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Abstract

This paper explores the impact of reimbursement as a policy tool when two contests

compete with one another for contestant effort. Whether or not winners and/or losers

are reimbursed by either contest in equilibrium depends on the number of contestants,

the amount of effort they have available to allocate, the curvature of the contest success

function (sensitivity to effort), and the size of the two prizes being offered. Depending

on all those factors together, equilibria featuring no reimbursement at all, winner-only

reimbursement, and the reimbursement of both winners and losers are all possible.

Losers, however, are not reimbursed at all unless winners are fully reimbursed. It is

also possible for only one contest to reimburse its participants while the other does not,

in which case the contest that does reimburse is always the one that offers the smaller

prize value. Finally, the competition between the two contests is often a Prisoner’s

Dilemma – both would be better off in a state of zero reimbursement, but nevertheless

do reimburse in Nash equilibrium.
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1 Introduction

Contests are useful models of competition via effort provision. Political lobbying, litigation,

R&D races, and employee promotion schemes are all examples of such scenarios. More

generally, contests embody any setting in which scarce prizes are awarded to contenders

based, at least in part, on their expenditure of resources.

Much of the theoretical literature on contests rightly focuses on how much effort con-

testants provide in equilibrium. Critical to that determination are basic structural aspects

such as the size of the prize(s) involved, the number of contestants, and the curvature of

the contest success function (see Corchón (2007) for a survey of results). Knowledge of how

these and other features affect equilibrium effort is obviously of great importance to those

who wish to implement a contest environment for various goals.

Recent work has revealed that reimbursements, payments made to compensate con-

testants for their efforts, can be an especially useful policy tool for contest designers. In

particular, Matros and Armanios (2009) show that, depending on the designer’s goals, it

may be best to fully reimburse the expenditures of either the winner or the losers of a con-

test. Another work, by Cohen and Sela (2005), shows that if contestants have asymmetric

valuations, fully reimbursing the winner can lead to equilibria in which a weaker contestant

is more likely to win.

This paper is concerned with contests that compete with one another. As chronicled

by the Economist magazine (2010), cash prizes are becoming more and more popular, among

both public and private organizations, as incentive devices to motivate researchers toward

the pursuit of solutions to specific and often very difficult problems. The increased use

of the contest format therefore offers potential problem-solvers a greater freedom of choice

regarding where they will direct their efforts. This in turn begs the question of how the

design of a contest will affect the amount of effort directed at it when other alternatives are

available.

Azmat and Möller (2009) study a model of competing contests, focusing on how sen-

sitivity to effort (the curvature of the contest success function) affects the optimal prize

structure when two contests compete for participation. They find that more sensitive con-

tests are better suited to flatter multi-prize structures, while less sensitive contests are better

suited to steeper (for example, winner-take-all) prize structures. Here we are similarly con-

cerned with two competing contests, but we take the prize structure as fixed and instead

focus on reimbursements as contest designers’ key strategic variables.

We model a pool of contestants, possibly interpreted as competing researchers, each

of whom must allocate a fixed amount of effort between two contests, possibly interpreted
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as alternative research projects. One project yields a bigger reward, perhaps in terms of

prestige, so in the absence of any reimbursement, researchers will spend more time pursuing

that goal. However, if the other project partially or fully reimburses expenditures, researchers

will change their division of effort accordingly. Each contest designer must therefore consider

the other contest’s reimbursement policies in addition to contestants’ equilibrium behavior

when making their own decision of how much to reimburse. This concurrent reimbursement

decision by the contest designers is the (Nash) equilibrium we are most interested in in this

paper.

Whether or not winners and/or losers are reimbursed by either contest in equilibrium

depends on the number of contestants, the amount of effort they have available to allocate,

the curvature of the contest success function (sensitivity to effort), and the size of the two

prizes being offered. Intuitively, a greater number of contestants with more effort available

to allocate leads to higher levels of reimbursement. Equilibrium levels of reimbursement also

decline with sensitivity, which is in line with the results of Azmat and Möller (2009), who find

that the size of the winner’s prize should decline with sensitivity to effort. Reimbursements

are also greater the greater the discrepancy between the two prize values.

Equilibria featuring no reimbursement at all, winner-only reimbursement, and the re-

imbursement of both winners and losers are all possible. The reimbursement of losers only

never occurs in equilibrium, however. In fact, losers are not reimbursed at all unless winners

are fully reimbursed. This in turn means that losers are never fully reimbursed. In any equi-

librium, the weaker contest (the one offering the smaller prize value) always reimburses more

than the stronger contest, due to the fact that contestants otherwise direct the majority of

their effort to the contest with the larger prize value. The weaker contest therefore always

finds it worthwhile to win back any extra effort the stronger contest attempts to procure

with its own reimbursement, since it can do so at a lower cost. If only one of two contests

reimburses positively in equilibrium, then it is always the one with the smaller prize value.

Finally, the ultimate consequences of reimbursement on the contest designers’ payoffs

(total expenditures of effort by contestants net of reimbursement) are worth noting. The

stronger of the two contests is always worse off in any equilibrium featuring positive levels

of reimbursement, relative to the state in which neither contest reimburses. The weaker

contest can be better off, for example if it does reimburse effort while the stronger does not.

In many circumstances, then, the competition between the two contest designers resembles

a Prisoner’s Dilemma; though both end up reimbursing to some degree in equilibrium, both

would have higher payoffs if neither reimbursed at all.
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2 Model

Consider a group of n symmetric contestants competing in two asymmetric contests, contest

1 and contest 2. The prizes for winning each contest are V1 and V2, respectively, with

V1 > V2 > 0, and are allocated according to the well-known Tullock (1980) contest success

function. In addition to those prizes, each contest may reimburse the efforts of participants to

some extent. Following Matros and Armanios (2009) and Baye et al. (2005) we assume that

reimbursements are linear functions of individual effort. Winners of contest i are reimbursed

αi of their effort, while losers of contest i are reimbursed βi of their effort, i = 1, 2. Also

following Matros and Armanios (2009), we assume that individual reimbursements do not

exceed individual effort (0 ≤ αi ≤ 1 and 0 ≤ βi ≤ 1, i = 1, 2).

Each contestant has a fixed amount of effort, x̄ > 0, to allocate between the two con-

tests. This is an important assumption, since if contestants were entirely unconstrained, the

two contests would not really have to compete with one another, and the analysis and conclu-

sions would be identical to those of Matros and Armanios (2009) for optimal reimbursement

in a single, stand-alone contest. Hence, the objective of each contestant is to exhaust x̄ to

maximize their payoffs from expected prize winnings and reimbursement payments. In the

context of the competing researchers interpretation mentioned in the introduction, this is

akin to the assumption that all researchers will always try their hardest in terms of total

effort because it has no use outside of the competing activities. The question is simply

how they will divide those total efforts among the two possible projects. To ensure that

contestants are at least compensated for their efforts in (symmetric) equilibrium, we assume

(V1 + V2)/n ≥ x̄.1

To influence the decision of the contestants, contest designers are in charge of setting

reimbursement parameters. Prize valuations are assumed fixed, perhaps because of per-

ceptions of prestige, and the designers themselves value the prizes at zero. Our primary

assumption regarding the designers’ objective is that they seek to maximize the amount of

effort directed toward their contest net of reimbursement payments, though we also briefly

consider the possibility that they maximize total effort irrespective of reimbursement.

The model is thus a two-stage game with the two contest designers choosing their

reimbursement levels simultaneously in the first stage. In the second stage, the n contestants

simultaneously choose how to divide their effort between the two contests, and prizes are

awarded according to the (Tullock) success function. Solving backward, we first consider the

contestant’s behavior given the reimbursement levels of the two contests.

1This assumption also helps to satisfy second-order conditions for the contestants’ decision problem,
though it is actually much more strict than we actually require.
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3 Equilibrium

3.1 Contestant Behavior

Each contestant i = 1, 2, . . . , n is concerned with the following objective function, where xi

is the amount of effort expended in contest 1, (x̄ − xi) is the amount of effort expended in

contest 2, and 0 < r ≤ 1 is the curvature of the contest success function.

max
xi

xr
i∑n

j=1 xr
j

(V1 + α1xi) +
(
1− xr

i∑n
j=1 xr

j

)
β1xi +

(x̄− xi)
r∑n

j=1(x̄− xj)r
(V2 + α2(x̄− xi)) +

(
1− (x̄− xi)

r∑n
j=1(x̄− xj)r

)
β2(x̄− xi)

The first-order condition for this problem is

rxr−1
i (

∑
j 6=i x

r
j)

(
∑n

j=1 xr
j)

2
(V1 + (α1 − β1)xi) +

xr
i∑n

j=1 xr
j

(α1 − β1) + β1

−
r(x̄− xi)

r−1(
∑

j 6=i(x̄− xj)
r)

(
∑n

j=1(x̄− xj)r)2
(V2 + (α2 − β2)(x̄− xi))−

(x̄− xi)
r∑n

j=1(x̄− xj)r
(α2 − β2)− β2

= 0. (1)

In a symmetric equilibrium xi = x∗ for all i, so (1) simplifies to

r(n− 1)

n2x∗
V1 +

r(n− 1) + n

n2
(α1 − β1) + β1 =

r(n− 1)

n2(x̄− x∗)
V2 +

r(n− 1) + n

n2
(α2 − β2) + β2

or

(x̄− x∗)r(n− 1)

n2
V1 + (x̄− x∗)x∗

(r(n− 1) + n

n2
(α1 − β1 − α2 + β2) + β1 − β2

)
− x∗r(n− 1)

n2
V2 = 0. (2)

If the middle term in (2) is zero, the solution is x∗ = x̄ V1

V1+V2
. Otherwise, (2) is quadratic,

and there are two potential solutions given by the classic

x∗ =
−b±

√
b2 − 4ac

2a
,

where

a =
r(n− 1) + n

n2
(α2 − β2 − α1 + β1) + β2 − β1, (3)

b = x̄(−a)− r(n− 1)

n2
(V1 + V2), (4)
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and

c =
r(n− 1)

n2
V1x̄. (5)

Somewhat surprisingly, in spite of the above quadratic form, it turns out that the contestants’

equilibrium does not suffer from problems of non-existence (due to complex components) or

multiplicity.

Proposition 1. The symmetric equilibrium effort level for contest 1 (and thus also for con-

test 2) exists and is unique regardless of parameter specifications. Specifically,

x∗(α1, β1, α2, β2) =

{
V1

V1+V2
x̄ if a = 0

−b−
√

b2−4ac
2a

otherwise.
(6)

Proof. See Appendix A. �

Appendix B verifies that these equilibrium effort levels respond in expected ways to

changes in the reimbursement parameters. That is, any increase in α1 or β1 increases x∗,

while an increase in α2 or β2 has the opposite effect. More reimbursement by one contest

elicits more effort directed at that contest, and thus less directed at the other.

Important to recognize, however, is the role of the term a in contestants’ equilibrium

effort division. Rather than simply the absolute values of the reimbursement parameters,

it is the way those parameters combine in a determines x∗. For a < 0 (which happens, for

example, if α1 > α2 and β1 > β2), equilibrium efforts directed toward contest 1 are greater

than they would be if both contests reimbursed at the same levels (which would make a = 0

and x∗ = V1

V1+V2
x̄). For a > 0 , the opposite is true.

In fact, as depicted in Figure 1, it can be verified that regardless of model specifications,

x∗ follows a backwards-S shape when graphed against a. Most important for the analysis in

the next section, however, is simply the monotonic nature of the relationship between the

two.

3.2 Equilibrium Reimbursement

With the knowledge of contestants’ (symmetric) equilibrium behavior, the contest designers

each simultaneously choose the degree of reimbursement their contest will provide for winners

and losers. Assuming the designers are interested in maximizing total expenditures net of
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Figure 1: Contestants’ symmetric equilibrium effort level directed at contest 1.

reimbursement payments (NT ), their payoff functions are

NT1(α1, β1, α2, β2) = (n− α1 − (n− 1)β1)x
∗

and

NT2(α1, β1, α2, β2) = (n− α2 − (n− 1)β2)(x̄− x∗)

for contests 1 and 2 respectively, where the arguments of x∗ are suppressed.

The (potential) discontinuity in contestants’ effort levels makes finding analytical ex-

pressions for the contests’ equilibrium reimbursement levels extremely difficult. It is not

possible to simply solve four first-order conditions for four reaction functions. Nevertheless,

we can be sure that a Nash equilibrium for the contests (and thus a subgame perfect Nash

equilibrium for the entire game) does always exist in pure strategies.

Proposition 2. A pure-strategy Nash equilibrium in reimbursement levels always exists.

Proof. It is straightforward to verify that NT1 and NT2 are always either non-increasing

or non-decreasing and then non-increasing in their own levels of reimbursement, and there-

fore quasiconcave. They also satisfy a condition known as pseudocontinuity, described by
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Morgan and Scalzo (2007).2 In turn, by Proposition 4.1 of Morgan and Scalzo (2007, p.

181), the game played by the two contests is better-reply secure, a condition defined by Reny

(1999). Along with the compactness of the strategy space and quasiconcavity, this guaran-

tees the existence of a pure-strategy Nash equilibrium (Reny, 1999, Theorem 3.1, p. 1033). �

Despite lacking closed-form solution, we can establish several key properties of the con-

tests’ reimbursement levels in any pure-strategy equilibrium. Specifically, we can be sure of

how reimbursement by the stronger contest will compare to that of the weaker, and also how

the reimbursement of winners will compare to that of losers. To those ends, the following

result is crucial.

Proposition 3. In any pure-strategy Nash equilibrium, a ≥ 0, so that x∗ ≤ V1

V1+V2
x̄.

Proof. To prove that a ≥ 0 in any pure-strategy Nash equilibrium, we show that any state of

a < 0 can not be a Nash equilibrium, because it is always profitable for the second contest

to at least match the first contest’s reimbursement levels, thereby making a ≥ 0.

Thus, suppose that {α1, β1, α2, β2} such that a < 0 did constitute a Nash equilibrium.

To be a Nash equilibrium, it would have to be the case that

NT1(α1, β1, α2, β2) ≥ NT1(α2, β2, α2, β2). (7)

Otherwise, it would be profitable for contest 1 to deviate to match the reimbursement levels

of contest 2, thus making a = 0 and x∗ = V1

V1+V2
x̄. We now exploit the inequality in (7).

Let x′ denote x∗(α2, β2, α2, β2) = x̄ V1

V1+V2
, contestants’ symmetric equilibrium effort

levels when both contest designers choose reimbursements {α2, β2}. Also, let x denote

x∗(α1, β1, α2, β2) > x′, where α1 = α2 + ε and β1 = β2 + γ with ε and γ such that a < 0.

NT1(α1, β1, α2, β2) ≥ NT1(α2, β2, α2, β2) implies

(n− (α2 + ε)− (n− 1)(β2 + γ)) x ≥ (n− α2 − (n− 1)β2) x′.

2A real valued function f defined on a topological space Z is upper pseudocontinuous at zo ∈ Z if for
all z ∈ Z such that f(zo) < f(z), lim supy→zo

f(y) < f(z), lower pseudocontinuous at zo if −f is upper
pseudocontinuous at z0, and pseudocontinuous if it is both upper and lower pseudocontinuous for all zo ∈ Z
(Morgan and Scalzo, 2007, Definition 2.1, p. 175). NT1 and NT2 satisfy this condition since x∗ is increasing
in α1 and β1 and decreasing in α2 and β2.
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Rearranging, we can obtain

(n− α2 − (n− 1)β2) (x− x′) ≥ (ε + (n− 1)γ)x. (8)

Comparing the states of a < 0 and a = 0, then, (8) shows the gain to the designer of con-

test 1 from additional contestant effort on the left-hand side and the loss from additional

reimbursement payments on the right-hand side. But note that if the designer of contest 2

deviates from the supposed equilibrium to reimburse at the same levels as contest 1, its gain

would would in fact be the same as the left-hand side of (8) since its share of contestants’

effort would increase from (x̄− x) to (x̄− x′) = x̄ V2

V1+V2
. Its loss, however, would be strictly

less than the right-hand side of (8) since (x̄−x′) < x′, since V2 < V1. The designer of contest

2 would therefore be made strictly better off by matching contest 1’s reimbursement levels,

contradicting the supposition of Nash equilibrium. �

In an important sense then, in equilibrium the designer of contest 2 always reimburses

“more” than contest 1. Since the stronger contest receives a larger share of contestant effort

when both contests reimburse at exactly the same level, its cost of any additional reimburse-

ment will be greater than that of the weaker contest. Thus, if increasing effort share (x∗)

is worthwhile for contest 1, it must also be worthwhile for contest 2 to win that share back,

since it would mean the same gain but a lower added cost. This yields the following corollary,

which itself is another important feature of equilibrium reimbursement.

Corollary. In any pure-strategy Nash equilibrium, if only one contest reimburses positively,

it will be the weaker contest 2.

Proof. Follows directly from the fact that a ≥ 0 in any equilibrium of the first stage. �

Beyond just being sure that a ≥ 0 in equilibrium, we can actually be sure that contest

2 will reimburse all of its participants at least as much as the stronger contest 1. To show

that, first we show that for either contest i = 1, 2, βi > 0 only if αi = 1, again another

important feature of equilibrium reimbursement.

Proposition 4. In any pure-strategy Nash equilibrium, losers are reimbursed by a contest

only if winners are fully reimbursed by that contest.

Proof. The benefit from a contest reimbursing its participants comes from the increased ef-
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fort they direct toward it. But, as previously emphasized, participants’ effort depends on the

relative reimbursement values as measured by a in (3). Either contest partially reimbursing

its winners αi < 1 and its losers βi > 0 could therefore always increase its net payoff by

decreasing βi and increasing αi, keeping a exactly the same and thereby not changing the

effort directed at it, but decreasing its total reimbursement payments since there are n − 1

losers and only one winner. �

Combining Propositions 3 and 4, we have the following.

Proposition 5. In any pure-strategy Nash equilibrium, α2 ≥ α1 and β2 ≥ β1.

Proof. Since βi > 0 only if αi = 1 for i = 1, 2, there are four relevant cases to consider (all

other cases trivially imply α2 ≥ α1 and β2 ≥ β1).

(i) α1 > 0, α2 = 0, β1 = 0, β2 = 0.

(ii) α1 > 0, α2 > 0, β1 = 0, β2 = 0.

(iii) α1 = 1, α2 ≥ 0, β1 > 0, β2 = 0.

(iv) α1 = 1, α2 = 1, β1 > 0, β2 > 0.

Cases (i) and (iii) cannot be Nash equilibria since a ≥ 0 by Proposition 3. Similarly, in case

(ii), it must be that α2 > α1, and in case (iv), it must be that β2 ≥ β1, again because a ≥ 0.

�

With these properties established, it is now prudent to make a few comments regarding

the welfare of the two contest designers. First, since contestants’ total effort is fixed, clearly

the combined payoff of the two contests designers decreases with increased reimbursement

by either side. Second, since the designer of contest 2 always reimburses participants at

least as much as contest 1, the amount of effort directed at contest 1 in equilibrium is never

more than it is when neither contest reimburses at all. Thus, the designer of contest 1 is

always worse off in any equilibrium with positive levels of reimbursement relative to a state

of zero reimbursement by both. The designer of contest 2, on the other hand, may be better

off. In particular, contest 2 is always better off (relative to a state of zero reimbursement)

in an equilibrium in which it reimburses positively but contest 1 does not. Finally, it is

also possible that both contest designers are made worse off by reimbursing in equilibrium.

For example, in any equilibrium in which the two designers reimburse contestants positively

but equally, both are clearly worse off since they would receive the same amount of effort if

neither reimbursed.
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This leads us to conclude the section by acknowledging the possibility of contest design-

ers having an alternative motivation. It is possible that contest designers may be interested

in maximizing total effort directed toward their contest rather than effort net of reimburse-

ment payments. Since increased reimbursement always affects the amount of effort directed

towards a contest positively, the only equilibrium outcome of that scenario would be both

contests fully reimbursing all participants. Welfare in that case would be the same as if

neither contest reimbursed, since total efforts would be the same. Though not entirely un-

interesting, we continue to focus for the remainder of the paper on the former motivation,

since it admits a wider variety of outcomes and is potentially more realistic.

4 Determinants of Equilibrium Reimbursement

In this section we examine how the game’s underlying structural environment (the size of

the two prizes, the amount of contestant effort available, the number or contestants and

the curvature of the contest success function) affects equilibrium reimbursements. Though

we are unable to provide analytical solutions for the contests’ reimbursement levels, we are

able to establish necessary and sufficient conditions for positive levels of reimbursement to

occur in equilibrium. These conditions then guide us in in exploring parameterized scenarios,

computing and comparing equilibria.

4.1 Positive Reimbursement in Equilibrium

For α1 = β1 = α2 = β2 = 0 to not be part of an equilibrium, it must be the case that

NT1(α1, β1, 0, 0) ≥ NT1(0, 0, 0, 0) for some α1 + β1 > 0, or NT2(0, 0, α2, β2) ≥ NT2(0, 0, 0, 0)

for some α2+β2 > 0, or both. Though we know from Proposition 3 that if any deviation from

zero reimbursement is profitable for the stronger contest, it must also be so for the weaker

one, it is instructive to consider first what it would require to make a deviation profitable

for the designer of contest 1.

In a state of zero reimbursement, a = 0. A deviation to α1 > 0 (analogous reasoning

holds if α1 = 1 and the deviation is to β1 > 0) makes a < 0, thereby changing the symmetric

equilibrium effort level directed at contest 1 according to (6). Specifically, x∗ changes from

x̄ V1

V1+V2
to

−b−
√

b2 − 4ac

2a
=

x̄

2
+

(V1 + V2)

2a

r(n− 1)

n2
−
√

∆

2a
,

where a from now on indicates its new, non-zero value, and ∆ is the discriminant, equal to

b2− 4ac = x̄2a2 +2x̄a(V2−V1)
r(n−1)

n2 +
(
(V1 + V2)

r(n−1)
n2

)2

. For the deviation to be profitable

11



for the designer of contest 1, it must be that

nx̄
V1

V1 + V2

< (n− α1)

(
x̄

2
+

(V1 + V2)

2a

r(n− 1)

n2
−
√

∆

2a

)
(9)

for some α1 > 0. Since V1 > V2 and a < 0, a necessary condition for (9) to hold is

√
∆ > (V1 + V2)

r(n− 1)

n2
. (10)

In turn, this requires that

x̄2a2 + 2x̄a(V2 − V1)
r(n− 1)

n2
> 0 (11)

for some a resulting from increased reimbursement by contest 1.

On its own, (11) is not sufficient to ensure that (9) is satisfied. For sufficiency, the left-

hand side of (10) must be large enough that the increased effort from contestants outweighs

the loss from reimbursement. Thus, although the inequality in (11) is always satisfied when

a < 0 (when the designer of contest 1 is the deviator), that does not mean it is always

profitable for contest 1 to reimburse if contest 2 does not. Rather, it requires the right

combination of parameters. For example, (11) suggests that the more effort contestants

have available to expend or the greater the number of contestants, the more likely it is

that increased reimbursement (from a state of zero reimbursement) will be profitable for the

designer of contest 1. Also, the left side of (9) suggests that a higher prize valuation for

contest 1 makes it less likely that reimbursement will be profitable, ceteris paribus.

Similarly, for the designer of contest 2 deviating to α2 > 0 from an initial state of zero

reimbursement,

nx̄
V2

V1 + V2

< (n− α2)

(
x̄

2
− (V1 + V2)

2a

r(n− 1)

n2
+

√
∆

2a

)
(12)

must be satisfied for the deviation to be profitable. Since V2 < V1, although a > 0 the

inequality in (10) is no longer necessary for (12) to hold. Nevertheless, the larger the left-

hand side of (10), the more likely it is that contest 2 will find it worthwhile to positively

reimburse, so the intuition from (11) also applies to contest 2. In fact, we can be a bit more

specific by substituting for a

x̄α2 > 2(V1 − V2)
r(n− 1)

r(n− 1) + n
, (13)
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again assuming that the deviation is α2 > 0 while all other reimbursement parameters are

zero.

Just as the left-hand side of (9) suggests that a higher valuation for contest 1’s prize

makes it less worthwhile to reimburse from a state of zero reimbursement, the left-hand side

(12) suggests the same relationship holds for the size of contest 2’s prize and its incentive to

reimburse, ceteris paribus. And as does (11), (13) suggests that the more effort contestants

have available to expend or the greater the number of contestants, the more likely it is

that increased reimbursement (from a state of zero reimbursement) will be profitable for

contest 2. But (13) also suggests that reimbursement is less likely to be profitable when the

r parameter is higher, that is, when contestants’ winning probabilities are more sensitive to

individual effort. This is an interesting aspect to the model which we will elaborate upon in

just a moment, in the next subsection.

As expected from Proposition 3, of course, (12) is a weaker condition than (9). The

designer of the stronger contest will never have an incentive to deviate from zero reimburse-

ment if the weaker contest does not, and so (12) is the necessary and sufficient condition for

at least some reimbursement to occur in equilibrium. Though the same parameter relations

and combinations enhance the incentive to reimburse from a state of zero reimbursement for

both contest designers, the threshold is much lower for the designer of the weaker contest.

More generally, since a = 0 whenever the two contests have identical reimbursement

policies, the deviation conditions (9) and (12), and the parameter relations implied by

(11) and (13) apply more broadly. The same factors that make deviation from a zero-

reimbursement state more profitable also make changes from any state of a = 0 more prof-

itable, though when both contests are already reimbursing positively the maximum possible

change in a becomes smaller. Thus, in general, a greater amount of effort available for con-

testants to allocate, a greater the number of contestants, a lower the sensitivity to effort,

and prizes that are closer in valuation are all important factors leading to higher levels of

reimbursement in equilibrium.

4.2 Parameterized Examples

To support the implications of the previous subsection, here we compute Nash equilibrium

reimbursement levels for parameterized scenarios. Though we can not obtain closed form

expressions that would enable comparative-statics analysis, comparing equilibrium reim-

bursement levels as the parameters change relative to one another helps to illustrate the

comparative-statics properties suggested by (13).

To compute equilibria for a given parameter setting we discretize the possible reim-
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Figure 2: Contests’ equilibrium payoff functions.

bursement levels to create an α×β strategy space grid. We then find each contest’s optimal

choice of reimbursement parameters (those that maximize the contest’s net total expendi-

tures) while holding the other’s choice constant, iterating back and forth until convergence.

To check for multiple equilibria, we repeat the process for each specification of parameters

several times with different initializations of reimbursement parameters, but multiplicity does

not appear to be an issue.

To begin, we illustrate a case in which winners and losers are reimbursed by both

contests in equilibrium: V1 = 4, V2 = 2, x̄ = 1, n = 4, and r = 0.25. The equilibrium

reimbursements for that scenario are α1 = 1, β1 = 0.14, α2 = 1, and β2 = 0.32 (note that

winners are fully reimbursed since losers receive some reimbursement). Figure 2 illustrates

each contest’s payoff as function of own reimbursement, holding the other’s constant at

the equilibrium values. The higher of the two is NT1(α1, β1, 1, 0.32), while the lower is

NT2(1, 0.14, α2, β2).

Now we vary the parameter values to see how each alters equilibrium reimbursement.

These comparisons are summarized by Table 1.
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Table 1: Parameterizations and Corresponding Equilibrium Reimbursements.
{V1, V2, x̄, n, r} {α1, β1, α2, β2}
4 2 1 4 0.25 1 0.14 1 0.32
4 2 1 4 0.33 1 0 1 0.15
4 2 1 4 0.5 0.38 0 1 0
4 2 1 4 0.67 0 0 0.73 0
4 2 1 4 1 0 0 0.14 0
4 2 1.25 4 0.25 1 0.31 1 0.45
4 2 1.5 4 0.25 1 0.42 1 0.54
20 2 1.5 4 0.25 0 0 1 0.28
6 2 1.5 4 0.25 1 0.24 1 0.47
6 1 1.5 4 0.25 1 0.36 1 0.65
6 5 1.5 4 0.25 1 0 1 0.06
6 5 1.5 2 0.25 0.32 0 0.42 0
6 5 1.5 3 0.25 0.85 0 0.98 0
6 5 1.5 6 0.25 1 0.34 1 0.38
6 5 1.5 6 1 0 0 0 0

The first row of Table 1 lists the baseline case, also illustrated in Figure 2. The next four

rows list the effects of increased sensitivity to effort, which exhibits a negative relationship

with equilibrium reimbursement. Such an effect is predicted by (13) and the intuition for it is

as follows. Increased r in the contest success function increases the productivity of individual

effort in affecting the probability of winning a contest. With an increase in r, then, each

contestant has stronger incentives to allocate effort toward affecting their chance of winning

a contest, ceteris paribus, so each contest designer can relax their reimbursements.

The second group of (two) rows in Table 1 demonstrate the effect of an increase in the

contestants’ effort budget. As expected, reimbursements are greater in equilibrium when

there is more total effort to compete for. And the fourth group of (three) rows in Table 1

similarly demonstrates that equilibrium reimbursements are greater with a larger number of

contestants.

The third group of (four) rows in Table 1 demonstrates changes in the contest prize

valuations. Again, as expected from (9) and (12), an increase in the value of a contest’s

prize diminishes its own incentive to reimburse. Not entirely expected, though (13) does

hint at it, is that an increase in either prize’s value leads to lower equilibrium reimbursement

for both contests. The effect seems larger for the contest whose valuation actually changes,

especially in the case of V1, but both exhibit different levels of equilibrium reimbursement

with a change in just one of the prize values.

The last row in Table 1 simply exhibits a case in which there is no equilibrium reim-
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bursement at all.

5 Discussion

Our results should be of interest to all those looking to incentivize efforts by awarding prizes,

but particularly those who recognize that the presence of other prizes diverts the attention

of contestants. As Matros and Armanios (2009) show, reimbursement payments can be an

important policy tool for any contest. But our work emphasizes that this is especially true

when multiple contests compete, albeit with somewhat different outcomes.

Whereas Matros and Armanios (2009) find a continuum of equilibria for a stand-alone

contest looking to maximize net total spending (featuring full reimbursement for winners and

an arbitrary level of reimbursement for losers), this is not the case when contests compete

with one another and account for each other’s reimbursements as well as their own. We

find that although there are scenarios in which reimbursing winners fully and losers partially

can be optimal for a contest, such equilibria tend to be unique. And positive levels of

reimbursement, even for just winners, are not always in a contest’s best interests. There are

instances in which neither contest will reimburse at all. While it is true that reimbursing

losers is never optimal unless winners are fully reimbursed, it is also possible that the weaker

contest may reimburse both winners and losers while the stronger one does not.

Accordingly, designers of contests that offer relatively small prizes amidst a field of

others benefit most from the use of reimbursements as a policy tool. Designers of such

contests may be able to use reimbursements to increase the amount of net spending directed

their way, although not always. If the stronger contest also reimburses, both contest designers

may ultimately end up worse off. It is crucial for both to be aware of the presence of

reimbursement payments, however; even though the stronger contest is always worse off in

equilibria featuring reimbursement, reimbursing its own participants can serve an important

retaliatory purpose.

References
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Appendix A: Proof of proposition 1

To begin the proof of proposition 1, recall the definitions a = r(n−1)+n
n2 (α2 − β2 − α1 + β1) +

β2 − β1, b = x̄(−a) − r(n−1)
n2 (V1 + V2), and c = r(n−1)

n2 V1x̄. Then note that if a = 0 (which

happens, for example, if α1 = α2 and β1 = β2), the first order condition in (4) simplifies to

(x̄− x)r(n− 1)

n2
V1 −

xr(n− 1)

n2
V2 = 0,

which, has a unique solution of x∗ = V1

V1+V2
x̄.

If a 6= 0, the relevant solution candidates are given by (5). To establish that an

equilibrium will always exist in these cases, it is prudent to show that the discriminant (∆)

is always positive so that the potential solutions are always real.

Lemma A1. ∆ = b2 − 4ac > 0.

Proof. Since b2 > 0 and c > 0, if a < 0 then clearly ∆ > 0. Assume then that a > 0, so that

∆ = x̄2a2 + 2x̄a(V2 − V1)
r(n− 1)

n2
+ [(V1 + V2)

r(n− 1)

n2
]2

∆ > 0 can therefore be rearranged as

n2x̄2a2 + 2x̄aV2r(n− 1) +
[(V1 + V2)r(n− 1)]2

n2
> 2x̄aV1r(n− 1)

⇔ n2x̄a

V1r(n− 1)
+

V2

V1

+
(V1 + V2)

2r(n− 1)

2x̄an2V1

> 1

⇔ n2x̄a

V1r(n− 1)
+

V2

V1

+
V1r(n− 1)

2x̄an2
+

V2r(n− 1)

x̄an2
+

V 2
2 r(n− 1)

2x̄an2V1

> 1 (14)

To see that (14) must hold, it is sufficient to consider three cases, noting that all terms on

the left side of (14) are positive. First, if n2x̄a ≥ V1r(n−1), then the first term in (14) alone

is greater than one. Second, if 2n2x̄a ≤ V1r(n − 1), then the third term alone is greater

than one. Finally, if n2x̄a < V1r(n− 1) < 2n2x̄a, then the first and third terms together are

greater than one.�

Next it is shown that one of the solution candidates, −b+
√

b2−4ac
2a

, is never feasible. That

is, it is always either less than zero or greater than the budget of x̄.

Lemma A2. x+ = −b+
√

b2−4ac
2a

is not feasible. If a < 0, x+ < 0, and if a > 0, x+ > x̄.

Proof. If a < 0,
√

∆ > |b|. Thus, whether −b is positive or not, x+ < 0. If a > 0, it is
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helpful to substitute in for −b in the first part of x+ to obtain

x+ =
x̄

2
+ (V1 + V2)

r(n− 1)

2an2
+

√
∆

2a
.

The last part of A2 is then evident since x+ > x̄

⇔
√

∆

2a
>

x̄

2
− (V1 + V2)

r(n− 1)

2an2

⇔
√

∆ > x̄a− (V1 + V2)
r(n− 1)

n2

⇔ ∆ > x̄2a2 − 2x̄a(V1 + V2)
r(n− 1)

n2
+
[
(V1 + V2)

r(n− 1)

n2

]2
,

which holds since

∆ = x̄2a2 + 2x̄a(V2 − V1)
r(n− 1)

n2
+
[
(V1 + V2)

r(n− 1)

n2

]2
.

�

Finally, it is shown that the remaining candidate, x−, is always feasible. That is,

regardless of parameter specifications, 0 ≤ x− ≤ x̄.

Lemma A3. x− = −b−
√

b2−4ac
2a

is always feasible.

Proof. If a < 0, clearly x− > 0 since
√

∆ > |b|. If a > 0, on the other hand,
√

∆ < |b|, but

x− is still greater than zero because −b
2a

> 0.

To show that x− < x̄, again substitute for −b to obtain x− < x̄

⇔ −
√

∆

2a
<

x̄

2
− (V1 + V2)

r(n− 1)

2an2
,

which simplifies as in the proof of lemma A2. Substituting for the terms in ∆, x− < x̄ ⇔

−(x̄2a2+2x̄a(V2−V1)
r(n− 1)

n2
+
[
(V1+V2)

r(n− 1)

n2

]2
) < x̄2a2−2x̄a(V2+V1)

r(n− 1)

n2
+
[
(V1+V2)

r(n− 1)

n2

]2
⇔ −2

(
x̄2a2 +

[
(V1 + V2)

r(n− 1)

n2

]2)
< −4x̄aV1

r(n− 1)

n2
. (15)

When a < 0 the inequality in (15) clearly holds because the term on the left side is negative

while the term on the right is positive. When a > 0, (15) still holds, though it is not as
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obvious. One more step is helpful to turn (15) into

x̄2a2 +
[
(V1 + V2)

r(n− 1)

n2

]2
> 2x̄aV1

r(n− 1)

n2
,

which can be shown to hold in the same way that (14) holds. �

To complete the proof, we now verify that the second-order conditions are satisfied.

The second-order condition at the symmetric equilibrium x is

(r − 1)n2 − 2nr

n2x2
(V1+(α1−β1)x)+

2

x
(α1−β1)+

(r − 1)n2 − 2nr

n2(x̄− x)2
(V2+(α2−β2)(x̄−x))+

2

(x̄− x)
(α2−β2) ≤ 0

or

2(α1 − β1)(x̄− x) + 2(α2 − β2)x ≤
(1− r)n2 + 2nr

n2x
(V1 + (α1 − β1)x)(x̄− x) +

(1− r)n2 + 2nr

n2(x̄− x)
(V2 + (α2 − β2)(x̄− x))x (16)

Since reimbursements can not exceed individual effort, the left side of (16) is at most

2x̄. Similarly, the right side of (16) is at least

((1− r)n2 + 2nr)

(
V1

(x̄− x)

n2x
+ V2

x

n2(x̄− x)

)
,

making (16) more than satisfied as long as

2x̄ ≤ ((1− r)n + 2r)

(
V1

(x̄− x)

nx
+ V2

x

n(x̄− x)

)
(17)

Given that 0 < r ≤ 1, n ≥ 2 and V1 > V2, and that x ≥ V1

V1+V2
in equilibrium, (17) is satisfied

so long as x̄ ≤ (V1 + V2)/n, as was assumed at the beginning of section 2.

This concludes the proof of proposition 1.
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Appendix B: The effect of increased reimbursement on

equilibrium effort levels

Here we establish that a contest increasing the amount of reimbursement it offers leads to

increased effort levels directed at that contest. Though we only show the case of changes

in α1 or β1 explicitly, the analysis for the second contest’s variables is straightforwardly

analogous.

The effect of a change in reimbursement variables depends on the variables’ initial

values. Specifically, whether or not a = 0 to begin with. If a 6= 0, a differential approach is

possible. For γ ∈ {α1, β1}, and letting a′ stand for ∂a/∂γ,

∂x∗

∂γ
=
−2a′(V1 + V2)

r(n−1)
n2 − 2a1

2
∆−1/2

(
2x̄2aa′ + 2x̄a′(V2 − V1)

r(n−1)
n2

)
+ 2a′∆1/2

4a2
> 0

⇔ a′
[
−(V1 + V2)

r(n− 1)

n2
− a2∆−1/2x̄2 − a∆−1/2x̄(V2 − V1)

r(n− 1)

n2
+ ∆1/2

]
> 0

⇔ −∆1/2(V1 + V2)
r(n− 1)

n2
+ x̄a(V2 − V1)

r(n− 1)

n2
+

[
(V1 + V2)

r(n− 1)

n2

]2

< 0

where the last step comes from dividing by a′ and multiplying by ∆1/2, and the inequality

flip occurs because a′ < 0.

Now just rearrange so that

x̄a(V2 − V1)
r(n− 1)

n2
+

[
(V1 + V2)

r(n− 1)

n2

]2

< ∆1/2(V1 + V2)
r(n− 1)

n2
.

Squaring both sides and substituting for ∆ then simplifies to

x̄2a2

[
(V2 − V1)

r(n− 1)

n2

]2

< x̄2a2

[
(V1 + V2)

r(n− 1)

n2

]2

or

(V2 − V1) < (V1 + V2).

If a change in reimbursement occurs from an initial scenario with a = 0, the initial x∗

is x̄ V1

V1+V2
. An increase in α1 or β1 then changes the equilibrium effort level to

−b−
√

b2 − 4ac

2a
=

x̄

2
+

(V1 + V2)

2a

r(n− 1)

n2
−
√

∆

2a
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, where a from now on indicates the new, non-zero value, which is negative. A bit of algebra

shows that this new x∗ is indeed greater than the original.

x̄

2
+

(V1 + V2)

2a

r(n− 1)

n2
−
√

∆

2a
> x̄

V1

V1 + V2

⇔ −2ax̄
V1

V1 + V2

+ (V1 + V2)
r(n− 1)

n2
+ ax̄ <

√
∆

⇔ (2ax̄
V1

V1 + V2

)2−4ax̄V1
r(n− 1)

n2
−4a2x̄2 V1

V1 + V2

+((V1+V2)
r(n− 1)

n2
)2+2ax̄(V1+V2)

r(n− 1)

n2
+x̄2a2 < ∆

Substituting for ∆,

(2ax̄
V1

V1 + V2

)2 − 4ax̄V1
r(n− 1)

n2
− 4a2x̄2 V1

V1 + V2

< −4ax̄V1
r(n− 1)

n2

⇔ (2ax̄
V1

V1 + V2

)2 < 4a2x̄2 V1

V1 + V2

⇔ (
V1

V1 + V2

)2 <
V1

V1 + V2

.
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