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Abstract

When designing incentives for heterogeneous agents facing competition
there is a con�icting interaction: as the more able are incentivized the less
able are disincentivized. I label the former the "incentive e¤ect" and the lat-
ter the "discouragement e¤ect." Such adverse interaction becomes severe in
the face of participants having convex costs of e¤ort or capacity constraints,
larger contests, contestants with similar levels of ability, and contest designers
with concave bene�t over participant e¤ort. Indeed, in such a world, the "dis-
couragement e¤ect" dominates the "incentive e¤ect," prescribing the optimal
incentives to be �at or possibly even inverted. That is, providing greater ben-
e�t to the lesser able can elicit more total e¤ort than having greater bene�t
awarded to the most able.

�The author would like to thank John Morgan for his extensive comments and support. The
author also thanks Michael R. Baye, Benny Moldovanu, Aner Sela, and Felix Vardy for helpful
comments.
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1 Introduction

Designing optimal incentives within employment relationships has been an impor-
tant and well looked after topic. A fundamental lesson from this work has been the
prescription of sharp incentives within the �rm. Consider the canonical principal
(employer) and agent (employee) model. Assuming risk neutrality of both parties
the trivial solution is to �sell the store�to the employee, yielding �rst best from max-
imally powered incentives. But when employees are di¤erent the problem becomes
more complex.
Instead, we will argue, interacting sharp, competitive incentives with heteroge-

neous ability can in fact destroy e¤ort. In particular, the less able are less likely
to win and thus �give up.�We dub this the "discouragement e¤ect." Meanwhile,
the most able do increase their e¤orts when facing sharper incentives, which we dub
the "incentive e¤ect." However, the interaction of these two e¤ects can become so
severe the "discouragement" e¤ect dominates the "incentive e¤ect," prescribing soft
incentives.
The intuition for shifting the top performer�s bonus to the lesser performers is

actually quite simple: we lose some e¤ort from the most able, which are most likely
to receive the �rst place bonus; however, we receive increased e¤ort from all the
rest as a result of their more likely earned second place bonus being larger. If this
increased e¤ort overcomes the most able�s lessoned e¤ort, total e¤ort is increased.
We naturally have in mind broader applications of softened incentives than per-

sonnel economics. In fact, whenever we encounter people or �rms competing for a
prize or prizes, our results will often apply. Indeed, many economic settings can be
cast as a contest. Whether �rms are competing for business or to avoid a regulator,
whether sales people are competing for bonuses, nonpro�ts are vying for donors�
dollars or even politicians seeking election, we have multiple agents seeking after
prizes. Therefore, for most of our analysis, we will refer to competing employees
more generally as contestants or participants. The �rm or bene�ciary of the agents�
e¤ort is simply called the designer of the contest.
We study the contest design problem through the (incomplete information) all-

pay contest framework. We will also relate the complete information contest with
the incomplete setting; though the latter is more likely to be witnessed in practice,
and is thus our focus. Indeed, we only require an " of uncertainty over types to yield
our incomplete information results.
We are not the �rst to suggest it might be optimal to o¤er a second prize over a

winner-takes-all scheme. Moldovanu and Sela (2001), hereafter MS, in their seminal
paper �nd a designer ought to o¤er some fraction of the total prize to second place

2



if the contestant�s cost function has the "right" curvature. In particular, if the
curvature of the cost function is convex "enough" the result follows. Contrarily, they
�nd, if the cost function is linear or concave, a winner-takes-all scheme dominates.
My paper begins by generalizing MS�s analysis by removing their restriction on

monotonic prize ordering. We create a new mechanism dubbed the Generalized
Second Prize Contest to allow non monotonic prize allocations. We can then provide
conditions of when equal prizes, or even a larger second prize, is optimal, in addition
to asking when we want to o¤er any fraction of a second prize. We can then also
determine for the case of an indivisible prize if it is best to reward a single prize to
�rst or second place. This new mechanism weakly dominates MS�s mechanism in
terms of total revenue generated from o¤ering two prizes.
We next study a new class of contests� linear contestant costs with capacity

constraints�to extend our results and address four questions that MS do not con-
sider. First, what is the best prize division when the degree of contestant hetero-
geneity changes? One can imagine some settings where there is a group of mostly
very skilled contestants, while some other settings witness contestants with a wide
distribution of ability. The previous intuition from MS�s results and our "incentive"
and "discouragement" e¤ect would suggest when skill is widely distributed, we want
to o¤er more of a second prize. However, this intuition is wrong. In fact, it is
actually when competition is the �ercest� when contestants have similar levels of
ability� that it is critical to soften incentives by �attening the prize distribution.
To my knowledge, this is the �rst paper to explore the role of skill heterogeneity in
optimal (incomplete information) contest design.
Second, we explore how a designer should construct a contest if she values e¤ort

across contestants in a manner other than perfect substitutes. One can imagine a
setting where workers have complementary work inputs. Another example is the
designer that has the goal of contestant pro�ciency. Under these types of settings
there is a nice parallel to our earlier results: when the curvature of the designer�s
bene�t function over e¤ort is concave, it is best to o¤er more of a second prize, even
when contestant cost functions are linear with no constraints.
Third, we provide some crisp empirical predictions. It is often di¢ cult to observe

cost functions in data, yet alone to measure their curvature. However, with our new
class of contests, we are able to provide some sharp predictions that do not rely
on cost function curvature and instead are based on more readily observable factors.
Finally, we show how our predictions and comparative statics also apply to an English
auction.
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2 Related Literature

A thorough review of providing incentives within the �rm can be found in Prendergast
(1999). The end result is much of the theoretical literature has prescribed sharp
employee incentives. However, as he points out, the empirical literature, at best,
�nds mixed support that such high powered schemes are witnessed in practice. In
short, it seems �rms should generally be o¤ering very sharp incentives, but they do
not. We argue this inconsistency is reconciled by accounting for the interaction e¤ect
of incentives and competition. To this end, we provide some empirical predictions
than can then be taken to the data anew.
The contest literature, meanwhile, can be divided into three main strands. One

of the �rst, and earliest strands was initiated by Tullock (1980). He set the prob-
lem up as players having a chance of winning a contest as a function of a particular
contestant�s e¤ort vis-a-vis all other contestants�e¤ort level. Much of the focus of
this literature is the degree of rent dissipation through rent seeking. That is, deter-
mining what percent of the prize is exerted in e¤ort to obtain such prize. Here the
analysis is often concerned with how e¢ cient a contest is- e.g., politicians competing
for election.
Another strand has to do with casting a contest as an all-pay auction, with the

war of attrition as an example (see Bulow & Klemperer (1999)). Here we �nd we can
analyze contest outcomes and participant behavior by drawing on the rich auction
literature. However, of note, is it is almost always assumed e¤ort costs are linear,
as in auctions a bidder�s cost of a bid is most often linear. Nonetheless, in practice,
and in many economic applications the �rm or individual�s cost function is assumed
to be convex. An important exception of assumed cost linearity (though only under
complete-information) is the recent contribution of Siegel (2009). He is concerned
with player behavior and equilibrium payo¤s, and shows a (complete-information)
multiple prize all-pay auction a special case of the "all-pay contest."
The third strand has to do with designing contests, moving from the focus on

participant behavior to how to design an optimal contest. That is, from the per-
spective of a contest designer, deciding how much to allocate between multiple prizes
or deciding between single or multiple stage contests to maximize contest revenue or
e¤ort. Moldovanu and Sela (2001) is eponymous of this work. As mentioned previ-
ously, Moldovanu and Sela make a seminal contribution in this literature of allowing
participant costs to be convex. See also Moldovanu and Sela (2006) and Moldovanu
et al. (2007) for more examples of contest design.
The early work of Lazear and Rosen (1981) can also be thought of as from the

perspective of a contest designer. They analyze when having output rank order
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payments is preferred over piece rate pay based on output. We now �rst generalize
MS.

3 The Model

Our general model consists of k agents that commonly value n < k prizes at V1; V2; � �
�Vn: However, in contrast to past literature, we do not require any ordering on the
value of prizes. In addition, each agent has private information of their cost of e¤ort.
In particular, their cost of e¤ort level e is assumed to be c(e); where c is drawn
from some F with lower support c bounded away from zero (to assume away costless
or negative cost of e¤ort) and upper support c. Our cost function (e) is assumed
endowed with 0(e) > 0; 00(e) � 0; and (0) = 0: Hence, the objective function of
each agent is:

max
e
P1(e; e�i)� V1 + :::+ Pn(e; e�i)� Vn � c(e)

Each Pi(e; e�i) is then the probability e¤ort level e induces for winning the ith
prize given the strategy of all the other players. However, using the revelation
principle we can rewrite the agent�s problem as simply choosing a type x to declare
himself, yielding:

max
x
F1(x)� V1 + :::+ Fn(x)� Vn � c(b(x))

Here we have b(x) as the equilibrium bidding function and Fi(x) the probability
of placing i given her declaration of being type x: Now since we assume each agent�s
cost type is also unknown to the contest designer, the designer has the following
problem, as he wants to maximize total expected agent e¤ort:

max
(V1;:::;Vn)

k

Z
h (b(c; V1; :::; Vn))F

0(c)dc

That is, the designer is simply choosing the values of the prizes V1;:::; Vn such that
the expected revenue is maximized. For example, if h(x) � x then this is simply
the expected e¤ort of any particular agent multiplied by k; the number of agents1.

1At �rst blush, the notion of choosing di¤erent prize mass distributions for optimal e¤ort output
seems similar to so called handicapping. That is, under handicapping the designer forces certain
participant(s) to essentially get partial credit for their e¤ort, thus causing di¤erent outcomes. This
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We thus generally say expected revenue over e¤ort since h(�) may not be linear, and
in particular we will sometimes assume it is concave to allow for di¤erent designer
goals. Based on our setup, we can now �nd the equilibrium bidding function b(�).
Note we will use the term bidding and e¤ort function interchangeably, as we can
think of the optimal e¤ort of a particular agent as their bid for the given prize.

4 The E¤ort Function

We will mostly use the notation, as well as several important results, found in MS.
We now focus our analysis on two prizes, which will be su¢ cient to provide our
results and intuition. Further, in considering two prizes we can use some previous
results from MS.
As do MS, we denote the value of 2nd prize as � and 1 � � the value of the

�rst prize, giving a normalized total prize mass of 1. However, we will relax their
constraint of � 2 [0; 1

2
], instead allowing for any distribution of �rst and second prize:

� 2 [0; 1] . That is, we now will solve for the optimal mechanism given the designer�s
choice of any prize distribution over two prizes and the designer�s observation of rank
order contestant output.
The inverse of our contestant cost (of e¤ort) function (x) is g(x). As outlined

above, we assume (x) is convex. First assuming V1 � V2; It is then routine to �nd
the bidding function of each participant by integrating "down" the �rst order condi-
tion of contestants (i.e., their di¤erential equations) with the initial condition of the
highest cost type providing zero e¤ort. However, MS provide their bidding function
in a particular helpful form, de�ning a participant�s bid as a convex combination of
two objects based on the distribution of prize mass:

b(c) = g(A(c)(1� �) +B(c)(�))

These two objects A(c) and B(c) represent the optimal bid by a cost type c with
linear costs of e¤ort under the case of there only being a �rst prize and second prize,
respectively. They are de�ned thus:

can be sensible under a complete information setting, where much of handicapping literature resides.
However, in our setting, where a designer does not precisely each participant�s type, handicapping is
not practical; the designer does not know who has a particular cost type. Consequently, handicap-
ping in an incomplete information world means the designer arbitrarily designates one contestant
(s) with a handicap. However, doing so necessarily means less revenue for the designer, and thus
we do not consider this scenario, as we are studying contest design from a revenue maximization
perspective.

6



A(c) � (k � 1)
cZ
c

1

a
(1� F (a))k�2 � F 0(a)da

B(c) � (k � 1)
cZ
c

1

a
(1� F (a))k�3 � [(k � 1)F (a)� 1]� F 0(a)da

Below we now consider the optimal e¤ort as a function of contestant type in
the face of a single prize of $1 and two equal prizes, each worth $.50. The red
curve, representing e¤ort under a single prize, is the highest for the lowest cost (i.e.,
most able types), but then is lower for the top 80% of cost types compared with
the blue e¤ort curve, which is e¤ort under equal prizes. Thus, we see equal prizes
elicit less e¤ort from the most able, but more from all the rest. In fact, there is a
crossing point at about 20% of the most able population (i.e., the cost type c � :62).
Hence, to the left of this point, a single prize incentivizes greater e¤ort from the
most able, thus we label this the "Incentive E¤ect"�i.e., all the area between the
blue and red curves for the most able type. However, to the right of this cost type
point we lose e¤ort from all participants and thus label this area of di¤erence as the
"Discouragement E¤ect"�i.e., incentivizing the most able means discouraging over
80% of the population, resulting in their reduced e¤ort. The intuition is since the
top 80% cost types now have to be best rather than just second best to get a prize,
they start giving up, as their chances for such achievement is dismal.
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Now to explore all the possible incentive structures of two prizes, we want to
consider what would happen if we actually o¤er a larger second than �rst prize.
That is, in our notation, we want to be able to explore allowing � > :5: When we
do allow � > :5; we run into the problem (for an incomplete contest setting) that
the bidding function then becomes non-monotonic, as we prove in our next lemma.
Thus, we will need to provide a mechanism to correct for this.

Lemma 1 If � > :5; the contestant bidding function becomes single peaked with a
maximum at bc such that F (bc) = 2��1

k��1

Proof: see appendix.

We now turn to another example of the e¤ect of increasing the value of the second
prize compared with the �rst prize, as well as now what happens with a larger second
than �rst prize. Here, as we assumed above, we have (x) = x2; c 2 U [:5; 1];and
k = 5 participants:

Figure 1: E¤ort of Each Type for Di¤erent Prize Divisions

Our horizontal axis on the above �gure represents cost type c. The vertical axis is
optimal e¤ort for a given type. The blue (solid) line is the bidding function assuming
� = 0 (i.e., only a 1st prize is o¤ered) and the red (dotted) shows bidding under
� = 1 (i.e., only a second prize is o¤ered). These two lines show the trade o¤between
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o¤ering more of a �rst versus second prize. The 1st prize always increases the e¤ort
of the lowest cost types until about type .61. However as the cost becomes greater
for a given type, then it is the second prize that creates more e¤ort. Hence, o¤ering
more of a second prize increases the e¤ort of the roughly top 80% of cost types,
but reduces the e¤ort of the bottom 20% of cost types. Thus, where the marginal
revenue increase of raising the 2nd prize equals the marginal loss in reducing the 1st
prize, we �nd our optimal ��:
Finally, the yellow (dashed) line traces the bidding function of � � :64; which is

the optimal � for this example. Of course, even though � � :64 yields the highest
total expected e¤ort, it is not feasible2 due to its non-monotonicity. We now turn
to making such payo¤ feasible.

5 Generalized 2nd Prize Contest

We propose the generalized second prize contest (GSPC), which then �xes the non-
monotonicity of the bidding function for � > :5: We "iron" out the non-monotonic
part of the bidding function by creating a pooling interval. In particular, we �nd
some maximal e¤ort level e� at which pooling will occur endogenously by partici-
pants. Any exerting e¤ort below this level will be ranked by e¤ort, as before, to
determine prize allocation. However, any contestants at e� will be pooled. If there
is only one such contestant, they receive 1st prize. The next highest e¤ort contestant
with e¤ort below e� will get second prize. If there are two or more contestants in the
e¤ort pooling interval, �rst and second prize will be randomly allocated with equal
chance among contestants along the pooling interval. For example, if 3 people pool,
each of them has a separate 1/3 chance of getting 1st or 2nd prize. Hence, there
is a 1/9 chance a contestant receives both �rst and second prize. This allocation is
then the same as the auction literature that typically assumes a "tie" is broken by
equal random allocation among tied bidders.
To see an example of the GSPC mechanism, we continue our last bidding function

example and add the location of the pooling interval:

2Here we mean not feasible in the contract theory sense. That is, since types are private
information to each contestant, we must have each type�s local IC met, which is violated with a
non-monotonic bidding function.
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Here the blue (dashed) line represents e¤ort if we instead set � = :5;whereas the
red (solid) line shows � � :64: The yellow (dotted) line then shows the e¤ort level
of the pooling interval. Note if the area between the blue and red line but below
the yellow line is greater than the area above the yellow line and below the blue line,
then the GSPC generates more total e¤ort than a contest constraining � = :5.
It turns out we can always use a generalized second prize contest mechanism,

�nding a symmetric equilibrium, as our next proposition gives:

Proposition 1 The generalized 2nd prize contest mechanism exists, meets all in-
centive compatibility constraints, and induces a (weakly) monotonic bidding function

Proof:
See Appendix.

The idea of the proof is we can �nd a unique contestant type that is indi¤erent
between pooling and participating under the non-pooling contests. We then show
that everyone in the pooling interval (i.e., all cost types lower than the indi¤erent
cost type) prefers not to deviate up or down. Next we see everyone not pooling (i.e.,
everyone with greater cost than the indi¤erent cost type) strictly prefers to remain as
they are. Finally, we then show the pooling interval always arises beyond the single
peak of the non-modi�ed "bidding" function, ensuring the new mechanism induces
a weekly monotonic bidding structure. We also note if � � :5; then the GSPC
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collapses to no pooling since the bidding function is then monotonic and thus the
pooling interval has mass zero. That is, this mechanism is then a generalization of
the constrained contest mechanism found in past literature (i.e., requiring � � :5):
Additionally, we now see our generalization not only allows any allocation of second
and �rst prize, but, in particular, it also allows us to o¤er only a second prize.

6 GSPC With Divisible Prizes

First note In the case of divisible prizes it is then natural to solve for an optimal ��

such that we maximize expected contest revenue. We are using the term revenue
over e¤ort to accommodate that under concave designer bene�t functions, it is total
revenue and not e¤ort per se that we are maximizing. That is, we solve under linear
designer bene�ts:

max
�2[0;1]

R(�) = k

cZ
c

g(A(c) + �(B(c)� A(c)))� F 0(c)dc

However, if we allow the designer�s bene�t function to be non-linear, we then
have:

max
�2[0;1]

R(�) = k

cZ
c

h(g(A(c) + �(B(c)� A(c))))� F 0(c)dc

Again we have h(�) denoting the designer�s bene�t function, whereas in the linear
designer bene�t case we obviously have h(x) = x:
We can �nd �� by taking the �rst order condition and solving for ��:

R0(�) = k

cZ
c

g0(A(c) + �(B(c)� A(c)))(B(c)� A(c))� F 0(c)dc � 0

Unfortunately, �� must generally be solved for numerically, thus requiring a given
set of parameters for a given problem. Here are some examples of the optimal � given
the total participants k and pair (w; z); where the contest designer�s bene�t function
is yw and the contestant�s total cost function is c � xz: Throughout our examples we
assume c is distributed uniform such that c 2 U [:5; 1]:
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Optimal Second Prize �� 2 [0; 1]
bene�t/cost k participants
(w; z) 3 4 5 10
(1; 2) :38 :54 :64 :84
(1; 3) :50 :65 :74 :89
(:5; 2) :54 :69 :77 :91

For example, with k = 3 participants, functional form of participant cost c(x) =
cx2 and designer concave bene�t of y:5; the optimal prize allocation is 54% to second
and 46% to �rst. This gives us a ratio of prizes of :54

:46
;or about a 17% greater second

prize.
Thus, with a bit more convexity of cost, concavity of designer bene�t or more

participants, we can quickly get the optimal allocation being great than 50% to
second prize. However, these optimal �� are based on an unfeasible bidding function
due to its non-monotonicity in the face of incomplete information. We now show
with the GSPC, whenever we have �� > :5 (i.e., we would like to o¤er a larger
second prize), not only are we able to do so as the previous Proposition shows, but
the GSPC also provides more total revenue than restricting � � :5:

Proposition 2 It is optimal to o¤er a larger second prize than �rst prize through
our GSPC if our su¢ cient condition is met:

k

cZ
c

h0
�
g(
1

2
(A(c) +B(c)))

�
� g0(1

2
(A(c) +B(c)))(B(c)� A(c))� F 0(c)dc > 0

Proof: see appendix.

Note this su¢ cient condition is only an assumption on the primitives: the convex-
ity of the participant cost function (which determines its inverse g(�)); the concavity
of the designer bene�t function h(�); number of participants k; and the distribution
F (�) of cost types c: If these four factors are combined in a su¢ cient manner, then
our above condition is met. The above table shows a variety of simple examples
where indeed this condition is met (i.e., whenever �� > :5):

Corollary 1 The GSPC always yields (weakly) more total revenue than the con-
strained (MS) contest:
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This corollary, which follows immediately from our previous Proposition, then
gives that whenever we would like to o¤er a larger second prize under the constrained
contest (i.e., as in the case of MS), the GSPC will provide more total e¤ort with a
larger second prize. When the optimal � < :5; then the two mechanisms agree,
providing the same revenue. Thus, in short, the GSPC dominates the constrained
mechanism of MS.
Now many prizes in practice aren�t readily divided up into equal (or even multiple

prizes). For example, take the position of CEO. A �rm would not (likely) want to
divide this into 10 smaller equal positions due to (presumed) synergy of the CEO
multi-tasking. Also, we could think of certain prizes costing the designer in terms
of both a �xed and variable cost for each prize unit o¤ered. With su¢ cient �xed
costs, the designer will want to limit the number of prizes, maybe even only o¤ering
a single prize. We now explore the question when is it better under an indivisible
prize to o¤er it to second place over �rst place.

7 GSPC With an Indivisible Prize

From our previous analysis of divisible prizes, we have an obvious condition for
o¤ering only a second prize versus �rst prize being optimal if eR(1) > R(0): However,
this is more than is needed. There may be some 0 < � < 1 such that eR(�) > eR(0)
and yet will still have eR(1) > eR(0): Indeed, as long as � < 1 is great enough, we will
still have eR(1) > eR(0) (i.e., even though we may have eR0(1) < 0): Thus, in the spirit
of our divisible prize results, we can make similar assumptions on the primitives to
assure a sole second prize is a preferred to a �rst prize.
We now consider some examples comparing the revenue of o¤ering only a �rst

prize versus only a second prize. We as before assume total cost is cxz for e¤ort x
and cost type c 2 U [:5; 1]: The designer�s bene�t function is simply yw; where y is
a contestant�s total e¤ort. We report the increased revenue in the table below.
Strikingly, total revenue is increased some 10% to 20% once we have four or �ve

contestants by o¤ering a prize only to second place over �rst place. The intuition
is again although shifting the prize from �rst to second causes us to lose some e¤ort
from the lowest cost types, we enjoy increased e¤ort from all the "average" and
"high" cost types, which more than o¤set the reduced e¤ort of the low types. These
"average" types exert more e¤ort simply because they now have a better chance of
winning a now larger second prize.
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Revenue of �=1
Revenue of �=0 � 1

bene�t/cost k participants
(w; z) 3 4 5 10
(1; 2) 1:9% 6:4% 9:4% 16:4%
(1; 3) 6:4% 11:3% 14:5% 21:2%
(:5; 2) 7:2% 11:9% 14:9% 21:3%

It certainly seems a bit strange to think of only o¤ering a second prize and no
�rst prize. However, recall with the GSPC our pooling interval: as long as two or
more participants pool, these lowest (cost) types will have a chance of receiving the
sole second prize. We now turn to considering a designer with di¤erent goals.

8 Designers with Di¤erent E¤ort Goals

One can imagine a designer might not value e¤ort over contestants on a simple
substitution basis. Consider the professor that has a student moving from a 98% to
a 100% grade and another student from 68% to 70%. The latter 2% change is likely
more valued than the former 2% change. This suggests a class of contests where
the designer does not value e¤ort as perfect substitutes: pro�ciency. If a teacher
is educating students with the primary goal of helping them all reach a level of
pro�ciency, then the designer has diminishing valuation of e¤ort across participants.
Similarly, consider the regulator that wants to move �rms to a certain standard of
environmental care. As yet another example of contests consider contestants that
have complementary e¤ort inputs. One could even argue this case is more the rule
than the exception across workers. If this is so, then again the designer values e¤ort
across any particular worker in a diminishing manner. Mathematically, each of these
classes are such that the designer has concave bene�t over the e¤ort of contestants.
Returning to our revenue function, we write it thus:

max
�2[0;1]

R(�) = k

cZ
c

h(g(A(c) + �(B(c)� A(c))))� F 0(c)dc

Again we have h(�) denoting the designer�s bene�t function, whereas in the linear
designer bene�t case we have h(x) = x: First note if a contestant carries a linear
cost function, we get:
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max
�2[0;1]

R(�) = k

cZ
c

h(A(c) + �(B(c)� A(c)))� F 0(c)dc

Thus, if the designer now has concave h(�); this is mathematically equivalent to a
designer with linear bene�ts and a contestant with convex costs. If instead, we have
both convex contestant costs and concave designer bene�t, it is clear they amplify
one another, even more readily pushing the prize mass down from the top performer
to second place. It is also then more likely to call for o¤ering a larger second prize
to generate maximal total revenue. We use the term revenue now over e¤ort, as the
designer can now value e¤ort in a non-linear manner. We next turn to a new class
of cost functions to provide some additional insights and crisp empirical predictions.

9 E¤ort Capacity Constraints

The reason for using this class of cost functions is their tractability allows for an-
alytical solutions, as well as provides the intuition of why for general convex cost
functions su¢ cient convexity of participant cost and number of participants assures
the optimality of o¤ering more of a second prize. Additionally, the notion of capac-
ity constraints on e¤ort is more the rule than the exception in practice, whether we
consider a maximum of 24 hours in a day or simply maximal physical strength.
Note we could instead have analyzed this problem as linear costs with a budget

constraint that binds for at least the most able. With a few modi�cations of the
below proofs, this alternative interpretation provides the same results to our assuming
an e¤ort capacity constraint; however, analyzing the latter is more intuitive and
straight forward in the proofs.
Consider the class of linear cost functions with cost type c, e¤ort e, and capacity

constraint be3:
c(e) = ce if 0 � e < be
c(e) = +1 if e � be

We will call the capacity threshold be maximal e¤ort.
3See Megidish and Sela (2009) for example of linear costs and �oor constraints. That is,

contestants must put in a minimal amount of e¤ort.
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Thus the total cost function for type c � U(:5; 1);taking the lowest, highest, and
mean cost type, and bx = 2 is:

Hence, we can think of this function as a simple form of convex cost functions.
When we below say this function becomes more convex we simply mean the thresholdbe is lower.
We also assume the designer has linear bene�ts (i.e., h(x) = x):We could instead

imagine a capacity constrained analog for the designer where after a given level of
e¤ort for any particular contestant she receives no further utility. This is an extreme
version of the pro�ciency goal of a designer mentioned earlier. Imagine a trainer
that is only paid based on her students reaching a level of pro�ciency. In this case,
it is just as if her total bene�t has a cap for each contestant at the pro�ciency level.
For the balance of our analysis, for the sake of brevity we are going to assume linear
bene�ts for the designer. However, it will be clear in most proofs how to extend
them to include this class of settings as well.
From the reasoning in the proofs below, it should also be clear that although

we will prove given enough capacity constraints and participants the optimal prize
structure actually inverts� it is best to o¤er a larger second over �rst prize� all of the
comparative statics still hold for lesser degrees. That is, given enough participants
or capacity constraint, it is best to o¤er some of a second prize over a winner-takes-
all, and with even more participants and/ or greater capacity constraints, it is best
to o¤er equal prizes.
Now recall under linear costs, we have our bidding function thus:
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b(�; c) = (1� �)A(c) + �B(c)
Recall also (see appendix) that there exists some unique c�� such that A(c��) =

B(c��); where A(c) > B(c) when c < c��; and A(c) < B(c) when c > c��:
Hence, increasing the share of second prize � increases e¤ort for all cost types

c > c�� and reduces e¤ort for all types c < c��: De�ne the e¤ort of the type c�� :
b(�; c��) = e��:
Our general strategy of proof will be to show given enough capacity constraint

or enough participants numbering k; we will have the maximal e¤ort be < e��; where
again e�� is the e¤ort of the cost type c�� assuming there was no capacity constraint.
That is, the marginal type c�� is bound by the capacity constraint be:
Having be < e�� will then assure us we can increase � to garner more e¤ort from all

types c > bc; where b(�;bc) = be: This is because all types c < c�� are already providing
maximal e¤ort be, and without the be constraint they would be providing even more
e¤ort. Hence, when their incentive for e¤ort is slightly reduced by increasing �;they
want to provide a bit less e¤ort, but such (capacity unconstrained) e¤ort level is still
above the maximal e¤ort be;so they still provide maximal e¤ort be. Meanwhile, all cost
types c > c�� want to provide more e¤ort with increased �. Hence, these higher cost
types increase their e¤ort while the lower cost types still provide maximal e¤ort be;
yielding a net overall increase of e¤ort.
This nicely parallels the intuition of a general convex function causing the designer

to want to o¤er a larger second prize. If the designer o¤ered a single �rst prize,
the most able, low cost, types would provide a high level of e¤ort that would not
increase much beyond a certain value of �rst prize due to the convexity of their cost
functions. That is, they are "far up" their convex (enough) cost curve and are thus
less sensitive than the high cost types to changes in expected bene�t (i.e., the prize
value). In particular, a slight reduction in the marginal bene�t via reduced �rst
prize does not cause much reduced e¤ort for the lowest cost since the marginal cost
is already so high. Hence, by shifting a bit of the �rst prize to second prize, the
designer does not much reduce the e¤ort of the most able, but signi�cantly increases
the e¤ort of everyone else since they were so "low down" on their convex cost curves.
We now conduct our formal proof in two parts. We �rst show once we �x our

number of participants, as we increase the convexity of the cost function, we will
want to o¤er a larger second prize. We will secondly show the more complicated,
portion of the proof where we instead �x the convexity of the cost function, and
then show given enough participants k we will also then want to o¤er a larger second
prize.
To see what is going on, below is a graph of actual values for k = 5;linear costs
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(with no capacity constraint), and c � U [:5; 1]:We can see it is roughly the top 80%
of cost types (i.e., :6 to 1:0) that increase e¤ort as we shift prize mass from the �rst
to second prize (i.e., c�� � :6). However, the most able 20% signi�cantly reduce
e¤ort as prize mass is shifted from �rst to second prize.

E¤ort as a Function of Cost Type and Prize Type

Now we can prove our proposition:

Proposition 3 Assuming linear participant cost functions with (su¢ cient) capacity
constraints we know for any distribution of ability F with positive support:
1) Fix the number of participants k � 3: Given su¢ cient e¤ort capacity con-

straint, it is optimal to o¤er a larger second over �rst prize
2) Fix the degree of capacity constraint. Given su¢ cient number of participants,

it is optimal to o¤er a larger second over �rst prize.

Proof:
1) For the �rst part of the proposition, �x some distribution F and the number

of participants k: Assume participant costs are linear with capacity constraint e¤ortbe: Now we only need to show given a low enough capacity constraint, we increase
total e¤ort by having a larger second than �rst prize.
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Thus, to denote equal �rst and second prizes, set � = :5: We know then our
bidding function is strictly decreasing in cost type c: Now assume the capacity con-
straint is su¢ cient such that e���

�
B(c)� A(c)

�
� " > be for some small " > 0: That

is, we can then simply choose an be low enough such that this is true since neither e��
nor B(c)� A(c) are a¤ected by the degree of capacity constraint. Recall again e��
is the optimal e¤ort of the type c��; assuming no capacity constraint. Hence, with
e�� > be; the implemented e¤ort of c�� is be:
But this means we can then increase � by an " and the lowest cost type c will still

be providing maximal e¤ort since such type�s reduction of e¤ort by
�
B(c)� A(c)

�
�"

still leaves her subject to the capacity constraint level of e¤ort be. This then also
means all types c < c��, which were previously providing maximal e¤ort, will continue
to provide maximal e¤ort, since they reduce the optimal, unconstrained e¤ort by
even less than the lowest cost type�thus they are also still bound by the capacity
constraint since they too previously would have provided e¤ort e > e��; save the
capacity constraint. Additionally, those cost types c�� < c < bc will want to provide
more e¤ort, but they are already subject to a capacity constraint, thus they maintain
their previous be of e¤ort. Finally, increasing � by an " will then increase the e¤ort
of all cost types c > bc: Therefore, we have now increased total e¤ort by increasing �
by an ": However, this then means it is better to o¤er � = :5 + " > :5;or a larger
second over �rst prize. It should be obvious that this total e¤ort is also greater
than any � 2 [0; 1

2
]: That is, reducing � causes all the lower cost types c < c�� will

want to provide even more e¤ort once we reduce �;meaning the continue to have
their capacity constraint bind, thus providing same e¤ort as before. However, now
all the higher cost types c > c�� will be disincentivized by lowering �; which means
they will all provide weakly less e¤ort (weakly because some of the lower cost of the
higher cost types might still be capacity constrained at their new lower desired level
of e¤ort). �
2) We want to show once we �x the capacity constraint, we need only garner

enough participants to assure us o¤ering a larger second prize over �rst is optimal.
Fix F and � = :5: Fix e¤ort capacity with 1

2c
�
�
B(c)� A(c)

�
� " > be; where 1

2c

is again the minimal bid by the lowest cost type with linear costs (see appendix for
lower bound of bid by the lowest cost type). As long as be satis�es this equation, we
will say the there is "su¢ cient capacity constraint." This assumption simply says
there is enough capacity constraint that once we change � by an "; it still binds for
at least the lowest cost type. Otherwise, we have the trivial case where there is no
capacity constraint for any participants for any increase in �.
We will use the same trick as in (1) of showing we will ultimately have e�� > be
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and thus o¤ering a larger second prize will be optimal. However, we now need to
show we get this inequality simply by increasing k enough since the location of be is
�xed. That is, we will show given enough k; we will have e�� become greater thanbe;or equivalently that c�� < bc:
When we increase k there are two e¤ects on the bid, or e¤ort, of the type c��: The

�rst e¤ect is we know as k increases, holding all else constant, c�� is becoming smaller,
which means the bid of the c�� (i.e., e��) is becoming greater (since bid is strictly
decreasing in cost type). In fact, we know from our estimates found in our appendix,
the type c�� approaches c in the limit. In particular, we know 1

k
< F (c��) < 2

k
for

all k:
The second e¤ect is the lower cost types increase their bid as k increases (and

all the higher cost types decrease their bid as k increases). Here is a graph that
illustrates this e¤ect (and this e¤ect can readily be veri�ed via simply taking the
derivative of the bidding function with respect to k) :

This means as k becomes large enough, not only is b (c��) increasing by moving
"up" the bidding curve, but also when k becomes large enough, the portion of the
curve b (c��) resides is moving up since the lowest cost types bids are increasing in
k, and in the limit c�� !c. Hence, since b(bc) is �xed, we know there is some k
such that we �nally have be = b(bc) < b (c��) = e��: That is, ultimately the marginal
type c�� is bound by the capacity constraint be:We are assured of ultimately meeting
this inequality by requiring b(bc) to be set such that 1

2c
�
�
B(c)� A(c)

�
� " > be:

This inequality dictates the lowest cost type (and in the limit c�� !c), increasing �
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from :5 to :5 + " will still result in the lowest cost type providing a maximal e¤ort
level, and thus all other previously providing a maximal bid will continue to do so.
However, now all the other types that were not providing a maximal bid reside above
the cost type c�� and thus will provide (weakly) increased e¤ort as we shift " of prize
mass from �rst to second prize. That is, we then again have increased total e¤ort
by having a larger second prize. �
The �rst portion of the proposition shows us once we �x our other primitives,

we can then increase the convexity enough to assure we optimally o¤er a larger
second prize. The intuition, as given earlier, applies to more general convex cost
functions: with su¢ ciently convex cost curves, taking a bit away from the lowest cost
types via reducing the �rst prize does not much reduce e¤ort since they are "far up"
their convex cost curve. Meanwhile, adding a bit to the higher cost types expected
pro�t by increasing second prize adds more to increased e¤ort since they are "low
down" their convex cost curve. When the latter positive e¤ect overcomes the former
negative one, net e¤ort is increased.
Our second portion of our proposition also provides intuition how with a generic

convex cost function we only need have enough participants to optimally o¤er a
larger second prize. In particular, as we increase k; we again witness the twin e¤ects
of the type c�� becoming a lower cost type since c�� !c, with k and also since the
lowest cost types increase their e¤ort as k increases. Thus, once we �x the convexity
of the cost curve, with enough k; it is only a very few that are disincentivized by
increasing the second prize. Further, since these few low cost types are "far up"
their convex cost curve, there are not very disincentivized by a small reduction in
�rst prize value, since they already requiring much increased expected prize for any
additional unit of e¤ort. Meanwhile, all the other higher cost types, being "lower
down" their convex cost curve have more sensitivity to increasing their e¤ort with
an increased second prize value. This increase of all the higher types then o¤sets
the nominal decrease of the lowest of cost types.
Note also the complementary of the degree of convexity of the number of types.

If we begin with a more convex cost function, it will not take as many participants
to assure o¤ering a larger second over �rst prize is optimal. Similarly, beginning
with a larger of number of participants means the cost function will need not be as
convex to assure we ought to o¤er a larger second over �rst prize.
Finally, it should be clear we can allow for di¤erent levels of capacity constraint

across contestants and still maintain our above results. Taking the natural assump-
tion that cost type is negatively correlating to capacity level, we then just take be to
be the capacity constraint of the lowest cost type.
Therefore, we can then conclude if we live in a world with no capacity constraints
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and linear costs, we should just load all the reward to the best performer. However,
once capacity constraints binding this can be a costly strategy. If people are enough
time constrained or enough physically constrained the optimal prescription becomes
spreading the reward to more than just the most able.

10 Heterogeneity of Skill and Optimal Prizes

The distribution of skill can vary widely across di¤erent settings of competition. In
one case we might have many participants that are of similar high skill. On the other
hand we might have a distribution of workers that have enormous skill di¤erences.
We lastly consider the role of cost type heterogeneity on determining the optimal

prize distribution. In particular, we will �nd the less heterogenous are types, the
more likely we want to o¤er a larger second prize.
First we note some results helpful for estimating linear bids (these are derived in

our appendix):

1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�

A(c) =
1

c
(1� F (c))k�1

A(c) =
1

c
(1� F (c))k�1

Now we calculate the expected bid under a winner takes all (WTA) under incom-
plete information as c and c, the bounds of our distribution of types, collapse to the
mean of ec of our type distribution. We then get:

1ec
Z
(1� F (c))k�1f(c)dc = 1

k
� 1ec

Hence, as usually assumed in the complete information case, with ec = 1; we
simply get the expected bid is
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1
k
and thus expected revenue is 1

k
� k = 1;which means 100% rent dissipation.

In other words, as we approach (perfect) homogeneity, the expected bid in a
WTA contest is simply 1

k
per each contestant, which is precisely the same as the

expected bid under a complete information case (and symmetric equilibrium) with
mixed strategies. Note, however, under incomplete information the strategies are
unique pure strategies as opposed to the mixed strategies of the complete information
case. That is, we only need to introduce an " of uncertainty over types and we get
a unique pure strategy equilibria over the complete information case of multiple
equilibria (i.e., which can have both symmetric and asymmetric equilibria). This
provides our next result.
We consider the expected bids under incomplete information and two equal prizes

(i.e., � = :5): We �rst use integration by parts to note:

cZ
c

(1� F (a))k�3 � F (a)� F 0(a)da

= F (c)� 1

k � 2(1� F (c))
k�2 +

(1� F (c))k�1
(k � 2)(k � 1)

=
(k � 2)F (c) + 1
(k � 2)(k � 1) � (1� F (c))

k�2

)
cZ
c

(1� F (a))k�2 � F (a)� F 0(a)da = (k � 1) � F (c) + 1
(k � 1)(k) � (1� F (c))k�1

We can then use this to solve for the expected value of our linear bid with � = :5
(i.e., 1

2
(A(c) +B(c))) as the (incomplete info) contest approaches homogeneity:

cZ
c

1

2
(A(c) +B(c))� F 0(c)dc

=

cZ
c

1

2

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
� F 0(c)dc
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=
1

2

�
(k � 2)(k � 1)F (c) + (k � 2)

(k � 1)(k) � (1� F (c))k�1 + 1

k � 1

�
=

1

2

�
(k � 2)
(k � 1)(k) +

1

k � 1

�
=
1

2

�
2(k � 1)
(k � 1)(k)

�
=
1

k

With cost type mean ec = 1; we get the same result for equal and WTA and also
for complete information. This means as we approach homogeneity both in the
case of complete information and incomplete information we get the same expected
revenue of 1 regardless if we have aWTA or equal prizes (as well as the same expected
bids per player under each contest (assuming the symmetric equilibrium under the
complete information case). An easy extension to our above analysis shows this
relationship between the complete and incomplete information contest is true for
any � 2 [0; 1]: This then provides our next Lemma:

Lemma 2 Relationship between Complete and Incomplete Information Con-
tests

Fix � 2 [0; 1]: The expected (pure strategy) bid of the incomplete information
contest equals the expected bid in the mixed strategy (homogeneous) complete infor-
mation contest under a symmetric equilibrium. Consequently, the expected revenue
of an incomplete information contest is equal to the expected revenue of a (homoge-
neous) complete information contest (where the homogeneous type is the mean type
of the incomplete information type distribution)
In the spirit of the puri�cation theorem (i.e., Harsanyi (1973)), we have a found

a sequence of pure strategies (i.e., the sequence of unique bids for each type from
a distribution that converges to its mean type) under the incomplete information
game that converges to the (symmetric) mixed strategy equilibrium of the same
game under complete information. That is, we could consider our found relationship
as a re�nement of the multiple equilibria of a complete information contests�only
the symmetric equilibria survive. And we also see it only takes an " of uncertainty
over the type space and we move from a (non-unique) mixed strategy equilibrium
to a unique strict pure strategy equilibrium. We will now use this relationship to
consider another proposition:

Proposition 4 If an e¤ort capacity constraint binds for some measure of the type
space, given enough homogeneity of types, an equal prize contest provides more rev-
enue than a WTA contest
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Proof: Now we will show as we approach homogeneity under an incomplete in-
formation case, two equal prizes provide strictly more revenue than a WTA contest
(again assuming linear costs).
We will do this by �rst showing as we approach homogeneity in the incomplete

information contest that

cZ
c

(B(c)� A(c)) � F 0(c)dc = 0: This then means the ex-

pected revenue from a sole �rst prize and sole second prize is the same (assuming
no capacity constraints). But this means any convex combination of these two (i.e.,
� 2 [0; 1]) will also yield the same expected revenue, and in particular, then, the
expected revenue of a WTA and equal prize contest provide the same expected rev-
enue in the limit of homogeneity. Next, we will show the bid of the lowest cost
type is always higher under a WTA than an equal prize contests. This will then
imply having just a small measure of the type space capacity constrained causes an
equal prize contest to generate greater revenue than a WTA contest. This follows
since such constraint will reduce revenue from the WTA contest but not a¤ect (i.e.,
not be binding in) the equal prize contest, which means the equal prize contest will
dominate the WTA contest.

Here is a graph to understand what is happening with c 2 [:9; 1:1] :

Imagine now adding an e¤ort capacity constraint at e = :8: If

cZ
c

(B(c)� A(c))�
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F 0(c)dc = 0; the area under the curve (i.e., the expected revenue) of both � = 0 and
� = :5 is the same, which then clearly means setting a capacity constraint of e = :8
results in the equal prize contest providing more revenue than the WTA contest.
That is, doing so reduces the area of the former without a¤ecting the area of the
latter. Now it remains to show as the contest approaches homogeneity, we have
cZ
c

(B(c)� A(c))� F 0(c)dc = 0 and also the bid of the lowest type is strictly greater

under the WTA over equal prize contest.

We use some additional estimates from our appendix for our upper and lower
bound estimates of B(c)� A(c) :

B(c)� A(c) = 1

F�1
�
2
k

� �kF (c)� 1)� (1� F (c))k�2�

B(c)� A(c) =
1

c

�
(kF (c)� 1)� (1� F (c)k�2

�
when c � F�1

�
2

k

�
B(c)� A(c) =

1

c
(
k � 2
k
)k�2 +

1

c

�
(kF (c)� 1) (1� F (c))k�2 � (k � 2

k
)k�2

�
when c < F�1

�
2

k

�
Thus as c and c approach the mean cost type ec; we get:

B(c)� A(c) � 1ec �(kF (c)� 1)� (1� F (c)k�2�
Again, taking ec = 1 as commonly assumed in the complete information case, we

get simply: �
(kF (c)� 1)� (1� F (c)k�2

�
Integrating over our type space then gives:
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cZ
c

�
(kF (c)� 1)� (1� F (c)k�2

�
� F 0(c)dc

=

cZ
c

�
(kF (c))� (1� F (c)k�2

�
� F 0(c)dc�

cZ
c

(1� F (c)k�2 � F 0(c)dc

=
k(k � 1)F (c) + k
(k � 1)(k) � (1� F (c))k�1 � 1

k � 1

=
1

k � 1 �
1

k � 1 = 0

In other words, as the contest approaches homogeneity, the expected value of
B(c) � A(c) is zero, which means the expected value of revenue from any convex
combination of �rst and second prize is the same.
Finally, to show the lowest cost type always bids more under a WTA over equal

prize contest, �rst note as the contest approaches homogeneity the lowest cost type
bids:

1ec � (1� F (c))k�1 = 1ec
With ec = 1; we then simply have a bid of 1: Now with equal prizes we get in the

limit the lowest cost type bidding:

1

2ec �(F (c)� (k � 2) + 1) (1� F (c))k�2� = 1

2ec
With ec = 1;we simply have 1

2
: Thus, with equal prizes the lowest cost type

bids just half the lowest cost type versus under a WTA. Since both contests are
monotonically decreasing in the bid as a function of type, we are �nished. That is,
by placing the capacity constraint such that e 2 (1

2ec;1ec); it is then trivial the equal
prize contest provides greater total revenue over the WTA contest since they both
provided equal revenue before such constraint. �

Thus, we see as we approach type homogeneity, revenue is all but the same for
any prize distribution. However, since the greatest bids are under a WTA contest,
adding an " of e¤ort capacity constraint reduces the e¤ort of the most able types.
However, with equal prizes, the most able type has a maximal bid of just half the
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same type under a WTA contest; thus, there is no e¤ort constraint under equal
prizes. Consequently, now equal prize contests provide more revenue.
This proof also provides nice intuition of why having convex costs assures us

o¤ering more of a second prize is better once types become homogeneous enough: as
types are su¢ ciently homogeneous, any combination of �rst and second prize provide
roughly the same revenue. However, under a WTA contest, the lowest types are
providing much greater e¤ort than under an equal prize. Hence, introducing convex
costs distorts downward these greatest e¤ort levels more than the lower e¤ort levels.
The net result is less expected net revenue from a WTA over equal prize contest
scheme. We also have a corollary from the above results that o¤ering a larger
second prize is also superior to a WTA contest given enough homogeneity:

Corollary 2 If an e¤ort capacity constraint binds for some measure of the type
space, given enough homogeneity of types, o¤ering a larger second prize through the
GSPC provides more revenue than o¤ering a weakly larger �rst prize

Proof: Since revenue is the same for any distribution of prizes as we approach
homogeneous types, we have R0(1

2
) ! 0. However, per Lemma 4 (in appendix), we

know eR0(1
2
) > R0(1

2
)! 0: �

11 Empirical Predictions

Ideally, we would like to take our predictions to the data. However, the results of
MS and our earlier results that generalize theirs are di¢ cult to test. This is because
we rely on the curvature of the contestant cost function. Cost functions are di¢ cult
to observe and measure in practice, yet alone their degree of curvature.
Fortunately, our last class of contests� linear costs with capacity constraints�

provide some crisp empirical predictions that do not rely on measuring the curvature
of cost functions. Indeed, it should be clear if we now introduce convex costs cou-
pled with capacity constraints, this only strengthens the above comparative statics.
Hence, regardless of the curvature of the cost function, the comparative statics still
hold in the face of capacity constraints.
Thus, we can predict as follows:
When participants or �rms have a substantive limitation on their input or e¤ort

level, we can say the following regarding optimal incentive structure:
1) As the range of ability decreases, incentives �atten
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2) As the designer values e¤ort in a complementary manner or has the purpose
of incentivizing agents to reach a given standard or pro�ciency, incentives �atten
3) As the number of competitors increase, incentives �atten
4) As capacity limitations become more severe, incentives �atten

If we are able to observe output, then we can replace all the above predictions�
statement that "incentives �atten" with "revenue increases with �atter incentives."
We now turn to the English auction for not only further intuition by means

of order statistics, but also to show this interaction e¤ect of the "incentive" and
"discouragement" e¤ect applies to more settings than contests.

12 Intuition via the English Auction

We consider linear participant cost contests with one versus two equal prizes and
link these to an English Auction, showing their revenue equivalence. To correlate
the two forms, we assume participants in the English auction only want, or are able,
to acquire one unit. For the former, using some results from Moldovanu et al (2008)
and some further analysis, we write the revenue of an all-pay auction (or equivalently
a contest with linear participant costs) as the following, normalizing the total prize
mass to 1:

RAP (�) = (1� 2 � �)� E(k � 1; k) + 2 � �� E(k � 2; k)
We then see the revenue from an all-pay auction is a convex combination of

the 2nd and 3rd order statistics. Thus, with a WTA auction (i.e., � = 0) this
then collapses to E(k � 1; k); the expected value of the second most valuing type.
Through the revenue equivalence theorem, we know this is also the same as the
English auction with a single prize being auctioned o¤ (with linear costs).
Now with two equal prizes, we get RAP (12) = E(k � 2; k);the third most valuing

type. We could appeal to Krishna (2002), for a multi-unit revenue equivalence
theorem to show we then obtain the same revenue from a (generalized) English
auction (i.e., he proves the expected payo¤ for players is the same up to an additive
constant for each type of auction). However, it is more instructive to explicitly
�nd the revenue from the (generalized) English auction. We �rst note once the
third to last participant drops out of the auction, both remaining contestants will
immediately drop out; since �rst and second prize are the same, there is no value in
further waiting. Hence, ex-ante, for the auctioneer, the expected revenue for two
equal prizes is simply:
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REA

�
1

2

�
=
1

2
� E(k � 2; k) + 1

2
� E(k � 2; k) = E(k � 2; k)

That is, the �rst and second most valuing type drop out immediately after the
third most valuing type drops out, which for her is when her net expected return is
zero (since we assume the net return to dropping out is zero): 1

2
� Ai � bi = 0 )

bi =
1
2
�Ai; where Ai is the ith order statistic. Taking the expectation then gives the

third most valuing type dropping out at the bid 1
2
�E(k� 2; k): Since there are two

remaining contestants after she drops out, total revenue is then 2� 1
2
�E(k�2; k) =

E(k � 2; k); just the same as an AP auction.
Now when we introduce convex participant costs in the auction (or contest), the

revenue equivalence theorem fails since convex costs are equivalent to assuming risk
averse bidders. That is, we have 1

2
Ai �  (bi) = 0 has the same dropout expected

value as g
�
1
2
� Ai

�
� bi = 0; where (�)�1 � g(�);the former being the convex cost

setup and the latter the concave bene�t or risk aversion.
Despite revenue equivalence failure, we can still �nd the intuition of the general-

ized English Auction in the face of convex costs helpful. Again, with this auction
format, the bidding strategy is simple in either a single or equal prizes: remain in
the auction until your value is reached.
Thus, for the single prize, we get Ai �  (bi) = 0; which means the second most

valuing type drops out. The expected ex-ante revenue from this is then:

REA (0) =

Z
g (a)� fk2 (a)� da < g

�Z
a� fk2 (a)� da

�
= g (E(k � 1; k))

fk2 (a) is the pdf of the distribution of the second order statistic and integration
is over the support of types with k total contestants. The inequality follows from
Jensen�s inequality.
Similarly, we then �nd for the equal prize expected revenue is:

REA

�
1

2

�
= 2�

Z
g

�
1

2
� a

�
� fk3 (a)� da

We can now compare the two prize distribution revenues to determine which
garners more total (expected) e¤ort than the other. First, note as before, when
costs are linear we get g(x) = x:

REA (0) = E (k � 1; k) > E (k � 2; k) = REA
�
1

2

�
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Thus, it is again always best to only o¤er a single 1st prize when costs are
linear. However, now consider what happens as convexity increases. Here we mean
convexity of the cost function (�) increases and thus the concavity of its inverse
g(�) increases in the Arrow-Pratt sense: �g(�)

00

g(�)0 ! z: This then means, in the limit,
we get g(�)! c; some constant c: Hence, we have equal prizes producing revenue in
the limit of:

lim
�g(�)00
g(�)0 !z

REA

�
1

2

�
= 2�

Z
lim

�g(�)00
g(�)0 !z

�
g

�
1

2
� a

��
� fk3 (a)� da

= 2�
Z
c� fk3 (a)� da = 2� c� 1 = 2� c

:
Thus, we have:

lim
�g(�)00
g(�)0 !z

REA

�
1

2

�
= 2� c > c = lim

�g(�)00
g(�)0 !z

REA (0)

Thus, there exists some degree of convexity such that an equal prize English
auction provides more revenue than a single prize auction, whereas with linear costs
the single prize auction provides strictly more revenue.
The intuition of how convexity causes equal prizes to dominate a single prize is

simple: with increased convexity, the di¤erential in revenue garnered from o¤ering
a $.50 versus $1 prize becomes increasingly small. However, under equal prizes
we are getting two participants paying this revenue rather than just one under a
WTA. In other words, convexity starts putting the "breaks" on how much more
of a bid a larger prize elicits. We then reach a crossing point where although the
bid is less for a $.5 over $1 prize, it is not less than half the greater bid o¤ered for
the $1 prize. Thus, under an English auction with (su¢ cient) participant convex
costs, if an auctioneer could divide an object into two equal parts, auctioning them
o¤ simultaneously would provide greater expected revenue than auctioning it o¤ as
a single object. This intuition then also follows for a contest setting: increased
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convexity starts limiting the value of having a larger �rst prize, thus allowing the
two slightly less incentivizing prizes to garner more total contestant e¤ort. Hence,
with enough convexity, an equal prize contests yields more total revenue than a WTA
contest.
The English auction also provides intuition how increasing the number of par-

ticipants makes an equal prize auction more likely to provide more revenue than a
single prize auction. Recall under linear costs we have the revenue of allocating the
prize mass as:

RAP (�) = (1� 2 � �)� E(k � 1; k) + 2 � �� E(k � 2; k)
Thus, as k !1; we have E(k�1; k)! E(k�2; k): This means in the limit of a

large contest, we receive the same revenue regardless of prize distribution. Nonethe-
less, in a �nite population it is still always best to only auction a single �rst prize
with linear participant costs. However, when we introduce strict participant cost
convexity, we are assured there exists some �nite k such that o¤ering equal prizes
yields more revenue than o¤ering only a �rst. This is immediate from our above
analysis of strict convexity causing the expected revenue garnered from a $:5 prize
to be strictly greater than revenue garnered from a $1 prize. That is, given large
enough k; E(k� 1; k) and E(k� 2; k) become su¢ ciently similarly valued to provide
greater total revenue from auctioning equal prizes over a single prize. Thus the size
of the auction and the degree of cost convexity amplify one another: more of one
requires then less of the other to still be assured we optimally o¤er two equal over a
single prize for auction.

Finally, we can also now see the role of heterogeneity of prize valuation. As the
support of the distribution of types approaches a single type, the 1st and 2nd order
statistic converge to one another� i.e., E(k�1; k)! E(k�2; k): Hence, following our
argument above for increasing the number of participants, once we �x the convexity
of the cost function and number of participants, decreasing the heterogeneity of
valuation will also result in equal prizes providing more revenue than a single prize
to the auctioneer.
We can now write our proposition:

Proposition 5 Fix the size (number of participants k), convexity of participant bid
costs, and degree of heterogeneity of valuation in an English auction.
1) There exists some k� � k such that for all k � k� o¤ering two equal prizes

each worth V provides greater total revenue than o¤ering a single prize worth 2V
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2) There exists some degree of convexity of bid cost such that c� � �h(�)00
h(�)0 �

�g(�)00
g(�)0

yields for all �h(�)
00

h(�)0 � c
�o¤ering two equal prizes each worth V provides greater total

revenue than o¤ering a single prize worth 2V (where our cost function �1(�) = g(�)).
3) There exists some decreased level of heterogeneity of valuation such that of-

fering two equal prizes each worth V provides greater total revenue than o¤ering a
single prize worth 2V

This then means we are given three levers to assure more revenue from auctioning
equal prizes over a single prize: the size of the auction, the convexity of participant
costs, and the degree of valuation homogeneity. We only need to increase one to
provide our result. However, the larger the other, the less the other needs to be
to arrive at the same result. Increasing the size of the auction or the homogeneity
of valuation is reducing the bene�t from having a �rst over second prize by making
the magnitude of their incentive e¤ects more similar. And just the same, increasing
convexity of bidding costs, is also make the magnitude of a �rst or second rank prize
incentive similar. Hence, once su¢ ciency is reached, o¤ering the two but lesser
prizes wins the day.

13 Conclusion

Whether it be business, politics, or even academics, much is actually a contest. As
such, an important task is to consider how to best design a contest. Central to
this problem is accounting for the interaction of the "incentive e¤ect" and "discour-
agement e¤ect." This interaction arises with the combination of competition and
heterogeneous ability. With only one of these factors, there is no tradeo¤. Similarly,
If only living in a world of linear costs and bene�ts and no capacity constraints, this
interaction means little. Though it is convenient to study only one of these factors
in isolation, seldom does this characterize the real world. Instead, the presence of
these dual forces is more the norm than the exception.
And in a world with both forces, once we face contestants with capacity con-

straints or convex costs, larger contests, contestants of similar ability, or designers
with marginal decreasing bene�ts over e¤ort, this interaction can become severe: the
"discouragement" e¤ect dominates the "incentive" e¤ect calling for optimal incen-
tives to be �at or possibly even inverted� second prize should be larger than �rst
prize.

However, bidding under an inverted incentive scheme becomes non-monotonic.
For such a problem we designed a mechanism we dubbed the generalized second
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prize contest (GSPC) mechanism, which nests in it the constrained contest that
restricts a weakly greater �rst prize. We then found the GSPC (weakly) dominates
the constrained contest in terms of total revenue generated for the contest designer.
In addition, we studied a new class of contests� contestants with linear costs and

capacity constraints� that has the characteristic of providing sharp and measurable
empirical predictions that can now be taken to the data.

We do note we only considered the case of two prizes. It would be interesting
to expand our analysis and consider the case when we can o¤er n prizes with n < k
contestants; which prize should be largest? What about if prizes are indivisible-
which place should receive the sole prize? We suspect we will �nd a k prize analog
of our results.
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14 Appendix

Lemma 1: If � > :5; the contestant bidding function becomes single peaked with a
maximum at bc such that F (bc) = 2��1

k��1
Proof: We �rst write the bidding function as b(�; c) = g((1 � �)A(c) + �B(c));

where g(�)�1 = (�) (i.e., g(�) is the inverse of the cost function). Now note d
dc
g((1�

�)A(c)+�B(c)) = g0((1� �)A(c) + �B(c))| {z }
>0

[(1��)A0(c)+�B0(c)]: The former term

is always positive for c 2 [c; c) since g(�) is strictly increasing and (1��)A(c)+�B(c)
is always positive. The latter term, we will see, is single peaked, thus making our
entire expression single peaked. Expanding (1� �)A0(c) + �B0(c); we get:

(1� �)(�(k � 1)1
c
(1� F (c))k�2 � F 0(c)

+�((k � 1)1
c
(1� F (c))k�3 � [(1� (k � 1)F (c)]� F 0(c)

Rearranging terms then yields:

(k � 1)1
c
(1� F (c))k�3 � F 0(c)�| {z }

>0

[(F (c)� 1)(1� �) + �(1� (k � 1)F (c)]

The former term is always positive so we only focus on the latter term, which
further rearranging gives:

F (c)� �F (c)� 1 + �+ �� k�F (c) + �F (c)
= �k�F (c)� (1� F (c)) + 2�

First note at the lowest cost type c;we get simply 2��1; which is always positive
for � > :5 at c = c: That is, our bidding function is increasing at the lowest cost type.
Similarly, with the highest cost type, we get �k�+ 2�; which is always negative for
k � 3: Thus, our bidding function is decreasing at the highest cost type.
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Now solving the above for a unique zero gives:

�k�F (c)� (1� F (c)) + 2� � 0

) (k�� 1)F (c) = 2�� 1) F (c) =
2�� 1
k�� 1

:
De�ne then bc such that F (bc) = 2��1

k��1 :Now when c 2 [c, bc) we have a � F (c):
(1� k�)| {z }

<0

a+ 2�� 1

Once we �x � and k; we see the above expression, which then determines the sign
of the derivative of the bidding function, is strictly decreasing in a: At a = 2��1

k��1 ; the
above expression equals zero. Meanwhile, with a 2 [c, bc) the expression is positive
and with a 2 (bc; c] the expression is negative. Hence, the bidding function is single
peaked at bc: Thus, our type c< bc < c provides the highest e¤ort over all types. �:
Proposition 1 The generalized 2nd prize contest mechanism exists, meets all in-

centive compatibility constraints, and induces a (weakly) monotonic bidding function
Proof: We �rst show the mechanism meets all incentive compatibility constraints.

For contestants who would optimally provide e¤ort below e�; this problem is just as
before so their bidding function remains as under a contest with no pooling, which
we will call no pool bidding or no pool contest, depending on the context. Call
this cuto¤ c� such that for all c 2 [c�; c] these participants provide their e¤ort below
e� as under no pool. Now all that have costs of e¤ort c 2 [c; c�] are to be in the
pooling e¤ort interval. For this pooling group we now must make sure such e¤ort
interval is incentive compatible against the deviation of exerting more or less e¤ort
than e�; make sure such c� is beyond bc (i.e., the peak of the non-modi�ed bidding
function) to induce a (weakly) monotonic bidding function, and also make sure at c�

such participant is indi¤erent between optimal e¤ort solved under no pool and the
pooling interval payo¤. We check each of these necessary conditions in turn.
Let the total prize be worth 1, as before. Let � > 1

2
be the second place share

with the remainder being the �rst place share. Suppose there are k players. Let p be
the measure of types in the pooling interval. Then, the expected payo¤ from bidding
in the pooling interval is

�pool =

k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i| {z }

1 or more other contestants pool

+ (1� p)k�1 (1� �)| {z }
No other contestant pool
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We �rst need to verify the contestant c� at the end of the pooling interval (i.e.,
type c� where p = F (c�)) is indi¤erent between pooling or exerting the identical
e¤ort e� under no pool bidding. When we set p � F (c�); the payo¤ for c� under a
no pool contest is as follows:

�no pool = (k � 1)�p (1� p)k�2 + (1� �) (1� p)k�1

Hence, we require �pool = �no pool ; thus we solve for the indi¤erent value of p

k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i + (1� �) (1� p)k�1

= (k � 1)�p (1� p)k�2 + (1� �) (1� p)k�1 ()

k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i = (k � 1)�p (1� p)k�2

Now divide by (1� p)k�1 to obtain

k�1X
i=1

�
k � 1
i

�
1

i+ 1

�
p

1� p

�i
= (k � 1)� p

1� p

Now, with a change of variable, let z = p
1�p to obtain

k�1X
i=1

�
k � 1
i

�
1

i+ 1
(z)i�1 = (k � 1)�

Now �x � and k: Then the LHS of the equality is strictly increasing in z;which is
strictly increasing in p: Further at the limit as p! 0) z ! 0; the LHS converges
to k�1

2
, only the i = 1 term remains4. The RHS is then a greater �nite number

(k � 1)� > k�1
2
with � > :5 as p! 0:

Oppositely, as p! 1 the LHS approaches +1;whereas the RHS is again a �nite
number. Hence, there exists a unique p� 2 (0; 1) that solves the above equation.
Solving for p� then determines both e� and c�: Hence, once we �x � and k; we

4This can also be seen by taking the limit of the generating function of
Pk�1

i=1

�
k�1
i

�
1
i+1 (z)

i�1 �
(1+z)k�(k)z�1

(k)z2 as z ! 0:
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can always �nd our needed c� uniquely. Further, by meeting the above equality
we have actually also met the IC constraint, which we call ICdown, for preventing
pooling types from deviating down; thus, we see ICdown binds. Note also p� is
increasing in �: However, p� can be either increasing or decreasing in k depending on
the parameterization, as k a¤ects both � and p (holding � constant) in a complex
way.

Once we have e� and c� we already know any c 2 [c�; c] does not want to deviate,
as they are already choosing their optimal e¤ort per the no pool bidding structure.
Meanwhile, any c 2 [c; c�) will not want to deviate by providing less e¤ort than the
pooling e¤ort level because if it was not worth it for the c� type to do so, then it
certainly is not worth it for the lower cost types. That is, in considering whether
to exert less e¤ort, the c� type trades o¤ the saved cost of less e¤ort with a reduced
expected gross bene�t. Thus, if the c� type�s cost savings did not justify less e¤ort,
it certainly will not be justi�ed for those with lower cost (savings) facing the same
reduced expected bene�t.
Now we need to check that a participant in the pooling interval does not want to

deviate up, as doing so would guarantee a �rst prize. The payo¤ from deviating up
is thus:

�up = 1� �
Hence, we require that

�pool � �up � 0
Substituting.

�in � �up =
k�1X
i=1

�
k � 1
i

�
1

i+ 1
pi (1� p)k�1�i �

�
1� (1� p)k�1

�
(1� �)

Now, recall by the binomial theorem:

1� (1� p)k�1 =
k�1X
i=1

�
k � 1
i

�
pi (1� p)k�1�i

Hence

�in � �up =
k�1X
i=1

�
k � 1
i

��
1

i+ 1
� (1� �)

�
pi (1� p)k�1�i

Clearly, if 1
k
> (1 � �) () � � 1 � 1

k
; ICup is met, as it means all sums being

added above are positive. This requirement simply says the second prize share �
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needs to be weakly greater than 1 minus the inverse the number of participants.
Thus, this requirement increases in k; however, the optimal �� is also increasing in
k: It is meanwhile trivial if � = 1 (i.e., there is only a second prize), ICup is met.
However, this su¢ cient condition is obviously more than needed.
The precise requirement is readily found by solving the generating function ofPk�1
i=1

�
k�1
i

� �
1
i+1
� (1� �)

�
pi (1� p)k�1�i :

(1� p)k�1(p� 1� kp� + ( 1
1�p)

k�1(1 + kp(�� 1))
kp

The term of interest is (p� 1� kp�+( 1
1�p)

k�1(1+ kp(�� 1)); as this determines
if the entire equation is (weakly) positive and thus ICup is met. We can then solve
for when this term is (weakly) greater than zero:

(p� 1� kp� + ( 1

1� p)
k�1(1 + kp(�� 1)) � 0)

kp�((
1

1� p)
k�1 � 1) � 1� p+ (kp� 1)( 1

1� p)
k�1 )

1 � � � 1� p
kp(( 1

1�p)
k�1 � 1)

+
(kp� 1)( 1

1�p)
k�1

kp(( 1
1�p)

k�1 � 1)

The middle term is our �rst su¢ cient condition. Since the designer gets to
choose �; this condition can regardless always be met since any � 2 [ 1�p

kp(( 1
1�p )

k�1�1) +

(kp�1)( 1
1�p )

k�1

kp(( 1
1�p )

k�1�1) ; 1] will satisfy ICup: Additionally, we will consider indivisible prizes,

which means we again have � = 1 or � = 0: Finally, when we do allow for divisible
prizes, we could allow that the designer to simply declare any observed e¤ort greater
than e� is still counted as e�: Since e¤ort is costly, no player would ever exert greater
than e�:

Lastly, we also need to check the type c� � bc: That is, we need to make sure the
indi¤erence point from where we end the pooling interval is after the single peak of
the no pool bidding function; otherwise, we still have not solved the non-monotonicity
problem. Recall our ICdown condition was the following being (weakly) positive:
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k�1X
i=1

�
k � 1
i

�
1

i+ 1
(z)i�1 � (k � 1)�

We then substitute in z = F (bc)
1�F (bc) ; where F (bc) = 2��1

k��1 as found in our �rst Lemma.
If the expression is negative, it means c� > bc; since ICdown is not yet met at bc. That
is, we need to choose a larger p� > F (bc) (since the above is strictly increasing in z;
which is strictly increasing in p) to meet ICdown: But this then means we get c� >bc:
To see we always have c� > bc; �rst note dF (bc)

d�
= @

@�
2��1
k��1 =

k(1�2�)�1
(k��1)2 < 0 (for

� � :5): This then means @z
@�
< 0 when evaluated at c = bc since z is strictly increasing

in p � F (c): Now we take the derivative of our ICdown condition with respect to �
and consider its value when evaluated at c = bc:

d

d�
(

k�1X
i=1

�
k � 1
i

�
1

i+ 1
(z)i�1 � (k � 1)�)

=
k�1X
i=1

�
k � 1
i

�
1

i+ 1
(i� 1)(z)i�2 @z

@�|{z}
<0| {z }

�0

+�(k � 1)| {z }
<0

< 0

Hence, our ICdown condition is strictly decreasing in �: This means if we can
show such expression is non positive at � = :5; we are done. Recall, as we already
showed, when � = :5; we get z = 0 )

Pk�1
i=1

�
k�1
i

�
1
i+1
(z)i�1 ! k�1

2
: But this then

means
Pk�1

i=1

�
k�1
i

�
1
i+1
(z)i�1 � (k � 1)1

2
= k�1

2
� k

2
+ 1

2
= 0 with � = :5: Hence, sincePk�1

i=1

�
k�1
i

�
1
i+1
(z)i�1 � (k � 1)� is strictly decreasing in �, it has to be the case for

any � > :5 we get c� > bc:�
Lemma 3 R and eR are concave in � for � 2 [0; 1

2
] and � 2 [0; 1

2
); respectively

Proof: Recall R(�) = k

cZ
c

g(A(c) + �(B(c)� A(c)))� F 0(c)dc:

Taking the �rst derivative with respect to � yields:
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R0(�) = k

cZ
c

g0(A(c) + �(B(c)� A(c)))� (B(c)� A(c)))� F 0(c)dc

Taking the derivative again with respect to � yields:

R00(�) = k

cZ
c

g00(A(c) + �(B(c)� A(c)))� (B(c)� A(c)))2 � F 0(c)dc

Since g00(�) < 0 (i.e., because g(�) is concave), we get R00(�) < 0; as desired.
Extending this to the GSPC, note eR(�) is the same as R(�) for � 2 [0; 1

2
). �

Lemma 4 eR0(1
2
) > R0(1

2
)

First note eR0(�) = R0(�) for all � 2 [0; 1
2
). Also recall for all � 2 [0; 1

2
] we haveeR(1

2
) = R(1

2
); the revenue is the same (and the functions precisely the same) since

there is no pooling interval until � > 1
2
: It would then be tempting to immediately

assert eR0(1
2
) = R0(1

2
): However, once we increase � by an " a pooling interval develops,

and thus we must account for this to determine eR0(1
2
): As we do increase � by an ";

all we do is shift the bottom support of the integral comprising R0(1
2
) to some c > c

just greater than c: Thus, we want to show d
dc
R(1

2
) > 0; and we will be done:

d

dt

����
c

24k cZ
t

g0(
1

2
(A(c) +B(c)))� (B(c)� A(c)))� F 0(c)dc

35 > 0
Hence, we get

d

dt

24k cZ
t

g0(
1

2
(A(c) +B(c)))� (B(c)� A(c)))� F 0(c)dc

35
= �k � g0(1

2
(A(t) +B(t)))� (B(t)� A(t))� F 0(t)

However, we know (B(t) � A(t)) < 0 when t = c. Thus, since we always have
g0(�) > 0 and F 0(t) > 0; the entire expression is then strictly positive. In addition,
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we have now added a pooling interval that induces positive total revenue value once
� > 1

2
that is in addition to the revenue related to the above expression.

But both these facts then mean eR0(1
2
) > R0(1

2
);as desired. �

Proposition 5 It is optimal to o¤er a larger second prize than �rst prize through

our GSPC if our su¢ cient condition is met:

k

cZ
c

h0
�
g(
1

2
(A(c) +B(c)))

�
� g0(1

2
(A(c) +B(c)))(B(c)� A(c))� F 0(c)dc > 0

Proof:
First take the derivative of our revenue function with respect to � :

d

d�
R(�) =

d

d�
k

cZ
c

h(g(A(c) + �(B(c)� A(c))))� F 0(c)dc

= k

cZ
c

h0 (g(A(c) + �(B(c)� A(c))))� g0(A(c)

+�(B(c)� A(c))))� (B(c)� A(c))� F 0(c)dc

No we evaluate this expression at � = 5 :

d

d�
R(:5) = k

cZ
c

h0
�
g(
1

2
(A(c) +B(c)))

�
�g0(1

2
(A(c) +B(c)))(B(c)�A(c))�F 0(c)dc

Now if d
d�
R(:5) > 0, we know then that eR0(1

2
) > R(:5) > 0; per the previous

Lemma . But this then means it is optimal to o¤er a larger second prize via the
GSPC. �

14.1 Estimating Some Convex Combinations of A(c) and B(c)
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To solve this analytically, we need to �nd some upper and lower bounds for our
various terms.
We �rst �nd upper and lower bounds of A(c):

First recall A(c) � (k � 1)
cZ
c

1
a
(1� F (a))k�2 � F 0(a)da:

Hence,

(k � 1)
cZ
c

1

a
(1� F (a))k�2 � F 0(a)da >

1

c

cZ
c

(k � 1)(1� F (a))k�2 � F 0(a)da

=
1

c

�
�(1� F (a))k�1

�c
c

=
1

c
(1� F (c))k�1 = A(c):

Thus we have:

A(c) =
1

c
(1� F (c))k�1

A(c) =
1

c
(1� F (c))k�1

That is, we have A(c) < A(c) < A(c):

Here is a plot of our estimates with k = 5, quadratic costs, and c 2 U [:5; 1] :
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We next solve for some values of the above expression individually.

By integration of parts we have

cZ
c

(1� F (a))k�3 � F (a)� F 0(a)da

= [F (a)�� 1

k � 2(1� F (a))
k�2]cc �

cZ
c

� 1

k � 2(1� F (a))
k�2 � F 0(a)da

= F (c)� 1

k � 2(1� F (c))
k�2 �

�
1

(k � 2)(k � 1) � (1� F (a))
k�1
�c
c

= F (c)� 1

k � 2(1� F (c))
k�2 +

(1� F (c))k�1
(k � 2)(k � 1)

:
That is, we get:

44



cZ
c

(1� F (a))k�3 � F (a)� F 0(a)da

= F (c)� 1

k � 2(1� F (c))
k�2 +

(1� F (c))k�1
(k � 2)(k � 1)

=
(k � 2) � F (c) + 1
(k � 2)(k � 1) � (1� F (c))k�2

Secondly, we note through similar analysis:

cZ
c

(1� F (a))k�3 � F 0(a)da = (1� F (c))k�2 � 1

k � 2

Now we estimate 1
2
(A(c) +B(c)):

Again after some basic calculations we have

1

2
(A(c) +B(c)) =

1

2
(k � 1)(k � 2)

Z c

c

(1� F (a))k�3
a

� F (a)� F 0(a)da

We then get using our results from above:

1

2
(k � 1)(k � 2)

�Z c

c

(1� F (a))k�3
a

� F (a)� F 0(a)da
�

>
1

2c
(k � 1)(k � 2)

�
(k � 2) � F (c) + 1
(k � 2)(k � 1) � (1� F (c))k�2

�
=

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
Hence, we have:

1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
1

2
(A(c) +B(c)) =

1

2c

�
(F (c)� (k � 2) + 1) � (1� F (c))k�2

�
This gives us 0 < 1

2
(A(c) +B(c)) < 1

2
(A(c) +B(c)) < 1

2
(A(c) +B(c)):
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Here is a plot of these upper and lower bounds around the true value plotted as
the red curve:

Now we solve for upper and lower bounds of B(c)� A(c):
First, we have by de�nition and some trivial calculations:

B(c)� A(c) = (k � 1)
Z c

c

(1� F (a))k�3

a
� (k � F (a)� 2)F 0(a)da

This means we know

B(c)� A(c)

< (k � 1)
Z c

F�1( 2k)

(1� F (a))k�3

F�1
�
2
k

� � (kF (a)� 2)F 0(a)da

+(k � 1)
Z F�1( 2k)

c

(1� F (a))k�3

F�1
�
2
k

� � (kF (a)� 2)F 0(a)da

Thus, we have

B(c)� A(c)

=
(k � 1)
F�1

�
2
k

� �k � (k � 2)F (c) + 1
(k � 2)(k � 1) � (1� F (c))

k�2 � (1� F (c))k�2 � 2

(k � 2)

�
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=
1

F�1
�
2
k

� �k � (k � 2) � F (c) + 1
(k � 2) � (1� F (c))k�2 � (1� F (c))k�2 � 2(k � 1)

(k � 2)

�
=

1

F�1
�
2
k

� k(k � 2)F (c) + k � 2(k � 1)
(k � 2) � (1� F (c))k�2

=) B(c)� A(c) = 1

F�1
�
2
k

� �k � F (c)� 1)� (1� F (c))k�2�
This then implies we have F (c��) > 1

k
; where again A(c��) = B(c��): This follows

from noting B(c)� A(c) = 0 when c = F�1( 1
k
): However, since B(c)� A(c) is an

upper bound, we know we have B(c)�A(c) < 0 at c = F�1( 1
k
) (since B(c)�A(c) < 0

for all c < c��). But this then also means it must be that F (c��) > 1
k
: Thus, we now

know:

1

k
< F (c��) <

2

k

Next, we solve for B(c)� A(c):
We want

B(c)� A(c) >

(k � 1)
Z c

F�1( 2k)

(1� F (a))k�3

c
� (k � F (a)� 2)F 0(a)da

+(k � 1)
Z F�1( 2k)

c

(1� F (a))k�3

c
� (k � F (a)� 2)F 0(a)da

First assuming c � F�1
�
2
k

�
; we can solve the above sum as simply the analog to

B(c)� A(c); replacing c with c :

(k � 1)
c

Z c

c

(1� F (a))k�3 � (k � F (a)� 2)F 0(a)da

=
1

c

�
k � F (c)� 1)� (1� F (c)k�2

�
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Now when c < F�1
�
2
k

�
we must solve for the latter part of the sum, which we

�nd as:

(k � 1)
Z F�1( 2k)

c

(1� F (a))k�3

c
� (k � F (a)� 2)F 0(a)da

=
1

c

�
�(k � 2

k
)k�2 + (k � F (c)� 1)� (1� F (c))k�2

�

Thus, combining both the sums we have

B(c)� A(c)

=
1

c

�
k �
�
2

k

�
� 1)� (1�

�
2

k

�
)k�2

�
+
1

c

�
�(k � 2

k
)k�2 + (k � F (c)� 1)� (1� F (c))k�2

�
=

1

c
(
k � 2
k
)k�2 +

1

c

�
�(k � 2

k
)k�2 + (kF (c)� 1)� (1� F (c))k�2

�
Thus, in total we have:

B(c)� A(c) =
1

c

�
(k � F (c)� 1)� (1� F (c)k�2

�
when c � F�1

�
2

k

�
B(c)� A(c) =

1

c
(
k � 2
k
)k�2 +

1

c

�
(kF (c)� 1)� (1� F (c))k�2 � (k � 2

k
)k�2

�
when c � F�1

�
2

k

�
Note also at F�1( 2

k
); we have

1

c

�
(kF (c)� 1)� (1� F (c)k�2

�
=

1

c
(
k � 2
k
)k�2 +

1

c

�
(kF (c)� 1)� (1� F (c))k�2 � (k � 2

k
)k�2

�

Here is a graph of our upper and lower bounds- red is the actual values (for upper
bound we have blue and for the lower bound we switch plots from yellow to green at
c = :7):
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Lemma 5 For any distribution F with positive support, we have:
1) A lower bound for B(c)� A(c) is 1

3
�
�
1
c
� 1

c

�
� 1

c
; where c is the lowest cost

type and c the highest
2) A lower bound for the bid of the lowest cost type with equal �rst and second

prizes (i.e., 1
2
(B(c)� A(c))) is 1

2c

We can estimate this with the following lower bound:

B(c)� A(c) = 1

c
(
k � 2
k
)k�2 +

1

c

�
(k � F (c)� 1)� (1� F (c))k�2 � (k � 2

k
)k�2

�

=
1

c
(
k � 2
k
)k�2 +

1

c

�
(�1)� (1)k�2 � (k � 2

k
)k�2

�
=

�
1

c
� 1
c

�
(
k � 2
k
)k�2 � 1

c

As can be readily veri�ed, this increases in k to a �nite value in the limit. Thus
with k = 3 (we assume at least 3 participants), B(c)� A(c) has a minimal lower
bound of

�
1
c
� 1

c

�
� (3�2

3
)3�2 � 1

c
= 1

3
�
�
1
c
� 1

c

�
� 1

c
�B(c)� A(c). That is, recall

also B(c)�A(c) is most negative at B(c)�A(c); thus, 1
3
�
�
1
c
� 1

c

�
� 1

c
is the absolute

lower bound of B(c) � A(c): For example, with c � U(:5; 1); we get B(c)� A(c)=
�7
3
;regardless of the number of participants.
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Now we �nd a lower bound for the lowest cost type�s bid when we have equal �rst
and second prizes (i.e., � = :5) and linear cost functions. Previous analysis shows
a lower bound for 1

2
(A(c) +B(c)) = 1

2c

�
(F (c)� (k � 2) + 1) (1� F (c))k�2

�
: For the

lowest cost type c; this becomes:

1

2c

�
(F (c)� (k � 2) + 1) (1� F (c))k�2

�
=
1

2c

For example, with c � U(:5; 1); we get the lower bound of the lowest cost type�s
bid to be 1

2c
= 1

2
; for any number of contestants : �

Thus, for our �rst portion of our Lemma, we have a found a simple lower bound
on B(c) � A(c); the maximal dis-incentivizing e¤ect of increasing the second prize
for the lowest cost type c; which is again also the most disincentivized type. In
particular, if we shift " of the prize mass from �rst to second prize, the lowest cost
type will reduce e¤ort by no more than

�
1
3
�
�
1
c
� 1

c

�
� 1

c

�
� " (and all other low

cost types c < c�� will reduce e¤ort by a lesser amount).
The second part of the Lemma is simply �nding a lower bound on the bid of the

lowest cost type, regardless of the number of participants. That is, we know the
lowest cost type c will always bid at least 1

2c
:
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