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ABSTRACT: We investigate the effect of climate change on population
growth in 18th and 19th century Iceland. We find that annual temperat-
ure changes help determine the population growth rate in pre-industrial
Iceland: a year 1◦C cooler than average drives down population growth
rates by 0.57% in each of the next two years, for a total effect of 1.14%.
We also find that 18th and 19th century Icelanders adapt to prolonged
changes in climate: these adaptations take about 20 years and reduce
the short run effect of annual change in temperature by about 60%.
Finally, we find that a 1◦C sustained decrease in temperature decreases
the steady state population by 10% to 26%.
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1. Introduction

We analyze time series describing climate and population in 18th and 19th century Iceland. We
investigate the impact of climate on population growth rates and the ability of 18th and 19th
century Icelanders to adapt to changes in climate.

Our analysis rests on primarily on two types of data. The first is annual population data dating
back to 1735. The second is imputed annual temperature data dating back to the late 1600’s.
We construct these data from measured temperature data and annual records of the ratio of the
concentration of Oxygen-18 to Oxygen-16 in ice core strata from nearby Greenland. The resulting
long time series of population and annual temperature data allow an explicit analysis of short run
and long run responses to climate change. In addition, we are able to check whether a short run
climate shock has a different effect when it follows a cold history than when it follows a warm
history. This gives us a direct and formal statistical test of a commonsense notion of ‘adaptation’.
By repeating this test for different definitions of ‘shock’ and ‘history’, we trace out the rate of
adaptation and the time-frame over which it occurs.

We find that annual temperature changes help determine the population growth rate in pre-
industrial Iceland: a year 1◦C cooler than average drives down population growth rates by 0.57%
in each of the next two years, for a total effect of 1.14%. We also find that 18th and 19th century
Icelanders adapt to prolonged changes in climate: these adaptations take about 20 years and reduce
the short run effect of annual change in temperature by about 60%. Finally, we find that a 1◦C
sustained decrease in temperature decreases the steady state population by 10% to 26%.

Back of the envelope calculations suggest that about 400 million people live in countries where
per capita income is at or below late 19th century Iceland’s. We currently have little basis for
anticipating the effects that global warming will have on these populations. In particular, we
have little basis for estimating the size or time path of climate induced population changes from
mortality or migration, nor the ultimate ability of these population to adapt to climate change.
Given the likelihood of continued warming, these are policy questions of first order importance.
To the extent that poor contemporary populations respond to adverse changes in climate like 18th
and 19th century Icelanders, our results inform these policy questions.

2. Literature

Much previous research on human response to climate change can be roughly grouped into three
classes. The first examines the relationship between cross-sectional variation in climate and an out-
come of interest. For example Mendelsohn, Nordhaus, and Shaw (1994) examines the relationship
between agricultural land prices and climate using cross-sectional data. Reductively, they compare
the price of a farm in the South with one in the North and attribute the difference to climate.
The second class of research examines short run variation in weather to infer response to climate
change. For example, Deschenes, Greenstone, and Guryan (2009) looks at the relationship between
daily weather data and birth weight to estimate the effects of climate change on birth weight. By
construction, neither methodology reveals the rate at which people respond and adapt to climate
change. The third class of research examines relationships between long time series of climate
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and the outcome variable of interest. For example, Campbell (2009) argues that changes in climate
caused the onset of plagues in medieval Europe, but does not examine adaptation. Galloway
(1986), Zhang, Brecke, Lee, He, and Zhang (2007) and Polyak and Asmerom (1986) each examine
long time series of low frequency climate data and various outcome variables, but do not examine
the rate at which people respond or adapt to changes in climate.

Perhaps the nearest relatives to our research are Dell, Jones, and Olken (2008), Hornbeck (2009),
and Olmstead and Rhode (2010), each of which is explicitly concerned with adaptation to climate
change. Dell et al. (2008) consider a panel of countries for which they record 50 years of annual
GDP and climate data. Like us, they are explicitly interested in the rate at which economies
respond to climate changes and the extent of adaptation. However, to measure adaptation they
exploit cross-sectional variation in their sample: they compare long differences in growth rates
and climate across-countries. While our finding of a large response to climate change in a poor
country is broadly consistent with their results, our investigation of adaptation relies solely on time
series variation in our data. Olmstead and Rhode (2010) examine the extension of US agriculture
into progressively less favorable climates from 1839 to 2002. Like Mendelsohn et al. (1994) they
exploit only cross-sectional variation in climate, but by following locations over time are able to
make inferences about the rate at which improvements in technology allow farmers to overcome
adverse conditions. Where Olmstead and Rhode (2010) examine the extent to which technological
improvement can compensate for changes to climate, (as we argue below) we investigate the extent
of adaptation in an environment where technology is more nearly constant. This relieves us of the
concern that technological progress is affecting outcomes through some channel other than by
facilitating adaptation to climate change. Finally, Hornbeck (2009) examines the evolution of US

agriculture in the aftermath of the dust bowl. These are essentially the same questions we address,
however, Hornbeck (2009) looks at the implications of a one time event, the dust bowl, while
we look at the implications of ongoing changes in climate. Like Hornbeck (2009), we find that
population changes are an important margin of adjustment to environmental change.

3. Data

To learn about short-run responses and long-run adaptations to climate change we require data
satisfying three conditions. They must describe a period long enough to observe climate change.
They must be at a high enough frequency to describe population responses. They must allow us to
distinguish the relationship between climate and population from confounding trends, economic
growth and migration in particular.

During the 18th and 19th century migration to and from Iceland was low, and government
policy actively discouraged in-migration (Karlsson, 2000). Statistics Iceland (2010) tracks net
migration from 1801 onward. Over the period 1801-1860, when the population level was about
50,000, mean net migration was -17 people/year. Moreover, Iceland was remarkably insulated
from technical progress (Eggertsson, 1994). During the 18th and early 19th century, there was very
little manufacturing. Roads allowing wheeled carts were not built until nearly 1900 (Karlsson,
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2000). In 1801, Reykjavik had a population of only 307 and only about 10% of calories consumed
in 18th century Iceland were derived from fish (Karlsson, 2000).

In sum, 18th and 19th century Iceland was overwhelmingly employed in raising livestock and
the hay to feed them, and was as insulated from migration and technological progress as can
be hoped. Data describing Icelandic climate and population during this period should reveal a
relationship between climate and population (if one exists), and we can reasonably expect to dis-
tinguish this relationship from population trends caused by technological progress and migration.

A. Population Data

Estimates of Iceland’s population are available back to the middle ages (see e.g. Steffensen (1963)).
However, prior to 1703 these estimates are speculative. We restrict attention to the population data
available from the annual surveys provided by Statistics Iceland (2010) from 1734 to the present.1

Most of our estimations rely on the period ending in 1860. We have three reasons for choosing
this terminal date. First, the top panel of figure 1 shows that the rapid 20th century increase in
Iceland’s population level was only beginning at this time. Second, the middle panel of figure
1 shows no trend in the population growth rate during this period. Third, in results reported
below, the estimated effect of climate on the population growth rate is robust to the inclusion of a
quadratic in time and to changing the end of the study period to 1820 or 1880. We conclude that
for a study period ending in 1860 we are unlikely to confound the effects of latent technological
change with the effect of climate on population.

We note that Iceland was subject to two catastrophic decreases in population during our study
period. These events are clearly visible in the top two panels of figure 1. The earlier of the two
occurred from 1756 to 1758 and was the result of a volcanic eruption which poisoned pasture land
and led to famine. The second, which occurred from 1758 to 1786 was the result of plague (Karls-
son, 2000). Testing indicates that the precise choice of which years to control for is not important,
but controlling for these two catastrophes does improve the accuracy of our estimations. Thus,
throughout the paper, our population data consists of the Statistics Iceland annual population
survey results from 1734–1860, excluding (i.e., adding dummy variables to control for) the years
1756–1758 and 1784–1786.

B. Temperature Data

There are five Icelandic weather stations which record temperatures from the late 1800’s on-
ward (Goddard Institute for Space Studies, 2010); Akureyri, Reykjavic, Stykkisholmur, Teigarhorn,
and Vestmannaeyja. The series from a sixth station, Grimsey, is less complete. The Vestmannaeyja
station is on a small lightly populated island off the southern coast of mainland Iceland and is not
well correlated with the others. Thus, we take the “true” Icelandic temperature to be the average of
the measured temperatures at the four weather stations, i.e. at Akureyri, Reykjavic, Stykkisholmur,
and Teigarhorn (figure 2).

1We ignore a single extensive survey conducted in 1703 because our econometric analysis requires consecutive years
of data.
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Figure 1. Iceland’s total population (top), annual percentage population change (center) and imputed mean
annual temperature in degrees Celsius (bottom). Excluded volcano-related periods delimited by dashed
green lines in the top two panels. All figures describe the period 1735 – 1860.

Our analysis requires temperature data pre-dating available measured temperatures. To over-
come this obstacle, we impute historical temperatures from heavy-oxygen delta ice core values,
δ18O. Heavy-oxygen delta ice core values measure fractional deviation of the ratio of the concen-
tration of Oxygen-18 to Oxygen-16 in ice core strata as compared to that in standard mean ocean
water. Since this isotope ratio varies systematically with temperature, and since ice core strata can
be accurately dated, ice core δ18O is widely used as a proxy for historical temperatures.2

Ice core data are not available within Iceland. However, there are four long-term ice core data
sets available from nearby Greenland; Crete, Millicent, Camp Century, and Dye2 (National Cli-
matic Data Center, 2010). To construct our measure of historical temperature we predict measured
temperature as a function of contemporaneous and lagged δ18O values from the four ice core series.
We then use these estimates to impute temperatures to 18th and 19th century Iceland using the
much longer ice core time series.

Table 1 presents a few of these estimations. In each of these regressions, the dependent variable
is the annual average of measured temperatures at the Akureyri, Reykjavic, Stykkisholmur, and

2We note that while many types of proxies are available (see e.g. Thompson, Davis, and Mosley-Thompson (1994),
Bruckner (2010), and the references therein), the most reliable reconstructions are based upon ice core data.
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Figure 2. Map of Iceland and Greenland. Circles indicate the locations of the Akureyri, Reykjavic,
Stykkisholmur, and Teigarhorn weather stations. The Crete ice core location is indicated by a diamond.

Table 1. Predicted temperature regressions.
(1) (2) (3) (4) (5)

Crete δ18O 0.239*** 4.255* 0.279*** 0.319***
0.07 2.282 -0.09 0.07

(Crete δ18O)2 0.06*
0.03

Millicent δ18O 0.195*** 0.06
0.06 0.07

Constant 12.25 81.09** 9.879*** 15.37*** 15.02***
2.29 39.16 1.86 2.42 2.38

N 74 74 67 67 67
R2 0.15 0.19 0.13 0.25 0.24

Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1.

Teigarhorn weather stations. Column 1 presents the linear Crete specification. This regression
includes only a linear term in the Crete δ18O values and a constant. Column 2 presents the
quadratic Crete specification. This regression adds a quadratic term in the Crete δ18O values.
We see that the R2 increases slightly, but the precision with which we estimate coefficients is
lower. Column 3 presents the linear Millicent specification. This regression predicts measured
temperature as a linear function of the Millicent δ18O values. This regression is similar to linear
Crete, but has a marginally lower R2. Note that the Millicent icecore ends in 1967 rather than 1974
for Crete. Thus, the linear Millicent regression of column 3 is based on 67 annual observations years
as opposed to 74 for linear and quadratic Crete. Column four conducts a ‘horse race’ between the
Millicent and Crete icecores. We see that the Crete δ18O values are statistically significant and the
Millicent values are not. From this, together with the higher R2 in linear Crete than linear Millicent,
we conclude that Crete is a better predictor of measured temperature than is Millicent.

5



Figure 3. Observed and predicted five year moving average temperatures for 20th century Iceland, includ-
ing average measured temperature (thick solid line), linear prediction from Crete ice core as in (1) (medium
dotted), quadratic prediction from Crete ice core (solid grey), and linear prediction from Millicent ice core
(dashed grey).

The horse race specification of column 4 of table 3 has a higher R2 than the preceding specifica-
tions. This suggests that we consider using both series to construct our historical temperature. In
fact, in column 5 we restrict the specification of column 1 to the slightly smaller sample of columns
4 and 5. We see that, on this sample, Crete has more explanatory power than on the larger sample.
The higher R2 in the shorter sample reflects the fact that the longer measured temperature sequence
is more was variable than is the shorter sequence.3

Our preferred regression in table 3 is column 1.4 This regression is able to exploit the larger
sample, is based on coefficients that are precisely estimated, and are fairly stable across the spe-
cifications reported in columns 1, 4 and 5. The bottom panel of figure 1 plots this temperature
series over the course of our 1735-1860 study period.

With this said, the case for preferring linear Crete imputed temperatures to linear Millicent or
quadratic Crete is weak. Indeed, in figure 3 we plot all three predicted temperature series and
the underlying measured temperature from about 1900 on. They are quite similar. Given this,
while most of our analysis is based on linear Create imputed temperature, we will check that our
findings are robust to using the linear Millicent and Quadratic Crete imputations.

3In addition to the regressions reported in table 3 we also experimented with the Dye2 and Century ice core data,
and with lagged and higher order terms of the various icecores. These variables did not have a robust ability to predict
measured temperature and we do not report these results.

4Our preferred temperature proxy actually uses more precision than is reported in table 3. In particular, our preferred
temperature proxy is the best fitted linear transformation:

temperature = 12.25068 + 0.2389029 ∗ (Creteδ18O) . (1)
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4. Notation and estimation strategy

We begin with notation to describe population change, weather and climate.
Our outcome variable is annual percentage population change,

(∆pop)t :=
popt+1 − popt

popt
× 100% , (2)

where popt is thousands of total population recorded on January 1 in year t. As already noted, we
exclude six specific years with large volcano and plague related population decreases.

We denote the current year’s estimated average temperature by tempt, the previous year’s
temperature by tempt−1, and kth lag of temperature by tempt−k. We also investigate the effects
of moving averages of previous years’ temperatures, e.g., MA2t := 1

2 (tempt−1 + tempt−2), or more
generally,

MAjt :=
1
j
(tempt−1 + . . . + tempt−j) .

We also consider lagged moving average temperatures:

MAjt−i :=
1
j
(tempt−i−1 + . . . + tempt−i−j) .

To ease exposition, we “demean” all temperature variables by subtracting off their mean over the
entire extended time range 1730–1880.

We estimate variants of the following equation,

(∆pop)t = A0 + f (tempt,..,tempt−50) + Controls + εt, (3)

where f is a function of temperature variables that varies across specifications and may include
lagged values, moving averages, lagged moving averages, or interaction terms.

To distinguish the effects of climate on population from the effect of unobserved confounding
trends, our estimations include time and its square, time2 as control variables, where time is defined
as year− 1734. To allow for effects of current population on population growth (e.g. due to resource
constraints), we also control for popt. To account for unmeasured slowly-changing latent variables,
e.g., a high percentage of women of child-bearing age, which create similarities between ∆pop for
adjacent years, we control for the previous year’s percentage growth, (∆pop)t−1.

By estimating equation (3) we hope to learn the nature of f , the function that describes the
relationship between climate and population growth rates. Before turning to our estimates, we
discuss the potential problems faced by such an estimation.

Time series regressions based on series which exhibit unit roots require different techniques than
those we use here. To test for unit roots, we run the Dickey-Fuller test on the time series (∆pop)t.
This test rejects the unit root null hypothesis at the 0.01 level for the standard Dickey-Fuller test,
and at the 0.015 level for the extended Dickey-Fuller test. We conclude that (∆pop)t does not have
a unit root and hence standard regression analysis is appropriate. It follows that we also do not
need to consider the possibility of co-integration.
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Figure 4. Auto-correlation function (ACF) for regression residuals for table 3 column 4, either omitting (top)
or including (bottom) the quantity (∆pop)t−1 as an explanatory variable.

Our regressions include many explanatory variables which are serially correlated, e.g. MA10t

and MA10t−1 have strong dependence. This alone does not affect OLS coefficient estimates. How-
ever, serial correlation of regressors suggests the possibility that the regression’s residual errors are
serially correlated. If true this affects the calculation of standard errors.

One way to reduce serial correlation of residuals is to include as an explanatory variable the
previous year’s outcome variable, i.e. (∆pop)t−1, as we do in many of our regressions.

Figure 4 presents our calculation of the auto-correlation function (ACF) for the residual values
of for table 3 column 4 either omitting (top) or including (bottom) the (∆pop)t−1 explanatory
variable. As expected, the serial correlation is reduced with the inclusion of (∆pop)t−1, but the
serial correlation is small in either case, except that the lag one autocorrelation is significantly
positive when (∆pop)t−1 is not included as a regressor.

While figure 4 suggests that auto-correlation is not important to our analysis, provided we
control for lagged (∆pop)t−1, since correct standard errors are crucial to our investigation, we
considered alternative formulae for regression standard errors. In particular, we experimented
with robust standard errors, Newey-West corrected errors, and Prais-Orcutt models. Since OLS

with Newey-West corrected errors has better asymptotic properties than the others, we prefer this
specification, and tables 2 and 3 present only Newey-West corrected errors.5

5Newey-West standard errors require choosing the truncation parameter m, corresponding to the number of terms to
sum in the autocovariance series. For this, we used the general default rule (e.g. Stock and Watson (2007), eqn (15.17)),

m = round(0.75 ∗ samplesize1/3)
.
= round(0.75 ∗ 1251/3) = round(3.75) = 4 .
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Table 2. Five regressions (one per column) for predicting (∆pop)t.
(1) (2) (3) (4) (5)

tempt−1 0.816** 0.654
0.398 0.457

tempt−2 0.473
0.316

tempt−3 -0.134
0.367

tempt−4 -0.301
0.351

tempt−5 -0.0264
0.330

tempt−6 0.00773
0.307

MA2t 1.143***
0.359

MA5t 0.582
0.721

MA10t 1.172
0.971

time -0.0208* -0.0215* -0.0216** -0.0206* -0.0175
0.0108 0.0116 0.0108 0.0110 0.0118

time2 0.000253** 0.000258** 0.000258** 0.000253** 0.000226**
0.0000991 0.000108 0.000101 0.000102 0.000107

popt -0.0879*** -0.0877*** -0.0885*** -0.0906*** -0.0862***
0.0258 0.0276 0.0266 0.0252 0.0256

(∆pop)t−1 0.392*** 0.378*** 0.367*** 0.387*** 0.383***
0.0957 0.0984 0.0870 0.0999 0.104

constant 4.755*** 4.765*** 4.825*** 4.874*** 4.603***
1.300 1.394 1.328 1.264 1.323

Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1.

Consistent with the fact that there is little evidence of auto-correlation, robustness tests presen-
ted in the appendix show that the choice of error structure makes little difference to our overall
conclusions.

5. Short-Term Temperature Effects

In table 2 we present our first set of regression results. In these regressions we estimate equation (3)
using short run measures of climate. Our object is to understand the way that population growth
rates respond to these short run changes.

In table 2 column 1 we consider only the previous year’s temperature, tempt−1 which is statist-
ically significant (p < 0.05). However, combining the effects of the previous two years, by using
MA2t as in table 2 column 3 leads to an even more significant coefficient (p < 0.01) with value
1.143. This means that if the temperature increases by 1◦C for one year, then in each of the two
subsequent years the population growth rate will increase by 0.572%, for at total effect of 1.143%.
If we instead use MA5t or MA10t as in table 2 columns (4) and (5), then the regression coefficients
are not significantly different from zero. Taken together, regression results for MA2t, MA5t and
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Figure 5. Predicted effect on total population of a temperature increase of one degree Celsius in year 0 only,
assuming the growth rate is otherwise zero.

MA10t suggest that a one year warm shock drives up the population growth rate during the two
years following the shock, after which the effect attenuates.

Table 2 column 2 shows a regression in which each of the previous six years’ temperatures are
treated as separate explanatory variables. An F-test rejects the hypothesis that they are jointly
zero (p < 0.02), although none of the individual temperature variables is different from zero at
standard levels of significance. To interpret these point estimates consider a one year temperature
increase of 1◦C in year 0. Figure 5 plots the resulting path of population. Consistent with the other
results in table 2, figure 5 shows that, a one year temperature increase of 1◦C causes a two year
increase in the population growth rate which attenuates in the subsequent years.

From table 2 we also see that both time and time2 are statistically significant, reflecting common
trends not visible in figure 1. Interestingly, current population, popt, is also significant and neg-
ative. This confirms and quantifies our intuition that the population of Iceland is constrained by
its resource base. Finally, the previous year’s growth rate, (∆pop)t−1, is significant and positive,
reflecting latent factors which persist from year to year regardless of temperature.

In appendix table 4 we present variants of the regressions presented in column 1 of table 2.
These complementary results demonstrate that our estimate of the effect of climate in column 1
of table 2 is robust to specification and estimation technique. In appendix tables 5-8 we present
analogous estimates for columns 2 – 5 of table 2. These tables also confirm the robustness of our
findings.

A. Calculation of sustainable population levels

While the discussion above is concerned with the effect of climate on the growth rate of popula-
tion, our results also suggest a way to understand the effects of climate on Iceland’s steady state
population. To see this, suppose that temperature suddenly and persistently decreased by δ◦ C
and the population growth rate,(∆pop)t, remained constant. If nothing else changes then table 2
column 3 requires that population decrease so that 1.143 MA2t − 0.0885 popt remains constant.
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If we assume that the population is in equilibrium (i.e., that (∆pop)t ≡ 0), or otherwise returns
to the same value of (∆pop)t, then table 2 column 3 implies that the quantity

1.143 MA2t − 0.0885 popt

should be approximately constant. So, if the temperature suddenly and persistently decreased by
δ degrees Celsius, and the society reverted to equilibrium at this new temperature, then we would
have

1.143 prevtemp − 0.0885 prevpop = 1.143 newtemp − 0.0885 newpop

= 1.143 (prevtemp − δ)− 0.0885 newpop ,

from which it would follow that

newpop = 1 − δ
1.143
0.0885

= prevpop − 12.91525 δ ,

Since we are measuring population in thousands, this equation means that the resulting population
decrease would be 12,915 times the decrease in temperature. So, if δ = 1 (i.e. there is a one
degree temperature decrease), then this would cause a drop of about 13,000 people, which for
the population sizes we are considering in our data (i.e. around 50,000 people) represents about
26% of the population. Even if δ = 0.1, then this would cause a drop of about 1,300 people, still a
2.6% decrease even from just a 0.1 degree Celsius sustained temperature drop.

The calculation above estimates long run changes in population on the basis of responses to
short run variation in weather. Given that sustained changes in climate will likely induce more
adaptive responses than will short run variation in weather, we are probably overstating the effects
of climate on steady state population. With this in mind, we now investigate the effects of climate
over a longer time horizon.

6. Long-Term Adaptation to Climate Change

We would like to understand the extent to which 18th and 19th century Icelanders adapt to
persistent climate change. In particular, how effectively do 18th and 19th century Icelanders to
adapt to climate change, and how long does this adaptation take?

A. General adaptation

A natural conjecture is that ten or twenty years of unusually harsh climate impoverishes the
population and causes low growth or particular susceptibility to shocks in the years immediately
following. Conversely, ten or twenty years of mild climate would have the opposite effect.

To test for this sort of generalized adaptation (really maladaptation) we investigate the effect of
lagged long run moving averages of climate on current population growth rates. Table 3 columns
1 – 3 indicates that there is no statistically significant effect of long-term climate histories such as
MA20t−4 (nor MA10t−4 nor MA50t−4). Furthermore, table 3 columns 4 – 6 indicate that this non-
effect persists even once short-term temperatures (from MA2t) are separately taken into account.
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Table 3. Nine regressions (one per column) for predicting (∆pop)t.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MA2t 1.153*** 1.133*** 1.231*** 1.084*** 1.104*** 1.218***
0.355 0.353 0.350 0.323 0.298 0.356

MA10t−4 0.364 0.485 0.710
1.051 1.017 1.044

MA20t−4 -0.897 -0.208 -0.00492
1.590 1.572 1.544

MA50t−4 -1.127 3.465 3.259
5.186 5.356 5.272

MA2t × MA10t−4 7.690*
4.454

MA2t × MA20t−4 11.10*
5.906

MA2t × MA50t−4 5.372
14.20

time -0.0190 -0.0239* -0.0211* -0.0195 -0.0224* -0.0202* -0.0230* -0.0272** -0.0213*
0.0121 0.0128 0.0120 0.0119 0.0129 0.0111 0.0123 0.0133 0.0118

time2 0.000243** 0.000280** 0.000252** 0.000241** 0.000264** 0.000271*** 0.000267** 0.000302** 0.000281**
0.000109 0.000112 0.000103 0.000108 0.000114 0.000102 0.000110 0.000117 0.000109

popt -0.0900*** -0.0929*** -0.0894*** -0.0866*** -0.0889*** -0.0945*** -0.0917*** -0.0926*** -0.0965***
0.0249 0.0256 0.0268 0.0262 0.0272 0.0289 0.0264 0.0277 0.0302

(∆pop)t−1 0.394*** 0.393*** 0.394*** 0.364*** 0.367*** 0.370*** 0.359*** 0.358*** 0.365***
0.107 0.103 0.102 0.0881 0.0867 0.0883 0.0921 0.0891 0.0932

constant 4.781*** 5.052*** 4.843*** 4.687*** 4.864*** 4.946*** 5.033*** 5.182*** 5.075***
1.293 1.329 1.290 1.341 1.397 1.343 1.371 1.439 1.438

Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1.

The results in columns 1 – 6 of table 3 indicate that this sort of generalized adaptation, if it occurs
at all, has too small an effect to be measured in our sample.

In appendix table 9 we present variants of the regressions presented in column 1 of table 3.
These complementary results demonstrate that our estimate of the effect of climate in column 1
of table 3 is robust to specification and estimation technique. In appendix tables 10-14 we present
analogous estimates for columns 2 – 6 of table 3. These tables also confirm the robustness of the
results presented in table 3.

B. Specific adaptation

The preceding section asks whether prolonged climate change leads to generalized adaptations
that affect the population growth rate. We now ask whether long-term climate changes lead to
specific adaptations which affect the way the population responds to short term climate shocks.
That is, we would like to know whether the effect of a cold year is different if it follows a period of
harsh climate than if it follows a period of mild climate.

To investigate the possibility that the effect of a short run climate shock depends on the long run
climate history that precedes it, table 3 columns (7)–(9) include not only short-term temperature
shocks such as MA2t and long-term climate changes such as MA20t−4, but also interactions between
these two effects such as MA2t × MA20t−4. These interaction variables allow us to investigate
whether, for example, short-term temperature decreases have a larger negative effect during
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warm-climate periods (when the population is not well adapted to cold) than during cold-climate
periods (when the population has already adapted to the cold).

We note that this sort of specific adaptation is broadly consistent with the archeological record.
In particular, archeological evidence suggests that during cold periods Icelanders live in smaller
houses, live closer to their animals, and are smaller Karlsson (2000). Each of these adaptations
plausibly improves fitness under cold conditions and would probably occur over the course of a
generation.

Table 3 provides evidence of specific adaptation to climate. Table 3 column 7 shows that the
interaction variable MA2t × MA10t−4 has a somewhat significant (p < 0.1) positive regression
coefficient of 7.690. Table 3 column 8 shows that the interaction variable MA2t × MA20t−4 has
slightly larger coefficient of 11.10 with about the same level of significance. Table 3 column 9
shows that the interaction variable MA2t × MA50t−4, while positive, is smaller than the ten and
twenty year interaction terms and is not distinguishable from zero. This suggests that long run
adaptation to climate change does occur, that this adaptation is underway way after ten years and
continues for at least another ten years.

In appendix table 15 we present variants of the regressions presented in column 7 of table 3.
These complementary results demonstrate that our estimate of the effect of climate in column 1 of
table 3 is robust to specification and estimation technique. In appendix tables 16 and 17 we present
analogous estimates for columns 8 and 9 of table 3. These tables also confirm the robustness of the
results presented in table 3.

C. Magnitude of interaction effects

We now consider the magnitude of the effects of the interaction terms, i.e. the extent to which
the effects of short-term temperature shock are modified due to long-term climate change. To
investigate this, we imagine that we begin with the climate equal to its overall mean values during
our study years, so that the “demeaned” variables MA2 and MA20 both start equal to zero.

Suppose first that the short term temperature, MA2, suddenly increases by δ degrees. Then
according to table 3 column 8, ∆pop would correspondingly increase by the short-term shock
amount

ST(δ) = 1.104 δ .

If instead the overall climate persistently increased by ε degrees, so that both MA2 and MA20
each increased by ε, then ∆pop would correspondingly increase by the long-term climate-change
amount

LT(ε) = 1.104 ε − 0.00492 ε + 11.10 ε2 = 1.09908 ε + 11.10 ε2 .

Now suppose that these two effects both happened, i.e. that MA20 increased by ε while MA2
increased by δ + ε. Then ∆pop would correspondingly increase by the short-long combined
amount

SLT(δ,ε) = 1.104 (δ + ε)− 0.00492 ε + 11.10 ε(δ + ε) .

In this scenario, the amount of this increase in ∆pop which was due to the short-term temperature
shock would be SLT(δ,ε)− LT(ε).
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Hence, in this scenario, the fraction by which the effect of a short-term temperature shock has
been multiplied due to the long-term climate change can be measured by

Ratio(δ,ε) :=
SLT(δ,ε)− LT(ε)

ST(δ)
,

which simplifies to
Ratio(δ,ε) = 1 + 10.0543 ε , (4)

and in fact turns out not to depend on δ.
Thus, for long run climate change ε in the range ±0.1◦ C this ratio varies from about 0 to nearly

2. That is, long-run climate changes could do anything from completely remove the short-term
temperature shock effects (for climates about 0.1 degrees colder), to nearly double them (for
climates about 0.1 degrees warmer).

In fact the standard deviation of the observed values of MA20t in our sample is only about
0.06 degrees Celsius. This is the empirical variation on which the estimates are based and thus
is a reasonable value to use to evaluate the magnitude of the estimated interaction effect. For this
small value of δ, we find that Ratio(δ,0.06) = 1.603258. That is, the effect of short-term temperature
shocks increases by about 60% if climate persistently warms by just 0.06◦ C. On the other hand, if
the climate persistently cools by 0.06◦ C, Ratio(δ,− 0.06) = 0.396742, so that the effect of short-term
temperature shocks decreases by about 60%.6

In light of the evidence for adaptation, it probably makes sense to revise the estimate of the
effect of climate on steady state population from section 5A. The estimates in Table 2 do not allow
for long run adaptation to climate. On the basis of Table 3 column 8 and the discussion above, we
should expect such adaptation to reduce the effects of climate on population by about 60%. This
suggests that we expect a long run δ◦ C temperature decrease to lead to a decrease in steady state
population on the order of (1 − 0.6)× 26% or about 10%.

7. Conclusion

We investigate the effect of climate on population levels in pre-industrial Iceland. We find that
short-term temperature changes significantly affect the population growth rate. In particular, a
1◦ C decrease in temperature causes about 0.57% decrease in the population growth rate for the
two subsequent years, for a total effect of 1.14%. This effect appears to attenuate as the growth
rate returns to trend in subsequent years. We also quantify the extent to which 18th and 19th
century Icelanders adapt to long run climate change. In particular, the data suggest that long run
adaptation to climate takes about 20 years and reduces the effect of cold shocks by about 60%.
Our results also allow us to approximate the effect of permanent climate change on steady state
population levels. This approximation suggests that steady state population levels decrease by
10% to 26% for each 1◦ C of sustained adverse temperature change.

6The standard deviation of the observed values of MA2t in our sample is about 0.19 degrees Celsius. However, (4)
does not depend on δ.
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Using data on Iceland’s historical GDP from Jonsson (Amsterdam, 2004) (see Norges Han-
delshoyskole (2010)), and current and historical GDP from the Penn World Tables (Heston, Sum-
mers, and Aten, 2010), we estimate that Iceland’s per capita GDP in 1870 was about $1436 in 2005
US dollars. Again using the Penn World Tables (Heston et al., 2010), we find that 23 of the 190
countries covered in this data had per capita GDPs at or below this level in 2005. These countries
account for about 5% of the population covered by the Penn world table in 2005, nearly 400 million
people.

We currently have little basis for anticipating the effects that global warming will have on
these populations. However, if contemporary poor agricultural populations behave like their 18th
and 19th century Icelandic counterparts, then our results inform us about the rate and extent to
which they will adapt to global warming. In particular, our results suggest that adverse climate
change (which now refers to warming, not cooling) will have three effects on poor contemporary
populations. First, in the short run it will lead to a significant decrease in population growth rates.
Second, over the course of a generation, adaptation will offset about 60% of the short-run effects.
Finally, in the long run, we expect a 10-26% decrease in steady state populations.
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Appendix A. Appendix: Robustness tests for Tables 2 and 3

We now present various robustness tests for the regression results in tables 2 and 3. Each table
below corresponds to a single column of table 2 or 3. In each case, the column marked with an
asterisk repeats the result from table 2 or 3, while the remaining columns vary technical details
such as: how temperature is estimated; estimation technique; which lagged ∆pop variables are
included, and end year of the study period.

While the results are not identical in the different columns, usually they are fairly similar and
thus show that our broad conclusions are not sensitive to these various design choices.

Below, tempt is our usual estimated temperature of Iceland based on the best-fit linear function
of the Crete ice core delta, Milcentt is the estimated temperature based on the best-fit linear
function of the Millicent ice core delta, and qCretet is the estimated temperature based on the
best-fit quadratic function of the Crete ice core delta. For the moving averages, we use abbreviations
such as MA2(Mil) for those based on a linear function of the Millicent ice core delta, and MA2(qCr)
for those based on a quadratic function of the Crete ice core delta. Our start-year is always 1735,
while our end-year is usually 1860 but is occasionally 1820 or 1860, as indicated.
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Table 4. Robustness tests for table 2 column 1.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

tempt−1 0.865* 0.544* 0.897* 0.914* 0.590 0.816** 0.772** 0.766*
0.521 0.323 0.506 0.540 0.463 0.398 0.389 0.392

Milcentt−1 1.092***
0.339

qCretet−1 0.616
0.532

time -0.0209* -0.0257 0.0108 -0.0118 -0.0208* -0.0165 -0.0201* -0.0180 -0.0211
0.0126 0.0175 0.0161 0.00954 0.0108 0.0105 0.0119 0.0119 0.0131

time2 0.000254** 0.000332* -0.000151 0.000171* 0.000253** 0.000206** 0.000243** 0.000237** 0.000257**
0.000117 0.000168 0.000164 0.0000889 0.0000991 0.0000976 0.000110 0.000106 0.000119

popt -0.0787** -0.118** -0.113** -0.0759** -0.0879*** -0.0715*** -0.0840*** -0.0797*** -0.0789**
0.0333 0.0466 0.0482 0.0322 0.0258 0.0272 0.0300 0.0281 0.0331

(∆pop)t−1 0.392*** 0.479*** 0.508***
0.0957 0.133 0.132

(∆pop)t−2 -0.0999* -0.159***
0.0564 0.0508

(∆pop)t−3 0.0748
0.0529

constant 4.535*** 6.367*** 0.664*** 5.709** 4.244*** 4.755*** 3.897*** 4.538*** 4.478*** 4.540***
1.597 2.303 0.116 2.167 1.535 1.300 1.371 1.538 1.354 1.588

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

Table 5. Robustness tests for table 2 column 2.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

tempt−1 0.666 0.655** 0.701 0.775* 0.443 0.654 0.639 0.619 0.973*** 0.364
0.528 0.329 0.524 0.450 0.451 0.457 0.451 0.468 0.344 0.546

tempt−2 0.629** 0.638* 0.657*** 0.183 0.514** 0.473 0.429 0.455 0.657** 0.675**
0.248 0.324 0.248 0.323 0.235 0.316 0.357 0.411 0.321 0.282

tempt−3 0.212 0.219 0.198 0.0754 0.351 -0.134 -0.132 -0.0939 0.323 -0.125
0.384 0.335 0.407 0.396 0.326 0.367 0.386 0.392 0.342 0.381

tempt−4 -0.404 -0.438 -0.366 -0.499 -0.546* -0.301 -0.300 -0.339 0.462 -0.519
0.357 0.324 0.352 0.354 0.320 0.351 0.340 0.351 0.467 0.425

tempt−5 -0.119 -0.170 -0.0576 -0.107 -0.0570 -0.0264 -0.0322 -0.0343 -0.00916 -0.130
0.331 0.322 0.317 0.407 0.285 0.330 0.318 0.303 0.495 0.344

tempt−6 -0.109 -0.342 -0.0177 -0.183 -0.111 0.00773 -0.0424 -0.0368 -0.0208 -0.102
0.321 0.318 0.298 0.260 0.283 0.307 0.306 0.314 0.450 0.323

time -0.0226 -0.0304* 0.0124 -0.0127 -0.0215* -0.0169 -0.0194 -0.0167 -0.0231
0.0139 0.0180 0.0182 0.0106 0.0116 0.0113 0.0130 0.0112 0.0145

time2 0.000269** 0.000376** -0.000172 0.000179* 0.000258** 0.000211** 0.000241** 0.000234** 0.000278**
0.000131 0.000173 0.000184 0.000101 0.000108 0.000106 0.000120 0.0000990 0.000137

popt -0.0813** -0.127*** -0.124** -0.0778** -0.0877*** -0.0721** -0.0842*** -0.0859*** -0.0829**
0.0363 0.0476 0.0519 0.0357 0.0276 0.0288 0.0318 0.0285 0.0380

(∆pop)t−1 0.378*** 0.455*** 0.484***
0.0984 0.137 0.140

(∆pop)t−2 -0.0885 -0.157***
0.0564 0.0525

(∆pop)t−3 0.0874
0.0614

constant 4.692*** 6.878*** 0.668*** 6.200** 4.359** 4.765*** 3.933*** 4.527*** 4.699*** 4.759**
1.770 2.356 0.119 2.375 1.723 1.394 1.452 1.633 1.331 1.851

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
In columns 1 – 7, temperature measures are based on linear Crete imputation.

In column 8, temperature measures are based on Millicent imputation.
In column 9, temperature measures are based on quadratic Crete imputation.
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Table 6. Robustness tests for table 2 column 3.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA2t 1.383** 1.303*** 1.426** 1.158* 1.053** 1.143*** 1.072*** 1.082***
0.562 0.461 0.546 0.658 0.507 0.359 0.358 0.360

MA2(Mil)t 1.643***
0.500

MA2(qCr)t 1.035*
0.532

time -0.0209* -0.0256 0.00935 -0.0113 -0.0216** -0.0174* -0.0200* -0.0175 -0.0213*
0.0121 0.0170 0.0164 0.00946 0.0108 0.0104 0.0120 0.0114 0.0129

time2 0.000252** 0.000325** -0.000134 0.000164* 0.000258** 0.000214** 0.000243** 0.000235** 0.000256**
0.000114 0.000163 0.000167 0.0000893 0.000101 0.0000967 0.000110 0.000102 0.000118

popt -0.0780** -0.114** -0.110** -0.0732** -0.0885*** -0.0731*** -0.0850*** -0.0821*** -0.0778**
0.0333 0.0454 0.0490 0.0324 0.0266 0.0272 0.0297 0.0278 0.0332

(∆pop)t−1 0.367*** 0.450*** 0.481***
0.0870 0.124 0.125

(∆pop)t−2 -0.0930* -0.160***
0.0556 0.0517

(∆pop)t−3 0.0853
0.0571

constant 4.515*** 6.204*** 0.668*** 5.624** 4.122*** 4.825*** 4.011*** 4.598*** 4.564*** 4.511***
1.598 2.243 0.116 2.191 1.545 1.328 1.354 1.516 1.335 1.592

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

Table 7. Robustness tests for table 2 column 4.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA5t 0.897 0.974 1.041 0.0695 0.608 0.582 0.520 0.520
0.874 0.915 0.860 0.740 0.699 0.721 0.682 0.680

MA5(Mil)t 2.459***
0.875

MA5(qCr)t 0.160
0.888

time -0.0192 -0.0243 0.0186 -0.0112 -0.0206* -0.0174 -0.0207* -0.0176 -0.0199
0.0125 0.0181 0.0144 0.00964 0.0110 0.0105 0.0119 0.0114 0.0131

time2 0.000242** 0.000324* -0.000238 0.000167* 0.000253** 0.000215** 0.000250** 0.000250** 0.000251**
0.000117 0.000174 0.000156 0.0000899 0.000102 0.0000971 0.000109 0.000107 0.000121

popt -0.0792** -0.122** -0.124*** -0.0757** -0.0906*** -0.0741*** -0.0867*** -0.0933*** -0.0805**
0.0317 0.0481 0.0456 0.0317 0.0252 0.0261 0.0287 0.0315 0.0329

(∆pop)t−1 0.387*** 0.489*** 0.520***
0.0999 0.145 0.146

(∆pop)t−2 -0.118** -0.181***
0.0590 0.0552

(∆pop)t−3 0.0802
0.0522

constant 4.519*** 6.495*** 0.664*** 6.098*** 4.215*** 4.874*** 4.041*** 4.676*** 5.042*** 4.574***
1.523 2.378 0.118 2.058 1.512 1.264 1.304 1.464 1.483 1.585

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
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Table 8. Robustness tests for table 2 column 5.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA10t 1.649 2.143 2.081 1.919* 1.298 1.172 1.193 1.332
1.296 1.560 1.276 1.024 1.028 0.971 0.960 0.962

MA10(Mil)t 3.603*
2.029

MA10(qCr)t 0.460
1.072

time -0.0145 -0.0174 0.0165 -0.00887 -0.0175 -0.0147 -0.0185 -0.0141 -0.0183
0.0135 0.0190 0.0145 0.0102 0.0118 0.0113 0.0124 0.0149 0.0140

time2 0.000200 0.000261 -0.000206 0.000147 0.000226** 0.000190* 0.000229** 0.000240* 0.000235*
0.000123 0.000182 0.000154 0.0000919 0.000107 0.000101 0.000110 0.000124 0.000130

popt -0.0724** -0.112** -0.101** -0.0697** -0.0862*** -0.0699*** -0.0832*** -0.105*** -0.0775**
0.0312 0.0489 0.0435 0.0317 0.0256 0.0261 0.0284 0.0365 0.0339

(∆pop)t−1 0.383*** 0.486*** 0.516***
0.104 0.146 0.146

(∆pop)t−2 -0.121** -0.184***
0.0580 0.0547

(∆pop)t−3 0.0806
0.0514

constant 4.098*** 5.898** 0.653*** 5.033** 3.881** 4.603*** 3.793*** 4.478*** 5.425*** 4.402***
1.551 2.435 0.117 1.987 1.543 1.323 1.343 1.482 1.693 1.668

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

Table 9. Robustness tests for table 3 column 1.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA10t−4 0.629 0.912 0.874 1.069 0.946 0.364 0.496 0.490
1.507 1.534 1.363 1.477 1.173 1.051 1.050 1.041

MA10(Mil)t−4 -1.556
2.069

MA10(qC)t−4 0.220
1.233

time -0.0171 -0.0214 0.0223 -0.00980 -0.0190 -0.0151 -0.0187 -0.0234 -0.0188
0.0155 0.0197 0.0161 0.0106 0.0121 0.0118 0.0128 0.0141 0.0152

time2 0.000229* 0.000306 -0.000273* 0.000162* 0.000243** 0.000199* 0.000236** 0.000260** 0.000242*
0.000136 0.000186 0.000164 0.0000906 0.000109 0.000105 0.000114 0.000124 0.000135

popt -0.0787** -0.123** -0.118*** -0.0757** -0.0900*** -0.0724*** -0.0851*** -0.0706** -0.0798**
0.0309 0.0491 0.0413 0.0298 0.0249 0.0255 0.0283 0.0334 0.0317

(∆pop)t−1 0.394*** 0.499*** 0.529***
0.107 0.152 0.152

(∆pop)t−2 -0.123** -0.184***
0.0581 0.0554

(∆pop)t−3 0.0779
0.0493

constant 4.416*** 6.438*** 0.648*** 5.736*** 4.145*** 4.781*** 3.885*** 4.534*** 4.266*** 4.508***
1.540 2.454 0.119 1.902 1.459 1.293 1.320 1.488 1.553 1.568

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
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Table 10. Robustness tests for table 3 column 2.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA20t−4 -1.386 -2.288 -0.759 0.839 -0.322 -0.897 -0.787 -0.720
2.334 2.496 1.705 2.566 1.947 1.590 1.531 1.552

MA20(Mil)t−4 -5.574
4.483

MA20(qCr)t−4 -1.781
1.869

time -0.0254 -0.0352* 0.0232 -0.0127 -0.0239* -0.0200* -0.0229* -0.0264* -0.0278*
0.0170 0.0211 0.0222 0.0111 0.0128 0.0119 0.0129 0.0136 0.0160

time2 0.000291** 0.000412** -0.000283 0.000181* 0.000280** 0.000236** 0.000267** 0.000243** 0.000312**
0.000144 0.000191 0.000218 0.0000937 0.000112 0.000105 0.000115 0.000118 0.000140

popt -0.0840** -0.133*** -0.124*** -0.0793** -0.0929*** -0.0755*** -0.0877*** -0.0559 -0.0875***
0.0329 0.0492 0.0450 0.0313 0.0256 0.0266 0.0294 0.0344 0.0327

(∆pop)t−1 0.393*** 0.496*** 0.527***
0.103 0.147 0.148

(∆pop)t−2 -0.119** -0.182***
0.0568 0.0546

(∆pop)t−3 0.0803
0.0498

constant 4.883*** 7.270*** 0.661*** 6.006*** 4.406*** 5.052*** 4.161*** 4.766*** 3.836** 5.107***
1.640 2.476 0.119 2.066 1.521 1.329 1.350 1.518 1.533 1.619

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

Table 11. Robustness tests for table 3 column 3.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA50t−4 -3.245 2.408 -3.702 3.565 -4.479 -1.127 -0.573 -1.126
7.461 7.549 3.516 5.664 6.704 5.186 4.849 4.750

MA50(Mil)t−4 1.600
6.566

MA50(qCr)t−4 -3.671
6.592

time -0.0213 -0.0248 0.0228 -0.0154 -0.0211* -0.0175 -0.0210 -0.0237 -0.0217
0.0144 0.0190 0.0139 0.0121 0.0120 0.0116 0.0130 0.0205 0.0142

time2 0.000240** 0.000353* -0.000260* 0.000176* 0.000252** 0.000214** 0.000247** 0.000293 0.000243**
0.000120 0.000179 0.000147 0.0000909 0.000103 0.000101 0.000113 0.000200 0.000121

popt -0.0753** -0.133** -0.134*** -0.0728** -0.0894*** -0.0733** -0.0850*** -0.0893** -0.0742**
0.0360 0.0509 0.0407 0.0340 0.0268 0.0280 0.0304 0.0397 0.0348

(∆pop)t−1 0.394*** 0.499*** 0.528***
0.102 0.147 0.148

(∆pop)t−2 -0.120** -0.184***
0.0580 0.0550

(∆pop)t−3 0.0815
0.0511

constant 4.476*** 6.884*** 0.668*** 6.390*** 4.309*** 4.843*** 4.005*** 4.625*** 5.017** 4.434***
1.616 2.448 0.120 1.834 1.553 1.290 1.355 1.525 2.005 1.598

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

20



Table 12. Robustness tests for table 3 column 4.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA2t 1.395** 1.304*** 1.452*** 1.292** 1.093** 1.153*** 1.076*** 1.082***
0.558 0.462 0.539 0.622 0.507 0.355 0.357 0.361

MA10t−4 0.749 0.885 1.041 1.650 1.126 0.485 0.539 0.496
1.463 1.439 1.330 1.527 1.107 1.017 1.033 1.019

MA2(Mil)t 1.615***
0.514

MA10(Mil)t−4 -0.336
2.009

MA2(qCr)t 1.047**
0.522

MA10(qCr)t−4 0.366
1.220

time -0.0175 -0.0213 0.0134 -0.00873 -0.0195 -0.0151 -0.0181 -0.0183 -0.0194
0.0147 0.0183 0.0178 0.0103 0.0119 0.0115 0.0125 0.0130 0.0151

time2 0.000224* 0.000289* -0.000169 0.000145 0.000241** 0.000195* 0.000228** 0.000237** 0.000240*
0.000130 0.000173 0.000174 0.0000899 0.000108 0.000103 0.000113 0.000106 0.000134

popt -0.0751** -0.110** -0.0982** -0.0688** -0.0866*** -0.0710*** -0.0832*** -0.0798*** -0.0755**
0.0318 0.0458 0.0423 0.0305 0.0262 0.0263 0.0289 0.0293 0.0324

(∆pop)t−1 0.364*** 0.449*** 0.479***
0.0881 0.126 0.126

(∆pop)t−2 -0.0954* -0.161***
0.0558 0.0523

(∆pop)t−3 0.0832
0.0567

constant 4.297*** 5.907** 0.659*** 4.953** 3.838** 4.687*** 3.860*** 4.471*** 4.493*** 4.359***
1.571 2.287 0.117 1.925 1.488 1.341 1.340 1.496 1.347 1.596

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
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Table 13. Robustness tests for table 3 column 5.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA2t 1.358** 1.268*** 1.428*** 1.221* 1.100** 1.133*** 1.062*** 1.074***
0.533 0.466 0.528 0.632 0.502 0.353 0.352 0.356

MA20t−4 -0.539 -1.414 0.0288 1.775 0.614 -0.208 -0.237 -0.203
2.180 2.360 1.721 2.348 1.839 1.572 1.512 1.528

MA2(Mil)t 1.539***
0.551

MA20(Mil)t−4 -3.154
4.693

MA2(qCr)t 0.967*
0.517

MA20(qCr)t−4 -1.157
1.851

time -0.0230 -0.0314 0.0176 -0.0100 -0.0224* -0.0182 -0.0207 -0.0213* -0.0263*
0.0159 0.0197 0.0240 0.0107 0.0129 0.0117 0.0128 0.0126 0.0158

time2 0.000267* 0.000369** -0.000214 0.000157* 0.000264** 0.000220** 0.000248** 0.000231** 0.000295**
0.000138 0.000179 0.000236 0.0000939 0.000114 0.000104 0.000114 0.000103 0.000140

popt -0.0791** -0.119** -0.108** -0.0728** -0.0889*** -0.0734*** -0.0853*** -0.0678** -0.0822**
0.0340 0.0462 0.0482 0.0324 0.0272 0.0273 0.0298 0.0332 0.0340

(∆pop)t−1 0.367*** 0.449*** 0.480***
0.0867 0.123 0.125

(∆pop)t−2 -0.0928* -0.160***
0.0549 0.0517

(∆pop)t−3 0.0853
0.0571

constant 4.627*** 6.561*** 0.668*** 5.330** 4.055** 4.864*** 4.052*** 4.629*** 4.135*** 4.847***
1.676 2.326 0.119 2.146 1.574 1.397 1.363 1.513 1.417 1.677

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
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Table 14. Robustness tests for table 3 column 6.
(1) (2) (3) (4) (5) (6*) (7) (8) (9) (10)

MA2t 1.443*** 1.358*** 1.366** 1.276* 1.024** 1.231*** 1.164*** 1.155***
0.518 0.469 0.531 0.662 0.477 0.350 0.351 0.361

MA50t−4 2.303 5.289 -1.630 6.692 -1.481 3.465 3.581 2.915
7.109 7.220 3.793 5.803 6.380 5.356 5.087 5.023

MA2(Mil)t 1.650***
0.487

MA50(Mil)t−4 2.128
6.396

MA2(qCr)t 1.032**
0.515

MA50(qCr)t−4 -0.106
6.671

time -0.0200 -0.0232 0.0154 -0.0125 -0.0202* -0.0158 -0.0188 -0.0224 -0.0214
0.0128 0.0176 0.0156 0.0110 0.0111 0.0107 0.0121 0.0186 0.0136

time2 0.000261** 0.000345** -0.000157 0.000163* 0.000271*** 0.000227** 0.000254** 0.000289 0.000256**
0.000113 0.000167 0.000162 0.0000904 0.000102 0.0000980 0.000111 0.000183 0.000118

popt -0.0820** -0.124** -0.127*** -0.0712** -0.0945*** -0.0791*** -0.0897*** -0.0929** -0.0776**
0.0358 0.0475 0.0424 0.0343 0.0289 0.0292 0.0319 0.0369 0.0350

(∆pop)t−1 0.370*** 0.453*** 0.482***
0.0883 0.126 0.127

(∆pop)t−2 -0.0932* -0.158***
0.0537 0.0523

(∆pop)t−3 0.0817
0.0548

constant 4.598*** 6.425*** 0.673*** 6.057*** 4.107** 4.946*** 4.129*** 4.684*** 5.120*** 4.507***
1.601 2.281 0.120 1.906 1.575 1.343 1.365 1.537 1.860 1.606

end-year 1860 1860 1860 1820 1880 1860 1860 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

Table 15. Robustness tests for table 3 column 7.
(1) (2) (3) (4) (5) (6*) (7) (8)

MA2t 1.316** 1.123** 1.374*** 1.103* 1.086** 1.084*** 1.026*** 1.044***
0.521 0.476 0.513 0.588 0.448 0.323 0.313 0.318

MA10t−4 0.982 1.048 1.339 1.910 1.282 0.710 0.772 0.688
1.483 1.430 1.366 1.503 1.044 1.044 1.044 1.026

MA2t × MA10t−4 8.267 7.763 7.129 6.857 9.828** 7.690* 9.582** 9.086**
6.052 5.229 5.602 5.357 4.868 4.454 4.316 4.423

time -0.0207 -0.0239 0.0123 -0.0139 -0.0230* -0.0178 -0.0197
0.0151 0.0182 0.0181 0.0113 0.0123 0.0112 0.0121

time2 0.000247* 0.000307* -0.000167 0.000183* 0.000267** 0.000212** 0.000236**
0.000131 0.000171 0.000176 0.0000947 0.000110 0.0000995 0.000109

popt -0.0798** -0.113** -0.106** -0.0744** -0.0917*** -0.0740*** -0.0841***
0.0314 0.0454 0.0414 0.0298 0.0264 0.0258 0.0284

(∆pop)t−1 0.359*** 0.443*** 0.471***
0.0921 0.129 0.130

(∆pop)t−2 -0.0974* -0.158***
0.0545 0.0533

(∆pop)t−3 0.0769
0.0567

constant 4.619*** 6.141*** 0.662*** 5.350*** 4.249*** 5.033*** 4.098*** 4.581***
1.571 2.271 0.115 1.900 1.465 1.371 1.305 1.461

end-year 1860 1860 1860 1820 1880 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
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Table 16. Robustness tests for table 3 column 8.
(1) (2) (3) (4) (5) (6*) (7) (8)

MA2t 1.317*** 1.168** 1.400*** 0.950* 1.085** 1.104*** 1.091*** 1.116***
0.444 0.479 0.446 0.560 0.425 0.298 0.294 0.299

MA20t−4 -0.337 -1.310 0.489 2.237 1.017 -0.00492 -0.0984 -0.125
2.157 2.307 1.904 2.145 1.870 1.544 1.490 1.495

MA2t × MA20t−4 12.28 6.491 10.33 10.92 11.94 11.10* 13.35** 13.77**
8.110 7.037 8.485 10.04 7.611 5.906 5.695 5.939

time -0.0277* -0.0331* 0.0163 -0.0138 -0.0272** -0.0222* -0.0240*
0.0163 0.0194 0.0239 0.0110 0.0133 0.0116 0.0127

time2 0.000303** 0.000379** -0.000209 0.000186* 0.000302** 0.000251** 0.000272**
0.000141 0.000176 0.000234 0.0000961 0.000117 0.000103 0.000113

popt -0.0824** -0.116** -0.115** -0.0748** -0.0926*** -0.0758*** -0.0865***
0.0343 0.0451 0.0485 0.0321 0.0277 0.0272 0.0296

(∆pop)t−1 0.358*** 0.425*** 0.454***
0.0891 0.126 0.127

(∆pop)t−2 -0.0784 -0.148***
0.0532 0.0502

(∆pop)t−3 0.0889
0.0566

constant 4.921*** 6.525*** 0.688*** 5.696** 4.263*** 5.182*** 4.296*** 4.798***
1.709 2.274 0.112 2.185 1.556 1.439 1.358 1.510

end-year 1860 1860 1860 1820 1880 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.

Table 17. Robustness tests for table 3 column 9.
(1) (2) (3) (4) (5) (6*) (7) (8)

MA2t 1.400*** 1.323*** 1.350** 0.894 1.071** 1.218*** 1.134*** 1.140***
0.505 0.480 0.532 1.230 0.425 0.356 0.355 0.363

MA50t−4 1.800 5.086 -1.702 6.657 -1.827 3.259 3.147 2.720
6.958 7.232 3.743 5.681 6.087 5.272 4.854 4.922

MA2t × MA50t−4 14.53 6.541 6.502 18.29 21.39 5.372 11.97 6.773
17.44 16.74 19.00 33.76 14.07 14.20 12.63 14.08

time -0.0226* -0.0242 0.0158 -0.0156 -0.0213* -0.0176 -0.0194
0.0136 0.0178 0.0159 0.0116 0.0118 0.0110 0.0123

time2 0.000284** 0.000353** -0.000164 0.000193** 0.000281** 0.000241** 0.000259**
0.000121 0.000169 0.000166 0.0000950 0.000109 0.000103 0.000113

popt -0.0872** -0.126*** -0.140*** -0.0804** -0.0965*** -0.0814*** -0.0899***
0.0367 0.0479 0.0479 0.0343 0.0302 0.0297 0.0320

(∆pop)t−1 0.365*** 0.450*** 0.478***
0.0932 0.131 0.131

(∆pop)t−2 -0.103* -0.157***
0.0551 0.0526

(∆pop)t−3 0.0745
0.0584

constant 4.922*** 6.553*** 0.682*** 6.691*** 4.631*** 5.075*** 4.299*** 4.723***
1.693 2.315 0.114 2.137 1.621 1.438 1.407 1.555

end-year 1860 1860 1860 1820 1880 1860 1860 1860
Standard errors in parentheses. P-values: *** p<0.01, ** p<0.05, * p<0.1

Column (2) is Prais-Orcutt. Others are OLS with Newey-West corrected standard errors.
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