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Abstract

This paper analyzes a model of games played on a social network that
allows for local correlations in players’ strategies. The model employs a
‘friendship-based’ approach that keeps track of local correlations in agents’
behavior. The model is applied to two specific classes of games, games of
strategic complements and strategic substitutes. We also examine the depen-
dence of diffusion on network clustering – the probability that two individu-
als with a mutual friend are friends of each other – which is not possible with
a mean-field approach.

1 Introduction

People rarely make decisions in isolation. Often, the choices and experiences of
friends, family, and acquaintances shape our beliefs and behavior. This observation
motivates a stream of recent research that addresses the effects of social network
structure on behavior (Jackson and Yariv, 2005, 2007; Jackson and Rogers, 2007;
López-Pintado, 2008; Lamberson, 2009, 2010; Galeotti et al., 2010). All of these
articles employ a “mean-field analysis” borrowed from physics to understand how
equilibrium diffusion levels depend on the structure of social interactions.

The mean-field approach requires one of two interpretations. Either, the anal-
ysis is thought of as an approximation to the true diffusion dynamics, or agents
are assumed to have limited information about their social contacts: the agents act
as if the behavior of their neighbors matches the behavior of the population as a
whole. In order to gain analytic tractability, the method discards much of the con-
nectivity information of an actual network, retaining only the underlying degree
distribution. In particular, correlation in neighboring agents’ behavior is lost. For
example, in an epidemic sick people are more likely to be connected to other sick
people, and when a new technology spreads technology adopters are more likely to
be connected to other adopters. These effects are lost in the mean-field approach.
�Prepared for presentation at the 2011 ASSA Annual Meeting, Denver, Colorado.
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Biologists have developed an alternative approximation approach for modeling
disease spread known as a “pair approximation,” or “correlation model” (Matsuda
et al., 1992; Keeling et al., 1997; Morris, 1997; Van Baalen, 2000). This method
keeps track of local correlations in behavior and consequently better approximates
simulated diffusion patterns. Here, we adapt the pair approximation approach to
understanding the spread of behaviors in a model of games played in a social net-
work. In this model, the focus is on friendship ties rather than individual actors, so
we refer to it as a ‘friendship-based’ game.

Our paper is most closely related to the “network games” framework of Gale-
otti et al. (2010). The partial information structure of the network games frame-
work corresponds with a mean-field approximation rather than the pair approxima-
tion that we employ. From an information perspective the friendship-based game
allows us to capture a richer information structure – rather than assume that an
agent expects her neighbors to play like the population as a whole, we assume
that the agent expects her neighbors to play like the population conditional on her
own behavior. If we think of both the network games and friendship-based games
as approximations to a process occurring in a fixed social network, simulations
demonstrate that the additional information regarding local correlations included
in the friendship-based model lead to more accurate results.

Alternatively, one can conceive of both models as representing a process in
which agents are randomly matched with other players at each time step. In the
network games approach, agents are matched at random, while the analogous pro-
cess in the friendship-based model has agents matched with other agents randomly
conditional on their current strategy. The friendship-based approach also provides
additional information about the resulting patterns of play : we can observe not
only the fraction of agents using a particular strategy, but also the local correla-
tions in strategies. This additional information comes at some cost – in many cases
we are not able to analytically solve for equilibria – however, using numeric meth-
ods we can not only find equilibria, but can also solve for the entire trajectory of
play over time.

We apply the model to two classes of games, games of strategic complements
and games of strategic substitutes. We find that games of strategic complements
tend to exhibit multiple adoption equilibria separated by a tipping point analo-
gous to the “epidemic threshold” in disease spread models. Locally, agents rapidly
split into clusters using competing strategies. Games of strategic substitutes tend
towards a unique equilibrium. Agents strategies are locally dissociative. For exam-
ple, if we think of the model as capturing provision of a public good, a few agents
serve the role of local providers of the good while their neighbors free ride.

Our paper is also related to work in evolutionary game theory (Ohtsuki et al.,
2006; Ohtsuki and Nowak, 2006). As in the evolutionary game theory literature,
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we impose a specific dynamic on agents’ strategy updating to help solve the equi-
librium selection problem (Foster and Young, 1990; Kandori et al., 1993), but the
dynamic we choose is more economically motivated. Typical dynamics in evolu-
tionary game theory assume that the probability that an agent switches strategies is
related to the payoffs (i.e. fitness) of other agents. Intuitively, when an agent dies
more fit strategies are more likely to invade the resulting opening. In our model,
an agent only switches strategies if doing so is a best response for them. In other
words, an agent’s strategy choice is based on her own payoffs rather than those of
her neighbors.

2 The Model

We consider a finite population of n agents. For each agent i there is a collection of
other agents N.i/ � f1; : : : ; ng n fig, which we call the friends or neighbors of i .
Friendship is reciprocal, so j 2 N.i/ implies i 2 N.j /. This information defines
a network with nodes the agents i D 1; : : : ; n, and a link from i to j if j 2 N.i/
(Jackson, 2008; Newman, 2010).

At each time step t D 1; 2; 3; : : : each agent plays one of two strategies, x or
y. Payoffs are a function of a player’s strategy and those played by her neighbors.
We assume that an agent’s payoffs depend only the number of neighbors playing
each of the two strategies, not on their specific identities. For an agent i , let kx.i/
and ky.i/ denote the number of neighbors playing x and y, respectively. When the
focal agent is clear or unimportant, we drop the dependence on i , and simply write
kx or ky (note we have also suppressed dependence on time). Then the payoffs
can be specified by two payoff functions: �x.kx; ky/ and �y.kx; ky/.

3 Friendship-based Games

Even in small populations with simple network structures, the game described in
the previous section often admits a multitude of equilibria. To help solve the equi-
librium selection problem we employ two common strategies. First, we impose a
specific dynamic on the game. Second, we specify a partial information structure.

Before turning to the game dynamics, we introduce some notation. To simplify
the analysis, assume that each agent has a fixed number of neighbors, k (or equiv-
alently, each agent plays with the expectation of meeting a fixed number of agents
on average). Under this assumption, we can write the payoffs as functions of the
number of neighbors playing strategy x: �x.kx/ and �y.kx/. This is a significant
assumption, as several studies have shown that the network degree distribution im-
pacts diffusion levels (Jackson and Yariv, 2005, 2007; Jackson and Rogers, 2007;
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López-Pintado, 2008; Lamberson, 2009, 2010; Galeotti et al., 2010). Degree infor-
mation can be incorporated in the friendship-based model (for one related approach
see Eames and Keeling, 2002); however, it significantly complicates the notation
and analysis. Since degree distribution effects have been well studied, here we put
them aside and focus on other factors.

We will use the first three greek letters as variables to denote either of the
two strategies: ˛; ˇ;  2 fx; yg. Let p˛ denote the proportion of agents in the
population playing strategy ˛. Let p˛ˇ denote the proportion of connected ordered
pairs of agents in the network with the first agent playing ˛ and the second agent
playing ˇ. Because we use ordered pairs, pxy D pyx , and p˛˛ is even. Let
p˛jˇ denote the probability that a random neighbor of an agent playing strategy
ˇ is playing strategy ˛. Note that the following relationships hold among these
variables:

px C py D 1 (1)

pxx C 2pxy C pyy D 1 (2)

pxj˛ C pyj˛ D 1 (3)

p˛ˇ D p˛jˇpˇ : (4)

The last equation follows from Baye’s rule.
At each time step an agent is chosen uniformly at random to update his strategy.

We assume that agents are myopic and only attempt to maximize their next period
payoffs. Thus, because only one agent updates at a time, it is rational for the agent
to choose the best response to the play of his neighbors in the previous period.
Since payoffs are determined entirely by the number of neighbors playing x, we
can define the best response function, BR W f0; : : : ; ng ! fx; yg so that BR.kx/ is
the best response for an agent with kx neighbors playing x. When the payoffs to
both strategies are equal, we arbitrarily designate x as the best response.

In a given time step only one agent updates her strategy, so if px changes it
increases or decreases by 1=N . The probability that px increases equals the proba-
bility that the agent selected to update his strategy is currently playing y, py , times
the probability that the best response for that agent is x, P Œkx 2 BR�1.x/�. We
need to calculate the probability that a random agent playing y has kx neighbors
playing x. Let i be the agent chosen to update her strategy and suppose that i is
playing strategy y. Then the probability that a random neighbor of i is playing x
is pxjy , and the probability that a random neighbor of i plays y is pyjy . If (con-
ditional on i playing y) the strategies of i ’s neighbors are independent then the
probability that i has kx neighbors playing x and ky D k � kx neighbors playing
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y is
kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
: (5)

In general i ’s neighbors will not be (conditionally) independent. In empirical
social networks, two individuals with a common friend are much more likely to be
friends with each other than two randomly chosen individuals (Newman and Park,
2003). This feature, known as clustering or transitivity (Jackson, 2008), implies
that often the state of two neighbors of a given node will affect one another di-
rectly. Thus, calculating the probability that i has kx neighbors playing x and ky
neighbors playing y requires knowing the probability of larger configurations such
as pxjyx – the probability that an agent plays x given that they neighbor an agent
playing y that has another neighbor playing x. To keep track of these probabilities
requires tracking the frequency of triple configurations in the network, which in
turn requires knowing the frequency of quadruples and so on. Rather than continue
this expansion, we stop here and make the assumption that the agents behave as
if the actions of their neighbors are independent conditional on their own actions.
Thus, p˛jˇ is simply p˛jˇ . We call this the conditionally independent neighbors
(CIN) assumption.

If the network is a tree, this is not an assumption, but instead follows from the
fact that the only path between two neighbors of an agent i goes through i . The
assumption is also approximately true in large Erdös-Rényi graphs, because these
graphs have low clustering (Newman, 2010). In general, however, this will not be
the case. Nevertheless, the CIN assumption has proven to lead to highly accurate
approximations in other models, even in clustered networks (Morris, 1997; New-
man, 2010). Under this assumption, equation (5) gives the probability that an agent
playing y has kx neighbors playing x and ky neighbors playing y.

The probability that px decreases equals the probability that the agent selected
to update her strategy is currently playing x, px , times the probability that the best
response for that agent is y, P Œkx 2 BR�1.y/�. The probability that a random
agent playing x has kx neighbors playing x and ky neighbors playing y is

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
: (6)

Thus, the net rate of change for px is

Ppx D
X

BR�1.x/

py

N

kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
�

X
BR�1.y/

px

N

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
: (7)

Equation (7) does not fully specify the game dynamics because the right hand
side has the terms p˛jˇ , which by equation (4) depend on the pair frequencies p˛ˇ .
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We can write down an equation describing the rate of change of the pairs p˛ˇ
in the same way that we did for the singletons px . The identities in equations (1)
through (4) imply that it is sufficient to consider any one of the four pair types.
Consider the xx pairs. Let i be the agent randomly selected to update her strategy.
If i is playing strategy y and has kx neighbors playing strategy x, where kx 2
BR�1.x/, then pxx increases by 2kx

kN
(there are kN total pairs and the change

from playing y to x creates 2kx xx pairs since pairs are counted in both directions).
Making use of the CIN assumption, the probability that a randomly chosen agent is
of type y and has kx neighbors playing x equals the probability that a random agent
plays y times the probability that an agent playing y has kx neighbors playing x:

py
kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
: (8)

Thus, the rate of increase of pxx is

2kx

kN
py

kŠ

kxŠky
p
kx

xjy
p
ky

yjy
: (9)

A similar calculation gives the rate of decrease of pxx leading to the net rate of
change

Ppxx D
X

BR�1.x/

2kx

kN
py

kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
�

X
BR�1.y/

2kx

kN
px

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
: (10)

Equations (7) and (10) completely describe the strategy dynamics of the game.

4 Strategic Complements and Substitutes

In this section we examine two specific classes of games that have also been consid-
ered in the network games framework of Galeotti et al. (2010): games of strategic
complements and strategic substitutes.

4.1 Strategic Complements

Following Galeotti et al. (2010), we say that the payoffs exhibit strategic comple-
ments if

�x.kx/ � �y.kx/ � �x.k
0
x/ � �y.k

0
x/ (11)

for any kx and k0x with kx � k0x . In other words, as the number of neighbors
playing x increases, the change in benefits to playing x exceeds the change in
benefits to playing y.
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4.1.1 Example: Standards competition with positive externalities

Games of strategic complements provide a simple model of agents choosing be-
tween two standards with positive externalities. For example, suppose the popu-
lation of agents represents the population of economists in the United States and
each of the two strategies corresponds to the choice of a statistical software pack-
age. Links join economists who collaborate with one another. Economists can
only use one software package at a time, and because they share files with their
collaborators, the benefits to using a particular package increase with the number
of colleagues that use the software. Specifically, we might have

�x.kx/ D f .kx/ � cx (12)

and
�y.kx/ D f .k � kx/ � cy ; (13)

where cx and cy are the costs of using x and y, respectively, and f is a non-
decreasing function capturing the increasing benefits of using a package used by
your collaborators.

4.1.2 Dynamics with strategic complements

In games of strategic complements, the best response function follows a threshold
rule: if kx � � play x, if kx < � play y.1 Equations (7) and (10) reduce to

Ppx D

kX
kxD�

py

N

kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
�

��1X
kxD0

px

N

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
; (14)

and

Ppxx D

kX
kxD�

2kx

kN
py

kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
�

��1X
kxD0

2kx

kN
px

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
: (15)

For a given set of initial conditions, equations (14) and (15) can be numeri-
cally integrated to give the predicted evolution of play in the population over time.
For example, Figure 1 plots the fraction of agents playing strategy x over time
in a Bernoulli random network (Erdös and Rényi, 1960) with 1000 nodes and tie
probability .01 (k � 10). The lines show results from numerical solutions to the
friendship-based model specified by equations (14) and (15) for a range of initial

1Here we assume that either the exact threshold is a non-integer, or that ties are always broken by
playing x.
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Figure 1: The friendship-based model for a game of strategic complements under
a range of initial conditions.

conditions.2 The best response threshold for playing strategy x is � D 4. In other
words, x is the best response for any agent with four or more neighbors playing x.

In this example, depicted in Figure 1, there is a critical threshold of initial strat-
egy x players required in order for strategy x to diffuse throughout the population.
This threshold is analogous to the “epidemic threshold” in compartmental models
of disease spread.

4.2 Strategic Substitutes

Galeotti et al. (2010) also consider games of strategic substitutes, which are partic-
ularly interesting for understanding the provision of public goods. In many cases
it may only be necessary that the public good be provided locally. For example, in
the case of information provision if one person in our network neighborhood does
the work of gathering and disseminating important information, then there is no
need for us to duplicate their effort. The payoff inequalities for games of strategic
substitutes follow the opposite relationship as for games of strategic complements

2Numerical solutions to the friendship-based differential equations were obtained using Mathe-
matica (Wolfram Research, Inc., 2008).

8



0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

Time

Fr
ac

tio
n 

of
 A

ge
nt

s P
la

yi
ng

 x

Figure 2: The friendship-based model for a game of strategic substitutes under a
range of initial conditions.

studied in the previous section:

�x.kx/ � �y.kx/ � �x.k
0
x/ � �y.k

0
x/ (16)

for any kx and k0x with kx � k0x .

4.2.1 Example: Best shot public goods game

For example, consider the best shot public goods game described by Galeotti et
al. (2010). Playing strategy x corresponds to providing a public good at a cost
0 < cx < 1 and strategy y corresponds to doing nothing. Payoffs are

�x.kx/ D 1 � cx (17)

and

�y.kx/ D

(
1 kx � 1

0 otherwise
: (18)

4.2.2 Dynamics with strategic substitutes

With strategic substitutes the best response function again satisfies a threshold rule,
but in this case the inequality is reversed: if kx � � play x, if kx > � play y. The
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analogous versions of equations (14) and (15) are:

Ppx D

�X
kxD0

py

N

kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
�

kX
kxD�C1

px

N

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
; (19)

and

Ppxx D

�X
kxD0

2kx

kN
py

kŠ

kxŠkyŠ
p
kx

xjy
p
ky

yjy
�

kX
kxD�C1

2kx

kN
px

kŠ

kxŠkyŠ
p
kx

xjx
p
ky

yjx
: (20)

As with strategic complements, equations (19) and (20) can be numerically
integrated to determine the diffusion pattern. Figure 2 plots the fraction of strategy
x players over time for a game of strategic substitutes with � D 4 for a range of
initial conditions. Unlike the strategic complements case, with strategic substitutes
the long run outcome is the same regardless of the initial conditions.

5 Local Correlation

Besides the diffusion curve, the friendship-based model provides additional infor-
mation about the correlation in neighbors behavior that is unavailable in a mean-
field analysis. For example, Figure 3 plots the conditional probability pxjx that
a given neighbor of an agent playing x is also playing x in the friendship-based
model for strategic substitutes (solid red) and strategic complements (solid blue)
(� D 4 in both cases).

For comparison, we also examine the analogous mean-field model.3 Since the
mean-field model assumes that neighboring agents’ strategies are independent, px
is the best estimate for pxjx available. The dashed lines in Figure 3 display the
predicted fraction of agents playing strategy x from the mean-field model.

In the game of strategic substitutes (red), the mean-field model predicts that
any given agent will play strategy x with probability .465, and regardless of her
strategy, any neighbor of a given agent will also play x with probability .465. The

3In this model, regardless of their own play, agents assume that the behavior of their neighbors
equals the average behavior in the population. Thus, pxjy D pxjx D px and pyjy D pyjx D py .
Equation (7) becomes:

Ppx D
X

BR�1.x/

py

N

kŠ

kx Šky Š
p
kx
x p

ky
y �

X
BR�1.y/

px

N

kŠ

kx Šky Š
p
kx
x p

ky
y : (21)

This is a closed differential equation, so there is no need to formulate the analog of equation (10).
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Figure 3: The conditional probability pxjx from the friendship-based model (solid
lines), and the fraction of agents playing strategy x from a mean-field model
(dashed lines). The blue lines are for a game of strategic complements and the
red lines are for a game of strategic substitutes.
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probability that an agent playing x has more than four of her neighbors playing x
is

10X
kxD5

10Š

kxŠ.10 � kx/Š
:465kx .1 � :465/10�kx D :534: (22)

Thus, more than half of the agents playing x would be better off playing y. If we
think of playing x as providing a public good, then the good is over provided in the
mean-field model.

As the figure shows, the friendship-based model predicts a dissociative rela-
tionship in neighboring agents’ strategies (solid red). The probability that a ran-
dom agent plays x is .473, but the probability that the neighbor of an agent playing
x also plays x is only .230. The probability that an agent playing x has more than
four neighbors playing x is only

10X
kxD5

10Š

kxŠ.10 � kx/Š
:230kx .1 � :230/10�kx D :057: (23)

Agents in the friendship-based model fare better because they take their own be-
havior into account when calculating the expected behavior of their neighbors. For
example, consider the case of information provision. If I have provided informa-
tion to my friends in the past, then I know that in the future my friends are less
likely to seek out information because they may count on free riding off of me.
Therefore, I should be more likely to continue to provide information because I
know that my friends are unlikely to provide it.

With strategic complements (blue lines), players coordinate locally. Ultimately
the mean-field model and the friendship-based model make similar predictions:
both models predict that nearly all of the agents play x and therefore the probability
that a neighbor of an agent playing x also plays x approaches one. However, the
friendship-based model results in much more rapid local coordination.

6 Dependence on Parameters

We now examine how agents’ strategies depend on the model parameters. In par-
ticular, we examine how strategies depend on the number of neighbors of each
agent, k, and the threshold for taking action x, � .

Several studies have demonstrated that average degree shapes behavior in net-
works. Ohtsuki et al. (2006) show that when the average degree is sufficiently high,
cooperation can be an evolutionary stable strategy in a prisoner’s dilemma game.
Jackson and Rogers (2007) and López-Pintado (2008) show that increasing degree
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increases diffusion when a behavior spreads through a network by contact, as in
models of disease spread. Similarly, Jackson and Yariv (2007) prove that increas-
ing degree increases diffusion in a threshold model. Lamberson (2010) demon-
strates that in a model of social learning, the effect of changes in degree depends
on agents’ prior beliefs and the payoffs to using a new technology.

Increasing an agent’s degree increases the expected number of neighbors of
that agent playing x. If the best response threshold, � , remains constant, then
this increases the likelihood that a particular agent has sufficiently many neighbors
playing x to make playing y a best response in a game of strategic substitutes.
Therefore, increasing k tends to decrease the fraction of agents playing x with
strategic substitutes. Conversely, with strategic complements increasing degree in-
creases the likelihood that an agent has sufficiently many neighbors playing x to
making playing x the best response. Therefore, for a fixed � increasing degree in a
game of strategic complements increases the fraction of agents playing x (i.e. low-
ers the epidemic threshold). Numerical solutions support these arguments. Similar
arguments show that increasing � increases the play of x with strategic substitutes
and raises the epidemic threshold for x under strategic complements.

7 Clustering

Up to this point we have always made the conditionally independent neighbors
assumption; however, many empirical social networks exhibit significant clustering
(Newman and Park, 2003; Watts, 2004), casting doubt on this assumption. In this
section we describe a refinement to the friendship-based game that incorporates
clustering. We measure clustering using the well-known clustering coefficient:

C D
.number of closed paths of length two/
.number of paths of length two/

(24)

(p. 199 Newman, 2010). The clustering coefficient captures the probability that
any two neighbors of a given node are themselves neighbors.

When C is non-zero, we expect that some of the neighboring nodes are neigh-
bors of each other, and thus their strategies are not independent. Consider three
nodes, a central node i with two neighbors, j and k. Let p˛jˇ denote the proba-
bility that j uses strategy ˛ when i and k play strategies ˇ and  , respectively. We
can split this probability into two components, the probability when j and k are
connected forming a closed triangle, p5

˛jˇ
, and the probability when j and k are

not connected, p_
˛jˇ

. Then

p˛jˇ D Cp
5

˛jˇ
C .1 � C/p_˛jˇ : (25)
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The probability p˛jˇ is the easier of the two to deal with. Since in this case j and
k are not connected, we assume that their strategies are independent conditional
on the strategy of i , and thus p_

˛jˇ
D p˛jˇ . To estimate p5

˛jˇ
, we use a strategy

suggested by Morris (1997) (see also Rand, 1999). First we assume that

p
5

˛jˇ

p
5

˛j�

D

p_
˛jˇ

p_
˛j�

: (26)

The idea behind this assumption is that the strategy of i , given the strategies of j
and k, should not be affected much by whether or not j and k are also neighbors.
In the right hand side denominator, since j and k are not connected, we should
have p_

˛j�
D p˛j� D p˛: For the left hand side denominator, the probability that

j uses strategy ˛ given that j is connected to i using an unknown strategy and
k using strategy  is simply p˛j . Substituting into equation (26) we obtain the
approximation

p
5

˛jˇ
D
p˛jˇp˛j

p˛
: (27)

Finally, substituting back into equation (25) gives

p˛jˇ D C
p˛jˇp˛j

p˛
C .1 � C/p˛jˇ : (28)

To see how we incorporate this new conditional probability into the dynamic
equations (7) and (10), it helps to rewrite the equations slightly. We start with
equation (10) for Ppxx . Rather than thinking of randomly selecting a node to update,
we could randomly selected an edge and then select a node at one end of that edge
(since all nodes have the same degree, these are equivalent). The probability pxx
can only increase if we select the y end of either an xy edge or a yx edge, which
occurs with probability 1

2
.pxy C pyx/ D

1
2
.2pxy/ D pxy :

Call the selected agent i and the opposite end of the selected edge j . Agent
i will switch to playing x if kx 2 BR�1.x/. Since we already know that j is
playing x, the probability that i has exactly kx neighbors playing x is equal to the
probability that i has kx � 1 additional neighbors playing x. The probability that
any one of i ’s neighbors (besides j ) plays x is pxjyx . Now, rather than the CIN
assumption, we assume that i ’s neighbors are independent conditional on i and j ’s
strategies. Thus, the probability that i has kx neighbors playing x and ky D k�kx
neighbors playing y is

.k � 1/Š

.kx � 1/ŠkyŠ
p
kx�1
xjyx

p
ky

yjyx
: (29)
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Figure 4: The effect of clustering under strategic complements. Clustering: C D 1
blue, C D 0 red.

If i changes from y to x then pxx increases by 2=N . Performing a similar calcu-
lation for decreases in pxx we obtain

Ppxx D
X

BR�1.x/

2

N
pxy

.k � 1/Š

.kx � 1/ŠkyŠ
p
kx�1
xjyx

p
ky

yjyx
�

X
BR�1.y/

2

N
pxx

.k � 1/Š

.kx � 1/ŠkyŠ
p
kx�1
xjxx

p
ky

yjxx

(30)

D

X
BR�1.x/

2kx

kN
pxy

kŠ

kxŠkyŠ
p
kx�1
xjyx

p
ky

yjyx
�

X
BR�1.y/

2kx

kN
pxx

kŠ

kxŠkyŠ
p
kx�1
xjxx

p
ky

yjxx
:

(31)

Under the CIN assumption this equation is equivalent to (10). To see this, note that
under CIN p˛jˇ is replaced by p˛jˇ giving

Ppxx D
X

BR�1.x/

2kx

kN
pxy

kŠ

kxŠkyŠ
p
kx�1
xjy

p
ky

yjy
�

X
BR�1.y/

2kx

kN
pxx

kŠ

kxŠkyŠ
p
kx�1
xjx

p
ky

yjx
:

(32)
Substituting pxy D pxjypy and pxx D pxjxpx , we recover (10).

Now, instead of replacing p˛jˇ by p˛jˇ , we use (28) for p˛jˇ in equation
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Figure 5: The effect of clustering under strategic substitutes. Clustering: C D 1

blue, C D 0 red.

(31). A similar argument applies to Ppx giving

Ppx D
X

BR�1.x/

1

N
pxy

kŠ

kxŠkyŠ
p
kx�1
xjyx

p
ky

yjyx
�

X
BR�1.y/

1

N
pxx

kŠ

kxŠkyŠ
p
kx�1
xjxx

p
ky

yjxx
;

(33)
where again (28) is used for the p˛jˇ terms. When C D 0, we obtain the same
equations as in the original friendship-based model.

Figure 4 depicts the effect of clustering under strategic complements. Initially,
clustering speeds the spread of strategy x. However, as time passes, strategy x
spreads more slowly in the clustered network than the non-clustered network.

Figure 5 depicts the effect of clustering under strategic substitutes. When the
network is highly clustered, more agents play strategy x. In the case of public
goods provision, this means that more agents have to play the role of the public
good provider in a highly clustered network than in a non-clustered network.

8 Conclusion

Local correlation is likely to arise in many empirical situations where individu-
als’ behavior is influenced by that of their social contacts. This paper develops a
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framework that allows for local correlation in players’ strategies. The framework
not only provides a more realistic model of many empirical situations, but also
provides predictions about local correlation that have been unavailable in previous
models. For example, we find that agents’ strategies tend to be locally associa-
tive in games of strategic substitutes and locally dissociative in games of strategic
complements. We also extend the framework to account for network clustering.

Several simplifying assumptions are made to make the analysis more tractable.
In particular, we have only considered binary action games and we have assumed
that all agents have the same degree. Examining richer action spaces and general
degree distributions within the friendship-based framework would be interesting
directions for future work.
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