k

k!

N ~ Poisson(n) : N = k with probability

and, in the case of a Bayesian game, players’ types are independently determined according

to the probability distribution 7 = (r(t))ser on some type space T.® Let a type profile be

"Players did not know the number of total bets in both the field and lab versions of the LUPI game.
Although players in the field could get information about the current number of bets that had been made
so far during the day, players had to place their bets before the game closed for the day and therefore
could not know with certainty the total number of players that would participate in that day.

8The LUPI game itself is not a Bayesian game. However, in the cognitive hierarchy model (developed
in Section 3.3), there are players with different degree of strategic sophistication and we therefore include
types in our presentation of Poisson games in this section.



a vector of non-negative integers listing the number of players of each type ¢ in T', and let
Z (T) be the set of all such type profiles in the game. Combining N and r can describe
the population uncertainty with the distribution y ~ Q(y) where y € Z (T') and y(t) is
the number of players of type t € T'.

Players have a common finite action space C' with at least two alternatives, which
generates an action profile Z(C') containing the number of players that choose each action.
Utility is a bounded function U : Z(C) x C' x T'— R, where U(x,b,t) is the payoff of a
player with type ¢, choosing action b, and facing an opponent action profile of z. Let x(c)
denote the number of other players playing action ¢ € C.

Myerson (1998) shows that the Poisson distribution has two important properties that
are relevant for Poisson games and simplify computations dramatically. The first is the
decomposition property, which in the case of Poisson games imply that the distribution of

type profiles for any y € Z (T') is given by

Hence, Y (t), the random number of players of type ¢t € T, is Poisson with mean
nr(t), and is independent of Y (') for any other ¢ € T. Moreover, suppose each player
independently plays the mixed strategy o, choosing action ¢ € C' with probability o(c|t)
given his type t. Then, by the decomposition property, the number of players of type
t that chooses action ¢, Y(c, ), is Poisson with mean nr(t)o(c|t) and is independent of
Y (¢, t') for any other ¢, 1.

The second property of Poisson distributions is the aggregation property, which states
that any sum of independent Poisson random variables is Poisson distributed. This prop-
erty implies that the number of players (across all types) who choose action ¢, X(c), is
Poisson with mean },_, nr(t)o(c|t), independent of X () for any other ¢ € C. We refer
to this property of Poisson games as the independent actions (IA) property.

Myerson (1998) also shows that the Poisson game has another useful property: enuvi-



ronmental equivalence (EE). Environmental equivalence means that conditional on being
in the game, a type t player would perceive the population uncertainty as an outsider
would, i.e., Q(y).” If the strategy and type spaces are finite, Poisson games are the only
games with population uncertainty that satisfy both TA and EE (Myerson, 1998). EE is
a surprising property.

Take a Poisson LUPI game with 27 players on average. In our lab implementation, a
large number of players are recruited and are told that the number of players who will be
active (i.e. play for real money) in each period varies. Consider a player who is told she
is active. On the one hand, she might then act as if she is playing against the number of
opponent players that is Poisson-distributed with a mean of 26 (since her active status
has lowered the mean of the number of remaining players). On the other hand, the fact
that she is active is a clue that the number of players in that period is large, not small.
If N is Poisson-distributed the two effects ezactly cancel out so all active players in all
periods act as if they face a Poisson-distributed number of opponents. EE, combined with
IA, makes the analysis rather simple.

A equilibrium for the Poisson game is defined as a strategy function o such that every
type assigns positive probability only to actions that maximize the expected utility for

players of this type; that is, for every action ¢ € C' and every type t € T,
if o(c|t) > 0 then U(c|t, o) = rgleg(U(b]t, o)
S

for the expected utility

where

T(c) =) _r(t)o(clt)

teT

9n particular, for a Poisson game, the number of opponents he faces is also a random variable of
Poisson(n).



is the marginal probability that a random sampled player will choose action ¢ under
o. Note that this equilibrium is by definition symmetric; asymmetric equilibrium where
players of the same type could play differently are not defined in games with population
uncertainty since ex ante we do not know the list of participating players.

Myerson (1998) proves existence of equilibrium under all games of population uncer-
tainty with finite action and type spaces, which includes Poisson games.'® Note that the
equilibria in games with population uncertainty must be symmetric in the sense that each
type plays the same strategy. This existence result provides the basis for the following

characterization of the Poisson-Nash equilibrium.

2.2 Poisson Equilibrium for the LUPI Game

In the symmetric Poisson equilibrium, all players employ the same mixed strategy p =
(p1,p2, -+, pr) where Zfil pi = 1. Let the random variable X (k) be the number of
players who pick k£ in equilibrium. Then, Pr(X(k) = i) is the probability that the
number of players who pick k in equilibrium is exactly 7. By environmental equivalence
(EE), Pr(X (k) = 1) is also the probability that i opponents pick k. Hence, the expected

payoffs for choosing different numbers are:!!

(k) = (1:[ Pr(X(i) 1)) . Pr(X (k) = 0)

- (ﬁ [1- npie—”m}) e

i=1

0For infinite types, Myerson (2000) proves existence of equilibrium for Poisson games alone.
1 Recall that winner’s payoff is normalized to 1, and others are 0.



for all £ > 1. If both k and k+ 1 are chosen with positive probability in equilibrium, then

7(k) = m(k + 1). Rearranging this equilibrium condition implies

PR = e"Pk — np,. (1)

In addition to this condition, the probabilities must sum up to one and the expected
payoff from playing numbers not in the support of the equilibrium strategy cannot be
higher than the numbers played with positive probability.

The three equilibrium conditions allows us to characterize the equilibrium and show

that it is unique.

Proposition 1 There is a unique mized equilibrium p = (p1,p2, -+ ,Px) of the Poisson

LUPI game that satisfies the following properties:

1. Full support: px > 0 for all k.
2. Decreasing probabilities: pyy1 < px for all k.

3. Converity/concavity: (px, — pr+1) is increasing in k for pr < 1/n and decreasing in

k for p, > 1/n.

4. Convergence to uniform play with many players: for any fired K, n — oo implies

12
Prk+1 — Pk

Proof. See Appendix B. Q.E.D.

In the Swedish game the average number of players was n = 53, 783 and number choices
were positive integers up to K = 99,999. As Figure 1 shows, the equilibrium involves
mixing with substantial probability between 1 and 5500, starting from p; = 0.0002025.

The predicted probabilities drop off very sharply at around 5500. Figure 1 shows only

1270 illustrate the convergence to uniform distribution as n — oo numerically, when K = 100 and
n = 500 the mixture probabilities start at p; = 0.0124 and end with pg7 = 0.0043, pgs = 0.0038, pgg =
0.0031, p1go = 0.0023; so the ratio of highest to lowest probabilities is about six-to-one. When K = 100
and n = 5,000, all mixture probabilities for numbers 1 to 100 are 0.01 (up to two-decimal precision).

10



the predicted probabilities for 1 to 10,000, since probabilities for numbers above 10,000
are positive but minuscule.

The central empirical question that will be answered later is how well actual behavior in
the field matches the equilibrium prediction in Figure 1. Keep in mind that the simplified
game analyzed in this section differs in some potentially important ways from the actual
Swedish game. Computing the equilibrium is complicated and its properties are not
particularly intuitive. It might therefore be surprising if the actual data matched the
equilibrium closely. Because there are 49 days of data, we can also see whether choices

move in the direction of the Poisson-Nash benchmark over time.

3 The Field LUPI Game

The field version of LUPI, called Limbo, was introduced by the government-owned Swedish
gambling monopoly Svenska Spel on the 29th of January 2007.' This section describes
its essential elements; additional description is in Appendix D.

In Limbo, players chose an integer between 1 and 99,999. Each number bet costs 10
SEK (approximately 1 EURO). The game was played daily and the winning number was
presented on TV in the evening and on the Internet. The winner received 18 percent of the
total sum of bets, with the prize guaranteed to be at least 100,000 SEK (approximately
10,000 EURQO). If no number was unique the prize was shared evenly among those who
chose the smallest and least-frequently chosen number. There were also smaller second
and third prizes (1000 SEK and 20 SEK) for being close to the winning number.

During the first three to four weeks, it was only possible to play the game at physical
branches of Svenska Spel by filling out a form (Figure A9). The form allowed players to

bet on up to six numbers'4, to play the same numbers for up to 7 days in a row, or to let

13Stefan Molin at Svenska Spel told us that he invented the game in 2001 after taking a game theory
course from the Swedish theorist and experimenter Martin Dufwenberg.

4The rule that players could only pick up to six numbers a day was enforced by the requirement that
players had to use a “gambler’s card” linked to their personal identification number when they played.
Colluding in LUPI can conceivably increase the probability of winning but would require a remarkable

11



a computer choose random numbers for them (a “HuxFlux” option).

Daily data were downloaded for the first seven weeks, ending on the 18th of March
2007. The game was stopped on March 24th, one day after a newspaper article claimed
that some players had colluded in the game, but it is unclear whether collusion actually
occurred or how it could be detected.

Unfortunately, we have only gained access to aggregate daily frequencies, not to
individual-level data. We also do not know how many players used the randomization
HuxFlux option. However, because the operators told us how HuxFlux worked, we can
estimate that approximately 19 percent of players were randomizing in the first week.!?

Note that the theoretical analysis of the LUPI game in the previous section differs
from the field LUPI game in three ways. First, the theory used a tie-breaking rule in
which nobody wins if there is no uniquely chosen number (to simplify expected payoff
calculations enormously). In the field game, however, players who tie by choosing the
smallest and least-frequently chosen number share the prize. This is a minor difference
because the probability that there is no unique number is very small and it never happened
during the 49 days for which we have data. A second, more important, difference is that
we assume that each player can only pick one number. In the field game, players are
allowed to bet on up to six numbers. This does play a role for the theoretical predictions,
since it allows players to “knock out” a likely low-number winner by choosing the same
number as the winner and then bet on a higher number hoping that the higher number
will be unique and win. Finally, we do not take the second and third prizes present in the
field version into account, but this is unlikely to make a big difference given the strategic
nature of the game.

Nevertheless, these three differences between the payoff structures of the game an-
alyzed theoretically, and the field game as it was played, are a motivation for running

laboratory experiments with single bets, no opportunity for direct collusion, and only a

degree of coordination across a large syndicate, and is also risky if others might be colluding in a similar
way.

15Tn the first week, the randomizer chose numbers from 1 to 15,000 with equal probability. The drop
in numbers just below and above 15,000 suggests the 19 percent figure.

12



first prize, which match the game analyzed theoretically more closely.

3.1 Descriptive Statistics

Table 1 reports summary statistics for the first 49 days of the game. Two additional
columns display the corresponding daily averages for the first and last weeks to see how
much learning takes place. The last column displays the corresponding statistics that
would result from play according to the Poisson equilibrium.

Overall, the average number of bets N was 53,783, but there was considerable varia-
tion over time. There is no apparent time trend in the number of participating players,
but there is less participation on Sundays and Mondays (see Figure A11).'6 The variation
of the number of bets across days is therefore much higher than what the Poisson dis-
tribution predicts (its standard deviation is 232). However, note that larger variance in
N means sometimes there are many fewer players (so chosen numbers should be smaller)
and sometimes there are many more players (so chosen numbers should be larger). Fixing
the mean of N and increasing the variance might therefore have little overall impact on
the equilibrium number distribution (and has little effect in the lab data reported later).

Despite some differences between the simplified theory and the way the field lottery
game was implemented, the average number chosen overall was 2835, which is close to the
equilibrium prediction of 2595.'7 Winning numbers, and the lowest numbers not chosen
by anyone, also varied a lot over time. All the aggregate statistics using chosen numbers
in Table 1 are closer to the equilibrium predictions in the last week than in the first week.

Many of the statistics converge rather swiftly and closely. The mean number in the last

16The Sunday-Monday average N (std. dev.) is 44,886 (4001) and the Tuesday-Saturday average is
57,341(5810). Dividing the sample in this way does reduce the variance in N by almost half. However,
the summary statistics in the two groups are very close together (the means are 2792 and 2941).

17To judge the significance of the difference between theory and data we simulated 1000 weekly average
numbers from the Poisson-Nash equilibrium. That is, 350,000 i.i.d. draws were drawn from the distribu-
tion and the average number was computed. This yields one simulated average. The procedure was then
repeated a total of 1000 times to create 1000 simulated averages. The low and high range of 950 of these
simulated averages—a 95% confidence interval—is 2590 to 2599. Since the weekly averages in the data lie
outside this extremely tight interval, we can conclude that the data are significantly different than those
predicted by theory. But note that this is an extremely demanding test because the very large sample
sizes mean that the data must lie very close to the theory to not reject the theory.

13



week is 2484, compared to the prediction of 2595. In equilibrium essentially nobody (fewer
than .01 percent) should choose a number above 10,000. In the first week 12 percent chose

these high numbers, but in the last week only 1 percent did.

All days 15t week | 7" week | Eq.
Avg. Std. Min Max Avg. Avg. Avg.
# Bets 53783 7782 38933 69830 57017 47907 53783
Average number played 2835 813 2168 6752 4512 2484 2595
Median number played 1674 348 435 2272 1203 1935 2541
Winning number 2095 1266 162 4465 1159 1982 2585
Lowest number not played 3103 929 480 4597 1745 3462 4077
Below 100 (%) 6.08 4.84 272 297 15.16 3.19 2.02
Below 1000 (%) 3231 814 21.68 63.32 44.91 27.52 20.05
Below 5000 (%) 92.52 6.44 68.26 97.74 78.75 96.44 93.34
Below 10000 (%) 96.63 3.80 80.70 98.94 88.07 98.81 100.00
Even numbers (%) 46.75 0.58 45.05 48.06 45.91 47.45 49.99
Divisible by 10 (%) 8.54 0.466 7.61 9.81 8.43 9.01 9.99
Proportion 19002010 (%) 71.61 428 67.33 87.01 79.39 68.79 49.78
11, 22,...,99 (%) 122 0.82 10.8 14.4 12.4 114 9.00
111, 222,...,999 (%) 348 0.65 248 4.70 4.27 2.78 0.90
1111, 2222,...,9999 (1,/1000) 452  0.73 281 5.80 4.74 3.95 0.74
11111, 22222,...,99999 (1/1000) | 0.76  0.84  0.15 5.45 2.26 0.21 0

Proportion of numbers between 1900 and 2010 refers to the proportion relative to numbers between
1844 and 2066. “11, 22,...,99” refers to the proportion relative to numbers below 100, “111,222,...,999”
relative to numbers below 1000, and so on. The “eq. avg’ predictions refers to the prediction of the
Poisson-Nash equilibrium with n = 53,783 and K = 99, 999.

Table 1: Descriptive statistics and Poisson-Nash equilibrium predictions for field LUPI
game data

An interesting feature of the data is a tendency to avoid round or focal numbers and
choose quirky numbers that are perceived as “anti-focal” (as in hide-and-seek games,
see Crawford and Iriberri, 2007a). Even numbers were chosen less often than odd ones

(46.75% vs. 53.25%). Numbers divisible by 10 are chosen a little less often than predicted.

Strings of repeating digits (e.g., 1111) are chosen too often.!® Players also overchoose

18GSimilar behavior can be found in the federal tax evasion case of Joe Francis, the founder of “Girls
Gone Wild.” Mr. Francis was indicted on April 11, 2007 for claiming false business expenses such as
$333,333.33 and $1,666,666.67 in insurance, which were too suspicious not to attract attention. See
http://consumerist.com/consumer/taxes/girls-gone-wild-tax-indictment-teaches-us-not-to-
deduct-funny+looking-numbers-252097.php for the proposed tax lesson and
http://www.thesmokinggun.com/archive/years/2007/0411072joefrancisl.html for the origi-
nal court order.
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numbers that represent years in modern time (perhaps their birth years). If players had
played according to equilibrium, the fraction of numbers between 1900 and 2010 divided
by all numbers between 1844 and 2066 should be 49.78 percent, but the actual fraction
was 70 percent.’

Figure 2 shows this focality in a histogram of numbers between 1900 and 2010 (ag-
gregating all 49 days). Note that although the numbers around 1950 are most popular,
there are noticeable dips at focal years that are divisible by ten.?® Figure 2 also shows
the aggregate distribution of numbers between 1844 and 2066, which clearly shows the
popularity of numbers around 1950 and 2007. There are also spikes in the data for special
numbers like 2121, 2222 and 2345. Explaining these “focal” numbers with the cognitive
hierarchy and quantal response equilibrium models presented below is not easy (unless the
O-step player distribution is defined to include focality), so we will not comment on them

further (though see Crawford and Iriberri, 2007a for a successful application in simpler

hide-and-seek games).

3.2 Results

Do subjects in the field LUPI game play according to the Poisson-Nash equilibrium bench-
mark? In order to investigate this, we assume that the number of players is Poisson
distributed with mean equal to the empirical daily average number of numbers chosen
(53,783). As noted previously, this assumption is wrong because the variation in number
of bets across days is much higher than what the Poisson distribution predicts. We do
not know how close the approximation is because the equilibrium using either the actual
distribution of N, or fixed N, cannot be computed. However, computations with small- N

games show that fixed-N and Poisson-distributed N equilibria are very close together (see

19We compare the number of choices between 1900 and 2010 to the number of choices between 1844
and 2066 since there are twice as many strategies to choose from in the latter range compared to the
first. If all players randomized uniformly (an approximation to the equilibrium strategy with large n and
K), the proportion of numbers between 1900 and 2010 would be about 50 percent.

2ONote that it would be unlikely to observe these dips reliably with typical experimental sample sizes.
It is only with the large amount of data available from the field, 2.5 million observations, that these dips
are visually obvious and different in frequency than neighboring unround numbers.
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Appendix A).

Figure 3 shows the average daily frequencies from the first week together with the
equilibrium prediction (the dashed line), for all numbers up to 99,999 and for the re-
stricted interval up to 10,000. Recall that in the Poisson-Nash equilibrium, probabilities
of choosing higher numbers first decrease slowly, drop quite sharply at around 5500, and
asymptotes to zero after pss13 = 1/n (recall Proposition 1 and Figure 1). Compared to
equilibrium, there is overshooting at numbers below 1000 and undershooting at numbers
between between 2000 and 5500. It is also noteworthy how spiky the data is compared to
the equilibrium prediction, which is a reflection of clustering on special numbers, as de-
scribed above. Nonetheless, the ability of the very complicated Poisson-Nash equilibrium
approximation to capture some of the basic features of the data is surprisingly good.

Figure 4 shows average daily frequencies of choices from the second through the last
(7th) week. Behavior in this period is even closer to equilibrium than in the first week.
However, when only numbers below 10,000 are plotted, the overshooting of low numbers
and undershooting of intermediate numbers is still clear (although the undershooting
region shrinks to numbers between 4000 and 5500) and there are still many spikes of
clustered choices.

The next question is whether alternative theories can explain both the degree to
which the equilibrium prediction is surprisingly accurate and the degree to which there

is systematic deviation.

3.3 Rationalizing Non-Equilibrium Play

This section describes two potential approaches to rationalizing deviations from the
Poisson-Nash approximation: Quantal response equilibrium (QRE) and a cognitive hi-
erarchy (CH) approach. The theories are presented together for coherence. However, for
computational reasons, QRE cannot be easily fitted to the field data. So we first describe
how well CH can fit the field data. Then the lab experiments are described and all three

theories are applied to those data.
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3.3.1 Quantal Response Equilibrium

As described in McKelvey and Palfrey (1995) and Chen, Friedman and Thisse (1997),
the quantal response equilibrium (QRE) replaces best responses by quantal responses,
allowing for either error in actions or uncertainty about payoffs. QRE has been applied
to hundreds of experimental data sets and can often account for both behavior close to
equilibrium and behavior that deviates from equilibrium (e.g. Goeree and Holt, 2001,
Goeree, Holt and Palfrey, 2002, Levine and Palfrey, 2007, and Goeree and Holt, 2005).
As in stochastic consumer choice models, QRE can fit any pattern of data if the error
structure is general enough (Haile, Hortagsu and Kosenok, 2008). Therefore, as is always
done in empirical work we use a particular restriction, that choice probabilities are given

1

by normalized power functions of expected payoffs of strategies.?! In a power QRE, a

vector p = (p1,p2, -+ ,Px) is a symmetric equilibrium if all probabilities satisfy

_ m(k)?
D S )

where A > 0 and 7 (k) > 0 are expected payoffs given the equilibrium probabilities.
If we assume that the number of players are Poisson distributed, we can use the
expression for the payoff from playing the £** number from the previous section. This

gives the following symmetric QRE probabilities of the game:

k=111 —np;] ,—npk A
Hi:l[ — npie Je

. X
ZJKZI <Hf;11 [1 — npe=mpi] e—”Pj)

Pr =

Note that in a power QRE, as in the Poisson equilibrium, all numbers are played with

positive probability and larger numbers are chosen less often (pgy1 < pg, for A > 0).22

2IMost studies of QRE use logit probability functions. But since we use a power distribution in
the cognitive hierarchy model (to be presented below), we use that for the QRE as well to maintain
comparability.

22To see why this is the case, suppose by contradiction that pyi 1 > px, i.e., ppr1/px > 1. From the
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Some intuition about how QRE behaves* can be obtained from the case implemented
in the lab experiments, which has n = 26.9 players and number choices from 1 to K =
99. Figure 5 shows a 3-dimensional plot of the QRE probability distributions for many
values of A, along with the Poisson-Nash equilibrium. When A is low, the distribution is
approximately uniform. As A increases more probability is placed on lower numbers 1-
12. When A is high enough the QRE closely approximates the Poisson-Nash equilibrium,
which puts roughly linear declining weight on numbers 1 to 15 and infinitesimal weight
on higher numbers. We conjecture that power QRE always approaches the Poisson-Nash
equilibrium in this way, shifting weight from higher numbers to lower numbers in the
transition from random (A = 0) to Poisson-Nash (A — oo) behavior, but have not been

able to prove the conjecture.

3.3.2 Cognitive Hierarchy with Quantal Response

A natural way to model limits on strategic thinking is by assuming that different players
carry out different numbers of steps of iterated strategic thinking in a cognitive hierarchy
(CH). This idea has been developed in behavioral game theory by several authors (e.g.,
Nagel, 1995, Stahl and Wilson, 1995, Costa-Gomes, Crawford and Broseta, 2001, Camerer,
Ho and Chong, 2004 and Costa-Gomes and Crawford, 2006) and applied to many games

of different structures (e.g., Crawford, 2003, Camerer, Ho and Chong, 2004 and Crawford

expression for the ratio pg41/pr we know that this implies that

[(1 = npre"*) (;an]A > [efnpk]k.
Raising both sides to the power of 1/\ (which is valid since both sides are positive) and rearranging we
get
(1 — npk.efnp’“) e"'Pk > lPht1,

Taking logarithms

1 _

- In (1 — npre™ %) > pry1 — pi.
Since pr+1 > pi, the right hand side is positive. The left hand side, however, is always negative since
1 — npre™™Pk = P (X (k) # 1) (which is a probability between zero and one). This is a contradiction,
and we can therefore conclude that py > pry1 whenever A > 0.

23We have not shown that the symmetric power QRE is unique, but no other symmetric equilibria
have emerged during numerical calculations.
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and Iriberri, 2007b).%*

These models require a specification of how k-step players behave and the proportions
of players for various k. We follow Camerer, Ho and Chong (2004) and assume that the
proportion of players that do k thinking steps is Poisson distributed with mean 7, i.e.,

the proportion of players that think in k steps is given by
f(k)=eT"7"/EL.

We assume that k-step thinkers correctly guess the proportions of players doing 0 to k—1
steps.?’ Then the conditional density function for the belief of a k-step thinker about the
proportion of [ < k step thinkers is
U

() = =5

> h—o /()
The TA and EE properties of Poisson games (together with the general type specifi-
cation described earlier) imply that the number of players that a k-step thinker believes

will play strategy i is Poisson distributed with mean

Hence, the expected payoff for a k-step thinker of choosing number 7 is

i—1
kr\ k —nq’-C —nqlC
(i) = [1—nqje i e,

1

J

24A precursor to these models was the insight, developed much earlier in the 1980’s by researchers
studying negotiation, that people often ‘ignore the cognitions of others’ in asymmetric-information bidding
and negotiation games (Bazerman, Curhan, Moore and Valley, 2000).

25An alternative approach which often has advantages is that level-k types think all others are level
k — 1. If we start out with LO types playing random, L1 types should all play 1. If L2 types best respond
to only L1 types, then they should play uniformly among 2-K. If L3 types best respond to only L2 types,
then they should all play 1 (since they believe nobody is playing 1), and this logic can cycle. Note that
this problem typically occurs in games with mixed strategy equilibrium, such as matching pennies—if
you start out with LO playing H, you would have all even types play H and all odd types play T (and if
you start out with random, L0 trivially coincides with equilibrium).
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To fit the data well, it is necessary to assume that players respond stochastically (as
in QRE) rather than always choose best responses (see also Rogers, Palfrey and Camerer,
2009).2 We assume that level 0 players randomize uniformly across all numbers 1 to
K, and higher-step players best respond with probabilities determined by a normalized
power function of expected payoffs.”

The probability that a k step player plays number ¢ is given by

. A
(R[] e)
b; =

SE <H;11 [1 — ane_”qf] e—”qz>

A

for A > 0. Since qf is defined recursively—it only depends of what lower step thinkers
do—it is straightforward to compute the predicted choice probabilities numerically for
each type of k-step thinker (for given values of 7 and \) using a loop, then aggregating
the estimated p§ across steps k. Apart from the number of players and the number of
strategies, there are two parameters: the average number of thinking steps, 7, and the
precision parameter, .

Figure 6 shows the prediction of the cognitive hierarchy model for the parameters of
the field LUPI game, i.e., when n = 53,783 and K = 99,999. The dashed line corresponds
to the case when players do relatively few steps of reasoning and their responses are very
noisy (7 = 3 and A = 0.008). The dotted line corresponds to the case when players do
more steps of reasoning and respond more precisely (7 = 10 and A = 0.011). Increasing

7 and A creates a closer approximation to the Poisson-Nash equilibrium, although even

26The CH model with best-response piles up most predicted responses at a very small range of the
lowest integers (1-step thinkers choose 1, 2-step thinkers choose 2, and k-step thinkers will never pick
a number higher than k). Assuming quantal response smoothes out the predicted choices over a wider
number range.

27In many previous studies logit choice functions are typically used and they fit comparably to power
functions (e.g., Camerer and Ho, 1998 for learning models). Some QRE applications have used power
functions and found better fits (e.g., in auctions, Goeree, Holt and Palfrey, 2002). However, in this case
a logit choice function fits substantially worse for the field data (with 99,999 numbers to choose from).
The reason is that logit choice probabilities are convex in expected payoff. This implies, numerically that
probabilities are either substantial for only a small number of the 99,999 possible numbers, or are close to
uniform across numbers. The logit CH model simply cannot fit the intermediate case in which thousands
of number are chosen with high probability and many other numbers have very low probability (as in the
data).
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with a high 7 there are too many choices of low numbers.

There is a clear contrast between the ways in which QRE and CH models deviate
from equilibrium. QRE predicts number choices will be more evenly spread across the
entire range than what equilibrium predicts, so it predicts too few low numbers compared
to equilibrium. CH predicts there will be too many low numbers (see Figure 6). This
distinction in how the two theories deviate from equilibrium is useful for comparing them
because the deviations these two theories predict from equilibrium often coincide (see
Rogers, Palfrey and Camerer, 2009).

Unfortunately, the QRE model is not estimated for two reasons: First, it is very
computationally challenging to estimate for the large-scale field data and we have not been
able to do s0.28 Second, if the QRE approaches the Poisson-Nash equilibrium smoothly
from random to Poisson-Nash, then it cannot account for overshooting of low numbers
and will not explain the major deviation in the data. Indeed, it is likely that the best-
fitting QRE function is very close to Poisson-Nash (i.e., a high value of \), since most of
the choices are below 5000 and there is substantial overshooting in that region which we
conjecture (but cannot prove) that QRE can only fit by approximating Poisson-Nash.

Can the cognitive hierarchy model account for the main deviations from equilibrium
described in the previous section? Table 2 reports the results from the maximum likelihood
estimation of the data using the cognitive hierarchy model.?? The best-fitting estimates
week-by-week, shown in Table 2, suggest that both parameters increase over time. The
average number of thinking steps that people carry out, 7, increases from about 3 in
the first week—an estimate reasonably close to estimates from 1.0 to 2.5 that typical fit
experimental data sets well (Camerer et al., 2004)—to 10 in the last week.

Figure 7 shows the average daily frequencies from the first week together with the

CH estimation and the equilibrium prediction. The CH model does a reasonable job of

28Keep in mind that the CH model includes a quantal response component as well. However, because
the CH model is recursive (level-k behavior is determined by lower-level behavior and ) it is much easier
to estimate.

29Tt is difficult to guarantee that these estimates are global maxima since the likelihood function is
not smooth and concave. We also used a relatively coarse grid search, so there may be other parameter
values that yield slightly higher likelihoods and different parameter values.
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Week 1 2 3 4 ) 6 7
T 2.98 5.83 7.32 7.20 7.82 10.27  10.27
A 0.0080 0.0094 0.0103 0.0108 0.0110 0.0108 0.0107

Table 2: Maximum likelihood estimation of the cognitive hierarchy model for field data

accounting for the over- and undershooting tendencies at low and intermediate numbers
(with the estimated 7 = 2.98). In later weeks, the week-by-week estimates of 7 drift
upward a little (and A increases slightly), which is a reduced-form model of learning as an
increase in the mean number of thinking steps (see more details below). In the last week
the cognitive hierarchy prediction is much closer to equilibrium (because 7 is around 10)
but is still consistent with the smaller amounts of over- and undershooting of low and
intermediate numbers (see Figure 8).

To get some notion of how close to the data the fitted cognitive hierarchy model is,
Table 3 displays two goodness-of-fit statistics. First, the log-likelihoods reveal that the
cognitive hierarchy model does better in explaining the data toward the last week and
is always much better than Poisson-Nash.?® Second, in order to compare the CH model
with the equilibrium prediction, we calculate the proportion of the empirical density that
lies below the predicted density. This measure is one minus the summed “miss rates”, the
differences between actual and predicted frequencies, for numbers which are chosen more
often than predicted. If there is a lot of overshooting this statistic is low and if there is
very little overshooting this statistic is close to 1.

The cognitive hierarchy model does better than the equilibrium prediction in all seven
weeks based on this statistic. For example, in the first week, 61 percent of players’ choices
were consistent with the cognitive hierarchy model, whereas only 50 percent were consis-

tent with equilibrium. However, both models improve substantially across the weeks.

309Gince the computed Poisson-Nash equilibrium probabilities are € for k > 5518, the likelihood is always
essentially zero for the equilibrium prediction. In Appendix C, however, we compute the log-likelihood
for the low numbers only. Based on the Schwarz (1978) information criterion, the cognitive hierarchy
model still performs better in all weeks.
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Week 1 2 3 4 5 6 7

Log-likelihood CH -63956 -36390 -23716 -20546 -20255 -19748 -18083
Proportion below CH (%) 61.08 7250 77.69 79.87 81.86 82.63 81.94
Proportion below equil. (%) 49.56 61.82 67.66 67.70 70.23  76.79  76.61

The proportion below the theoretical prediction refers to the fraction of the empirical density that
lies below the theoretical prediction, or one minus the fraction of overshooting.

Table 3: Goodness-of-fit for cognitive hierarchy and equilibrium for field data

3.4 Learning

Explaining rapid convergence in the LUPI game is challenging for traditional models of
learning in games. A wide range of learning dynamics are likely to converge to equilibrium
in the limit, but it is more difficult to explain how players can learn to play close to
equilibrium in only 49 rounds. For example, simple learning based on reinforcement of
chosen strategies is far too slow because players win rarely (and hence, their strategies
are rarely reinforced). Belief-based models like fictitious play also have a hard time
explaining the speed of learning because of the special structure of the game: In LUPI, a
belief learner should not respond to the winning number, but should instead choose the
lowest unchosen number below the winning number. But this number is only reported
on the website. Moreover, in the field, the lowest unchosen number is typically above the
winning number (in 43 of 49 days). Hybrid models like EWA (Camerer and Ho, 1999, Ho,
Camerer and Chong, 2007) require the same information as fictitious play and therefore
do not fit any better in this information environment.

Explaining learning therefore requires a model that 1) does not rely on best responses
to the full empirical distribution, that 2) does not only consider a player’s own payoff
and 3) is not based on any other information than the structure of the game, a player’s

31 An appealing alternative which satisfies

own experience, and the winning numbers.
these three criteria is a simple imitation-learning model in which all players imitate a

window of numbers around the previous winning number. Since players’ payoffs are sym-

31Moreover, we can only fit models of representative agents since not all players participate in each
round (due to population uncertainty), and we do not have individual level data in the field.
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metric, imitating winning numbers is psychologically similar to counterfactual “fictive”
reinforcement of unchosen numbers. In fact, in explaining learning in weak-link games
(Roth, 1995) and proposer competition ultimatum games (“market games”, Roth and
Erev, 1995), Roth and Erev note that reinforcement according to chosen strategies fits
very poorly, so they substitute a differnt a model based on imitating the most successful
players.

An imitation model is empirically motivated by the fact that players clearly change
strategies in the direction of previous winners (as in “direction learning”, see Selten and
Buchta, 1998). Figure 11 shows how the relationship between the median number chosen
in period ¢ in the field is related to the median of the winning numbers from period 1
until ¢ — 1.

Let Ag (t) denote the attraction of strategy k in period ¢t. Based on these attractions,
players probabilistically pick numbers in the next period using a power function so that

the probability of picking number £ in the next period is

Ap ()

Pl = S o

(2)

Note that A = 0 means uniform randomization and A — 0o means playing only the
strategy with the highest attraction.

Any learning model requires an assumption about the choice probabilities in the first
period, px (1). We use the empirical frequencies to create choice probabilities in the first
period (“burning in”). Given these probabilities and A, we determine A (1) so that equa-
tion (2) gives the assumed choice probabilities py (1). Since the power choice function is
invariant to scaling, we determine the attractions in the first period so that they sum to
one, i.e., ZkK:lAk (1) = 1. From the second period onwards, strategies are reinforced by
a factor 7 (t), which depends on the winning number in period ¢t — 1. For the empiri-
cal estimation of the learning model we use the actual winning numbers from the field.

Attractions in period t > 1 are given by??

32More complicated variants of this function are possible, e.g., weighting lagged attractions by a “forget-
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_ Ak(t—l)—f—Tk(t)
1+ ZJK:lTj (t) .

The reinforcement factors are determined by the winning number in the previous

A (t)

period (if there is no winning number, the same attractions carry over to the next period).
However, since the strategy sets are so large, only reinforcing the previous winning number
would predict learning that is too slow and much too tightly clustered on previous winners.
We therefore follow Sarin and Vahid (2004) by assuming that numbers that are “similar”
to the winning number are also reinforced. We use the triangular Bartlett similarity
function used by Sarin and Vahid (2004), which puts reinforcement on strategies near
the previous winner that declines linearly with distance from that winning number. Let
W denote the size of the “similarity window” and k* (¢ — 1) the winning number in the

previous round. Then the reinforcement factors in period ¢ are given by

max{0,1 — |k —k*(t—1)|/W}

) = S5 1)

Note that the reinforcement factors are scaled so that they sum to one, just as the first
period attractions were scaled to sum to one.??

The learning model has two parameters: the size of the similarity window, W, and
the precision of the choice function, \. We estimate the best-fitting values by minimizing
the squared deviation between predicted choice densities and empirical densities summed
over all numbers and rounds. The estimated values for the field data are W = 344 and
A = 0.0085.

To see how the learning model fits the data, Figure 12 displays the average weekly
predicted densities of the learning model for numbers up to 6000 (along with the data

and Poisson-Nash equilibrium). The main feature of learning is that the number of low

numbers shrinks and the gap between the predicted frequency of numbers between 2000

ting” or decay factor. However, it is difficult to identify parameters in these more complicated functions
(e.g., a faster decay factor will look like a wider window) and creating an ideal specification lies beyond
the major scope of the paper.

33Figure A7 shows an example of the reinforcement factors when k* (t — 1) = 10 and W = 3.

25



and 5000 is gradually filled in. Figure A23 shows summary statistics week-by-week in a

boxplot.

4 The Laboratory LUPI Game

We conducted a parallel lab experiment for two reasons.

First, the rules of the field LUPI game do not exactly match the theoretical assump-
tions used to generate the Poisson-Nash equilibrium prediction. In the field data some
choices were made by a random number generator, some players might have chosen mul-
tiple numbers or colluded, there were multiple prizes, and the variance in NV is larger than
the Poisson distribution variance.

In the lab, we can more closely implement the assumptions of the theory. If the theory
fits poorly in the field and closely in the lab, then that suggests the theory is on the right
track when its underlying assumptions are most carefully controlled. If the theory fits
closely in both cases, that suggests that the additional factors in the field that are excluded
from the theory do not matter.

Second, because the field game is rather simple, it is possible to design a lab experiment
which closely matches the field in its key features. How closely the lab and field data
match provides some evidence in ongoing debate about how well lab results generalize to
comparable field settings (e.g., Levitt and List, 2007).

In designing the laboratory game, we compromise between two goals: to create a
simple environment in which theory should apply (theoretical validity), and to recreate
the features of the field LUPI game in the lab (specialized external validity). Because
we use this opportunity to create an experimental protocol that is closely matched to
a particular field setting, we often sacrificed theoretical validity in favor of close field
replication.

The first choice is the scale of the game: The number of players (IV), possible number

choices (K), and stakes. We choose to scale down the number of players and the largest
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payoff by a factor of 2000. This implies that there were on average 26.9 players and the
prize to the winner in each round was $7. For K = 99 the shape of the equilibrium
distribution has some of the basic features of the equilibrium distribution for the field
data parameters (e.g. most numbers should be below 10 percent of K). Since the field
data span 49 days, the experiment also has 49 rounds in each session. (We typically
refer to experimental rounds as “days” and seven-“day” intervals as “weeks” for semantic
comparability between the lab and field descriptions.)

The number of players in each round was drawn from a distribution with mean 26.9.
In three of the four sessions, subjects were told the mean number of players, and that
the number varied from round to round, but did not know the distribution (in order to
match the field situation in which players were very unlikely to know the total number
playing each day). Due to a technical error, in these three sessions, the variance was
lower than the Poisson variance (7.2 to 8.6 rather than 26.9). However, this mistake is
likely to have little effect on behavior because subjects did not know the total number
of players in each round.?* In the last session, the number of players in each round was
drawn from a Poisson distribution with mean 26.9 and the subjects were informed about
this. Furthermore, the data from the true Poisson session and the lower-variance sessions
look statistically similar so we pool them for all analysis (see below).

Some design choices made the lab setting different from the field setting but closer to
the assumptions of the theory. In contrast to the field game, in the lab each player was
allowed to choose only one number, they could not use a random number generator, there
was only one prize per round, $7, and if there was no unique number nobody won.

In the field data we do not know how much Swedish players learned each day about
the full distribution of numbers that were chosen. The numbers were available online and
partially reported on a TV show. To maintain parallelism with the field, only the winning

number was announced in the lab.

34Note that it is very difficult to draw an exact inference about the underlying distribution of the
number of players based only on winning numbers — winning numbers are likely to be lower when there
are few players, but the relationship is far from deterministic.

27



Four laboratory sessions were conducted at the California Social Science Experimental
Laboratory (CASSEL) at the University of California Los Angeles on the 22nd and 25th
of March 2007, and on the 3rd of March 2009. The experiments were conducted using
the Ziirich Toolbox for Ready-made Economic Experiments (zTree) developed by Urs
Fischbacher, as described in Fischbacher (2007). Within each session, 38 graduate and
undergraduate students were recruited, through CASSEL’s web-based recruiting system.
All subjects knew that their payoff will be determined by their performance. We made
no attempt to replicate the demographics of the field data, which we unfortunately know
very little about. However, the players in the laboratory are likely to differ in terms of
gender, age and ethnicity compared to the Swedish players. In the four sessions, we had
slightly more male than female subjects, with the great majority clustered in the age
bracket of 18 to 22, and the majority spoke a second language. Half of the subjects had
never participated in any form of lottery before. Subjects had various levels of exposure

to game theory, but very few had seen or heard of a similar game prior to this experiment.

4.1 Experimental Procedure

At the beginning of each session, the experimenter first explained the rules of the LUPI
game. The instructions were based on a version of the lottery form for the field game
translated from Swedish to English (see Appendix E). Subjects were then given the option
of leaving the experiment, in order to see how much self-selection influences experimental
generalizability. None of the recruited subjects chose to leave, which indicates a limited
role for self-selection (after recruitment and instruction).

In three of the four sessions, subjects were told that the experiment would end at a
predetermined, but non-disclosed time to avoid an end-game effect (also matching the
field setting, which ended abruptly and unexpectedly). Subjects were also told that
participation was randomly determined at the beginning of each round, with 26.9 subjects
participating on average. Subjects in the fourth session were explicitly told there were

49 rounds, and the number of players was drawn from a Poisson distribution. They
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were also shown in the instructions a graph showing a distribution function for a Poisson
distribution with mean 26.9.

In the beginning of each round, subjects were informed whether they would actively
participate in the current round (i.e., if they had a chance to win). They were required
to submit a number in each round, even if they were not selected to participate. The
difference between behavior of selected and non-selected players gives us some information
about the effect of marginal incentives on performance (cf. Camerer and Hogarth, 1999).

When all subjects had submitted their chosen numbers, the lowest unique positive
integer was determined. If there was a lowest unique positive integer, the winner earned
$7; if no number was unique, no subject won. FEach subject was privately informed,
immediately after each round, what the winning number was, whether they had won
that particular round, and their payoff so far during the experiment. This procedure was
repeated 49 times, with no practice rounds (as is the case of the field). After the last
round, subjects were asked to complete a short questionnaire which allowed us to build
the demographics of our subjects and a classification of strategies used. In two of the
sessions, we included the cognitive reflection test as a way to measure cognitive ability
(to be described below). All sessions lasted for less than an hour, and subjects received
a show-up fee of $8 or $13 in addition to earnings from the experiment (which averaged

$8.60). Screenshots from the experiment are shown in Appendix E.

4.2 Lab Descriptive Statistics

We focus only on the choices from incentivized subjects that were selected to actively
participate in the remainder of the paper. It is noteworthy, however, that the choices
of participating and non-participating subjects did not significantly differ (p-value 0.16,
Mann-Whitney). The choices from the session with the announced Poisson distribution
and the pooled other three sessions do not significantly differ at the five percent level
(p = 0.59, t-test with clustered standard errors). In the remainder of the paper we

therefore pool all four sessions.
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Figure 9 shows the data for the choices of participating players (together with the
Poisson-Nash equilibrium prediction). There are very few numbers above 20 so the num-
bers 1 to 20 are the focus in subsequent graphs. In line with the field data, players have a
slight predilection for certain numbers, while others are avoided. Judging from Figure 9,
subjects avoid some even numbers, especially 10, while they endorse the odd (and prime)
numbers 11, 13 and 17. Interestingly, only one subject played 20, while 19 was played ten

times and 21 was played seven times.

All rounds R 1-7 | R. 43-49 | Equil.

Avg. Std.dev. Min  Max | Avg. Avg. Avg.
Average number played 6.0 14 4.3 12.5 8.6 5.8 5.2
Median number played 4.7 1.0 3 10 6.1 5 5
Below 20 (%) 98.02 2.77 81.98 100.00 | 93.94 98.42 100.00
Even numbers (%) 45.19 4.47 35.16 53.47 | 42.11 49.15 46.86
Session 1
Winning number 6.0 9.4 1 67 13.0 2.5 2.9
Lowest number not played 8.1 2.6 1 12 4.9 8.1 3.3
Session 2
Winning number 5.1 2.6 1 10 5.8 5.1 2.9
Lowest number not played 7.5 3.0 1 12 6.3 8.4 3.3
Session 3
Winning number 5.6 3.3 1 14 6.1 5.7 2.9
Lowest number not played 7.5 2.7 2 13 7.4 10.0 3.3
Session 4 (Poisson)
Winning number 5.8 3.6 1 17 6.7 3.1 2.9
Lowest number not played 7.6 3.4 1 13 5.1 8.1 3.3

Summary statistics are based only on choices of subjects who are selected to participate. The
equilibrium column refers to what would result if all players played according to equilibrium (n = 26.9
and K = 99)

Table 4: Descriptive statistics for laboratory data

Table 4 shows some descriptive statistics for the participating subjects in the lab
experiment. As in the field, some players in the first week tend to pick very high numbers
(above 20) but the percentage shrinks by the seventh week. The average number chosen
in the last week corresponds closely to the equilibrium prediction (5.8 vs. 5.2) and the
medians are identical (5.0). The average winning numbers are too high compared to

equilibrium play, which is consistent with the observation that players pick very low
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numbers too much, creating non-uniqueness among those numbers so that unique numbers
are unusually high. The tendency to pick odd numbers decreases over time—42 percent
of all numbers are even in the first week, whereas 49 percent are even in the last week.
As in the field data, the overwhelming impression from Table 4 is that convergence to
equilibrium is quite rapid over the 49 periods (despite receiving feedback only about the

winning number).

4.3 Aggregate Results

In the Poisson equilibrium with 26.9 average number of players, strictly positive prob-
ability is put on numbers 1 to 16, while other numbers have probabilities numerically
indistinguishable from zero. Figure 10 shows the average frequencies played in week 1 to
7 together with the equilibrium prediction (dashed line) and the estimated week-by-week
results using the cognitive hierarchy model (solid line). These graphs clearly indicates
that learning is quicker in the laboratory than in the field. Despite that the only feedback
given to players in each round is the winning number, behavior is remarkably close to equi-
librium already in the second week. However, we can also observe the same discrepancies
between the equilibrium prediction and observed behavior as in the field. The distribution
of numbers is too spiky and there is overshooting of low numbers and undershooting at
numbers just below the equilibrium cutoff (at number 16).

Figure 10 also displays the estimates from a maximum likelihood estimation of the
cognitive hierarchy model presented in the previous section (solid line).?® The cognitive
hierarchy model can account both for the spikes and the over- and undershooting. Table
5 shows the estimated parameters.?® There is no clear time trend in the two parameters,

and in some rounds the average number of thinking steps is unreasonably large compared

35To illustrate how the CH model behaves, consider N = 26.9 and K = 99, with 7 = 1.5 and A = 2.
Figure A22 shows how 0 to 5 step thinkers play LUPI and the predicted aggregate frequency, summing
across all thinking steps. In this example, 1-step thinkers put most probability on number 1, 2-step
thinkers put most probability on number 5, and 3—step thinkers put most probability on numbers 3 and
7.

36The log-likelihood function is neither smooth nor concave, so the estimated parameters may not
reflect a global maximum of the likelihood.
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to other experiments showing 7 around 1.5. Since there are two free parameters with
relatively few choice probabilities to estimate, we might be over-fitting by allowing two
free parameters. We therefore estimate the precision parameter A while keeping the
average number of thinking steps fixed. We set the average number of thinking steps to
1.5, which has been shown to be a value of 7 that predicts experimental data well in
a large number of games (Camerer et al., 2004). The estimated precision parameter is
considerably lower in the first week, but is then relatively constant.”

Table 5 also displays the maximum likelihood estimate of A\ for the power QRE. The
precision parameter is high from the second week and onwards. Recall from Figure 5 that

the QRE prediction for such high X is very close to the Poisson-Nash equilibrium.

Week 1 2 3 4 5 6 7

T 8.98 11.80 1291 1397 11.85 11.98 7.00
A 1.31 11.79 16.23 16.50 15.20 18.29 9.55
A(r=15) 1.09 252 257 263 260 231 208
AQRE 1.32 10.99 10.25 895 10.75 12.73 6.89

Table 5: Maximum likelihood estimation of the cognitive hierarchy model and QRE for
laboratory data

Table 6 provides some goodness-of-fit statistics for the cognitive hierarchy model, QRE
and the equilibrium prediction. Based the proportion of the empirical density that lies
below the predicted density, the equilibrium prediction does remarkably well. However,
the cognitive hierarchy model (with two free parameters) does better than the equilibrium
prediction in all but the sixth week. QRE performs better than equilibrium in the first
week, but is practically indistinguishable from equilibrium after the first week (due to
high A\). The log-likelihood of the cognitive hierarchy model (with two parameters) is
higher than the QRE during all weeks.3®

3TFigure A4 shows the fitted cognitive hierarchy model when 7 is restricted to 1.5. It is clear that the
model with 7 = 1.5 can account for the undershooting also when the number of thinking steps is fixed,
but it has difficulties in explaining the overshooting of low numbers. The main problem is that with
7 = 1.5, there are too many zero-step thinkers that play all numbers between 1 and 99 with uniform
probability. The log-likelihoods for the CH model with 7 = 1.5 range from -241 in week 1 to -212 in week
2, which are much worse than power QRE or unrestricted CH.

38In Appendix C we calculate the log-likelihoods using data from numbers 1 to 16, which allows us
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Week 1 2 3 4 5 6 7

Log-likelihood CH -166.9 -84.5 -80.6 -86.1 -86.3 -83.7 -87.7
Log-likelihood power QRE -167.0 -94.6 -108.5 -108.8 -102.4 -94.5 -112.4
Proportion below CH (%) 87.83 91.55 9278 93,50 91.65 91.86 92.98
Proportion below power QRE (%) 87.83 88.75 87.23 88.12 88.39 91.73 87.17
Proportion below eq. (%) 82.25 88.55 87.61 88.64 88.64 92.86 87.06

The proportion below the theoretical prediction refers to the fraction of the empirical density that lies
below the theoretical prediction.

Table 6: Goodness-of-fit for cognitive hierarchy, QRE and equilibrium for laboratory data

On the aggregate level, behavior in the lab is remarkably close to equilibrium from the
second to the last week. The cognitive hierarchy model can rationalize the tendencies that
some numbers are played more, as well as the undershooting below the equilibrium cutoff.
The value-added of the cognitive hierarchy model is not primarily that it gives a slightly
better fit, but that it provides a plausible story for how players manage to play so close
to equilibrium. Most likely, few players would be capable of calculating the equilibrium
during the course of the experiment, whereas many of them should be able to carry out

a few steps of reasoning along the lines of the cognitive hierarchy model.

4.4 Individual Results

An advantage of the lab over the field, in this case, is that the behavior of individual
subjects can be tracked over time and we can gather more information about them to link
to choices. Appendix E discusses some details of these analyses but we summarize them
here only briefly.

In a post-experimental questionnaire, we asked people to state why they played as they
did. We coded their responses into four categories (sometimes with multiple categories):
“Random”, “stick” (with one number), “lucky”, and “strategic” (explicitly mentioning
response to strategies of others). The four categories were coded 35%, 30%, 11% and

38% of the time. These categories had some relation to actual choices because “stick”

to compare the equilibrium prediction with the other models. Based on Schwarz (1978) information
criterion, both QRE and cognitive hierarchy (with two parameters) outperforms equilibrium.
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players chose fewer distinct numbers and “lucky” players had number choices with a
higher mean and higher variance. The only demographic variable with a significant effect
on choices and payoffs was “exposure to game theory”; those subjects chose numbers
with less variation across rounds. A measure of “cognitive reflection” (Frederick, 2005),
a short-form IQ test, did not correlate with choice measures or with payoffs.

As is often seen in games with mixed equilibria, there is some mild evidence of “pu-
rification” since subjects chose only 9.65 different numbers on average (see Appendix E),

compared to 10.9 expected in Poisson-Nash equilibrium.

All periods Week 1  Week 2 Week 3-7
Round (1-49) 0.001 -0.109 -0.065 0.023
(0.13) (-0.42)  (-0.62) (1.58)
t — 1 winner 0.178*** 0.148* 0.304***  0.059*
(4.89) (2.38) (2.98) (1.89)
t — 2 winner 0.133*** 0.096  0.242** 0.038*
(2.98) (1.18)  (2.40)  (1.68)
t — 3 winner 0.083*** 0.052 -0.050 0.030
(1.94) (0.65) (-0.63) (1.18)

Fixed effects Yes Yes Yes Yes
Observations 4360 421 585 3354
R? 0.03 0.09 0.01 0.00

*=10 percent, **=>5 percent and ***=1 percent significance level.
The table report results from a linear subject fixed effects panel
regression.  Only actively participating subjects are included.
t—statistics based on clustered standard errors are within paren-
theses.

Table 7: Panel data regressions explaining individual number choices in the laboratory

In the post-experimental questionnaire, several subjects said that they responded to
previous winning numbers. To measure the strength of this learning effect we regressed
players’ choices on the winning number in the three previous periods. Table 7 shows
that the winning numbers in previous rounds do affect players’ choices early on, but this
tendency to respond to previous winning numbers is considerably weaker in later weeks
(3 to 7). The small round-specific coefficients in Table 7 also show that there does not

appear to be any general trend in players’ choices over the 49 rounds.
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4.5 Learning Results

The regression analysis reported in Table 7 shows that players’ choices in the lab depend on
previous winners (at least in early rounds). Hence, this leads naturally to the investigation
on learning. Unfortunately, we cannot estimate standard individual learning models since
not all players participate in each round.

To maintain comparison with the field, we use the same imitation learning model as
discussed in section 3.4. For the laboratory implementation, we divide the estimated
window size from the field by 100 and fix W = 3. The estimated A for the laboratory
data is 0.31.%°

As was discussed in the previous section, players in the laboratory seem to learn to
play the game much quicker, so there is not so much learning to be explained by the
learning model. The learning model can explain some of the ups and downs during the
first 14 rounds in the laboratory, as well as the shrinking dispersion of numbers over time,
but there is no trend toward higher numbers as seen in the field data. Figure A8 displays
box plots for the 14 first rounds in the four sessions. Note that the learning model predicts
much more dispersion of numbers in the early rounds in the first session. This is explained
by the fact that players played very high numbers in the first round in that session and
that a very high number, 67, won in the fourth period. The imitation-based model is

substantially affected by that outlying win.

5 Conclusion

It is often difficult to test game theory using field data because equilibrium predictions

depend so sensitively on strategies, information and payoffs, which are usually not ob-

39Estimating both W and X for the laboratory data gives W = 11 and A = 1.84. However, the fit
is nearly identical with the smaller window size. For the lab data, W and A largely play inverse roles.
Higher window sizes W combined with higher response sensitivities A often generate very close squared
deviations (since higher W is generating a wider spread of responses and higher A is tightening the
response). The higher W is, the higher is A, but the overall fit is nearly unchanged as W varies between
3 and 12. See Appendix C for details.
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servable in the field. This paper exploits an empirical opportunity to test game theory in
a field setting which is simple enough that clear predictions apply (when some simplifying
assumptions are made). The game is a LUPI lottery, in which the lowest unique positive
integer wins a fixed prize. LUPI is a close relative of auctions in which the lowest unique
bid wins.

One contribution of our paper is to characterize the Poisson-Nash equilibrium of the
LUPI game and analyze behavior in this game using both a field data set, including more
than two million choices, and parallel laboratory experiments which are designed to first
permit a clear test of the theory while also matching the field setting. In both the field
and lab, players quickly learn to play close to equilibrium, but there are some diagnostic
discrepancies between players’ behavior and equilibrium predictions.

As noted earlier, the variance in the number of players in the field data is much larger
than the variance assumed in the Poisson-Nash equilibrium. So the field data is not
an ideal test of this theory, strictly speaking. Therefore, the key issues are how much
the theory’s predictions vary with changes in var(N), and how much behavior changes
in response to var(NN). If either theory or behavior is insensitive to var(/N), then the
Poisson-Nash equilibrium could be a useful approximation to the field data.

As for theory: For the simple examples in which fixed N and Poisson equilibria can
be computed, zero variance (fixed V) and Poisson variance equilibria are almost exactly
the same (see Appendix A). Keep in mind that increasing var(NN) (holding n constant)
implies that sometimes there are a lot of extra players so number choices should be
higher, and sometimes there are fewer players so number choices should be lower. These
two opposing effects could minimize the effect of variance on mean choices (as the low-K
cases in Appendix A suggest they do).

As for behavior: There are two sources of evidence that actual behavior is not too
sensitive to var(NN). First, in the field data the Sunday and Monday sessions have lower
n and lower standard deviation than all days, but choices are very comparable to data

from all days (in which var(N) about twice as large). Second, in the lab data different
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sessions with var(/V) ~ 8 and var(N) = 27 lead to indistinguishable behavior.

These theoretical and behavioral considerations suggest why the 'wrong’ theory (Poisson-
Nash) might approximate actual behavior surprisingly well in the field (despite the field
var(NN) being empirically far from what the theory assumes).

A different way to describe our contribution is this: A LUPI game was actually played
in the field, with specific rules. Can we produce any kind of theory which fits the data
from this game? In this view, it does not matter whether the field setting matches the
predictions of a theory exactly. Instead, all that matters is whether the theory fits well,
even if its assumptions are wrong.

Here the answer is rather clear: The empirical distribution of choices clearly is moving
in the direction of the Poisson-Nash equilibrium over the 49 days (as judged by every
number choice statistic) and is numerically close. As a bonus, the CH model improves a
little on the Poisson-Nash equilibrium, when optimally parameterized, in the sense that
it can explain the key ways in which behavior departs from Poisson-Nash (too many low
and very high numbers) in the short run. The estimated number of thinking steps is in
the first week 2.98, which is a little higher than estimates from many lab experiments,
but within an order of magnitude.

Another contribution is measuring learning week-by-week. Since the subjects have
only the winning number to learn from, fictitious play and hybrid EWA models do not
apply well. Therefore, we apply a model in which players imitate successful strategies by
shifting reinforcement (and hence, choice probability) to strategies in a window around
the previous winning number. This model does a reasonable job of explaining the time
path of change in the field data. It does a less impressive job in the lab data, largely
because choices are so close to the equilibrium in early periods that there is little to learn.

The game is also useful for distinguishing the CH approach and QRE, which often
account for deviations from Nash play in the same direction (e.g., Rogers, Palfrey and
Camerer, 2009). CH predicts too many low numbers (compared to Poisson-Nash) and

QRE predicts too few (in the smaller lab game where QRE can be computed). The field
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data clearly favor CH over QRE and the lab data also favor CH by a smaller margin.

Note that the point of the learning and cognitive hierarchy models is not simply to fit
the data better than Poisson-Nash, but also to show how people with limited computa-
tional power might start near, and converge to, such a complex equilibrium.

Finally, because the LUPI field game is simple, it is possible to do a lab experiment
that closely replicates the essential features of the field setting (which most experiments
are not designed to do). This close lab-field parallelism in design adds evidence to the on-
going debate about when lab findings generalize to parallel field settings (e.g., Levitt and
List, 2007). The lab game was described very much like the Swedish lottery (controlling
context), experimental subjects were allowed to select out of the experiment after it was
described (allowing self-selection), and lab stakes were made equal to the field stakes. Ba-
sic lab and field findings are fairly close: In both settings, choices are close to equilibrium,
but there are too many large numbers and too few agents choose intermediate numbers
at the high end of the equilibrium range. We interpret this as a good example of close
lab-field generalization, when the lab environment is designed to be close to a particular

field environment.%°

400f course, it is also conceivable that there is a genuine lab-field behavioral difference but it is ap-
proximately cancelled by differences in the design details which have opposite effects. A referee opined
that this is “a longshot” but said we should mention it.
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Figure 1. Poisson-Nash equilibrium for the LUPI game (n=53783, K=99999).
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Figure 3. Average daily frequencies and Poisson-Nash equilibrium prediction
for the first week in the field (n=53783, K=99999).
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Figure 5. Probability of choosing numbers 1 to 20 in symmetric QRE (n=26.9,
K=99, 2=0.001,...,10) and in the Poisson-Nash equilibrium (n=26.9, K=99).
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Figure 6. Probability of choosing numbers 1 to 10000 in the Poisson-Nash
equilibrium and the cognitive hierarchy model (n=53783, K=99999).
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Figure 7. Average daily frequencies, cognitive hierarchy (solid line) and
Poisson-Nash equilibrium prediction (dashed line) for the first week in the field
(n=53783, K=99999, r=2.98, 2=0.008).
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Figure 8. Average daily frequencies, cognitive hierarchy (solid line) and
Poisson-Nash equilibrium prediction (dashed line) for the last week in the field
(n=53783, K=99999, ==10.27, 2=0.0107).
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Figure 9. Laboratory total frequencies and Poisson-Nash equilibrium prediction
(all sessions, participating players only, n=26.9, K=99).
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Figure 10. Average daily frequencies in the laboratory, Poisson-Nash
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lines), week 1to 7 (n=26.9, K=99).
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Figure 12. Average weekly empirical densities (bars), estimated learning
model (lines) and Poisson-Nash equilibrium (dotted lines) for the field (W =

344, /. = 0.0085).

Note that the learning model fits extremely well in week 1 by construction because it was
initialized using actual data from week 1.
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Appendix [For referees and online availability only]

A. The Symmetric Fixed-n Nash Equilibrium

Let there be a finite number of n players that each pick an integer between 1 and K.
If there are numbers that are only chosen by one player, then the player that picks the
lowest such number wins a prize, which we normalize to 1, and all other players get zero.
If there is no number that only one player chooses, everybody gets zero.

To get some intuition for the equilibrium in the game with many players, we first
consider the cases with two and three players. If there are only two players and two

numbers to choose from, the game reduces to the following bimatrix game.

1 2

110,0]1,0

210,1(0,0

This game has three equilibria. There are two asymmetric equilibria in which one player
picks 1 and the other player picks 2, and one symmetric equilibrium in which both players
pick 1.

Now suppose that there are three players and three numbers to choose from (i.e.,
n = K = 3). In any pure strategy equilibrium it must be the case that at least one player
plays the number 1, but not more than two players play the number 1 (if all three play
1, it is optimal to deviate for one player and pick 2). In pure strategy equilibria where
only one player plays 1, the other players can play in any combination of the other two
numbers. In pure strategy equilibria where two players play 1, the third player plays
2. In total there are 18 pure strategy equilibria. To find the symmetric mixed strategy
equilibrium, let p; denote the probability with which 1 is played and p, the probability

with which 2 is played. The expected payoff from playing the pure strategies if the other
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two players randomize is given by

T(1)=01-p),

m(2)

[(1—p1 —p2)* + 9],

m(3) = [pl + 3] -

Setting the payoff from the three pure strategies yields p; = 2v/3 — 3 = 0.464 and
Py =p3 =2—+/3=0.268.

In the game with n players, there are numerous asymmetric pure strategy equilibria
as in the three-player case. For example, in one type of equilibrium exactly one player
picks 1 and the other players pick the other numbers in arbitrary ways. In order to find
symmetric mixed strategy equilibria, let p; denote the probability put on number k.*!
In a symmetric mixed strategy equilibrium, the distribution of guesses will follow the
multinomial distribution. The probability of x; players guessing 1, x, players guessing 2

and so on is given by

n! T T s K
loaelP1 P it ) xi=n,
f(xla"-axK;n): pat * Z '
0 otherwise,
where we use the convention that 0° = 1 in case any of the numbers is picked with zero
probability. The marginal density function for the k** number is the binomial distribution

n!
. _ Tk (] — n—Tk

Let g (x1, xo, ..., zx; n) denote the marginal distribution for the first £ numbers. In other

41'We have not been able to show that there is a unique symmetric equilibrium, but when numerically
solving for a symmetric equilibrium we have not found any other equilibria than the ones reported
below. Existence of a symmetric equilibrium is guaranteed since players have finite strategy sets. (A
straightforward extension of Proposition 1.5 in Weibull, 1995 shows that all symmetric normal form
games with finite number of strategies and players have a symmetric equilibrium.)
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words, we define g, for k < K as

n! -
. _ E 1,22 Z K
gk‘ (xl,xg,...,l'k,n)— | | |p1 p2 pK .
T1:X2: T K-
Tp1+ThtatFTx=n—(T1+T2++T))

Using the multinomial theorem we can simplify this to*?

—_— wl'cc

gk (I1,$2, '-';xk§n) = 7]

If £ = K, then gy (z1,x2,...,z5;n) = f (21, 29,...,2%;n). Finally, let hy (n) denote the
probability that nobody guessed k and there is at least one number between 1 to k& — 1

that only one player guessed. This probability is given by (again if k < K)

hi (n) = Z gk (1,29, .., Tp—1,0;m) .

(z1,-,p—1): some x;=1
&zt trE-_1<n

If k = K, then this probability is given by

hg (n) = Z f(x1, 29, ..., xk_1,0;n).
(z1,...,xk—1): some z;=1
& x1+-+xK_1=n

The probability of winning when guessing 1 and all other players follow the symmetric

mixed strategy is given by

(1) =f1(0n-1)=(1 —pl)n_l.

42The multinomial theorem states that the following holds

n!
(pr+p2+-+pr)' = ) ——— P15 DR,
ol e o)
T1+To++Tr=n Rt K

given that all z; > 0.
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The probability of winning when playing 1 < k& < K is given by*?

(k) = fi (O;n—1) —hp(n—1),

= (1 _pk)n—l —hk (TL— 1)

Similarly, the probability of winning when playing £ = K is given by

m(K) = fk (0;n—1) = hg (n—1).

In a symmetric mixed strategy equilibrium, the probability of winning from all pure
strategies in the support of the equilibrium must be the same. In the special case when
n = K and all numbers are played with positive probability, we can simply solve the

system of K — 2 equations where each equation is

(L—pe)" = (n—1)=(1—p)"",

for all 2 < k < K and the Kth equation

(1—px)" " —hg(n—1)=(1—p)"".

43The easiest way to see this is to draw a Venn diagram. More formally, let A = {No other player picks
k} and let B = {No number below k is unique}, so that P(A) = f; (0;n —1) and P (B) = hy (n — 1).
We want to determine P(A N B), which is equal to

P(AnB)=P(A)+ P(B) — P(AUB,).
To determine P (AU B), note that it can be written as the union between two independent events
P(AUuB)=P(BU(B' nA).
Since B and B’ N A are independent,
P(AUB)=P(B)+ P(B'nA).
Combining this with the expression for P (AN B) we get

P(ANB)=P(A) - P(ANnB).
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In principle, it is straightforward to solve this system numerically. However, computing
the hy function is computationally explosive because it requires the summation over a large
set of vectors of length £ —1. The number of combinations explodes as n and K gets large
and it is non-trivial to solve for equilibrium for more than 8 players. As an illustration,
when n = K = 7, h7(6) involves the summation over 391 vectors, and when n = K = 8
computing hg (7) involves 1520 vectors. To understand the magnitude of the complexity,
suppose we want to compute hg (n — 1). This involves the summation over all vectors
(1, ...,xx_1) such that some z; = 1 and x; +--- + 2x_1 = n — 1. Only a small subset
of all these vectors are the ones where x1 = 1. How many such vectors are there? For
those vectors there must be n — 2 players that play numbers s, ..., zx_1, i.e., potentially
K — 2 different strategies. The total number of such vectors are

(K +n—5)!
(n —2)I(K = 3)!

where we have used the fact that the number of sequences of n natural numbers that sum
to kis (n+ k — 1)!/(k!(n — 1)!). For example, when n = 27 and K = 99, the number of
vectors in which z; = 1 is larger than 10%°. Note that this number is much lower than
the actual total number of vectors since we have only counted vectors such that z; = 1.

Assuming n = K, the table below show the equilibrium for up to eight players.**

44Gee Appendix C for details about how these probabilities were computed.
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3x3 4x4 55 &) 6x6 7 8x8
1 04641 0.4477 0.3582 0.3266 0.2946 0.2710
0.2679 0.4249 0.3156 0.2975 0.2705 0.2512
0.2679 0.1257 0.1918 0.2314 0.2248 0.2176
0.0017 0.0968 0.1225 0.1407 0.1571

2
3
4
5 0.0376 0.0216 0.0581 0.0822
6 0.0005 0.0110 0.0199
7 0.0004 0.0010
8

0.0000

These probabilities are close to the Poisson-Nash equilibrium probabilities. To see
this, the table below shows the Poisson-Nash equilibrium probabilities when n is equal
to K for 3 to 8 players. Note that all the fixed-n and Poisson-Nash probabilities for all

strategies in the 5x5 game and larger are within 0.02.

3x3 4x4 55 & 6x6 <7 8x8
1 04773 0.4057 0.3589 0.3244 0.2971 0.2747
2 0.3378 0.3092 0.2881 0.2701 0.2541 0.2397
0.1849 0.1980 0.2046 0.2057 0.2030 0.1983
0.0870 0.1129 0.1315 0.1430 0.1492
0.0355 0.0575 0.0775 0.0931

3
4
5
6 0.0108 0.0234 0.0385
7 0.0020 0.0064
8

0.0002

B. Proof of Proposition 1

We first prove the four properties and then prove that the equilibrium is unique.

1. We prove this property by induction. For k£ = 1, we must have p; > 0. Otherwise,
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deviating from the proposed equilibrium by choosing 1 would guarantee winning for
sure. Now suppose that there is some number £+ 1 that is not played in equilibrium,
but that %k is played with positive probability. We show that = (k+ 1) > 7 (k),
implying that this cannot be an equilibrium. To see this, note that the expressions

for the expected payoffs allows us to write the ratio 7 (k + 1) /7 (k) as

m(k+1) T, PrX(i) #1)- Pr(X(k+1) =0)
7 (k) H'“ ! Pr(X (i) #1) - Pr(X(k) = 0)

Pr(X(k) #1) - Pr(X(k+1) =0)
P

(X(k) =0)

If £+ 1 is not used in equilibrium, Pr(X (k+ 1) = 0) = 1, implying that the ratio is
above one. This shows that all integers between 1 and K are played with positive

probability in equilibrium.

. Rewrite equation (1) as

PR — Pk =

By the first property, both py and pi.; are positive, so that the right hand side is

negative. Since the exponential is an increasing function, we conclude that p; >

Pk+1-

. First rearrange equation (1) as
1 o
Pk+1 = Dk + - In (1 — npye ). (A1)

We want to determine (px — prr1) / (Pk+1 — Pra2). Using (Al) we can write this

ratio as

Pk —Pre1 In (1 — npre="P*) _ In (Pr(X(k) #1))
Pr1 — Pesz I (L —npppe ) In(Pr(X(k+1)#1))

The derivative of Pr(X (k) # 1) with respect to pj is positive if pr > 1/n and

negative if pr < 1/n. We therefore have shown that (px — pgi1) is increasing in k
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when py > 1/n, whereas the difference is decreasing for py > 1/n.

4. Taking the limit of (A1) as n — oo implies that px,1 = py.

In order to show that the equilibrium p = (py,p2, -+ , px) is unique, suppose by con-
tradiction that there is another equilibrium p’ = (p},ph, - ,p%). By the equilibrium
condition (1), p; uniquely determines all probabilities py, ..., px, while p| uniquely deter-
mines pb, ..., p. Without loss of generality, we assume p] > p;. Since in any equilibrium,
Pry1 1s strictly increasing in pg by condition (1), it must be the case that all positive
probabilities in p’ are higher than in p. However, since p is an equilibrium, ZkK:lpk = 1.

This means that Z,f:lp; > 1, contradicting the assumption that p’ is an equilibrium.

C. Computational and Estimation Issues

This appendix provides details about the numerical computations and estimations that
are reported in the paper. We have used MATLAB for all computations and estimations.
Both the data and all MATLAB programs that have been used for the paper can be

obtained from the authors upon request.

Poisson-Nash Equilibrium

The Poisson-Nash equilibrium was computed in MATLAB through iteration of the equi-
librium condition (1). Unfortunately, MATLAB cannot handle the extremely small prob-
abilities that are attached to high numbers in equilibrium, so the estimated probabilities

are zero for high numbers (17 and above for the laboratory and 5519 and above for the

field).
Fixed-n Equilibrium

To compute the equilibrium when the number of players is fixed and commonly known,

we programmed the functions fi, fx, hr and hx in MATLAB and then solved the system
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of equations characterizing equilibrium using MATLAB’s solver fsolve. However, the hy
function includes the summation of a large number of vectors. For high k£ and n the
number of different vectors involved in the summation grows explosively and we only

managed solve for equilibrium for up to 8 players.

Cognitive Hierarchy with Quantal Response

Calculating the cognitive hierarchy prediction for a given 7 and \ is straightforward.
However, the cognitive hierarchy prediction is non-monotonic in 7 and A, implying that
the log-likelihood function isn’t generally smooth.

In order to calculate the log-likelihood, we assume that all players play according
to the same aggregate cognitive hierarchy prediction, i.e., the log-likelihood function is
calculated using the multinomial distribution as if all players played the same strategy.
For the field data, we calculated the log-likelihood for the daily average frequency for
each week, but the frequency was rounded to integers in order to be able to calculate
the log-likelihood. For the lab data, we instead calculated the log-likelihood by summing
the frequencies for each week since we didn’t want unnecessary estimation errors due to
rounding off to integers.

Maximum likelihood estimation for the field data is computationally demanding so we
used a relatively coarse two-dimensional grid search. We used a 20x20 grid and restricted
7 to be between 0.05 and 12, and restricted A to be between 0.0001 and 0.05. We tried
wider bounds on the parameters as well, but that didn’t change the results. The log-
likelihood function is shown in Figure A1. The log-likelihood appears relatively smooth,
but since we have been forced to use a very coarse grid we might not have found the
global maximum.

For the maximum likelihood estimation of the lab data, we used a two-dimensional
300x300 grid search. We tried different bounds on 7 and A, then let both parameters vary
between 0.001 and 20. The three-dimensional log-likelihood function is shown in Figure

A2. Tt is clear that the log-likelihood function isn’t smooth and that it is very flat with
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respect to A when A is low. There is therefore no guarantee that we have found a global
maximum, but we have tried different grid sizes and bounds on the parameters which
resulted in the same estimates.

When 7 is fixed at 1.5, the maximum likelihood estimation is simpler. We used a grid
size of 300 and tried different bounds for A\ with unchanged results. The log-likelihood
function for A = 0.001 to A = 100 from the first week is shown in Figure A3. The log-
likelihood function is not globally concave, but seems to be concave around the global
maximum, so it is likely that we have found a global maximum. Figure A4 shows the

cognitive hierarchy prediction week-by-week for the laboratory data when 7 is 1.5.

QRE

In order to calculate the QRE for a given level of A\, we used MATLAB’s solver fsolve to
solve the fixed-point equation that characterizes the QRE. In the ML estimation for the
laboratory data we allowed A between 0.001 and 700. To find the optimal value we used a
grid search with a grid size of 100. The log-likelihood function for the first week is shown
in Figure A5. The log-likelihood function is smooth and concave, indicating that we have

are likely to have found a global maximum.

Learning

To estimate the learning model, we use the actual winning numbers in the field and in each
laboratory session. The predicted choice probabilities are evaluated based on the sum of
squared distances from the empirical densities, summed over numbers, days and sessions
(in the laboratory). For the field data, we estimated A through a grid search (with a grid
size of 15) for window sizes between 100 and 400 and A between 0.005 and 0.5. The sum
of squared deviations with respect to both W and \ appears to be relatively smooth and
convex, so it is likely that we have find the best-fitting values. For the laboratory data,

we estimated A through grid search (with a grid size of 1000) for window sizes between 1
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and 13 and X between 0.01 and 2. Figure A6 shows the sum of the squared deviations for
the laboratory data. As can be seen from the graph, the fit is relatively flat with respect
to both W and A\ when both parameters are increased proportionally. We have tried
different bounds on the parameters and grid sizes and the estimated parameters appears
robust. Figure A7 shows an example of a Bartlett similarity window and Figure A8 shows

box plots with the data and learning model for the first 14 rounds in the laboratory.

Model Selection

Since the Poisson-Nash equilibrium probabilities are zero for high numbers, the likeli-
hood of the equilibrium prediction is always zero. However, to be able to compare the
equilibrium prediction with the cognitive hierarchy model and QRE, we calculate the
log-likelihoods using only data on numbers up to 5518 (field) and 16 (laboratory). These
log-likelihoods cannot be directly compared with the log-likelihoods in Table 3 and 6,
however, since those are calculated using data on all numbers. For comparison, we there-
fore compute the log-likelihoods for the cognitive hierarchy model (as well as QRE for
the laboratory) in the same way as for the equilibrium prediction. In order for these
probabilities to sum up to one, we divide the probabilities by the total probability attach
to numbers up to the threshold (5518 or 16). Using the estimated parameters reported

in Table 2, Table A1 shows the log-likehoods only based on numbers up to 5518.

Week 1 2 3 4 5 6 7
Log-likelihood eq. (<5519)  -43365 -32073 -28453 -27759 -28087 -21452 -19719
Log-likelihood CH (< 5519) -25307 -21606 -18630 -16253 -16123 -15829 -15010

Table Al: Log-likelihoods for cognitive hierarchy and equilibrium for field data (up to
5518)

The log-likelihoods are higher for the cognitive hierarchy model in all weeks. The
cognitive hierarchy model is estimated with two parameters, while the equilibrium pre-

diction has no free parameters. One way to compare the models is to use Schwarz (1978)

59



information criterion which penalizes a model depending on the number of estimated pa-
rameters by subtracting a factor log (n) xm/2 from the log-likelihood value, where n is the
number of observations and m the number of estimated parameters. The log-likelihoods
in Table A1 are calculated based on daily averages, so the penalty for the cognitive hier-
archy model is approximately log (53783) = 10.9, indicating that the cognitive hierarchy
model is the better model in all weeks. Schwarz information criterion penalizes the number
of estimated parameters more harshly than for example Aikake’s information criterion.
However, it should be kept in mind that the two parameters in cognitive hierarchy model
are estimated using the data, whereas the equilibrium prediction is not estimated at all,

so any comparison based on information criteria is likely to be unfair.

Week 1 2 3 4 5 6 7

Log-likelihood eq. (<17) -192.9 -95.3 -91.3 -81.4 -93.0 -59.7 -145.2
Log-likelihood CH (<17) -70.2  -54.8 -45.8 -55.8 -54.2 -48.9 -46.3
Log-likelihood CH 7 = 1.5 (<17) -79.0 -52.9 -63.3 -56.5 -56.9 -65.2 -70.3
Log-likelihood QRE (<17) -70.0 -65.1 -72.5 -66.2 -67.4 -57.1 -70.8
BIC eq. (<17) -192.9 -95.3 -91.3 -81.4 -93.0 -59.7 -145.2
BIC CH (<17) -76.7 -61.4 -53.4 -62.5 -60.8 -55.5 -52.9
BICCH =15 (<17) -82.3 -56.2 -66.6 -59.9 -60.2 -68.5 -73.6
BIC QRE (<17) -73.3 -68.5 -75.8 -69.5 -70.7 -60.4 -74.1

Table A2: Log-likelihood and Schwarz information criterion (BIC) for the cognitive hier-
archy, QRE and equilibrium models in the laboratory (up to 16)

Table A2 reports the restricted log-likelihoods and the corresponding values of the
Schwarz information criterion for the laboratory data. Based on Schwarz information
criterion, the cognitive hierarchy model outperforms equilibrium in all weeks, but the
equilibrium prediction does better than QRE and the cognitive hierarchy model with

7 = 1.5 in the sixth week.

D. Additional Details About the Field LUPI Game

This part of the Appendix provides some additional details about the field game that was

not discussed in the main text.
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The prize guarantee for the winner of 100,000 SEK was first extended until the 11th
of March and then to the 18th of March, so the prize guarantee covered all days for which
we have data. The thresholds for the second and third prizes were determined so that the
second prizes constituted 11 percent of all bets and the third prizes 17.5 percent. The
winner of the first prize also won the possibility to participate in a “final game”.%*® The
final game ran weekly and had four to seven participants. The “final game” consisted of
three rounds where the participants chose two numbers in each round. The rules of this
game were very similar to the original game, but what happened in this game did not
depend on what number you chose in the main game, so we leave out the details about
this game.

The Hux Flux randomization option involved a uniform distribution where the support
of the distribution was determined by the play during the 7 previous days.*6 It became
possible to play the game on the Internet sometime between the 21st and 26th of February
2007. The web interface for online play is shown in Figure A10. This interface also
included the option HuxFlux, but in this case players could see the number that was
generated by the computer before deciding whether to place the bet.

We use daily data from the first seven weeks. The reason is that the game was
withdrawn from the market on the 24th of March 2007 and we were only able to access
data up to the 18th of March 2007.

Figure A11 shows histograms for the total number of daily bets separately for all days
and for Sundays and Mondays. Figure A12 shows empirical frequencies together with the
Poisson-Nash equilibrium for the last week in the field.

The game was heavily advertised around the days when it was launched and the main
message was that this was a new game where you should be alone with the lowest number.

The winning numbers (for the first, second, and third prizes) were reported on TV, text-

453.5 percent of all daily bets were reserved for this “final game”.

461 the first week HuxFlux randomized numbers uniformly between 1 and 15000. After seven days of
play, the computer randomized uniformly between 1 and the average 90th percentile from the previous
seven days. However, the only information given to players about HuxFlux was that a computer would
choose a number for them.
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TV and the Internet every day. In the TV programs they reported not only the winning
numbers, but also commented briefly about how people had played previously.

The richest information about the history of play was given on the home page of
Svenska Spel. People could display and download the frequencies of all numbers played
for all previous days. However, this data was presented in a raw format and therefore not
very accessible. The homepage also displayed a histogram of yesterday’s guesses which
made the data easier to digest. An example of how this histogram looked is shown in
Figure A13. The homepage also showed the total number of bets that had been made so
far during the day.

The web interface for online play also contained some easily accessible information.
Besides links to the data discussed above as well as information about the rules of the
game, there were some pieces of statistics that could easily be displayed from the main
screen. The default information shown was the first name and home town of yesterday’s
first prize winner and the number that that person guessed. By clicking on the pull-down
menu in the middle, you could also see the seven most popular guesses from yesterday.
This information was shown in the way shown in Figure A14. By moving the mouse over
the bars you can see how many people guessed that number. In this example, the most
popular number was 1234 with 85 guesses! Note that this information was not easily
available before online play was possible. From the same pull-down menu, you could also
see the total number of distinct numbers people guessed on during the last seven days.
Finally, you could display the numbers of the second- and third prize winners of yesterday.

In addition to this information, Svenska Spel also published posters with summary
statistics for previous rounds of the game (see Figure A15). The information given on
these posters varied slightly, but the one in Figure A15 shows the winning numbers, the
number of bets, the size of the first prize and if there was any numbers below the winning
number that no other player chose. It also shows the average, lowest and highest winning

number, as well as the most frequently played numbers.
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E. Additional Details About the Lab Experiment

Screenshots from the input and results screens of the laboratory experiment are shown in
Figure A16 and A17. Figure A18 shows screenshots from the post-experimental question-
naire and Figure A19 a screenshot from the CRT.

Figure A20 displays the aggregate data from non-selected and selected subjects’ choices.
Subjects are slightly more likely to play high numbers above 20 when they are not selected
to participate, but overall the pattern looks very similar. This implies that subjects’ be-
havior in a particular round is almost unaffected depending on whether they had marginal

monetary incentives or not.

Experimental Instructions

Instructions for the laboratory experiment are as follows (translated directly by one of the
authors from the Swedish field instructions, but modified in order to fit the laboratory
game):

Instruction for Limbo*”

Limbo is a game in which you choose to play a number, between 1 and 99, that you
think nobody else will play in that round. The lowest number that has been played only
once wins.

The total number of rounds will not be announced. At the beginning of each
round, the computer will indicate whether you have been selected to participate in that
round. The computer selects participating players randomly so that the average number
of participating players in each round is 26.9. Please choose a number even if you are not
selected to participate in that round.

[Instructions where the Poisson distribution is explicitly described:

The game is played in 49 rounds. In the beginning of each round, the computer

will indicate whether you have been selected to participate in this round. The computer

47In order to mirror the field game as closely as possible, we referred to the LUPI game as “Limbo” in
the lab.
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selects participating players randomly so that the average number of participating players
in each round is 26.9.

Specifically, the number of players in each round is pre-drawn from a so called Poisson
distribution. The diagram below shows the Poisson distribution with mean 26.9. The
horizontal axis shows different possible numbers of participants, and the vertical axis
shows the probability of having that many participants. Notice that in some rounds there
are more than 27 players and in other rounds there are fewer than 27 players. You will not
know how many players are participating in each round. All you know is the probabilities
of what the number of players might be, given by the distribution shown in the diagram.

On the second screen you can indicate which number between 1 and 99 that you
want to play in that round.

Note: We also attached Figure A24 at the end of the instructions.]

After all participating players have selected a number, the round is closed and all bets
are checked. The lowest unique number that has been received is identified and the person
that picked that number is awarded a prize of 7$.

The winning number is reported on the screen and shown to everybody after each
round.

Prizes are paid out to you at the end of the experiment.

If you have any questions, raise your hand to get the experimenter’s attention.
Please be quiet during the experiment and do not talk to anybody except the experi-

menter.

Individual Lab Results

The regression results in Table 7 mask a considerably degree of heterogeneity between
individual subjects. Based on the responses in the post-experimental questionnaire, we
coded four variables depending on whether they mentioned each aspect as a motivation

for their strategy.
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Random All subjects who claimed that they played numbers randomly were coded in

this category.*®

Stick All subjects who stated that they stuck to one number throughout parts of the
experiment were included in this category. Many of these subjects explained their
choices by arguing that if they stuck with the same number, they would increase

the probability of winning.

Lucky This category includes all subjects who claimed that they played a favorite or

lucky number.

Strategic This category includes all players who explicitly motivated their strategy by

referring to what the other players would do.*?

Several subjects were coded into more than one category.®

How well does the classification based on the self-reported strategies explain behavior?
Table A3 reports regressions where the dependent variables are four summary statistics
of subjects’ behavior—the number of distinct choices, the mean number, the standard
deviation of number, and the total payoff. In the first column for each measure of indi-
vidual play only the four categories above are included as dummy variables. There are
few statistically significant relationships. Subjects coded into the “Stick” category did
tend to choose fewer and less dispersed numbers, and subjects coded as “Lucky” tend to
pick higher and more dispersed numbers. Table A3 also report regressions for the same

dependent variables and some demographic variables. The only statistically significant

48For example, one subject motivated this strategy choice in a particular sophisticated way: “First I
tried logic, one number up or down, how likely was it that someone else would pick that, etc. That wasn’t
doing any good, as someone else was probably doing the exact same thing. So I started mentally singing
scales, and whatever number I was on in my head I typed in. This made it rather random. A couple of
times I just threw curveballs from nowhere for the hell of it. I didn’t pay any attention to whether or
not I was selected to play that round after the first 3 or so.”

49For example, one subject stated the following: “I tried to pick numbers that I thought other people
wouldn’t think of—whatever my first intuition was, I went against. Then I went against my second
intuition, then picked my number. After awhile, I just used the same # for the entire thing.”

50For example, the following subject was classified into all but the “Lucky” category: “At first I picked
4 for almost all rounds (stick) because it isn’t considered to be a popular number like 3 and 5 (strategic).
Afterwards, I realized that it wasn’t helping so I picked random numbers (random).”
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relationship is that subjects familiar with game theory tend to pick less dispersed num-
bers (though their payoffs are not higher). Note that the explanatory power is very low
and that there are no significant coefficients in the regressions on the total payoff from
the experiment. This suggests that it is hard to affect the payoff by using a particular
strategy, which is consistent with the fully mixed equilibrium (where payoffs are the same
for all strategies).

The questionnaire in two of the sessions also contained the three-question Cognitive
Reflection Test (CRT) developed by Frederick (2005).°! The purpose with collecting
subjects’ responses to the CRT is to get some measure of cognitive ability. In line with the
results reported in Frederick (2005), a majority of the UCLA subjects answered only zero
or one questions correctly. Interestingly, there does not appear to any relation between
player’s behavior or payoff in the LUPI game and the number of correctly answered
questions, but the sample size is small (n = 76). The number of correctly answered CRT
questions is not significant when the four measures in Table A3 are regressed on the CRT
score.

Figure A21 shows a histogram of the number of distinct numbers that subjects played
during the experiments. Based only on choices when players were selected to participate,
subjects played on average 9.65 different numbers, compared to 10.9 expected in Poisson-
Nash equilibrium. Figure A21 also shows a simulated distribution of how many distinct

numbers players would pick if they played according to the equilibrium distribution.

51The CRT consists of three questions, all of which would have an instinctive answer, and a counterin-
tuitive, but correct, answer. See Frederick (2005) or the screenshot in Figure A19 for the questions that
we used.
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# Distinct Mean Std. dev. Payoft

Random 0.77 -0.37 -0.54 -0.26
(1.44) (-0.42) (-0.61) (-0.21)
Stick —1.48%** -1.12 —1.50* -0.36
(-2.80) (-1.30) (-1.70) (-0.29)
Lucky 1.24 4.43%** 3.73%** -0.39
(1.60) (3.52) (2.88) (-0.22)
Strategic 0.35 -0.65 -0.54 1.42
(0.68) (-0.78) (-0.63) (1.21)
Age -0.02 -0.00 0.02 0.26
(-0.18) (-0.02) (0.11) (1.32)
Female -0.23 -0.92 -1.03 -1.10
(-0.46) (-1.12) (-1.23) (-0.99)
Income (1-4) -0.13 -0.35 -0.50 0.38
(-0.48) (-0.81) (-1.17) (0.67)
Lottery player 0.17 0.59 0.39 -0.13
(0.34) (0.70) (0.47) (-0.12)
Game theory 0.25 0.23 —1.48* -0.55
(0.63) (-0.28) (-1.74) (-0.49)
R? 0.08 0.01 0.10 0.02 0.08 0.04 0.01 0.02
Obs. 152 152 152 152 152 152 152 152

Only selected choices are included in the calculation of the dependent variables. ¢—statistics within
parentheses. Constant included in all regressions. *=10 percent, **=5 percent and ***=1 percent
significance level.

Table A3: Linear regressions explaining individual behavior
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Figure A2. Log-likelihood for cognitive hierarchy in the laboratory (first week).
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Figure A4. Average daily frequencies in the laboratory, Poisson-Nash
equilibrium prediction (dashed lines) and estimated cognitive hierarchy (solid
lines) when tau = 1.5 (line), week 1 to 7.
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Figure A5. Log-likelihood function for QRE in the laboratory (first week).
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Figure Aé. Sum of squared deviation for learning model in the laboratory (W =
1,...,13, 2 =0.01,...,2).
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Figure A8. Box plots of data (left) and estimated learning model (right) for
round 1-14 in the four laboratory sessions (10-25-50-75-90 percentile box
plots, W =3, 2 =0.31).
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Figure A9. The paper entry form for the Swedish LUPI (Limbo) game.
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Figure A10. Online entry interface for the Swedish LUPI (Limbo) game.
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Figure A12. Average daily frequencies and equilibrium prediction for the last
week in the field.
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Figure A14. Most popular numbers yesterday as shown online.

Limbo — hur lagt
vagar du ga?

Hur har spelet sett ut, hur tinker spelarna, hur tinker du, har ditt
turnummer vunnit? Ta hjalp av var statistik och hing med i spelet.

Datum Limbonr. Vinstbelopp Antal vad Lagre ospelade nr.
12 feb 162 100 §550:- 45 302 -
13feb 2573 100 OL4:- 46728 -
14feb 3063 100 578:- 55720 2004
15 feb 2540 105 300:- 58 484 -
16 feb 3590 118 091:- 65 525 3545
17 feb 3353 102 045 57 171 -
18 feb 206 100 179:- 39033 -
19 feb 1186 100 180:- 47 927 -
20 feb 1566 100 263:- 50296 -
21 feb 2039 100 007:- 51785 -
22 feb 402 100 047:- 48 150 -
23 feb 2969 104 562:- 58 065 -
24feb 3475 101 201:- 56211 -
25feb 1900 100 016:- 40 862 -

Fredag ar en populir Limbodag. Det innebdr ju ocksa att det dr hoga vinstnummer
- eller...? Hir kommer ndgra snabba fakta fran de 4 forsta veckorna med Limbo!

Higsta vinstbelopp:
126 009:-
Genomsnittligt Ligsta vinnande Mest frekvent spelade
vinnandenr: 1733 nr: 162 numiner: 1,7, 11, I3

Hogsta vinnande
II: 3590
Kom ih'.‘ig att du varje dag kan spela upp till 6 st unika nummer mellan 1-99 999, med hjilp
av statistiken kan du komma fram till en bra strategi hur du skall sprida just dina nummer.

Glom inte att du maste ha Spelkortet nir du spelar Limbo. Har du inget Spelkort sa ber du
ombudet om hjalp sa ordnar de ett sadant till dig och sedan ar det bara att borja spela!

Se www.svenskaspel.se for vidare info.
Bli unik i ditt spelande!

Linbom

Ensam med ligst nummer vinner

Figure A15. Example of Limbo poster.
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Figure A16. Screenshot of input screen in the laboratory experiment.

o

Figure A17. Screenshot of result screen in the laboratory experiment.
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Figure A18. Screenshots of questionnaire in the laboratory experiment.

——

Figure A19. Screenshot of CRT in the laboratory experiment.
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Figure A20. Laboratory total frequencies, selected (left) vs non-selected (right)

subjects.
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Figure A21. Histogram of the number of distinct numbers chosen by subjects
(selected subjects’ choices from all sessions, one subject choosing 27 distinct
numbers excluded) and the corresponding simulated number of distinct
numbers if subjects were playing the Poisson-Nash equilibrium.
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Figure A22. Probability of choosing numbers 1 to 20 in cognitive hierarchy
model (n=26.9, K=99, r=1.5, /=2).
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Figure A23. Weekly box plots of data (left) and estimated learning model
(right) (10-25-50-75-90 percentile box plots, W = 344, 2 = 0.0085).
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Poisson distribution (mean 26.9)
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Figure A24. Poisson distribution pdf shown in the instructions of the fourth
(Poisson) session.
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