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Abstract

This paper presents some general results regarding the implications of the price reset
hazard function for in�ation dynamics. I �rst derive analytical results in a simple setup,
showing that the shape of the price-duration distribution determines the shape of impulse
responses of in�ation. This result also holds under a more realistic setup with strategic com-
plementarity, forward-looking IS curve and the Taylor rule in the numerical solution. I �nd
that, under an increasing hazard function calibrated using the survey data, the model gen-
erates a hump-shaped impulse response of in�ation to a monetary policy shock. In addition,
thanks to the endogenous in�ation inertia introduced by the �exible hazard function, the
increasing-hazard model achieves a better in�ation-output trade-o¤ than the Calvo model in
facing a cost-push shock.
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1 Introduction

This paper studies the implications of the price reset hazard function for in�ation dynamics
and monetary policy. A price reset hazard function speci�es the probability of resetting a price
conditional on the time elapsed since the last adjustment. The shape of hazard function is
important for aggregate dynamics, because it determines the distribution of prices, which in
turn a¤ects how the economy reacts to nominal disturbances. With a few exceptions1, most
theoretical sticky price models base their positive or normative implications on a particular
shape of hazard functions. For instance, Calvo (1983) assumes a constant hazard function,
Taylor (1980) postulates the probability of price adjustment to be either zero or one, while
menu cost models (e.g. Dotsey et al., 1999, Golosov and Lucas, 2007) imply an increasing
hazard function.

In this paper, I focus primarily on the e¤ects of the price reset hazard function on the impulse
response function of in�ation to a monetary policy shock. It is well known in monetary economics
that it is di¢ cult to get a hump-shaped impulse response of in�ation to a monetary policy
disturbance. This paper emphasizes the important role of the price distribution in bridging the
price reset hazard function and the in�ation response. I show analytically that the shape of the
price distribution to a large extent determines the shape of the in�ation response to a monetary
shock. In the existing general-hazard literature (see: e.g. Mash, 2004, Whelan, 2007, and Sheedy,
2010), the invariant distribution of price durations is commonly used. This distribution will be
reached eventually, as long as there are no interruptions occurring to the stochastic adjustment
process. Because the invariant distribution is always decreasing in price durations regardless
of the shape of hazard functions, the in�ation response in these models is typically monotonic
decreasing. By contrast, I consider an economy, in which the invariant distribution can not be
reached. In reality, there are many reasons to make this case interesting. For example, price
adjustments are caused by constantly idiosyncratic as well as aggregate shocks. Presumably
�rms react to idiosyncratic shocks (perfectly observable) every period, but, due to imperfect
information, they can not optimally reset their prices in response to a monetary shock. As a
result, the price adjustment to idiosyncratic shocks synchronizes all prices each period, so that
the price-duration distribution can never converge to the invariant distribution. In this case,
the price distribution would follow a "transient" distribution, which di¤ers substantially from
the invariant distribution.

In section 3, I apply the statistical duration analysis to derive the transient distribution
of price durations under a history-dependent price adjustment process. The key di¤erence
between these two distributions is: while the invariant distribution is always decreasing in
price durations, the transient distribution allows for a wide range of shapes. When the hazard
function is constant, the transient distribution of price durations is downward-sloping. Under
an increasing hazard function, however, it attains a bell-shape. The shape of the price-duration
distribution is important in sticky price models, because it a¤ects the aggregation mechanism
of the economy, and therefore the response of aggregate price and in�ation to monetary policy
shocks. To this end, I present two analytical results in a simple sticky price model with �exible
hazard functions. These results link the shape of the price-duration distribution and the impulse

1See: e.g. Wolman (1999), Mash (2004) and Sheedy (2010).
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responses of in�ation to a monetary disturbance. In particular, I show that the shape of the
impulse responses of in�ation is determined both by the rate at which the exogenous shock
decays over time � and the distribution of price durations �j . The intuition of this result is that,
� a¤ects the size of responses to the shock over time, while �j determines the fraction of �rms
adjusting their prices. In a special case, where the shock is permanent (� = 1), the shape of the
impulse response is solely dictated by the shape of price-duration distribution.

Section 4 extends the simple setup to a more complex case by considering strategic com-
plementarity in price-setting, the intertemporal IS curve and monetary policy feedback rules.
Using the numerical solution, I show that the intuition drawn from the analytical results also
holds in this more realistic model. In particular, when calibrating the hazard function based
on the survey evidence by Blinder et al. (1998), the impulse response function of in�ation has
a humped shape, which is consistent with the structural VAR evidence reported by Christiano
et al. (2005). Mankiw and Reis (2002) compare the impulse responses generated by the Calvo
sticky price model with those from the sticky information model. They conclude that the sticky
information model outperforms the Calvo sticky price model because the sticky price model
generates a hump-shaped response of in�ation, but the Calvo model only predicts a monotonic
response. In the light of my analysis, the monotonic in�ation response is not an intrinsic feature
of sticky price models, rather merely results from the restrictive hazard function underlying the
Calvo assumption.2

In the last part, I also study the model�s response to a cost-push shock under the Taylor rule.
I �nd that the increasing-hazard model achieves a better trade-o¤ between in�ation and output
than the Calvo model, because the increasing hazard function gives the model a new source
of endogenous in�ation inertia, which is missing in the Calvo setup. The endogenous in�ation
persistence makes in�ation to be strongly anchored to his own past, so that the nominal interest
rate needs not to be raised as aggressively as in the Calvo case in facing a positive cost-push
shock. Moreover, I �nd that the forward-looking interest rule is superior to the contemporary
rule under both constant and increasing hazard functions.

The remainder of the paper is organized as follows: in section 2, I discuss the related litera-
ture; section 3 presents the simple sticky price model with the generalized hazard function and
derives analytical results; in section 4, I extend the model to a more realistic case and solve the
model numerically. I present the numerical results in impulse response function plots; section 5
contains some concluding remarks.

2 Related Literature

Given the prominent position of the Calvo pricing models in monetary economics, many authors
have already questioned the robustness of the implications of the Calvo setting. Pioneer work
by Wolman (1999) extends the basic Calvo price-setting to the general hazard case. In a partial
equilibrium analysis, he shows that in�ation dynamics are sensitive to the hazard function
underlying di¤erent pricing rules. Kiley (2002) compares the Calvo and Taylor staggered-pricing
models, and �nds that the dynamics of output following monetary shocks are both quantitatively
and qualitatively di¤erent across the two pricing speci�cations unless one assumes a substantial

2For more detailed comparison of those two models, see Yao (2011).
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level of real rigidity in the economy. Mash (2004) derives the generalized New Keynesian Phillips
curve, and shows that this model can reconcile the tension between evidence on in�ation inertia
at the macro level and the frequent price-setting at the micro level. Whelan (2007) studies
in�ation persistence under the general form of hazard functions as in Mash (2004). He shows
that the generalized New Keynesian Phillips curve has negative coe¢ cients on lags of in�ation
regardless of the shape of the hazard function. Sheedy (2010) focuses on the role of the shape
of hazard functions in forming "intrinsic in�ation persistence". He parameterizes the hazard
function using a recursive formulation and shows that, under this parameterization, upward-
sloping hazard functions lead to positive coe¢ cients on lags of in�ation in the theoretical Phillips
curve. In this paper, I focus on the implications of hazard functions for short-run in�ation
dynamics. My approach di¤ers from the general-hazard models in the existing literature in that
it applies a price-duration distribution which is more suitable for the short-run analysis, such as
the impulse response method.

This paper is also related to heterogeneous price stickiness literature. Carvalho (2006) ex-
tends the simple Calvo model to the general case, allowing for di¤erent sticky price sectors
having heterogeneous price adjustment rates. He �nds that the generalized Calvo model can
generate in�ation inertia, but it fails in predicting the hump-shaped in�ation response. Dixon
and Kara (2010) generalize the �x-duration Taylor contract model by introducing a distribution
of contract lengths using micro data. In order to generate a signi�cant hump-shaped in�ation
response, their model needs a mean contract duration as long as 7 quarters, which is at odds
with the mean duration in the micro data. Even though my model does not consider the e¤ect of
heterogeneity in price stickiness, it provides insights to understand the results of heterogeneous
sticky price models. The key insight from my analysis is that the shape of an in�ation impulse
response function is primarily determined by the pricing behavior at the �rm�s level. Aggrega-
tion of sticky-price sectors with di¤erent mean durations would not fundamentally change the
shape of in�ation response. In this paper, I show that sticky price-setting at the �rm�s level,
which is characterized by an increasing hazard function, is essential for generating a prominent
hump-shaped impulse response of in�ation. When the pricing behavior at the �rm�s level follows
the Calvo staggering scheme, there is no hope to get a humped shape by aggregating heteroge-
neous sticky price sectors. Similarly, the simple Taylor model generates only a jagged impulse
response of in�ation at the �rm�s level.3 As a result, aggregating those jagged responses has also
di¢ culty in replicating a signi�cant humped response of in�ation to a monetary policy shock.

3 The Model

In this section, I do not explicitly model the micro foundation of price stickiness in the face of
the monetary disturbance. Instead, I present a stylized sticky price model under a general price
reset hazard function. Thanks to the simplicity of the model, I can present analytical results,
which shed lights on the key mechanism at work. In the following, I �rst describe the price
adjustment process under a general hazard function and derive the transient distribution of
price durations. This general price staggering scheme is then applied to the sticky-price model.

3Note that the simple Taylor model possesses an extreme form of increasing hazard function. It is either zero
during the contract or one at the end of the contract.
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Hazard Function and Price-duration Distribution

I consider an economy, in which monopolistically competitive �rms can not adjust their prices
optimally every period in response to aggregate shocks. Instead, all �rms face identical proba-
bilities of reoptimizing their prices, which are summarized by a hazard function

hi = P (adjust at i j survival to i� 1):

The hazard function gives the probability of adjusting a price at the ith period since the last
price adjustment conditional on the price has been �xed for i � 1 periods, 8i = 0; 1; � � � ; I. I
is the maximum possible price duration, which is possibly in�nite. At this stage, I only restrict
the hazard function to be 0 6 hi 6 1;8i, for having a well-de�ned hazard function in the
discrete-time model.

I also de�ne the survivor function, Si =
i
�
j=0

(1� hj), which gives the probability of a price
being �xed at least for i periods. Furthermore, the distribution function is obtained by Fi =
1� Si. Table (1) summarizes key notations of this stochastic adjustment process.

Duration Hazard Function Survival Function Distribution Function

i hi Si Fi

0 0 1 0

1 h1 1� h1 1� S1
...

...
...

...

i hi
i
�
j=0

(1� hj) 1� Si
...

...
...

...

Table 1: Notations of the stochastic adjustment process in the discrete time

Based on these notations, I can derive the probability mass function (�i), which gives the
probability of price adjustment at i periods after the last revision. When there is a large number
of �rms in the economy, this probability also equals the fraction of �rms that change their prices
at the ith period after their last adjustment, so that we can use it as the distribution of price
durations. It is easy to derive the probability mass function by subtracting two successive
distribution functions

�i = Fi+1 � Fi
= Si � Si+1

=
i
�
j=0

(1� hj)�
i+1
�
j=0

(1� hj)

= hi+1
i�1
�
j=0

(1� hj) ; 8i = 0; 1; � � � : (1)

I call (1) the transient distribution, because it needs all prices in the economy to be synchro-
nized every period, so that they are all in the duration group zero when this history dependent
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Figure 1: The hazard function and distribution of durations of the Weibull distribution

price adjustment process gets restarted at each period. Without the synchronization mecha-
nism, the distribution will eventually converge to the invariant distribution used by the existing
literature.

Based on (1), the transient distribution attains di¤erent shapes under di¤erent hazard func-
tions. For example, under a parametrization of the Weibull distribution, as shown in �gure (1),
when the hazard function is constant, the price durations are exponentially distributed, while,
under an increasing hazard function, the price-duration distribution is bell-shaped.

The shape of the price-duration distribution has important normative and positive impli-
cations in the sticky price models. For optimal monetary policy, Woodford (2003) shows how
price dispersion a¤ects the welfare-based loss function of central banks. As for the positive
implication, in the following, I present some analytical results linking the shape of the price-
duration distribution directly to the impulse response functions of aggregate price and in�ation
to a nominal shock.

The Generalized Sticky-Price Model

In this section, I present a highly stylized sticky price model to deliver analytical results. I will
check the robustness of those results in a more realistic model in the numerical exercise.

First, I assume that, in each period, the log of nominal marginal costs is determined by
aggregate price and output gap

mct = pt + !yt (2)

where pt denote the logarithm of aggregate price and yt is the output gap, the percentage
deviation between output and potential output. The output gap elasticity ! can be interpreted
as the degree of strategic complementarity in the price-setting among �rms. As discussed in
Woodford (2003), this parameter can be motivated by a model with speci�c factor markets
(Altig et al., 2005) or the decreasing elasticity of demand for production (Kimball, 1995). When
! is smaller than one, marginal cost of an adjusting �rm does not react proportionally to the
aggregate demand condition.
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When a �rm resets its price, the optimal price chosen should re�ect the probability that
the reset price will be �xed at least for j periods. These possibilities are given by the survival
function Sj , de�ned in table (1). The optimal price xt in the sticky price model is given by4

xt =
1P
j=0

Sj
1P
j=0

Sj

Et [mct+j ] : (3)

The intuition of this equation is that the optimal price is set such that it exactly compensates
a weighted sum of current and future marginal costs, and the weights are determined by the
survival function.

As discussed in the preceding section, given any price reset hazard function, the distribution
of prices in the economy is determined by equation (1). As a result, logarithm of the aggregate
price level pt is a weighed average of all optimal prices chosen in the past and the weight is equal
to the probability mass of each price duration

pt =
1P
j=0

�jxt�j : (4)

To close the model, I assume that nominal aggregate demand is following a quantity-theory
equation

mt = pt + yt; (5)

where mt is the log of nominal money supply, which is exogenously determined by the monetary
authority. Furthermore, the monetary authority is assumed to control nominal money supply
either in levels or in the rate of growth, whose recursive laws of motion are as follows

mt = �mt�1 + �t; (6)

or

�mt = ��mt�1 + �t; (7)

where �t v i:i:d:(0; �2m):

Impulse Response Function and Distribution of Price Durations

In this section, I focus on the model without strategic complementarity in the price-setting. It
amounts to setting ! = 1. The exercise not only allows me to disentangle e¤ects of nominal
rigidity from those of real rigidity, but also to present the analytical solution of the impulse
response function. In the next section, I will solve a more realistic setup allowing for strategic
complementarity and discuss the result.

When ! = 1; the sticky-price model can be simpli�ed into two-equation systems, taking mt

4This equation can be formally derived from a �rm�s pro�t maximization problem. To keep the analysis as
simple as possible, without losing generality, the subjective discount factor � is set to be one in this equation.
For details, see Yao (2009).
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as exogenously given by equation (6) or (7).

xt =
1P
k=0

Sk
1P
k=0

Sk

Et [mt+k] (8)

pt =
1P
j=0

�jxt�j : (9)

Proposition 1 Assume that nominal money supply follows an AR(1 ) process speci�ed in
(6). Under the sticky-price model summarized by equation (8) and (9), up to �rst-order approx-
imation, the impulse response function of aggregate price to a money supply disturbance is given
by

IR(pt+i) =
@pt+i
@�t

= �F
iP
j=0

�j�
i�j ; (10)

where �F =

1P
i=0
�iSi

1P
i=0
Si

:

Proof: See Appendix (5).
Two important insights stand out from this result. First, there is a scaling factor �F re�ecting

the forward-looking behavior embedded in the sticky-price model. In the sticky price model,
�rms can not adjust their prices every period, as a result, they take into account that the impact
of the monetary disturbance is decaying over time at the rate of �. The optimal adjustment
of prices is scaled down by the factor �F , because their prices would be otherwise ine¢ ciently
high, once the shock get weakened in the future. When � = 1, meaning a permanent shock, the
scaling factor is equal to one. In this case, the forward-looking motive in the sticky price model
loses its signi�cance.

Second, under an AR(1 ) money level shock, the shape of the impulse responses of the price
level is determined by the distribution of price durations �j and the rate at which the exogenous
shock decays over time �. This is intuitive, because � gives the size of responses to the shock, and
the distribution of price durations �j determines the timing of those responses. This intuition
can be better manifested by a special case, where the shock is permanent (� = 1). In this case,
it doesn�t matter when a price reacts to a shock, so that the size of the response is always the
same. As a result, the shape of the impulse response is solely determined by the distribution of

price durations. Formally, when � = 1; then IR (pt+i) =
iP

k=0

�k:

Furthermore, the impulse response of in�ation can be derived by subtracting two consecutive
impulse responses of the price level

IR(�t+i) = IR (pt+i)� IR (pt+i�1)

=

�
iP

k=0

�k �
i�1P
k=0

�k

�
= �i
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In this case, the impulse response of in�ation to a money level shock is exactly equal to the
distribution of price durations.5

Next, I show that the similar insights can be drawn from the impulse response of in�ation
to the money growth shock.

Proposition 2 Assume that nominal money supply growth rates follow an AR(1 ) process
speci�ed in (7). Under the sticky-price model summarized by equation (8) and (9), up to a �rst-
order approximation, the impulse response function of in�ation to a money growth disturbance
is given by

IR(�t+i) =
@�t+i
@�t

= �F
iP
j=0

�j�
i�j ; (11)

where �F =

1P
i=0
�iSi

1P
i=0
Si

:

Proof: See Appendix (5).
This is a parallel result to proposition 1. First, the scaling factor ( �F ) re�ects the forward-

looking behavior in the sticky-price model. The impulse response of in�ation would be lower,
if �rms expect money growth disturbances decay over time. Second, the shape of impulse
responses is determined by the distribution of price durations �j and the rate at which the
exogenous shock decays over time �. Under a permanent nominal money growth shock, impulse
responses of in�ation are dictated by the shape of price distribution. Formally, when � = 1;

equation (11) yields

IR (�t+i) =
iP
j=0

�j : (12)

One can also show that the change of the impulse response of in�ation to a money growth
shock can be obtained by

�IR (�t+i) = IR (�t+i)� IR (�t+i)

= �F

"
�i � (1� �)

i�1P
j=0

�j�
i�1�j

#
: (13)

When the impulse response function is hump-shaped, we need �IR (�t+i) to be positive at some

i. It means that �i should be larger that (1 � �)
i�1P
j=0

�j�
i�1�j : This would be more likely when

the price distribution �i is also increasing on the same interval of the time horizon.
To sum up the analytical results, I have shown that, in the sticky-price model, in�ation

persistence comes from two sources. One is directly from persistence of the exogenous shock,
while the other source stems from the staggering price-setting, summarized by the distribution
of price duration. Increasing hazard functions give the model a stronger internal propagation
for in�ation dynamics than the Calvo assumption.

5Vavra (2010) shows the same result under a more general framework.
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4 Numerical Results

In this section, I study the intuition gained from the simple setting under a more realistic model.
Speci�cally, I add the following new features into the basic framework: strategic complementarity
in price-setting, an expectational IS curve and an interest rate rule.

Et [yt+1]� yt = it � Et [�t+1] ; (14)

pt =
JP
j=0

�jxt�j ; (15)

xt =
JP
j=0

Sj
JP
j=0

Sj

Et [mct+j ] ; (16)

mct = pt + !yt + ut; (17)

ut = �uut�1 + vt; where vt v i:i:d:(0; 1)
�t = pt � pt�1; (18)

it = �it�1 + (1� �)
�
���t + �yyt

�
+ �t; (19)

where �t v i:i:d:(0; �2m):

Equation (14) is the expectational IS curve. This equation can be obtained by log-linearizing the
consumption Euler equation that arises from the household�s optimal saving problem. yt denotes
output gap, it � log Rt is the nominal interest rate and in�ation rate �t � logPt � logPt�1:

Equation (15) and (16) directly follow equation (3) and (4). The only change is that I restrict
the maximum price duration to be �nite. Without losing generality, let J be the maximum
possible duration, i.e. for a price which has lasted J periods, the probability of price adjustment
equals one. This assumption is mainly required by the numerical computation, but it is also
realistic to expect that no price would last forever.

Equation (17) follows the assumption about nominal marginal cost in equation (2). Because
the cost-push shock plays an important role in the optimal monetary policy literature, I add a
cost-push shock to this equation to study the model�s behavior under a speci�c policy rule.

Equation (19) is a simple interest rate rule,6 proposed by Taylor (1993), with interest rate
smoothing. As discussed in Clarida et al. (1999), this rule is not only broadly consistent with
the main principles for optimal monetary policy, but also provides a good empirical description
of the U.S. monetary policy during the Volcker-Greenspan period (Clarida et al., 2000). Since,
in this paper, I do not derive the policy rule in an optimizing sense, as a robustness check, I also
solve the model with a forward-looking Taylor rule in the form

it = �it�1 + (1� �)
�
��Et�t+1 + �yyt

�
+ �t: (20)

This form of the forward-looking rule is shown to be consistent with the optimal policy rule
derived under the discretionary policy regime with in�ation persistence (Clarida et al., 1999).

6Constant terms are ignored in the Taylor rule, because, up to �rst-order approximation, they do not a¤ect
dynamics of the model.
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Calibration

As the main theme of the paper suggested, the most important parameters in this model are
those a¤ecting the price reset hazard function. Empirical studies provide useful information
on the average level of the hazard function, but very mixed message about the shape of the
hazard function. For example, Cecchetti (1986) and Goette et al. (2005) �nd strong support
for increasing hazard functions, while recent studies based on U.S. or European CPI data show
that hazard functions are mainly �at or downward-sloping (see: e.g. Alvarez, 2007, Nakamura
and Steinsson, 2008a and Klenow and Kryvtsov, 2008).

In the numerical exercises, I focus on increasing hazard functions due to the following reasons.
First, the increasing hazard function is advocated by most of micro-founded sticky price models
(See: e.g. Dotsey et al., 1999, Golosov and Lucas, 2007 and Nakamura and Steinsson, 2008b).
For example, Nakamura and Steinsson (2008b) show in a menu-cost model that the shape of the
hazard function is in�uenced by the relative size of transient and permanent shocks to marginal
costs. Permanent shocks tend to yield an upward-sloping hazard function, while transient shocks
cause the hazard function to �atten. A downward-sloping hazard function can only be generated
when assuming unrealistic large temporary shocks to marginal cost. Second, some authors
argue that the estimated downward-sloping hazards result mainly from the heterogeneity in
price stickiness. As shown by Alvarez et al. (2005), the decreasing hazard function found in the
CPI data could simply results from the aggregation bias due to heterogeneous hazard functions
with di¤erent price durations. Based on this insight, I view that the evidence of downward-
sloping hazards is rather an aggregation phenomenon, and therefore is less relevant to the pricing
behavior at the �rm�s level. Since the main focus of the paper is to address how price stickiness at
the �rm�s level a¤ects aggregate dynamics, I will conduct my numerical analysis under increasing
hazard functions motivated by micro-founded theoretical models.7

Following Mash (2004), I calibrate the hazard function based on the survey evidence by
Blinder et al. (1998) for the U.S. economy. As reported in table (2), this empirical hazard
function is increasing in price durations and the maximum price duration is truncated at the
7th quarter8. In the numerical exercise, I compare this empirical hazard with the Calvo hazard
function, which has a mean price duration of 3 quarters. This is consistent with the mean price
duration of 7 - 9 months estimated by Nakamura and Steinsson (2008a). Given the hazard
function, the survival function Sj and the distribution of price durations �j can be calculated
using formulae presented in table (1) and equation (1).

Hazard Function h1 h2 h3 h4 h5 h6

Calvo (1983) 1/3 1/3 1/3 1/3 1/3 1/3
Blinder et. al (1998) 0.09 0.15 0.29 0.42 0.54 0.68

Table 2: Calibration of hazard functions

As for the remaining structural parameters, I set the real rigidity parameter ! to be 0:1.
As discussed in Woodford (2003), real rigidity can be motivated by di¤erent micro-foundations.

7My model can be easily extended to the case, where heterogeneity in sticky pricess is allowed, but the main
implication of the model will not be a¤ected by this extension.

8This empirical hazard function is calculated by Mash (2004) in Table 1.
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The value I choose can be justi�ed with a model with speci�c factor markets (Altig et al., 2005)
or the decreasing elasticity of demand for production (Kimball, 1995). Finally, to facilitate the
comparison with the SVAR evidence presented by Christiano et al. (2005), I choose the standard
deviation of the shock to the Taylor rule to be 0:71%, at an annual rate, which is estimated by
Christiano et al. (1999) using the federal funds rate. The Taylor rule parameters are calibrated
by using the point estimates, reported by Clarida et al. (2000). They show that the in�ation
response parameter �� is 2.15, the output-gap response parameter �y is 0.93/4 and the interest
rate smoothing parameter � is 0.79 during the Volcker-Greenspan period (1979:3 - 1996:4).

Impulse Responses to a Monetary Policy Shock

In this section, I discuss the impulse response of in�ation and output to the monetary policy dis-
turbance. Figure 2 depicts the impulse responses to a one-standard-deviation expansionary mon-
etary policy shock under the contemporary Taylor rule. I compare impulse response functions
generated by the Calvo model with those from the survey evidence motivated increasing-hazard
model.

The �rst noteworthy result from the �gure is that models with increasing hazard rates
generate hump-shaped impulse responses of in�ation, while the Calvo model produces monotonic
impulse responses. These results are consistent with the analytical analysis presented in previous
section that the staggered price setting at the �rm�s level is an important source of in�ation
inertia. Technically, the shape of the impulse response function of in�ation is predominated
by the shape of price-duration distribution. Because the constant hazard function underlying
the Calvo assumption gives rise to an exponentially distributed price duration, the response of
in�ation in the model is monotonic. By contrast, an increasing hazard function leads to a bell-
shaped distribution of price durations, and hence a hump-shaped response of in�ation. As seen
in the left panel, the impulse response of in�ation peaks at the fourth period after impact. Even
though the maximum impact on in�ation is still not as pronounced as those empirical impulse
responses in the structural VAR studies (see: e.g. Christiano et al., 1999, Christiano et al.,
2005), it exhibits a signi�cant improvement in comparison to the Calvo model. On the right
panel, the shape of the hazard function does not a¤ect the response of the output gap much.
In both models, responses of the output gap increase at the impact of unexpected reduction of
nominal interest rate, and then monotonically decline back to the steady state level.

In �gure 3, I show the impulse responses of in�ation and output to a one-standard-deviation
expansionary monetary policy shock under the forward-looking Taylor rule. There is no qual-
itatively signi�cant di¤erence in the results comparing to the preceding case. Therefore, my
conclusion is robust to the change from contemporary to forward-looking monetary policy rules.

The new insight for modeling of sticky prices from my analysis is that the shape of the
in�ation impulse response function is generally determined by the pricing behavior at the �rm�s
level. Aggregation of heterogeneous sticky-price sectors would not fundamentally change the
shape of in�ation response. In this paper, I have shown so far that sticky price-setting at
the �rm�s level, characterized by an increasing hazard function, is essential for generating a
prominent hump-shaped impulse response of in�ation. Furthermore, Mankiw and Reis (2002)
showed that the sticky information model is superior to the Calvo sticky price model, because the
latter fails in generating a hump-shaped impulse response of in�ation. In the light of my analysis,
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Figure 2: Responses to a monetary policy shock under a contemporary Taylor rule
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Figure 3: Responses to a montary policy shock under a forward-looking Taylor rule
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the monotonic impulse responses, per se, is not an intrinsic feature of sticky price models, it
rather merely results from the restrictive hazard function underlying the Calvo assumption.

Impulse Responses to a Cost-push Shock

In this section, I discuss the model�s responses to a persistent cost-push shock (�u = 0:5). First,
I discuss it under the contemporary Taylor rule, and then I turn to the forward-looking Taylor
rule, which is more consistent with the optimal policy rule derived under the discretionary policy
regime with in�ation persistence (Clarida et al., 1999).
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Figure 4: Responses to a transitory cost-push shock under a contemporary Taylor rule

Figure 4 depicts the impulse responses to a 1% increase in the cost-push shock under the
contemporary Taylor rule. I compare impulse response functions generated by the Calvo model
to those from the survey evidence motivated increasing-hazard model. Under the contemporary
Taylor rule, the increasing-hazard model predicts a better trade-o¤ between in�ation and out-
put than the Calvo model. In�ation rises only 0.05% at the impact in the increasing-hazard
model compared to a 0.3% increase in the Calvo model. The output gap drops by 0.15% in
the increasing-hazard model, but by more than 0.4% in the Calvo model. The di¤erence in
the responses of two models is mainly due to the endogenous in�ation inertia introduced by
the generalized hazard function, which is missing in the Calvo case. Despite its popularity in
monetary policy analysis, the sticky-price model with the Calvo price-setting is often criticized
for generating too little in�ation inertia (e.g. Fuhrer and Moore, 1995 and Mankiw, 2001). To
overcome these weaknesses, theoretically unattractive features, such as the rule-of-thumb price
setter (Gali and Gertler, 1999) and in�ation indexation (Christiano et al., 2005), are embedded
in the pricing behavior. By contrast, the extension of the Calvo sticky price model to a case
allowing for more �exible shapes of the hazard function gives the model an endogenous source
of in�ation inertia. As a result, in�ation is strongly anchored to his own past, so that the
contemporary Taylor rule need not to react to in�ation as aggressively as in the Calvo case.

In �gure 5, I depict the impulse responses to a 1% increase in the cost-push shock under
the forward-looking Taylor rule. Under the forward-looking Taylor rule, the increasing-hazard
model performs similar to the previous case. In�ation rises about 0.05% and the output gap
drops by 0.13% at the impact. But the trade-o¤ between in�ation and output in the Calvo
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Figure 5: Responses to a persistent cost-push shock under a forward-looking Taylor rule

model improves thanks to the fact that nominal interest rate does not react to current in�ation
but the expected future in�ation. As a result, even though in�ation still rises more than 0.3%,
but the output gap only declines 0.1% in the short-run.

Comparison Between Monetary Policy Rules

In the last two �gures, I compare the contemporary and forward-looking rules side by side in each
model. In �gure (6), impulse responses of in�ation, output and interest rate of the Calvo model
are compared. In this case, the forward-looking rule signi�cantly outperforms the contemporary
rule in terms of the output loss. In the increasing-hazard model, as shown in �gure (7), the
di¤erence in the responses of the output gap is not as prominent as in the Calvo case, but one
can still conclude that the forward-looking rule results in a better in�ation-output trade-o¤.
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Figure 6: Comparison between two Taylor rules in the Calvo model

All in all, we can conclude that the forward-looking interest rule is superior to the con-
temporary rule in response to a cost-push shock, consistent with the �nding by Clarida et al.
(2000). The previous numerical exercises check the robustness of this conclusion under an in-
creasing hazard function. The new insight gained from the exercise is that, when the �rm�s
pricing behavior is characterized by an increasing hazard function as those calculated from the
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Figure 7: Comparison between two Taylor rules in the increasing-hazard model

survey data, the bene�t from switch from the contemporary to the forward-looking rules is less
signi�cant.

5 Conclusion

The sticky price is an important topic in macroeconomics, because it a¤ects how in�ation reacts
to changes in monetary policy. This paper addresses this topic in a parsimonious way. Instead
of presenting a fully micro-founded sticky price model, I choose a modeling strategy, which is so
�exible that it is capable to nest a wide range of sticky price settings. In particular, by allowing
for an arbitrary shape of the hazard function, the model�s implication is more generally relevant
than the model based on a speci�c sticky price-setting.

The most important result I �nd in this paper is that the shape of an impulse response
of in�ation is mainly determined by the shape of the price-duration distribution. Di¤erent
assumptions about sticky prices lead to di¤erent price distributions, which in turn a¤ect how
in�ation reacts to monetary shocks. In the light of this result, I conclude that the lack of
in�ation inertia of the New Keynesian models is not intrinsic feature of the model, rather it
is to a large extent due to the Calvo staggering assumption, which is solely motivated by its
tractability. This paper shows that, once relaxing this restrictive assumption, the sticky price
model can generate realistic in�ation dynamics.

Several extensions to this model could be interesting for future research. In his seminal
paper, Ascari (2004) has shown that trend in�ation has important implications for the model�s
dynamics when the Calvo pricing model is log-linearized around non-zero trend in�ation. The
basic model presented in the paper can be extended to incorporating positive trend in�ation.
Combining trend in�ation with increasing hazards is an interesting exercise, because, as shown
in Ascari (2004) and Cogley and Sbordone (2008), introducing constant or variant trend in�ation
a¤ects all coe¢ cients, and hence it changes the relative importance between the forward-looking
and backward-looking terms in the New Keynesian Phillips curve. As a result, trend in�ation
exerts a larger impact on in�ation dynamics in the increasing-hazard model than it does in the
Calvo model. On the empirical aspect, the model can be estimated using the Bayesian technique
with the time series data. This exercise allows us to extract valuable information about the price
reset hazard function hidden in the aggregate data.
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Proof of Proposition 1

First, based on the assumption that nominal money supply follows an AR(1) process

mt = �mt�1 + �t; where �t v i:i:d:(0; �2m); (21)

The impulse response function of nominal money supply to an innovation �t is

IR (mt+i) = �
i: (22)

Impulse response function under the sticky-price model Next, to derive the impulse
responses of optimal price under the SP model, we use the equation (8)

xt =
1P
k=0

Sk
	
Et [mt+k] ;

where 	 =
1P
k=0

Sk:

Using the de�nition of impulse response function, I have

IR (xt+n) �t = Et(xt+n)� Et�1(xt+n)

=
1P
k=0

Sk
	
[Et (mt+n+k)� Et�1 (mt+n+k)]

=
1P
k=0

Sk
	
IR (mt+k+n) �t

=
1P
k=0

Sk
	
�k+n�t: (23)

Plugging (22) into (23), it yields

IR (xt+n) =
1P
k=0

Sk�
k

	
�n: (24)

Following the aggregate price equation (9) under the SP model, I can derive impulse response
function of the aggregate price as follows

IR (pt+i) �t = Et(pt+i)� Et�1(pt+i)

=
iP
j=0

�jEt(xt�j+i)�
iP
j=0

�jEt�1(xt�j+i)

=
iP
j=0

�j [Et (xt�j+i)� Et�1(xt�j+i)]

=
iP
j=0

�jIR (xt�j+i) �t:

IR (pt+i) =
iP
j=0

�jIR (xt�j+i) : (25)
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Finally, plugging (24) into (25), it yields

IR (pt+i) =
iP
j=0

�j

�
�i�j

1P
k=0

Sk�
k

	

�
=

1P
k=0

Sk�
k

	| {z }
�F

iP
j=0

�j�
i�j

= �F
iP
j=0

�j�
i�j (26)
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Proof of Proposition 2

First, based on the assumption that nominal money growth rate follows an AR(1) process

�mt = ��mt�1 + �t; where �t v i:i:d:(0; �2m);

we can derive the impulse response function of nominal money growth rate to an innovation �t
as

IR (�mt+i) = �
i: (27)

Next, de�ne in�ation as �t = pt � pt�1 and the impulse response function of in�ation is
obtained by

IR (�t+i) �t = Et(�t+i)� Et�1(�t+i)
= Et(pt+i � pt+i�1)� Et�1(pt+i � pt+i�1)
= [Et(pt+i)� Et�1(pt+i)]� [Et(pt+i�1)� Et�1(pt+i�1)]
= IR (pt+i) �t � IR (pt+i�1) �t

IR (�t+i) = IR (pt+i)� IR (pt+i�1) : (28)

Impulse response function under the sticky-price model Under the SP model, the
impulse responses of the change in optimal prices is

IR (xt+n � xt+n�1) �t = Et(xt+n � xt+n�1)� Et�1(xt+n � xt+n�1)

=
1P
k=0

Sk
	
[Et (�mt+n+k)� Et�1 (�mt+n+k)]

=
1P
k=0

Sk
	
IR (�mt+k+n) �t

=
1P
k=0

Sk
	
�k+n�t:

IR (xt+n � xt+n�1) =
1P
k=0

Sk�
k

	
�n (29)

Following (25), which holds independent of nature of the shock, I can derive impulse response
function of in�ation from equation (28)

IR (�t+i) = IR (pt+i)� IR (pt+i�1)

=
iP
j=0

�jIR (xt�j+i)�
iP
j=0

�jIR (xt�j+i�1)

=
iP
j=0

�jIR (xt�j+i � xt�j+i�1) (30)
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Finally, plugging (29) into (30), it yields

IR (�t+i) =
iP
j=0

�j

�
�i�j

1P
k=0

Sk�
k

	

�
=

1P
k=0

Sk�
k

	| {z }
�F

iP
j=0

�j�
i�j

= �F
iP
j=0

�j�
i�j (31)
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