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Abstract

A baseline menu cost model cannot generate substantial monetary nonneutrality

without introducing sources of real rigidity, and there are many potential, e¤ective

sources of real rigidity. I construct a menu cost model that features seasonal �uctu-

ations in a labor market rigidity, which potentially generates more monetary nonneu-

trality than the equivalent model without seasonal �uctuations, a large seasonal cycle

on the order of 7.5% from peak to trough, and a seasonally varying response of the

economy to a monetary shock. Seasonal �uctuations in the economy provide �rms a

moving target for their optimal prices for which the �rms do not fully adjust because

of the menu cost and other sources of real rigidity. Real rigidities force �rms to cluster

their prices closer together, and the seasonally moving target for �rms increases the

penalty for �rms that have prices that di¤er from the aggregate price level, which am-

pli�es the clustering motive. The e¤ect of seasonality also depends on the persistence

of the idiosyncratic �uctuations. As the persistence of idiosyncratic factors increases

and becomes more important for the �rms, the clustering e¤ect of seasonality weakens.

Email address: popp.22@osu.edu. I thank Paul Evans, Aubhik Khan, Julia

Thomas, Joe Kaboski, Fang Zhang, Jing Han, and OSU Macro Lunch participants

for comments and suggestions.

1 Introduction

Economics advances when fundamental assumptions are relaxed. Models with imperfect in-

formation relax the assumption of rational expectations. Time dependent and state depen-

dent prices relax the assumption of perfectly �exible prices. As economists relax fundamental

assumptions, economists either explain phenomena that the earlier lineage of models cannot

or �nd that relaxing restrictive assumptions makes expected, desirable results disappear. In

1Email address: popp.22@osu.edu. I thank Paul Evans, Aubhik Khan, Julia Thomas, Joe Kaboski,
Fang Zhang, Jing Han, and OSU Macro Lunch participants for comments and suggestions.
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this paper, I show that an otherwise standard menu cost model with a seasonally �uctu-

ating labor market friction should generate more monetary nonneutrality in response to a

monetary shock than the same menu cost model without seasonal �uctuations in the labor

market friction. Relaxing the common assumption that seasonal �uctuations do not matter

may help state dependent pricing models generate a large amount of monetary nonneutrality.

A menu cost model must include real rigidities or strategic complementarity in price

setting (Ball and Romer, 1990). Equivalently, �rms must strongly want to have an optimal

price that is near the price of the majority of other �rms in the economy, even with di¤ering

idiosyncratic e¤ects. If the real rigidity is strong enough, few �rms will deviate far from the

aggregate price level. When a monetary shock occurs, the �rms that would want to adjust

are the ones with either a large idiosyncratic shock or the ones that are the furthest from the

center of the distribution of relative prices. If fewer �rms are on the tails of the distribution of

relative prices, fewer �rms will change their prices in response to the shock. While the price

changes of the �rms that adjust will be large, most �rms in the economy will still be near

the aggregate price level before the shock with a strong rigidity. The aggregate price level

responds more sluggishly to the shock, and thus output responds more strongly to the shock.

Seasonality gives �rms an stronger incentive to set their prices near the prices of other �rms.

The �rms�optimal price changes with the seasons, but they will not be able to completely

adjust to the changing seasons. Hence, rather than being near an optimal price when near the

center of the distribution of �rms across states, as in a model without seasonality, �rms are

frequently operating o¤ their target price. If they respond more to exogenous idiosyncratic

or aggregate motives, then they will su¤er greater pro�t losses. Price changes are generally

smaller in the model with seasonality than the model without seasonality, and �rms decide

to keep their prices between the extremes of the seasonal �uctuation in their optimal, costless

adjustment price. Seasonal �uctuations in my model not only generate a seasonal cycle, they

are important for the business cycle as well.

My model shows that a relatively small �uctuation in the real rigidity of the economy

can generate a sizeable seasonal cycle in the economy. Consumption �uctuates by around

7.5% from peak to trough in my baseline speci�cation, which is approximately the size of the

seasonal cycle found by Barsky and Miron (1989). There are several competing explanations

for the existence of the seasonal cycle. Olivei and Tenreyro (2007) point to time varying labor

market �uctuations, such as staggered labor contracts, as an explanation for the seasonally

varying response of the economy to monetary shocks that they �nd. Nakamura and Steinsson

(2008) suggest that seasonal �uctuations in demand could be responsible for the seasonal

�uctuations in the micro price data, but neither study conclusively disproves the other. My

model is more similar to Olivei and Tenreyro�s concept; the source of seasonality in my

model is a generic, time-varying labor market friction. Seasonal demand shocks in the model

could still play an important role in �tting the micro price data about price changes over the
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seasons, but it does not appear to be exclusively vital to obtain sizeable seasonal �uctuations

in the economy.

The response of my model to monetary shocks should be seasonally dependent as well.

Olivei and Tenreyo found that output responds much more to monetary shocks at the begin-

ning of the year than at the end of the year, and my �ndings are qualitatively consistent with

their result. Midrigan (2008) shows that one way to boost the monetary nonneutrality of a

menu cost model is to increase the kurtosis of the distribution of price changes, conditional

on the fact that they actually adjust. Midrigan chooses to use leptokurtotic cost shocks,

which forces �rms to cluster more around the median �rm�s price and produces mostly small

price changes. The kurtosis (raw, not excess) in my model �uctuates by season from a low

of 1.43 to 3.15 from about 1.4 in the model without seasonality. While the overall kurtosis

of the model is still too low to account for the amount of monetary nonneutrality that a

similarly calibrated time-dependent model is able to generate, it is possible to add other

sources of real rigidity to my simple model to boost the monetary nonneutrality produced

in my model to approximately the level produced by a time-dependent model.

A separate, methodological contribution of my paper is how I handle the solution of the

menu cost model. My model is the �rst DSGE model with menu costs, heterogeneous agents,

and seasonal �uctuations. Others have solved models featuring a seasonally �uctuating

economy (see Braun and Evans (1995), Liu (2000), and Olivei and Tenreyro (2007)), but

those models do not feature extensive �rm heterogeneity. To solve for the steady state of a

menu cost model, one must solve for the stationary distribution of the heterogeneous �rms

across states. Ignoring seasonal �uctuations, I solve for the stationary distribution using a

method similar to solving for the stationary distribution of a Markov chain. I then generalize

the method to accommodate the di¤ering pricing rules and distributions of �rms across states

across the seasons. This cycling distribution of �rms across time is termed a cyclostationary

distribution, a concept that has been rarely applied in macroeconomics, and I call my seasonal

equilibrium the cyclostationary equilibrium. The method could be useful to other similar

models. For example, recent models of international trade emphasize that trade is lumpy

at the �rm level is lumpy, and trade for certain goods is seasonal. If demand for certain

goods is seasonal, then the lumpiness could be partially due to seasonality. Kaneda and

Mehrez (1998) argue that seasonal �uctuations are nontrivial when modelling international

trade and that there are large seasonal �uctuations in the trade of some disaggregated goods

and aggregate measures of trade. If �rms and traders are heterogenous, one could apply my

method to help �nd the steady state and cyclostationary distribution of �rms in a seasonally

dependent model of international trade.

Section 1 continues with a review of the related literature. I introduce the model in

Section 2. Section 3, Appendix A, and Appendix B explain the algorithm that I use to solve

the model. Section 4 shows the main results of the model. Section 5 concludes.
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1.1 Literature Review

1.1.1 Other Models with Seasonality

Seasonal �uctuations in the macroeconomy are larger than business cycle �uctuations in the

short run. Barsky and Miron (1989) develop some basic facts about the seasonal cycle of the

economy, which allow them to establish the existence of the seasonal cycle in the economy.

Seasonal �uctuations dominate in the short run in the economy. Regressing on detrended

data, Barsky and Miron �nd that output on average �uctuates by about 8% over the course

of the year from the peak in the 4th quarter of the year to the trough in the �rst half of

the year. The price level moves in the opposite direction as output, but the �uctuations in

the overall price level are much smaller, on the order of less than half of a percent. Also,

the seasonal cycle and the business cycle share qualitative characteristics, which may imply

that the �uctuations have some common causes. Their results are empirical, and economic

models that incorporate seasonality are left for future research.

Braun and Evans (1995) construct a DSGE real business cycle model with seasonal

�uctuations in preferences, technology, and government purchases to attempt to explain the

seasonal cycle as laid out by Barsky and Miron. To explain the size of the seasonal cycle,

their model requires technology to rise at a 24% annual rate in the fourth quarter of the

year and to fall at a 28% annual rate in the �rst quarter of the year, which they consider

evidence that the typical production technology in RBC models is misspeci�ed.

While Braun and Evans (1995) create a model that can explain seasonal �uctuations in

real variables, it could not explain �uctuations in nominal variables. Liu (2000) creates a

two sector monetary model with seasonal �uctuations to determine whether and how the

Federal Reserve should respond to the �uctuations in the seasonal cycle versus the business

cycle. Historically, the Federal Reserve smoothed nominal interest rates over the seasonal

cycle but not the business cycle. The real-bills doctrine suggests that a central bank should

smooth �uctuations in nominal interest rates over both cycles while the quantity theory of

money suggests that a central bank should smooth �uctuations in the money supply over

the cycles. Liu �nds, comparing the historical policy, the real-bills policy, and the quantity-

theory of money policy, that the historical policy is closest to the optimal policy prescribed by

Friedman�s Rule. Notably, his model is the �rst to combine both business cycle �uctuations

and seasonal �uctuations in the model economy.

Olivei and Tenreyro (2007) also combine business cycle and seasonal �uctuations in a

DSGE model to explain apparent seasonal �uctuations in the response of the economy to

monetary shocks. Using a seasonal VAR, they show that the response of output to monetary

policy shocks varies depending on the quarter in which the shock occurs. In the �rst half of

the year, prices respond little initially and output responds quickly to a monetary shock. In

the second half of the year, prices respond quickly to the shock, and output does not respond
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much at all. Olivei and Tenreyro suggest that seasonally varying labor market frictions are

the source of the seasonal �uctuations in the response of the economy to monetary shocks.

They �nd evidence that wage contracts are typically signed in the later half of the year,

especially during the fourth quarter. If a monetary shock occurs in the latter half of the

year, then the �rms can price the shock into their wages. Wages respond quickly to the

shock, and thus most �rms�marginal costs respond quickly to the shock. Prices respond

quickly to the shock, which limits the real e¤ects of the shock. In the beginning the year,

many �rms will have just renegotiated their wages, so marginal costs are roughly constant

for those �rms. If the monetary shock occurs in the beginning of the year, �rms are less

willing to respond to the shock since their marginal costs respond sluggishly. They are more

willing to change their production than prices, so output responds quickly and robustly to

the shock. They create a model of staggered wage contracts in which �rms face Calvo timing

in wage setting. Every period, �rms have a seasonally dependent probability of being able

to negotiate their wages. They set the probabilities of adjustment so that �rms are much

more likely to renegotiate their wages at the end of the year. Their model �ts the general

pattern that they observe in the VAR analysis.

While seasonality in economics is the subject of a large literature, there are few empirical

applications of cyclostationarity in economics, and what applications there are tend to be

for time series analysis of macroeconomic or �nancial data. Broszkiewicz-Suwaj et al (2004)

apply cyclostationarity to �nancial data to �nd correlation in �nancial data. Franses (1996,

2004) and Pargano and Parzan (1979) look at the concept of cyclostationarity in time series

data and various time series models. Leskow (2001) applies an econometric test featuring

cyclostationarity to asset volatility data as an alternative to the ARCH and GARCH ap-

proaches to modelling the variance of asset returns. Serpedin et al (2005) is an extensive

bibliography on cyclostationarity across disciplines and a good reference for other uses of

cyclostationarity.

1.1.2 Menu Cost Models

State-dependent pricing models allow economists to evaluate the assumptions underlying

time-dependent models, and they allow economists to better model �rm behavior based on

the ability to �t the micro data on prices. Menu cost models are a subset of state-dependent

pricing models in which �rms must pay a �xed cost to change their prices. Some econo-

mists do not think that menu cost models can generate su¢ cient monetary nonneutrality

in response to a monetary shock to be useful. These nonneutrality results, including Caplin

and Spulber (1987) and Golosov and Lucas (2006), challenge the view that small nomi-

nal rigidities could be realistically ampli�ed to explain large monetary nonneutrality in the

macroeconomy. If money is neutral in a menu cost model, then either something funda-

mental about the model is misspeci�ed or the underlying assumptions about �rms�price

5



changes in time-dependent pricing models are incorrect. If the latter is true, then the result

challenges the validity of a large literature of work that builds upon models that assume

time-dependent pricing. On the other hand, others �nd that there are mechanisms by which

small menu costs have substantial real e¤ects, and these models can also �t what econo-

mists know about �rms�pricing motives. It is possible to develop these models further as a

potential replacement for time-dependent models.

Mehrez (1998) explores the implications of the menu cost mechanism in an economy

with seasonal �uctuations and hence is the paper most similar in spirit to my paper. Mehrez

explores the adjustment incentives of �rms, without the now typical DSGE framework, by

assuming that �rms desire to maximize the �ow of pro�ts with a simple penalty from devi-

ating much from a seasonally varying target price. His framework is a su¢ cient framework

to analyze �rms�adjustment incentives, but it is not su¢ cient to pin down the aggregate

implications of seasonality. He �nds that the observed seasonal �uctuations in the econ-

omy are less than the true seasonal �uctuations, because �rms cannot adjust completely to

the seasonal �uctuations. Also, as in�ation rises in his economy, the amplitude of seasonal

�uctuations rises as well. Both theoretical results will occur in my model as well. Match-

ing Israeli price data from the 1980s, he �nds that the adjustment behavior of the �rms is

roughly consistent with his model of menu costs coupled with seasonal �uctuations in the

�rms�desired price.

Caplin and Spulber (1987) create a menu cost model in which money is completely

neutral. While �rms face a nontrivial menu cost, �rms are distributed uniformly across

prices by assumption. To generate monetary nonneutrality, the distribution of �rms across

relative prices must change in response to a shock. If the distribution of �rms across relative

prices does not change, then the only reaction of �rms to the shock will be for the �rms

with the lowest relative prices to have large nominal price changes. The distribution of �rms

across nominal prices would simply shift upwards by the amount of the monetary shock,

and aggregate prices would fully accommodate the shock. Individual �rms will not fully and

immediately adjust to the shock, but the �rms that do adjust will adjust enough to force

monetary neutrality.

Dotsey, King, and Wolman (1999) create a menu cost model in which �rms are subject

to a random menu cost, which creates heterogeneity in the �rm�s price adjustment deci-

sion. The technical problems of the model increase with this assumption since the steady

state distribution of the �rms across prices is unknown initially. The problem is tractable,

however, and they �nd that the model produces signi�cant monetary nonneutrality. Their

nonstandard distribution of the menu cost shocks drives their results.

Golosov and Lucas (2006) create a continuous time menu cost model that builds upon the

previous menu cost literature by matching the price change moments implied by the model

to micro data. Speci�cally, Golosov and Lucas match the mean and variance of nonsale price
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changes and in�ation from Klenow and Kryvstov (2008). Previous models did not match

the micro data about prices explicitly. In Dotsey, King, and Wolman (1999), all �rms adjust

their prices to a common price since the random component of the model is the menu cost,

which does not a¤ect the optimal chosen price of the �rm. In Golosov and Lucas, �rms

face an idiosyncratic productivity shock that a¤ects whether and how the �rms adjust their

prices, which allows them to match the micro data on prices. With a model that matches

the micro facts about price changes, they then evaluate how a monetary shock a¤ects the

path of output and prices in the model and compare the model to a baseline Calvo model.

They �nd that the model produces little monetary nonneutrality as a result of the monetary

shock, consistent with the �ndings of Caplin and Spulber, which is not surprising since the

only di¤erence between Golosov and Lucas�problem and Caplin and Spulber�s problem, to

a log linear approximation, is the existence of idiosyncratic shocks.

Midrigan (2009) views the Golosov and Lucas and Caplin and Spulber nonneutrality re-

sult as a problem of the underlying assumption that the idiosyncratic shocks are normally

distributed, the e¤ect of which he calls the selection e¤ect. The selection e¤ect occurs when

the �rms that change their prices after a monetary shock are the �rms that have large price

changes. One way to minimize the selection e¤ect is to minimize the number of �rms that

have large price changes by forcing as many �rms as possible to have small price changes.

Since large idiosyncratic shocks give �rms an incentive to change their prices by a large

amount, one way to mitigate the selection e¤ect is to choose an idiosyncratic distribution

for the shock that groups most �rms around the mean shock value. A leptokurtotic distri-

bution of �rms across prices, one in which the tails of the distribution are fat but a large

mass of �rms is clustered near the mean of the distribution, gives the desired grouping of

�rms around the median price. Midrigan successfully applies a leptokurtotic distribution

of cost shocks to create a menu cost model that can generate substantial real rigidity in

response to a monetary shock. The consequence of the leptokurtotic distribution of shocks

is a leptokurtotic distribution of desired and actual price changes, which Midrigan �nds is

consistent with �rm level scanner data.

Another contribution of Midrigan (2009) is a method by which to account for small price

changes in the data. Midrigan introduces economies of scope in price setting in �rms. Firms

produce two related goods, and when the �rm chooses to change the price of one of its

goods, it gets to change the other price for free. Since the �rms cluster around the median

price and the �rms will most often change the price of one of its goods when it receives a

large idiosyncratic shock in that good, the free price change for the other good is often quite

small. Combined with the leptokurtotic shocks, Midrigan�s model is able to account for 80%

as much monetary nonneutrality as a time dependent model and account for most of the

micro facts about price changes in his data.

Nakamura and Steinsson (2009) create the Calvo-Plus model, a hybrid state and time
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dependent pricing model, to �t both the micro data and provide an alternative solution to

the neutrality result of Golosov and Lucas. The model is a hybrid in the sense that �rms

face a certain probability of having the either a high or nearly zero menu cost, which is a

state dependent pricing mechanism that has elements of (time dependent) Calvo timing. By

introducing sector heterogeneity and intermediate inputs into the model, they are able to

generate roughly nine times the amount of monetary nonneutrality as a baseline menu cost

model. The intuition behind the importance of sector heterogeneity in the model is the idea

that the �rst price change by a �rm after a monetary shock contributes the most towards the

economy�s adjustment to a shock. The second time a �rm adjusts its price after a monetary

shock, it contributes little to the adjustment, because it has already priced in most of the

shock. They �nd evidence that the frequency and size of price changes varies by sector in

micro level pricing data. If a signi�cant number of price changes occur within relatively few

�rms in the economy, then the �rms that frequently change their prices will account for many

of the price changes but contribute little to the monetary neutrality of the model. Firms

that are in sectors in which prices change infrequently will contribute few price changes, and

they will change their prices more sluggishly to the monetary shock but account for much of

the monetary nonneutrality of the model. Overall, �rms tend to change their prices less in

response to exogenous aggregate shocks, which boosts the monetary nonneutrality produced

by the model. Forcing some �rms in the model to account for a large number of price changes

triples the monetary nonneutrality produced by their standard menu cost model.

Intermediate inputs are particularly important for my paper as it is one possible labor

market friction that can justify my generic source of real rigidity. The intermediate inputs

mechanism of Nakamura and Steinsson is based on the roundabout production method of

Basu (1995) where all goods are �nal goods and inputs for all other goods in the market.

A larger share of intermediate inputs in production slows down the rate at which �rms

change their prices since �rms�marginal costs respond more sluggishly to a monetary shock.

Firms do not respond to the monetary shock per se; they respond to the changes in their

marginal costs. In a standard menu cost model, aggregate wages will respond immediately

and completely in response to a shock, which means that �rms have a more immediate

incentive to change their prices. With intermediate inputs, wages depend on the other �rms�

chosen prices, because the prices of �rms are essentially the marginal costs of �rms. The

more incomplete the adjustment of marginal costs to a monetary shock, the more likely �rms

will not respond to the shock, and even if they adjust, adjustment will be incomplete. Hence,

monetary nonneutrality increases signi�cantly with intermediate inputs in the model.

Burstein and Hellwig (2007) investigate the size and importance of aggregate and �rm

level sources of real rigidity in a standard menu cost model. The aggregate real rigidity in

their model takes the form of a generic labor market friction. Essentially, the wage that

�rms face in the model is the geometric weighted average of the money supply, which is
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the monetary shock and thus adjusts immediately to a monetary shock, and the price level,

which responds sluggishly. The aggregate real rigidity is controlled by the weighted average

parameter; as more weight is put on the price level, the slower �rms will respond (in terms

of changing their prices) to the monetary shock so long as other �rms have an incentive to

respond sluggishly to the shock as well. The decreasing returns to scale production function

in labor is the �rm level rigidity in the model. Burstein and Hellwig �nd that the �rm level

rigidity cannot generate much monetary nonneutrality with reasonable implications on the

micro facts about prices. Basically, as decreasing returns to scale become stronger, �rms

cannot adjust by changing their production as much in response to a monetary shock, so

they will be more likely to change their prices. This additional desire to change prices limits

the additional rigidity that the model can produce. The bulk of the monetary nonneutrality

produced by the model is from the aggregate real rigidity, which is consistent with the

�ndings of Nakamura and Steinsson.

Gorodnichenko (2009) develops a menu cost model with imperfect information about a

nominal demand shock but perfect information about the aggregate price level. Firms must

choose whether or not to change their prices and whether or not to purchase a better signal

about the nominal demand shock. Firms are hesitant to change their prices in response to

a monetary shock because their price change contains their information about the demand

shock and the state of the economy. The aggregate price level acts as a public signal about

the state of the shock, and when enough �rms change their prices, enough information is

released about the shocks into the public signal to reach a tipping point, and many more �rms

change their prices. The hesitation on the part of �rms to change their prices in response

to any shock provides a novel source of real rigidity. Gorodnichenko�s model, while highly

stylized, can generate not only a large amount of monetary nonneutrality in response to a

monetary shock, but a delayed and smoothed hump-shaped response of prices (and thus a

hump-shaped response of output) as well.

Kehoe and Midrigan (2008) create a menu cost model in which �rms can elect to make

not only a typical, permanent price change but a temporary price change as well. The

temporary price change accommodates sales and other markdowns, and can be thought of

as a price rental. Firms have both a regular price and a desired sales price. If the �rm wants

to change its regular price, it must pay the full menu cost, but it maintains that new price

permanently. If the �rm instead wants to use a sales price, then it will "rent" as price change

at a lower cost than a regular price change. It will change its price for a period, and the

price will revert to its regular price in the next period. Their model is able to account for a

reasonably large amount of monetary nonneutrality. They also show that models calibrated

to micro data without sales overstate the response of the economy to the shocks, and models

calibrated to price data with sales cannot account for much monetary nonneutrality. Instead,

a reasonable, imperfect compromise for a menu cost model without temporary price changes
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is to try to match the percentage of time prices are at their annual mode.

1.1.3 Studies of Price Setting and Seasonality in Price Setting

Seasonality in price setting has been of interest to economists for some time, and there

has been a debate about the motives that �rms have to adjust their prices. Most papers

that look at the micro price data tend to look at price changes in the aggregate rather

than season by season, because most practical uses for this data require seasonally adjusted

data. Researchers in this literature also tend to remove sales from the data using various

algorithms to smooth from the data what they think is unimportant noise for models that

focus on sources of aggregate �uctuations. Also, the frequency of price changes, especially

sales, in high frequency data would imply that prices change very frequently in menu cost

models, which are typically speci�ed as either monthly or quarterly models. In the menu

cost literature, other than Kehoe and Midrigan (2008), the models do not have a way to

accommodate sales, and my model is the �rst DSGE models to accommodate explicitly

seasonal price changes. I will eventually need to expand upon the literature presented below,

especially the work of Nakamura and Steinsson (2008), to �nd additional facts about the

seasonal aspect of price changes.

Bils and Klenow (2004) examine BLS data used to compute the CPI to �nd some basic

facts about micro price changes. The BLS collects monthly data for 70,000-80,000 goods

from 22,000 stores in 88 geographic regions across the United States. Bils and Klenow �nd

considerable heterogeneity in price changes across goods, which implies that standard time

dependent sticky price models do not do a good job modeling prices at the good level,

particularly for goods that have less frequent price changes. Also, they �nd that the average

time per price change is quite low; for half of the goods in the sample, the average duration

of a price is less than 5.5 months. The median duration of nonsale price changes is about

4.3 months. They do not mention much about seasonality in price changes in their paper

other to say that seasonally adjusted in�ation features the lowest persistence and highest

volatility, so only seasonal sales would not explain their �ndings.

Klenow and Kryvtsov (2008) �nd similar facts as Bils and Klenow in the same data.

With sales, prices change on average every four months in the median category, and without

sales, prices in the median category change on average every seven months. Price changes

are typically large in absolute terms, about 10%, but there are many small price changes on

the order of 5% or less. They also �nd that variance of aggregate in�ation is mostly from

changes in the intensive margin (the size) of price changes, rather than the extensive margin

(the fraction of items) of price changes. They �nd that the 2004 vintage (and previous)

of state dependent and time dependent models have a di¢ cult time �tting all of the facts

that they have at the same time. The Golosov and Lucas model does not generate enough

small price changes, and the model of Dotsey, King, and Wolman does not generate enough
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large price changes. Time dependent models predict that older prices will feature larger

changes when they do change, and they suggest an incorrect hazard of price changes. They

do acknowledge that some of the newer models, such as Midrigan�s model, can generate

reasonable price changes, however.

Nakamura and Steinsson (2008) work with the same data as Bils and Klenow and Klenow

and Kryvtsov and establish what they term are the �ve facts about prices. Notably for my

model, the fourth fact is that price changes are highly seasonal. In particular, they found

a monotonically decreasing trend of price changes over the four quarters of the year, after

removing sales from the data. Within a quarter, the frequency of price adjustment decreases

monotonically as well. They do not provide information about the size of price changes

over di¤erent seasons, however. Disaggregating the price adjustments into price increases

and price decreases, they �nd that the frequency of price decreases stays steady throughout

the year while the frequency of price increases tends to fall monotonically through the year.

Also, the hazard of price adjustment for some goods, which gives the probability that a �rm

will adjust its price given the length of time since its last price change, has a spike for some

goods at 12 months, which implies that some prices change annually.

They also �nd other facts that are important for calibrating a menu cost model. The

median frequency of non-sale price changes is about 9%-12% a month, half of what it is

leaving in sales. Sales comprise a large percentage of price changes. Also, not all price

changes, excluding sales, are price decreases. About one third of nonsale price changes are

price decreases. Finally, the slope of the hazard function for individual prices tends to be

downward sloping, which means that �rms are more likely to adjust in consecutive periods

than in any other pair of periods.

Looking at scanner data from Dominick�s, a grocery store, in the Chicago area, Kehoe and

Midrigan (2008) �nd that the price changes in that data, including sales, di¤er considerably

from the BLS data that Bils and Klenow and Nakamura and Steinsson use. First, they �nd

that prices change rapidly. In their sample, about 1/3 of prices change every week. While the

size of relative price changes is high but volatile, �rms spend most of the year (about 60%)

at the mode, or regular, price. If a product deviates from its regular price, it is typically for a

sale; 30% of the time, a good�s price is below its regular price. Hence, sales account for most

(83%) price changes in their data, and sales are highly transient; a product�s price returns

to its regular price the next week with about a 50% chance when the product is currently

on sale.

One of the key pieces of the puzzle of creating a menu cost model with seasonality is to

�t the high monetary nonneutrality, the high frequency of price changes in the �rst quarter

of the year, and the tendency for seasonal sales to occur in some goods in the fourth quarter

of the year (which also produces a slight decline in the CPI as documented by Barsky and

Miron (1989)). If seasonality is indeed a motive for �rms to adjust their prices, it would
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have to give �rms a strong motive to change prices in the �rst quarter of the year, and the

price changes in the fourth quarter of the year would have to be disproportionately price

decreases. Seasonally varying demand shocks could be a culprit, or some other aggregate

shock that boosts demand in the second half of the year could cause the �uctuations as well.

But why do �rms want to lower prices in periods in which demand for their goods is high?

There are several competing theories.

Warner and Barsky (1995) evaluate the statistical properties of daily pricing data for

eight goods from di¤erent stores around Ann Arbor, Michigan between November 1987 and

February 1988. Their theory about why prices decrease when demand for the good is high

has to do with economies of scale in search. For consumers, the cost of researching goods and

travelling between sites is roughly a �xed cost, so when demand is high, consumers optimally

search and travel more. Hence, consumers are more sensitive to prices during periods of high

demand; they �nd and purchase goods at lower prices, which lowers the average price for

the good.

Chevalier, Kashyap, and Rossi (2003) provide evidence that �rms lower prices on certain

goods in periods of peak seasonal demand to attract customers into their stores. They

provide support for the loss leader model of price setting and advertising, formalized by

Lal and Matutes (1994), in which the �rms�optimal pricing decision is to lower prices on

goods that are in the most demand. Consumers do not know all of the prices at a store

before they travel there, but they do know the prices of goods that the �rms�advertise.

The �rms then compete on the basis of a subset of advertised goods, in particular, goods

for which there is a high demand. While �rms do not earn high margins on the advertised

goods in high demand, �rms make up for the losses by charging relatively high prices on

unadvertised goods. Consumers acquiesce to the high prices because of the inconvenience and

uncertainty of travelling to a di¤erent store. The loss leader theory does not rely on aggregate

demand �uctuations to generate sales; rather, idiosyncratic demand �uctuations for goods are

su¢ cient to generate sales in that good. Chevalier, Kashyap, and Rossi document that prices

for certain goods that face idiosyncratic seasonal demand shocks, such as tuna during Lent,

decrease during the periods of higher demand. Prices decrease for other goods during periods

of high aggregate demand as well, such as beer, cheese, soup, and crackers at Christmas, but

the loss leader theory produces seasonal �uctuations regardless of their source.

Nevo and Hatzitaskos (2006) provide an alternative theory of seasonal price �uctuations

that can account for sales during holidays and other periods of high demand. During peak

periods of seasonal demand, regardless of whether it is an idiosyncratic or aggregate �uc-

tuation, more consumers enter the market for certain goods. These consumers may di¤er

from the consumers who typically purchase the good, and they may be more sensitive to the

price of a good. For example, during Lent, the additional consumers who buy tuna may not

care as much about the quality of tuna purchased as tuna connoisseurs who purchase tuna
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throughout the year. Thus, the new entrants would tend to purchase cheaper tuna than the

regular tuna purchasers. Alternatively, during holidays, people would tend to enjoy beer at

parties or other events, boosting the demand for beer. As Nevo and Hatzitaskos put it (p.

2-3), �after a few beers, it is hard to distinguish between di¤erent brands,�so consumers of

beer may decide to buy cheaper varieties of beer. As the frugal consumers enter the mar-

ket, the average price of beer sold in the market may decline regardless of any sales in the

market. Even if there are sales, they may not account for as much of the decline in average

prices as the product substitution in markets. Nevo and Hatzitaskos reestimate the results

of Chevalier, Kashyap, and Rossi using �xed weights price indices for the goods, which a

change in the market share of brands will not a¤ect. They �nd that the seasonal �uctua-

tions in prices resulting from sales rather than substitutions are much less than implied by

Chevalier, Kashyap, and Rossi. Also, for tuna speci�cally, demand for higher quality white

tuna does not increase much during Lent; the additional demand for tuna is predominantly

for the cheaper, light tuna, and the prices of the two varieties of tuna that gain the most

market share do not decrease. Both of these facts are inconsistent with the loss leader model

and are consistent with the idea that product substitutions account for a signi�cant portion

of �uctuations in prices.

The loss leader theory and the substitution theory can account for seasonality in prices

from both idiosyncratic and aggregate demand sources, but the search theory and the coun-

tercyclical markup theory can only account for seasonality in prices from �uctuations in

aggregate demand. Hence, an important issue is the primary source of seasonality in prices.

If idiosyncratic sources of seasonality only a¤ect a small subset of goods, then the debate in

the theory is not necessarily particularly important for the menu cost literature. Aggregate

demand �uctuations would su¢ ciently account for the seasonality motive in price setting

for �rms. Bryan and Cecchetti (1995) examine seasonality in CPI components from 1982 to

1993 and �nd that seasonality from idiosyncratic sources dominates seasonality from a com-

mon aggregate source. They perform a linear decomposition of individual price movements

into an average seasonally adjusted price movement, an average aggregate seasonal price

movement, an idiosyncratic seasonal price movement, and measurement error. The ratio

of the idiosyncratic seasonal variance to the aggregate seasonal variance across the goods

provides some insight about the relative importance of the two sources of �uctuations. They

�nd that only two out of the thirty-six goods in their sample, auto repair and food away

from home, have a variance ratio of less than one, which implies that few goods have small

idiosyncratic contributions to overall seasonal price �uctuations. Furthermore, several goods

feature extremely large variance contributions from the idiosyncratic seasonal component.

The variance ratio for motor fuel, fruits, gas and electricity, fuel oil, and women�s apparel

all exceed 100. Their analysis ignores the fact that the elasticity of demand and supply

for goods is not necessarily the same, however, which could understate the importance of
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aggregate price changes on goods with a high elasticity of demand or inelasticity of supply.

Another fact that they point out is that the source of seasonal �uctuations in the CPI goods

does not necessarily come from a single source. Regressing the prices of goods on determin-

istic seasonal trends, they �nd that the months in which seasonality in price setting appears

varies between the goods and may identify the source of the price �uctuations. For example,

cereal and fruit prices tend to decline in autumn when supply is abundant, but they tend

to increase in January when fresh supply is scarce. Public transportation, natural gas, and

electricity prices have on average large January price increases, which could be an e¤ect of

regulation. Fluctuations from demand may not be the only reason for �uctuations in prices.

2 Model

A continuum of �rms, indexed by i on [0; 1], hire labor from households to produce goods in

a monopolistically competitive market. The production function is constant returns to scale

in labor:

ct(i) = at(i)lt(i)

Firms operate along their demand curves, so consumption of good i, ct(i), is equal to produc-

tion. Firm i hires labor, lt(i), and faces a productivity shock at(i) that takes the following

form:

log at(i) = �a log at�1(i) + #t

The innovation #t is iid normally distributed with mean 0 and variance �2a. The �rms current

period nominal pro�t is then:

�(p) = pt(i)ct(i)� wtlt(i)

Consumers in the economy gain utility from consumption and leisure. They provide labor

lt to the �rms at a nominal wage Wt and earn dividends from equal ownership shares of the

�rms in the economy. Since consumers are identical in the economy, the consumers�problem

is summarized by a representative consumer�s problem. The representative consumer seeks

to maximize the lifetime discounted sum of utility de�ned over the aggregated consumption

good and labor. The consumer�s problem is:

maxEt

1X
t=0

�tU(Ct; lt)

subject to
1Z
0

pt(i)ct(i)di�Wtlt + �t
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The aggregate consumption good is Ct, the aggregate price level is Pt, the nominal wage is

Wt, the share of pro�ts that the �rm receives from ownership of the �rms is �t, and the labor

supply of the worker is lt. Aggregate consumption and the aggregate price level come from

the standard CES aggregators:

Pt=

24 1Z
0

pt(i)
1��di

35
1
1��

Ct=

24 1Z
0

ct(i)
��1
� di

35
�

��1

The consumer discounts the future at a rate of �. Utility in the model will be time separable

and separable in the consumption good as follows:

U(Ct; lt) =
C
s
t

s
� �lt

The labor-leisure condition from the �rm�s problem is:

wt = �C
1�s
t (1)

Note that wt is the real wage rate, de�ned as the nominal wage over the aggregate price

level. Consumer demand is determined by the cost minimization motive of the consumer

across all consumption bundles:

min

1Z
0

pt(i)ct(i)di

subject to

U�� C
s
t

s
� �lt

Consumer demand is then simply:

ct(i)

Ct
=

�
pt(i)

Pt

���
The representative consumer�s demand for good i is ct(i), and the price of good i at time

t is pt(i). Note that the form for consumer demand is independent of the curvature of the

utility function for the simple power/logarithmic forms of utility, so the curvature of the

utility function only a¤ects the representative consumer�s labor-leisure condition.
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I introduce money by letting it equal nominal demand.

Mt = PtCt (2)

E¤ectively, money in the model is the sum of labor income and pro�ts of the �rm as suggested

by the binding budget constraint of the consumers. Money grows exogenously in the model

following the process:

Mt = �tMt�1

The money growth rate follows the exogenous stochastic process:

log(�t) = ��+ �u log(�t�1) + �t

Here, �t is a monetary disturbance.

The model presented here is similar to the other models in the literature, most notably

Burstein and Hellwig (2007). Relative to Burstein and Hellwig, I omit the demand shock and

the decreasing returns to scale production function, and I explicitly derive the representative

consumer�s problem. Recall from the representative consumer�s labor-leisure condition (1)

that the real wage is related to aggregate consumption, the disutility of labor, and the

curvature of the utility function. Substituting out Ct from (1) using (2):

wt=�

�
Mt

Pt

�1�s
Wt=�M

1�s
t P

s
t

Let � = 1, and thus:

Wt =M
1�s
t P

s
t (3)

The model, with the restriction that 0 � s < 1, implies that the nominal wage is the

geometric average of the money stock and the aggregate price level, which is a fundamental

assumption in Burstein and Hellwig (2007). They assume this form for the law of motion

for the nominal wage noting that it can be derived a result of increased curvature in the

utility function relative to the standard logarithmic preferences or the result of including

intermediate inputs into the model. Further, it would be di¢ cult to argue that the curvature

of the utility function is quarterly dependent for the representative consumer in the economy.

The representative consumer�s problem here is thus more pragmatic than realistic.

The �rm�s intertemporal problem is to maximize its lifetime discounted sum of normalized

pro�ts. No analytical solution for this problem exists because of the menu cost, denoted �.
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The system of functional equations that de�ne the steady state of the model is:

Va(e
�(i); s)=max

~p�(i)

�
�
�
~p�(i); e�(i); s

�
+ �̂

Z 1

0

V

�
~p�(i)

e�
; e�(i)0; s0

�
dF (�; �)

�
(4)

Vn(~p�1(i); e
�(i); s)= �(~p�1(i); e

�(i); s) + �̂

Z 1

0

V

�
~p�1(i)

e�
; e�(i)0; s

0
�
dF (�; �) (5)

V
�
~p�1(i); e

�(i); s
�
=max

�
Va
�
e�(i); s

�
� ~w�; Vn

�
~p�1(i); e

�(i); s
��

(6)

The �rm�s stochastic discount factor is �̂. The signi�cance of s becomes clear once the

adjustment cost is omitted. The �rst order condition of that problem implies:

log (~p�(i)) = log

�
�

�� 1

�
+ s log

�
~P
�
� log (a(i)) (7)

Since the prices are normalized, the money supply does not enter directly into (7). Note that

as s increases, the �rm is more pressed to keep its price close to the prices of other �rms (the

aggregate price level). Firms will be hesitant to make the sorts of price adjustments necessary

to generate quick adjustment of prices to the monetary shock. Prices will adjust less quickly

to the monetary shocks in the economy. Furthermore, the size of price adjustment should

be lower on average since the �rm will also want to keep its relative price low. Therefore, s
is the main source of real rigidity in the economy.

2.1 Planner Equilibrium

First, I seek the steady state equilibrium of the economy, which simpli�es to �nding the

steady state of the equivalent planner economy of the model. The planner economy is the

economy in which there is no aggregate uncertainty from monetary shocks, and thus the

money supply growth rate is exogenous and known. Hence, the persistence of the money

supply does not matter, and thus log(�t) = ��. A more detailed summary of my solution

method is in Appendix A and Appendix B, but a summary of the equilibrium is below.

The steady state of the model with seasonality, which I will call the cyclostationary

equilibrium, is a generalization of the steady state of the model without seasonality. The

crux of the model without seasonality is the steady state normalized wage, which satis�es

(3). The normalized wage implies pricing rules for the �rms for each possible state after

substituting the wage into (4), (5), and (6) and noting that q = q0. These pricing rules imply

a stationary distribution of �rms across the states in the economy. The pricing decision rules

and the distribution of �rms across prices determine the normalized price level through the

standard CES price aggregator, which needs to be consistent with (3). Note that to �nd the

aggregate consumption in the economy, I use (2).

The cyclostationary equilibrium is de�ned by the distribution of �rms across prices and

the normalized wages for each season within the cycle. The stationary distribution of �rms
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in the nonseasonal case is no longer technically stationary since it is not the same every

period. Rather, it also must be cyclostationary; the distribution of �rms across states must

be the same every s periods. Also, the pricing rules and the value functions for every season

in the cycle now enter into the other seasons�problems. To determine the distribution of

�rms across prices for the same season in the next cycle, the �rms in the current season must

progress through every other seasons�pricing rules. The expected value function for the

next season explicitly enters into the current season�s problem. Other than those technical

complications, equilibrium is basically the same as in the case without seasonality. The crux

is the set of steady state normalized wages, which imply the pricing rules with (4), (5), and

(6) for each period. Equation (2) still provides aggregate consumption. The cyclostationary

distribution is still a consequence of the pricing rules.

2.2 Parameterization

The model parameters that I do not calibrate are largely from Burstein and Hellwig (2007).

Since the models are very similar, the parameters that best �t Burstein and Hellwig�s model

without the demand shock should provide a good �rst approximation of the parameters

necessary for my model to �t the data.

Table 1: Baseline Parameterization
Parameter Use Value

� elasticity of substitution 4

� discount factor 0:935
1
12

�u persistence of money shock 0

� money growth rate log(1:021
1
12 )

� menu cost* 0:0047322

s wage rigidity* 0:81786

�a persistence of technology shock* 0:38355

�a standard deviation of technology shock* 0:074838

*: calibrated

In a baseline case without seasonality, I calibrate �a, s, �, and �a by minimizing, us-

ing a Nelder-Mead algorithm, the sum of weighted squared deviations of the nonseasonal

model�s moments away from moments obtained from the Dominick�s scanner price data set

by Midrigan (2009). I choose to match the mean price change (0.1%), the mean absolute

price change (12%), the standard deviation of the absolute value of price changes (0.09),

and the frequency of price changes (24%). The nonseasonal model�s �t to the data is not

spectacular; the mean absolute price change is too high (16%), the mean price change is

too high (0.7%); the standard deviation of the absolute value of the price changes is too
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low (0.05); and the frequency of price changes is too high (27%). Menu cost models have

di¢ culty matching the standard deviation of the absolute value of price changes because

they lack small price changes, and the other moments are within a couple of percent of the

desired �t, which should be good enough for an initial �t.

In the seasonal case, I use the same parameters as the �t above, subject to the seasonal

�uctuation discussed below. Surprisingly, the moments averaged across seasons in the sea-

sonal model �t the desired moments better than the nonseasonal model, particularly for the

mean absolute price change (14%).

The baseline calibrated parameters are quite consistent with the existing literature. The

key parameters in the model are s and �a because they will control the magnitude of the

response to seasonal �uctuations. The calibrated value for s �ts nicely into the existing

literature about labor market rigidities. Burstein and Hellwig (2007) estimate a value for

a �rm speci�c rigidity and an aggregate (labor market) rigidity. The true real rigidity of

the model is a function of both parameters. Their estimates of the true real rigidity and

the aggregate real rigidity are between 0.75 and 0.85. Nakamura and Steinsson�s (2008)

materials share of intermediate inputs is similar to the real rigidity in this model. They

chose a materials share of 0.7. Rotemburg and Woodford (1997) estimate a �rm speci�c

rigidity and an aggregate rigidity of around 0.8. My calibrated technology shock persistence

is slightly lower than what other authors �nd but is still reasonable. For example, Burstein

and Hellwig assume a persistence of 0.5, Midrigan �nds a persistence of 0.483 by calibrating

his model to similar moments, and Nakamura and Steinsson choose a persistence of 0.7.

The second problem is to choose the spread between the highest s and the lowest s,

which will determine the amplitude of the seasonal cycle. Barsky and Miron (1989) �nd an

approximately 8% �uctuation trough to peak in detrended GDP from 1948 to 1985 with the

peak of the consumption in the fourth quarter of the year. Table 2 summarizes their results.

Table 2: Seasonal Patterns 1948-85
Abridged Table 2 from Barsky and Miron (1989)

(Percent Deviations from Trend)

Quarter

Variable 1 2 3 4

GDP -3.76 -0.02 -0.53 4.31

Price Level -0.15 -0.01 0.16 0

Nominal Wage -0.01 -0.09 0.01 0.1

Real Wage 0.13 -0.17 -.013 0.17

Their regression results and the theoretical results of Mehrez (1998) imply that a fairly large
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spread in s will be necessary to account for the seasonal cycle, but I �nd that a relatively

small �uctuation in the nominal value of the parameter su¢ ciently generates a large seasonal

�uctuation in real variables. I choose values for the maximum and minimum of s within

0.0075 of the of baseline, because if the gap between the pricing decisions of the model is too

large, too many �rms will change their prices in the transition period between the extreme

values of s. For example, all �rms adjust in every period if the di¤erence between s each

period is 0.2 or more. I choose lower values of s at the end of the year, consistent with

both the idea that there is a boom in the later half of the year in the typical seasonal cycle

and Olivei and Tenreyro (2007), whose staggered wage adjustment mechanism implies more

rigidity at the beginning of the year. For simplicity, I assign each s in my twelve month

model using s = 0:0075: � sin
�
2�(s�2)
12

�
+ s for s = 1; 2; :::; 12. As it turns out, small

�uctuations in s are su¢ cient to generate an impressive seasonal cycle, though the simple

form that I use for the �uctuation does not capture the fact that consumption booms mainly

in the 4th quarter and decreases at varying rates relative to the trend in other quarters. Also,

note that I am trying to match the seasonal �uctuations in the real part of the economy with

this model. The miniscule nominal �uctuations imply that I need to introduce money into

the model in a little more detailed way than the constant velocity that I have assumed here.

3 Results

Figure 1 below shows, for s reported in Table 1, aggregate consumption for the baseline

cyclostationary equilibrium, the cyclostationary equilibria with progressively lower idiosyn-

cratic persistence, and the individual steady states assuming no seasonal dependence across

months.

Figure 1
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One of the most striking features of Figure 1 is the con�ict between the �rms�desire to

adjust to its idiosyncratic shock and their desire to adjust to the aggregate �uctuation. One

could think of the steady states without seasonality as maximizing the e¤ect of the �rms�

idiosyncratic shocks and of the cyclostationary equilibrium where the �rms� idiosyncratic

shocks are iid as maximizing the e¤ects of the aggregate seasonal �uctuation. In the individual

steady states, the �rms face neither a �uctuating future aggregate price nor an aggregate

�uctuation in their marginal costs, and hence, in the sum, they fully adjust for the seasonal

wage �uctuation. When the �rms� idiosyncratic shock is completely transient, the �rm

optimally focus more on the aggregate �uctuation in the economy. Since s, the source of real

rigidity in the model, is positive, the �rms are penalized for setting prices di¤erent than the

aggregate price level. Only if a �rm�s transient idiosyncratic component is extreme relative

to the other �rms will it adjust primarily considering its idiosyncratic motive. Otherwise,

the �rms will primarily adjust to stay near the aggregate price level, which will �uctuate

according changes in s, but since adjustment to aggregate �uctuations is incomplete, the

�rms will not fully adjust to the seasonal �uctuation in the aggregate. As the persistence of

the productivity shock increases, the relative weight that the �rms place on their productivity

shock when making pricing decisions must increase, because the shock is more likely to a¤ect

the �rms for a longer time. Hence, �rms adjust relatively less to stay near the aggregate

prices for the �rms, and the e¤ect of the seasonal �uctuation in s is greater in the aggregate.

With the persistence set at the baseline value, the seasonal �uctuation moves prices more

than in the iid case, but the �rms still do not fully adjust for the seasonal �uctuations.

When the persistence is even higher than the baseline value (not reported), the idiosyncratic

component matters even more, and consumption �uctuates more than the baseline case

across the seasonal cycle.

Figure 2 shows the seasonal distribution of price changes conditional on adjustment for

January, a representative month for comparing the seasonal and nonseasonal models. The

top panel is the model that considers seasonal �uctuations. The bottom panel shows the

model without seasonal �uctuations (a standard menu cost model).

21



Figure 2
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Comparing the two panels provides a couple of observations. First, some of the �rms have

smaller price changes in the seasonal model, which is indicative of the clustering motive that

�rms have when facing the added challenge of adjusting to the moving, seasonally dependent

aggregate price. Firms face a penalty for a price that is not near the aggregate price level

because of the real rigidity, ceteris paribus, so they must balance the needs of adjusting

for current conditions and adjusting such that they do not need to change their prices as

urgently in the future. This desire will change depending on the season. Second, there is

a potential reduction of the selection e¤ect to a monetary shock. The mass of �rms that is

adjusting to seasonal motives has smaller price changes, which shifts �rms out of the tails of

the distribution of price changes. Given a small monetary shock, the selection e¤ect implies

that a margin of �rms with more extreme shocks or prices far away from equilibrium will

adjust in addition to the �rms that would otherwise adjust. If there is a su¢ cient mass

of �rms that adjust to the shock, the response of prices to the monetary shock will be

large, thus limiting the ability of the model to explain a large real response to the shock.

22



At the adjustment margin, where price changes are larger, there are fewer �rms in the case

with seasonality. Some additional �rms could adjust for the seasonal motive, but the fact

that their price changes are smaller and that they target the aggregate price level should

signi�cantly mitigate their response to a monetary shock. On the whole, the selection e¤ect

should be mitigated in the seasonal model.

A potential concern about the model is how it aggregates, especially since the price

changes of the �rms vary widely month to month. Speci�cally, if the model does not yield

price changes aggregated across the entire year that match the micro price data and other

models, then it is not necessarily a good approximation of the behavior of �rms. Table

3 shows the vital moments of the distribution of price changes month by month, in the

aggregate, and in the steady state without seasonal dependence.

Table 3: Monthly Moments of Seasonal Price Changes

Month  %4 P %4 P " %4P %abs(4P )

January 0.8179 29.2 23.5 9.2 14.4

February 0.8216 27.4 22.1 9.4 14.1

March 0.8243 24.3 17.2 6.7 13.6

April 0.8253 22.9 13.4 3.4 13.3

May 0.8243 23.3 11.4 0.7 12.9

June 0.8216 24.4 8.7 -2.8 12.7

July 0.8179 25.2 7.8 -4.5 12.9

August 0.8141 26.3 7.4 -5.3 13.0

September 0.8114 26.8 9.7 -3.0 13.0

October 0.8104 26.5 13.1 0.7 13.0

November 0.8114 26.1 15.9 3.8 13.6

December 0.8141 26.2 19.0 7.2 14.4

Aggregate - 25.7 14.1 2.2 13.4

Mean Steady State - 26.8 14.4 2.6 15.6
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Table 3 (cont.): Monthly Moments of Seasonal Price Changes

Month std(4P ) std(abs(4P )) kurt(4P )
January 0.12 0.05 2.86

February 0.11 0.05 3.15

March 0.13 0.04 2.08

April 0.13 0.04 1.51

May 0.13 0.04 1.42

June 0.13 0.04 1.80

July 0.13 0.04 2.11

August 0.12 0.04 2.33

September 0.13 0.04 1.75

October 0.14 0.04 1.43

November 0.14 0.04 1.57

December 0.13 0.04 2.18

Aggregate 0.13 0.04 2.01

Mean Steady State 0.16 0.05 1.39

Comparing the seasonal and nonseasonal aggregate moments, the clustering motive of the

�rms in response to the seasonal �uctuation is still evident in a decrease in the standard

deviation of price changes and a slight decrease in the mean price change. Also, the kurtosis

of the distribution of price changes increases signi�cantly in the seasonal case, which could

be a sign of a mitigated selection e¤ect. The strongest e¤ects in Table 3 are the e¤ects on

the mean price changes and the extensive margin of price changes. The mean price changes

closely follow the seasonal �uctuation in aggregate prices, so seasonal �uctuations in them

are expected. Except for the �nal quarter of the year, the number of price increases in the

model decreases monotonically, which is consistent with the seasonal micro price �ndings

of Nakamura and Steinsson (2008). The behavior of all price changes and price decreases

are inconsistent with their �ndings. The number of price changes in the model �uctuate

much less than price increases, and the number of price decreases increases every quarter.

Nakamura and Steinsson �nd that the number of price decreases does not change much across

the year. Also, they �nd that one third of nonsale price changes are price decreases, while

about 44% of price changes are price decreases in my baseline seasonal model. Whether

the behavior of prices in my model is inconsistent with Nakamura and Steinsson, however,

is an open question, because they �lter out v-shaped sales, which could eliminate seasonal

decreases in prices in particular. Sales, therefore, may not be trivial and disposable in a

menu cost model. Since I do not presently have access to the con�dential BLS database that
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Nakamura and Steinsson use, I cannot do more than conject that the micro price moments

generated by my model are consistent with the micro data.

It appears that the seasonal motive to change prices in the seasonal model could help

a standard menu cost model partially account for the small price changes observed in the

data. While the model without seasonality does not have any price changes less than 1
2
of the

mean of price changes, the model with seasonality can account for some of the price changes

below 1
2
of the mean price change. Neither model can account for the smallest price changes

that occur in the data, however. Alone, the seasonal model cannot account for all small

price changes in the data, but the model feature could supplement other features, such as

the economies of scope mechanism in Midrigan (2009) or the high/low menu cost mechanism

of Nakamura and Steinsson (2009).

4 Conclusion

Economists have typically viewed the seasonal cycle as secondary to the business cycle, but

the results of my model indicate more than a casual connection, particularly in sticky price

models with strong real rigidities. The seasonal cycle may provide important information

about business cycle �uctuations.

I construct a menu cost model with a seasonally �uctuating labor market rigidity that

has the potential to �t the micro data about prices, the seasonal cycle of the economy, and

the seasonally varying response of the economy to monetary shocks. The model can readily

explain a 7.5% gap between the peak and trough of the seasonal cycle with a minimal change

in the labor market rigidity. Also, the pattern in the kurtosis of the conditional distribution

of price changes indicates that the model will produce more monetary nonneutrality in the

�rst half of the year than in the second half of the year, and the kurtosis of the conditional

aggregated distribution of �rms indicates that the model with seasonality produces more

monetary nonneutrality in response to a shock than the baseline model without seasonal

�uctuations. Essentially, �rms have a greater incentive to cluster their prices near when

their optimal prices are seasonally �uctuating unless they receive a large idiosyncratic shock.

In that case, the �rms will adjust as if they will adjust again in the next period. This

clustering e¤ect mitigates the selection e¤ect by amplifying the real rigidity that the model

produces.

The key determinants of the e¤ects of seasonality are the size of the labor market rigidity

and the persistence of the technology shock. As the size of the labor market (real) rigidity

increases in the model, the pro�t penalty for �rms that deviate far from the aggregate price

level increases. Since seasonality moves the aggregate price level, �rms would increasingly

cluster near the aggregate price level to avoid lost pro�t from �uctuations. The aggregate

price level is endogenously determined by the �rms�behavior, so limitations in the �rms�

response to �uctuations limit the �uctuation of aggregate variables. The persistence of the
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technology shock demonstrates the tradeo¤ that the �rms face between adjusting for the

idiosyncratic technology shock and the seasonal �uctuation in the economy. As the per-

sistence of the technology shock increases, any extreme idiosyncratic shock that the �rm

receives is less transient and has more of an e¤ect on �rm behavior. In response, aggregate

variables and �rms�prices respond more to the seasonal �uctuation. Simply, the idiosyn-

cratic component becomes more important to the �rms, which o¤sets the seasonal clustering

motive.

There are some extensions to the paper that I will pursue in the near future. First, I

could add seasonal demand shocks to the model to test whether they could generate the same

seasonal �uctuations as the model here. This feature may sort out whether labor market

frictions, seasonal demand shocks, or a combination of the two are relevant for seasonal

�uctuations in prices. Second, I need to solve for more than the steady state of the model;

I need to estimate the e¤ects of a monetary shock. I will extend the calculations once it is

computationally feasible. Third, I could change the type of model that I am using to help

the model generate additional monetary nonneutrality in response to a monetary shock.

Burstein and Hellwig�s model is simple, and there are a variety of extensions that I could

undertake based on other research. The sector heterogeneity of Nakamura and Steinsson

(2009) is a particularly appealing feature, because the timing and amount of seasonality in

prices di¤ers by sector. If a minority of �rms account for the majority of price changes, then

they should also account for most of the seasonal �uctuations, which would increase the

pressure placed on other �rms to cluster together, thus further amplifying the real rigidity in

the model. If the persistence of idiosyncratic shocks varies by sector and the logical e¤ects

of seasonality hold in the new economy, then the model should also be able to explain the

�nding of Boivin, Giannoni, and Mihov (2009), who �nd that monetary shocks a¤ect sectors

with less volatile and less persistent idiosyncratic shocks more slowly.
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A Solving the Model

Figure A1 outlines the computational algorithm that I employ to solve for the steady state

of the model without seasonality. The objective of the algorithm is to solve for (6).

Figure A1

The computational algorithm is similar to the method used in Khan and Thomas (2003).

First, I must guess an initial distribution of �rms across prices, an initial value function,

and initial bounds on the possible equilibrium wage. Also, I must discretize the productivity

shock and the normalized prices. The algorithm solves for the steady state wage using a

bisection algorithm starting from the initial wage bounds. The wage bisection algorithm

provides a guess for the steady state wage in the economy. Using the model equations, all

other endogenous variables, except for the �rm�s optimal price, can be expressed in terms of

this wage guess, so for each state, I compute the �rms optimal price using a golden section

search algorithm on (4). To approximate the expected value function, I employ a cubic

interpolation spline. Once I know the optimal price for each state, I know the value function

implied by the wage and those prices. However, this value function is not necessarily the same

as the one used for the spline approximate, so I perform value function iteration, repeatedly

solving for optimal prices across states given the current approximation of the value function

and for the implied value function until the value function converges. Then, I have the

value function and optimal pricing decision for �rms across all states. I must aggregate the

economy by �nding the stationary equilibrium of �rms across the states, however, to �nd the

wage implied by the value function and decision rules. To �nd this distribution, I employ

a technique similar to solving for the steady state of a Markov chain, which is described in

more detail in Appendix B. With the distribution of �rms across states in hand, I aggregate

the �rms�individual prices to compute the aggregate price level using the CES aggregators.
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The aggregate normalized price level and aggregate consumption are inversely related as

implied by (2), and the consumer�s labor-leisure condition then provides the wage implied

by �rms�optimization. The implied wage informs of which bound in the bisection algorithm

should be changed, and the algorithm continues with new guesses for the steady state wage

until convergence. Once the wage converges, I have found the steady state.

Adding seasonality to the problem means that I will need to �nd the cyclostationary

equilibrium and the cyclostationary distribution of �rms across prices. To �nd the cyclo-

stationary equilibrium of the model, I use an algorithm similar to the one above, except I

solve for the cyclostationary normalized wages across seasons in a cycle until the aggregate

variables in the model converge to some tolerable level across iterations. The solution to the

above algorithm for each value of s is a good initial guess for initial values needed for the

algorithm. Instead of using the current season�s value function as the approximate for the

next period�s value function (as in the steady state), I use the next period�s value function in

the cycle. When solving for the stationary distribution of �rms across prices in the current

period, I use the stationary distribution of �rms across states from the other periods to pin

down the distribution of �rms across states after a complete seasonal cycle (see Appendix

B). The information necessary to solve the current period problem from the other periods�

problems is made available to the algorithm in the current cycle. Otherwise, the logic of the

algorithm, essentially to �nd the market clearing wages, remains the same.

Note that I need to discretize the grid of prices and shocks on which I solve for the value

function and the distribution of �rms across states. For computational speed, I start with

a large number of grid points for each state and decrease the number of grid points until

the aggregate and micro moments of the data are a¤ected signi�cantly. In practice, I use

60 log-spaced grid points for prices (more than what is probably necessary, but extra grid

points in the price dimension a¤ect the computational speed of the model much less than

extra grid points for the shocks) and 15 grid points for the productivity shock.

B Computing the Cyclostationary Distribution

This appendix provides the computational algorithm for the stationary or cyclostationary

distribution of �rms across states. The spirit of the solution method follows Tauchen (1986)

in that I need to �nd the transition matrix between states in the model across periods. The

following method �nds the stationary distribution across �rms of non-iid states !t in the

case without seasonality:

Step 1: Sort the states into the iid shocks and the non-iid state variables (including

persistent shocks). The states in !t are only the non-iid (discretized) states, and the overall

distribution of �rms across states is the joint distribution of the distribution of �rms across

the non-iid states and the independent distribution of �rms across the iid shocks. If there

are multiple non-iid state variables, the variables in !t are the (vectorized) Cartesian power

31



of the states.

Step 2: Initialize a mass 1 of �rms at every state in !t and then �nd the implied mass of

�rms across all states, including the iid shocks. The mass of �rms at any state will then be

equal to the mass of �rms at the state implied by the joint distribution of the iid shocks. If

there are no iid shocks, then the mass of �rms at all states is simply 1.

Step 3: Apply the decision rules for the �rms across all states once and track the mass

of �rms from each non-iid state in the present period to each non-iid state after the e¤ect of

in�ation in the next period. Tracking these �rms gives the elements of the transition matrix

A in the relationship !t+1 = A!t. The element Ai;j is the mass of �rms that began at time

t at state j and ended up at the beginning of time t+1 at state i.

Step 4: Create an initial distribution of �rms across the states !0.

Step 5: Note that !t+1 = !t in equilibrium, and iterate !i+1 = A!i until convergence.

The rationale for this approach follows from the solution method of the menu cost model

and the problem of �nding the stationary distribution of a Markov chain. For computational

purposes in the menu cost model, one must discretize the states. It would be impossible

to pin down the �rms�optimal price choices numerically given an in�nite number of states.

Hence, the distributions of the �rms across the states must be discretized as well. The

stationary distribution of continuous random variables is approximated by the stationary

distribution of discrete random variables. If the states have the Markov property�that given

the present state, future and past states are independent�then the problem of �nding the

stationary distribution simpli�es to the problem of �nding the transition matrix between

states and then solving for the steady state of the Markov chain.

The �rst step to �nd is to �nd the transition matrix between the �rms�state now and

their state in the next period. In a textbook Markov chain problem, the transition matrix is

known, but in a computational setting, one must �nd the transition matrix implied by the

�rms�decision rules at di¤erent states.

To solve for the cyclostationary distribution in the case with seasonality, one would need

the transition matrices A1; :::; As where s is the number of seasons in a year and where

!t+q = Aq!t+q�1 for 1 � q � s. The cyclostationary distribution satis�es the properties

!t+s = A�!t and !t+s = !t for all t. Substituting in the relationship !t+q = Aq!t+q�1

simpli�es the problem of pinning down A�:

!t+s=As!t+s�1

!t+s=AsAs�1!t+s�2

!t+s=AsAs�1:::A1!t

Thus, the transition matrix A� for a given period t is a function of the period by period
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transition matrices:

A� = AsAs�1:::A1

Solving for the cyclostationary distribution then uses the same methods as solving for the

simple stationary distribution case given the transition matrix (from step 4 on).

Step 1: Sort the states into the iid shocks and the non-iid state variables (including

persistent shocks). The states in !t are only the non-iid (discretized) states, and the overall

distribution of �rms across states is the joint distribution of the distribution of �rms across

the non-iid states and the independent distribution of �rms across the iid shocks. If there are

multiple non-iid state variables, the variables in !t are the (vectorized) Cartesian product of

states.

Step 2: Initialize a mass 1 of �rms at every state in !t and then �nd the implied mass of

�rms across all states, including the iid shocks. The mass of �rms at any state will then be

equal to the mass of �rms at the state implied by the joint distribution of the iid shocks. If

there are no iid shocks, then the mass of �rms at all states is simply 1.

Step 3: Apply the decision rules for the �rms across all states once and track the mass

of �rms from each non-iid state in the present period to each non-iid state after the e¤ect of

in�ation in the next period. Tracking these �rms gives the elements of the transition matrix

A1 in the relationship !t+1 = A1!t. The element A1(i;j) is the mass of �rms that began at

time t at state j and ended up at the beginning of time t+1 at state i.

Step 4: Repeat steps 1-3 to �nd A2; :::; As. Then compute A� = AsAs�1:::A1.

Step 5: Create an initial distribution of �rms across the states !0.

Step 6: Note that !t+s = !t in equilibrium, and iterate !i+1 = A�!i until convergence.
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