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1 Introduction

In a series of seminal papers, Sims (2003,2006) has proposed a novel approach

to bounded rationality. It is based on the view that people face information

capacity constraints defined using Shannon’s (1948) theory of information.

More precisely, the number of bits that one can use to process the exogenous

variables (like income) into the endogenous ones (like consumption) is limited.

That informational requirement is defined by Shannon’s mutual information

concept, which tells us the amount of information obtained on a variable

when one observes another, correlated one.

As a consequence of that information constraint, the endogenous variable

is noisy compared to the optimal behaviour that would prevail absent an in-

formational constraint. Thus, is many applications (such as Luo (2008), who

studies a consumption problem, and the papers cited below on price-setting)

the agents rationally allocates this noise so as to maximize its utility subject

to the information capacity constraint. The more noisy is the endogenous

∗I am indebted to Enduardo Engel, Giuseppe Moscarini, Filip Mateka, Christopher
Sims, and seminar participants at Sciences Po, Paris, CREI, Universitat Pompeu Frabra,
Barcelona, Universidade do Minho, Braga, Tilburg, Princeton, Yale and IMT Lucca, for
helpful comments and suggestions.
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variable in a given zone of the distribution of exogenous variables, the less the

agent pays attention to that zone and the greater the informational capacity

left for processing other zones.

As pointed out by Sims, the reason why noise must inevitably arise is that

if the distribution of the exogenous variables is continuous, then an infinite

amount of information would be needed to process a deterministic mapping

from the exogenous variables into the endogenous ones.

In some settings, the noise is inherent to the problem of measuring a signal

and the agents’informational capacity is used to reduce such a noise. The

rational inattention theory then tells us, in some sense, how to optimally

design the noise so as to get the highest possible welfare subject to the

information capacity constraint.

In other settings, though, the result that behaviour adds noise to the

exogenous variables is unpalatable. If the realization of the latter is perfectly

observed then the agent would have to generate the noise artificially, but

then it is problematic to ignore the information needed to generate such

noise. It would then be more reasonable to assume that the behaviour of

the agent remains deterministic while the information processing constraint

prevents it from targeting the optimal behaviour. However, that is not what

is happening in the rational inattention literature.

In this paper, I propose an alternative approach to that issue. The idea

is that the choice variable may be a deterministic function of the exogenous

one and still make use of a finite amount of information if the choice variable

is discrete rather than continuous; that is, the mapping from the realization

of the exogenous variables to the endogenous ones is piece-wise constant,

reflecting the fact that the agent can only elect a finite number of values for

the choice variable, because of the informational constraint.

Thus, limited information is now a source of lumpiness in behavior, rather

than a source of noise. The state space faced by the agent is partitioned into

clusters and all points in the same cluster yield the same action. Of course,

limited information is not the only source of lumpy behavior; it is well known
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that there are other sources, such as fixed or linear adjustment costs. But

the approach proposed here yields many potentially testable predictions: In

general, we expect that the greater the information processing ability of an

economic entity, the less lumpy its behavior.

Another central result (Section 2) is that the mutual information be-

tween the exogenous variable and the endogenous one is simply equal to the

entropy, in the usual discrete sense, of the endogenous variable. That is,

the mutual information does not depend on the exact mapping from the ex-

ogenous variable to the endogenous one but only on the probability weights

of the (discrete) distribution of the latter. This remedies some weaknesses

of the continuous notions of entropy which is used in the literature, which

makes it impossible to separate the probability weights of the variables from

their actual values. More results regarding the convexity of clusters and the

properties of the solution when shocks can be aggregated into composite ones

are derived in section 3.

Sections 4 and 5 illustrate the kind of results that my approach would

deliver by applying it to two simple examples: a general linear-quadratic

problem with a uniform distribution, and a simple static model of price-

setting where individual price setters face aggregate monetary shocks and

idiosyncratic productivity shocks. This model delivers a lumpy price-setting

behavior where the number and size of clusters depends on the dispersion of

shocks and the firm’s information processing capacity. It is consistent with

recent micro-level evidence on reference prices found by Eichenbaum et al

(2008).

The literature that has studied this issue (in particular, Mackowiak and

Wiederholt (2009a,b), Paciello (2007)) uses Sim’s noisy approach and has

shown that under rational inattention prices were "sticky" in the sense that

the aggregate price level was not reacting one for one to the aggregate money

stock1. However, prices are not lumpy: even a small monetary shock will

1The same result is reached by Saint-Paul (2005) in a world where firms are irrational
and experiment alternative price-setting rules, while exerting local spillovers on each other.
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generate a small (but non neutral) response of individual prices (one notable

exception is Moscarini (2004))2. Here, in contrast, rational inattention leads

to lumpy price-setting behavior; for prices to change, the shocks faced by

a firm must be large enough to trigger a move to a different cluster. As

discussed in Section 6, this makes a substantial difference. In the noisy

approach, it is optimal to react less than one for one to monetary shocks

because one can only react to a noisy measure of those shocks, as in the

Lucas (1972) misperception model. Consequently, such underreaction also

prevails at the aggregate level. Here, though, no noise is introduced and

stickiness arises at the individual level because the same price is charged

within a cluster of realizations of the individual price setter’s relevant shock.

But, as in Caplin and Spulber (1986), such stickiness is greatly reduced in

the aggregate because of the contribution of the firms which move across

clusters as a result of a monetary shock.

It is important to note that while lumpiness is the only way to reconcile

limited mutual information with deterministic behavior, the converse is not

true. Depending on the objective function and the distribution of noise, the

support of the endogenous variable may either be discrete or continuous, as

recently found by Matejka (2008) and Matejka and Sims (2010), who provide

some partial but powerful suffi cient conditions for discreteness to arise. Yet,

even in this case, it is always optimal to have a noisy behaviour, so that the

implications for aggregate price stickiness will resemble those of Mackowiak

and Wiederholt (2009a), rather than those derived here.

2In that paper, lumpiness arises for different reasons than here. Time is continuous
and there is a constraint on the flow of information processed by the agent. the exogenous
variable follows a diffusion process. A noisy signal of that variable can be obtained at a
cost. The cost structure of information is such that the signal will be drawn infrequently,
at discrete dates. Thus there is lumpiness "in time" rather than in the state space.
Consequently, the model is similar to that of Mankiw and Reis’s (2002) sticky information
paper.
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2 Continous and discrete entropy and mutual
information

It is somewhat important to realize that there are two different concepts of

entropy. For a discrete distribution with n outcomes and probabilities pi,

i = 1, ..., n, we may define entropy as3

S = −
n∑
i=1

pi log pi.

On the other hand, for a continuous distribution with density f(x), we

may define entropy as

H(f) = −
∫
f(x) log f(x).dx.

The reason why the two concepts do not coincide is as follows. A discrete

distribution is always the limit of a sequence of continuous distributions,

as they become more concentrated around the discrete outcomes. However,

the continuous entropy H of those approximations does not converge to the

corresponding S. Instead, it converges to −∞.
Take for example the extreme case where x = 0 with probability 1.

Clearly, S(x) = 0. This discrete distribution is the limit of the continuous one

defined by density fε(x) = f(x/ε)/ε, for any density f() over (−∞,+∞),

which is continuous and such that f(0) > 0, as ε goes to zero (in terms of

distribution theory, these distributions converge to a Dirac function δ(x)).

Furthermore,

H(fε) = H(f) + log ε,

so that

lim
ε→0

H(fε) = −∞.

Entropy is lower, the more concentrated the distribution. For both dis-

crete and continuous distributions, the most concentrated one is when all the
3In the usual definition, the logarithm is in base 2, but I will more conveniently use

natural logarithms instead.
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mass is at a single point. But the lower bound of S is zero, while that of H

is -∞.
Let us now turn to mutual information, which plays a key role in the

theory of rational inattention. We consider two random variables x and y.

Their densities are g() and f(), respectively. For any realization of x, we

denote by f(y | x) the conditional distribution of y and its entropy is

H(y | x) = −
∫
y

f(y | x) log f(y | x).dy.

This can be averaged over x, which allows to define the conditional en-

tropy of y :

Hx(y) =

∫
x

H(y | x)g(x)dx.

Now it can be easily shown that the entropy of the joint distribution of

x and y, H(x, y), is such that4

H(x, y) = H(x) +Hx(y) = H(y) +Hy(x).

Consequently, we have that

H(y)−Hx(y) = H(x)−Hy(x) = M(x, y),

which is the mutual information between x and y. This quantity tells us

how much knowledge of one variable reduces the entropy of the other, on

average. If the two variables are independent, then M(x, y) = 0. On the

other hand, if one had y = x, then the joint distribution is degenerate and

f(y | x) becomes equal to the Dirac function δ(y−x). Hence all the H(y | x)

are equal to −∞ and so is Hx(y). We then have that M(x, y) = +∞. This
means that knowledge of x gives us an infinite amount of information about

y. The same conclusion would be reached if instead of y = x, there was any

other mapping which allowed to retreive one variable from the other.

4In fact, that property is one of the axioms imposed by Shannon to derive his functional
form for entropy.
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The theory of rational inattention, as proposed by Sims, assumes that

an agent receives a signal y (say, income), which must be processed into a

decision variable x (say, consumption). The agent’s ability to process infor-

mation is limited and that limit takes the form of a constraint on the mutual

information between the two variables:

M(x, y) ≤ K.

Since M(x, y) = +∞ if x is a deterministic function of y, this constraint

cannot be matched. The endogenous variable must be related to the ex-

ogenous one in a noisy fashion for the information capacity constraint to be

matched. In other words, processing a continuum of real values with perfect

precision requires an infinite amount of information.

I now show that there is an important exception to that principle, and this

is the case when x, while being a deterministic function of y, is "quantized"

in that it only takes a finite number of values. There is then no longer a

mapping from y to x. While x can be retreived from y, the converse is not

true. In such a case, the mutual information between x and y remains finite,

and is in fact equal to the discrete entropy S of the random variable x.

Let us consider a collection of values of x, Ω = {x1, ..., xn}, and assume
that any y is assigned to one of those values, called x(y). For any i ∈ {1, ...n},
we define Ti = {y, x(y) = xi}. To avoid manipulating infinite quantities, I
will consider my deterministic assignment as the limit, for ε → 0, of the

random variable x defined by its conditional distribution:

fε(x | y) =
1

ε
f̂

(
x− x(y)

ε

)
. (1)

Here again, f̂() is any density such that f̂(0) > 0. We are again in a

situation where the conditional of x is a Dirac, now around x(y), and we

approximate it by a density which becomes increasingly concentrated around

x(y). To fix ideas, one can just take the standard normal density for f̂().

Then the following can be proved:
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Theorem 1 — Let M(ε) be the mutual information between x and y if

x is distributed according to (1). Let S(X) = −
∑
i

Pi logPi be the discrete

entropy of the random variable whose realization is xi, with corresponding

probability Pi =
∫
Ti
dF. Then

lim
ε→0

M(ε) = S(X).

Proof- See Appendix

Theorem 1 tells us that if a policy function is quantized, then the mutual

information between the exogenous variable and the policy variable is equal

to the entropy, in the discrete sense, of the policy variable. In particular,

it only depends on its probability weights and not on the actual values of

that variable. Nor does it depend on how the values of y are assigned to the

different clusters, as long as the probability weights are unchanged.5

3 Some additional results

In this section I provide some additional results that are likely to be relevant

in many practical applications.

Assume the value function is V (y, x), where y ∈ Rn is the vector of

exogenous variables and x ∈ Rp is the vector of endogenous choice variables.

That is, one is maximizing

EV =

∫ ∫
x,y

V (x, y)dF (x, y).

Assume V is continuous. Assume we have a finite partition ofRn, {T1, ..., Ti, ...., TN},
and let xi the common value of x assigned to any y ∈ Ti. Assume also that

5On the other hand, if the policy function were discrete but stochastic, the mutual
information would depend on the assignment rules. For example, assume that y is distrib-
uted uniformly over [0,1] and there are two clusters, each with probability 1/2. Then in the
deterministic case, M(x, y) = ln 2. In the stochastic case, let p(y) the probability density
that y is assigned to cluster 1. Then m(x, y) = ln 2+

∫ 1
0

(ln p(y)+ln(1−p(y))p(y)dy < ln 2.
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y has a density f() with full support6, implying that

EV =
∑
i

∫
Ti

V (xi, y)f(y)dy.

For any set S, denote by S̊ its interior.

Then a necessary condition for the assignment to be optimal is the no

swapping condition:

∀i, j,∀yi ∈ T̊i, yj ∈ T̊j, V (xi, yi) + V (xj, yj) ≥ V (xj, yi) + V (xi, yj, ).

If this failed to hold, we could take to small neighborhoods around yi

and yj of equal probability weights and intervert them, reallocating the first

one to Tj and the first one to Ti. This would leave the total entropy of the

partition unchanged but achieve a higher value of the objective.

This condition allows us to proven a number of results. I first consider

whether the clusters Ti may be convex, a natural property to seek.

3.1 Cluster convexity

For any set S, denote by C(S) its convex envelope and by S̄ its closure.

For any real-valued function g(v1, ..., vn), where vi is a vector of dimension

qi, denote by ∇ig its gradient with respect to vi, which is also a vector of

dimension qi. Denote by a dot (·) the scalar product.
Clearly, given an optimal clustering, any other clustering which only dif-

fers by sets of measure zero and assigns the same values of x almost surely is

also optimal. To get around this problem, I will restrict the choice of clusters

to sets with a dense interior, i.e. we must have Ti ⊂ T̊ i, and that have the

same measure as their interior. Since V is continuous, an immediate conse-

quence is that the no swapping condition must also hold for yi ∈ Ti, yj ∈ Tj,
not just over the interiors of those sets.

6The proofs of the following results can be adapted without diffi culty if f() does not
have a full support.
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Theorem 2 —Assume V is such that:

∀x, x′, y, the following property P (x, x′, y; y′) holds for y′ ∈ Rn−M(x, x′, y),

where M(x, x′, y) is a manifold:

P (x, x′, y; y′) : ((y−y′)·(∇2V (x, z)−∇2V (x′, z)) has a constant non zero sign for z ∈ [y, y′].

Then C(Ti) ⊂ T̄i, for all i.

Proof —See Appendix

This theorem tells us that if we restrict our choice to usual sets that have

a dense interior with full measure, and if P holds except on a set of small

dimension, then the optimal clusters have a convex closure, which essentially

means that they are convex except perhaps along their boundary, which is

of measure zero and irrelevant.

In the quadratic case, V = −‖y − x‖2 , and (y − y′) · (∇2V (x, z) −
∇2V (x′, z)) = 2(x′−x) · (y−y′) and (P) clearly holds since 2(x′−x) · (y−y′)
does not depend on z and is nonzero except over a hyperplane. As a corollary,

in the one dimensional case, the partition would consist of intervals.

Property P is a generalized single-crossing condition. If for example p = 1,

then it boils down to monotonicity of ∂V (x, y)/∂y − ∂V (x′, y)/∂y, which is

a standard single-crossing condition.

3.2 Aggregating shocks

Suppose that the multidimensional vector y of exogenous variables only

comes into play through a single-dimensional aggregate u(y). Do we get an

equivalent solution by reformulating the problem in terms of the composite

aggregate u? The following results provide an answer.

Theorem 3 —Assume there exists a continuous mapping u() : Rp → R,

which is regular everywhere i.e. all its partial derivatives cannot simultane-
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ously vanish, and such that V (x, y) = V (x, u(y)). Assume the single-crossing

property P’holds:

∀x 6= x′ V (x, u)− V (x′, u) is strictly monotonic in u. (P’)

Let {Ti} be an optimal partition and Ui = u(T̊i), Then for all i, j, i 6= j,

Ui ∩ Uj = ∅.
Proof —See Appendix

This result shows us that the optimal policy remains essentially deter-

ministic in terms of the composite shock: a given value of the composite

shock u is assigned to a single Ti, except for realizations of y that lie on

the frontier of a cluster, which is typically of measure zero. An immediate

consequence is that nothing is lost by restricting oneself to the "projected"

problem, i.e. restating the orginial problem in terms of the composite shock,

using its distribution. This is stated in Theorem 4.

Theorem 4 —Assume the assumptions of Theorem 3 hold. Let m() be

the measure over R defined by m(S) = µ(u−1(S)) =
∫
u−1(S)

f(y)dy. Let a

partition {Ui} of R with assignment {xi} which solves solves problem P2 :

max
{Ui},x()|x(Ui)=xi

EV (x(u), u) s.t. −
N∑
i=1

m(Ui) lnm(Ui) ≤ K . (P2)

Then the partition of Rp given by {Ti = u−1(Ui)} with the same assign-
ment solves problem P1 :

max
T,x()|x(Ti)=xi

EV (x(y), u(y), ) s.t. −
N∑
i=1

F (Ti) lnF (Ti) ≤ K (P1)

Proof: See Appendix.

It would be interesting to be able to predict which zones of the space

one will pay more attention to. With the preceding notations, cluster i eats
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−F (Ti) lnF (Ti) units of informational capacity. That is− lnF (Ti) per unit of

probability mass. Therefore, and intuitively, more attention is paid to cluster

i, the smaller its weight F (Ti). Unfortunately, not much can be said in general

from the first-order conditions about which zones of the distribution of y will

get more attention. Suppose now that n = 1. Then if the single crossing

condition holds Ti is an interval [yi, yi+1] and the first-order condition for

setting the boundary optimally is

V (xi, yi)− V (xi−1, yi) = −λ ln
F (Ti)

F (Ti−1)
,

where λ is the Lagrange multiplier of the information capacity constraint.

Therefore, if a cluster i is smaller than its neighbor i− 1 (hence paid more

attention to), then the RHS is positive, implying that total utility would go

up if the common policy applied to cluster i were also applied to the values

of y that are close to its boundary yi in the neighboring cluster i−1. Absent

the information capacity constraint, one would like to widen cluster i, but

doing so would increase the entropy of X. At the optimum, the shadow cost

of the extra information needed to widen cluster i is equal to the marginal

utility gain of doing so, as captured by the preceding equation.

This illustrates how optimization is done better in the smaller clusters:

Since a smaller cluster is more costly in terms of information, it must in

turn deliver greater benefits in terms of optimization. This rules out some

configurations. For example, if V is quadratic, i.e. V (x, y) = −(x − y)2,

then a wide cluster delivers low utility at its borders, and therefore cannot

be paid too much attention, meaning it must have a large value of F (Ti). In

particular, if the density of F (), f() is very small over a wide area, such an

area must typically be included in an even larger cluster to ensure that it

has suffi ciently high probability weight. Apparently, little more can be said

beyond these considerations.
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4 The linear-quadratic case

I now apply these ideas to the linear-quadratic case. In its simplest case,

the agent receives a continuous signal y ∈ R with density f(y) and associ-

ated measure F (M) =
∫
M
f(y)dy, and wants to approximate it (in the least

squares sense) by a deterministic function x(y) which is constant over each

subset of a finite partition of the domain of y. Thus, using the preceding

derivation for mutual information in the discrete case, we can formulate the

problem as follows (in the sequel I will use natural logarithms in the definition

of entropy. Thus K is expressed in bits / ln 2).

min
n,Ω=(x1,...,xn),x():R→Ω

E(x(y)− y)2 s.t. −
n∑
i=1

F (x−1(xn)) lnF (x−1(xn)) ≤ K

(P3)

As pointed out in the previous section, property (P) is satisfied, so that

the optimal clusters are intervals. Given that mutual information does not

depend on the actual values of x, we then have:

Lemma 1 —xn = E(y | y ∈ Tn). Therefore x(y) is non decreasing.

Proof: the first part is straightforward from the optimal choice of xn. The

second derives from the fact that the Tns are intervals except for subsets of

measure zero.

I now focus on the case where f() is uniform over [0, 1]. It is then possible

to fully characterize the equilibrium:

Theorem 5 —Assume f() is uniform. Then an optimal policy is such that

(i) The interval [0, 1] is partitioned into N adjacent intervals [yn, yn+1], y0 =

0, yN = 1.

(ii) N = INT+(eK), where INT+(z) is the smallest integer m such that

z ≤ m.
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(iii) N − 1 intervals have the same length ∆, where ∆ is the smallest

solution to

−(N − 1)∆ ln ∆− (1− (N − 1)∆) ln(1− (N − 1)∆) = K,

while the remaining interval has length 1− (N − 1)∆.

(iv)

∆ < 1/N < 1− (N − 1)∆

(v) For y ∈ [yn, yn+1], x(y) = xn = yn+yn+1
2

(v) The resulting value function is V = (N − 1)∆3 + (1− (N − 1)∆)3

(vi) The arrangement of those intervals is irrelevant.

Proof – See Appendix.

Note that if capacity K is such that there is an integer number of bits,

then K = k ln 2 with k integer, and eK = 2k. In this important special case,

the optimal solution, quite naturally, consists in splitting the interval into 2k

intervals, since one needs exactly k bits to encode the actual interval to which

y is assigned. Furthermore, in this limit case where the capacity constraint is

marginally binding for N = 2k, all intervals will have the same length 1/2k.

If K/ ln 2 is not integer, then partitioning into equal intervals is not opti-

mal. Instead, we have one more interval than the largest number of intervals

that would allow us to have an equal partition while meeting the informa-

tional constraint. We pick N − 1 equally sized intervals of length ∆, and

the remaining one has length ∆′ = 1 − (N − 1)∆ > ∆. ∆ is such that the

informational constraint binds with equality.

5 An illustration with price-setting

I now discuss the implications of the approach derived above for the problem

of price setting and the effects of monetary policy.

Let us consider the following static version of the standard new Keynesian

model7. There is a continuum of consumers-yeoman farmers of total mass 1.

7See Weitzman (1985), Blanchard and Kiyotaki (1987).
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They are indexed by i and they monopolistically supply an atomistic good

with the same index i. Thus there is also a continuum of goods of mass 1.

The utility function for individual j is

Vj = E ln

[(∫ 1

0

cαijdi

) 1
2α
(
mj

p

)1/2

X−ψ − zjx1+µ
j

]
,

where E is the expectations operator, cij consumption of good i, mj money

holdings, p the aggregate price level, zj an idiosyncratic supply shock and xj

the supply of good j. The term in X−ψ is a negative congestion externality,

where X is aggregate real output (defined below) and ψ ≥ 0. This will

allow me to pick the value of ψ so as to focus on a special case which is

computationally much simpler, while what is lost by doing so is independent

of the point being illustrated here.

For simplicity, the aggregate price level that deflates money holdings in

the utility function is assumed to be equal to the price index that is dual to

the aggregate consumption index

cj =

(∫ 1

0

cαijdi

) 1
α

:

p =

[∫ 1

0

p
− α
1−α

i di

]− 1−α
α

.

The usual derivations concerning demand functions and aggregation are

made in the Appendix. We can show that each yeoman farmer maximizes

the indirect utility function given by:

E ln

[
p
− α
1−α

j − φjp
− 1+µ
1−α

j

]
, (2)

where φj is a composite shock defined by

φj = zjM
µ+ψp1−ψ+ αµ

1−α . (3)

From now on, I will assume that ψ is such that the composite shock does

not depend on the aggregate price level: ψ = 1 + αµ/(1 − α). Thus, φj =
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zjM
µ+1−α
1−α ; spillovers in price formation across firms are shut down, which

greatly simplifies the analysis. It is then useful to define γ as γ = µ+1−α
1−α .

As a benchmark, we can derive the flexible price equilibrium with no

informational constraint where a different price is set for each realization of

φj. The FOC for price-setting is equivalent to

pj =

(
(1 + µ)φj

α

)1/γ

(4)

=

(
1 + µ

α

)1/γ

z
1/γ
j M.

Integrating we get the aggregate price level:

p = Mz̃1/γ

(
1 + µ

α

)1/γ

,

where z̃ is an aggregate of z defined as

z̃ =

[∫ 1

0

z
− α
1−α+µ

j dj

]− 1−α+µ
α

= E(z−
α

1−α+µ )−
1−α+µ
α .

Thus money is neutral, the aggregate price level is proportional to M,

and real aggregate output is constant and equal to

X =
Y

p
=
M

p
=

(
z̃

1 + µ

α

)−1/γ

.

Output is lower, the larger the aggregate cost index z̃, the larger the

elasticity of the disutility of effort µ, and the lower the elasticity of demand

for the individual goods, i.e. the larger the markup over marginal cost 1/α.

The New Keynesian literature takes this framework and imposes some

nominal price rigidity. I now introduce capacity constraints in processing in-

formation along the lines discussed above and derive the associated behaviour

of output and the price level.

Under rational inattention, people do not have the information processing

ability to pursue a rule like (4) for any value of φj. Instead they are going to

pursue a rule such that the mutual information between pj and φj satisfies
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a capacity constraint. Let us assume that, as in the above analysis, they

pursue a discrete deterministic rule and partition the support of φj into

intervals Ik = [φ̄k, φ̄k+1] such that a constant value of pj, denoted by p̄k, is

pursued within each interval. We assume k varies between 0 and N + 1, with

φ̄0 = 0 and φ̄N+1 = +∞.
The distribution of the composite shock φ has density

g(φ) =

∫ +∞

0

f(M)M−γh(φM−γ)dM. (5)

Individuals select the number of intervals, their bounds and their associ-

ated price levels so as to maximize:

max
N,{φ̄k,k=1,...,N},{p̄k,k=0,...,N}

U =
N∑
k=0

∫ φ̄k+1

φ̄k

g(φ) ln

[
p̄
− α
1−α

k − φp̄−
1+µ
1−α

k

]
dφ, (6)

subject to the information capacity constraint

−
N∑
k=0

(∫ φ̄k+1

φ̄k

g(φ)dφ

)
ln

(∫ φ̄k+1

φ̄k

g(φ)dφ

)
≤ K. (7)

An equilibrium is therefore a set {N, {φ̄k, k = 1, ..., N}, {p̄k, k = 0, ..., N}}
which maximizes (6) subject to (7). The solution to this problem then

delivers the aggregate price level as a function p(M) of the realization of

the aggregate money stock. Given M, a price-setter j is in interval Ik iff

φ̄k ≤ zjM
γ < φ̄k+1, which occurs with probabilityH(φ̄k+1M

−γ)−H(φ̄kM
−γ).

Therefore, the aggregate price level p(M) is given by

p(M) =

(
N∑
k=0

(
H(φ̄k+1M

−γ)−H(φ̄kM
−γ)
)
p̄
− α
1−α

k

)− 1−α
α

, (8)

where by convention H(+∞) = 1. This in turn allows us to compute output

X = M/p(M). Note that the assumption made on ψ guarantees that the

environment faced by each price-setter only depends on the exogenous vari-
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ables and not on the prices set by other agents8. This greatly simplifies the

computations.

I solve for such an equilibrium numerically, performing global optimiza-

tion on all the possible partitions of the domain of φ into a finite number of

intervals which match the informational capacity constraint. To keep things

tractable the possible values for the jump points have been discretized9.

Table 1 reports some summary statistics for the simulations. I start from a

benchmark numerical exercise where both f() and h() are log-normal10, with

E lnM = E ln z = 0 and Var(lnM) = Var(ln z) = 1. The other parameters

were µ = 1 and α = 0.5.

I first start by simulating this economy for K = 1.2 and I gradually

loosen the information capacity constraint by increasing K. Table 1 reports

the corresponding number of clusters along with the variance of log output.

Figure 1 reports the behavior of output as a function of the monetary shock

M.We see that for a wide range of values of the money stock the curve is quite

flat: despite the small number of clusters, heterogeneity due to idiosyncratic

shocks is enough to yield near neutrality at the aggregate level, a not unusual

result (Caplin and Spulber (1987), Caballero and Engel (1993), Burstein and

Hellwig (2007)). The curve is tilda-shaped: at small (resp. large) values of

M,most firms charge their minimum (resp. maximum) price, and an increase

in M boosts output. For intermediate values, a composition effect creates

a force in the opposite direction, as some firms move to a cluster with a

higher price. This composition effect creates a zone where money growth is

8Otherwise, the shock φ and its distribution g() would themselves depend on the aggre-
gate price level, and there would be no closed-form formula such as (8) for the latter—one
would then need to search for a fixed point equilibrium rather than just an optimum.

9More precisely, there are N̄ possible values of φ̄k separated by a probability weight
of 1/(N̄ + 1), i.e. if those eligible critical values are denoted by φ̃j , j = 1, ...., N̄ , then∫ φ̃j+1
φ̃j

g(φ)dφ = 1/(N̄ + 1).

In the simulations, one has picked N̄ = 20.
10In the simulations, the distributions are truncated to eliminate the zone where utility

is not defined, i.e.
[
p
− α
1−α

j − φjp
− 1+µ
1−α

j

]
≤ 0. The parameters are such that the truncated

zone has a very small probability weight.
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contractionary, which also happens in other models of price rigidity.

Figure 2 compares the flatter portion of the output curve between a low

information (K = 1.2) and a high information (K = 1.5) regime. We see

that output is substantially flatter in the latter case. Nevertheless, as Table

1 shows, for local increases in capacity, the variance of output may well go

up.

It is also interesting to look at the distribution of individual prices. They

are reported in Figures 3 (for K = 1.2) and 4 (for K = 1.6). The dimension

of each rectangle along the y-axis is the price and along the x-axis it is the

probability weight associated with the corresponding interval of values of φ.

We see that the probability weights on each price are decreasing with the

price, meaning that price-setters are devoting more attention to situations

where the required price is higher. This is presumably due to the marginal

disutility of labor schedule: the utility cost of not paying attention to these

states is high because if one charges too low a price the labor input must be

very high11.

Entropy #of clusters Variance of output
1.2 4 0.17
1.3 5 0.18
1.4 5 0.187
1.5 5 0.1
1.6 6 0.1
Table 1.

Table 2 analyses the effect of an increase in the variance of monetary

shocks on the distribution of individual prices for K = 1.4. We compare

the benchmark situation (Table 2a) to one such that Var(lnM) = 2 and

E(lnM) = −0.5 (Implying that E(M) is the same as in the benchmark)

(Table 2b). We see that the increase in the variance of money shocks compells

price-setters to devote more attention to high realization of those shocks12:

11This clearly rests on my assumption that demand must be met; this might not remain
realistic for very high realizations of the demand shock.
12That is because of the skewness of the log-normal distribution along with the increasing
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the upper-tail of the distribution of the composite shocks is split into more,

and finer, clusters, while the first interval is coarser. Also, the variance of

log output increases from 0.19 to 0.49.

Table 3c performs the reverse exercise of dividing the variance of monetary

shocks by 2, while again adjusting the mean log ofM to hold E(M) constant.

We see that the number of clusters is the same, and so is their size, but the

order is changed: the second cluster gets the biggest weight, while more

attention is paid to low realizations of the shock than before. The intuition

for this result is unclear.
Cluster Price Weight
1 0.95 0.43
2 1.96 0.24
3 3.74 0.19
4 7.0 0.095
5 23.63 0.048

Table 2a —K = 1.4, benchmark.

Cluster Price Weight
1 0.76 0.52
2 1.67 0.19
3 2.84 0.095
4 4.99 0.095
5 8.66 0.048
6 47.4 0.048

Table 2b —K = 1.4, Var(lnM) = 2 and E(lnM) = −0.5.

Cluster Price Weight
1 0.81 0.19
2 1.93 0.43
3 3.65 0.24
4 6.02 0.095
5 13.45 0.048

Table 2c —K = 1.4, Var(lnM) = 0.5 and E(lnM) = 0.25

marginal disutility of labor property. But for even larger increases in the variance of
money shocks, the price setters will also spend information capacity on the lower tail of
the distribution. Thus, for Var(lnM) = 4, cluster 1 has a minimal weight of 0.048.
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6 Implications for rigidity

As the preceding section makes clear, the quantized model only implies a

moderate degree of price rigidity at the aggregate level. By contrast, in a

model where noisy behavior is allowed for, as that of Mackoviak and Wieder-

holt (2009a,b), the aggregate price level reacts less than one for one to mon-

etary shocks throughout the whole distribution of those shocks. The reason

is that this class of models is similar to the Lucas (1972, 1973) misperception

model. Information capacity constraints preclude price-setters from reacting

one for one to the monetary shock. Instead, they can only react to a noisy

signal of the monetary shock. Given that, their optimal inference about the

true realization of the money stock will react less than one-for-one to that

money stock, as implied by Bayes’s Law. The only difference with the Lu-

cas misperception model is that the noise is now designed optimally by the
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price-setters so as to meet the information capacity constraint.13 In the ag-

gregate, all individual prices react less than one-for-one to the money shock,

13As an aside, it is interesting to note that the reaction of prices to monetary shocks
is optimal conditional on the existence of noise. In other words, it is not the informa-
tion capacity constraint which is constraining that reaction to be suboptimally low, but
rather the noise itself (of course the noise is also a by-product of the information capacity
constraint). To see this, let us get back to the standard Gaussian linear-quadratic problem:

V = minE(x− y)2.

Assume y ∼ N(0, σ2y) and x = ay + ε, where a is a reaction coeffi cient and ε the
endogenous noise, assumed normal with zero mean and variance σ2ε and orthogonal to y.
An optimality condition for x is

E(y | x) = x. (9)

This optimality condition pins down the correlation between x and y and it would hold if

one observed an exogenous noisy signal of y. In our context, we have E(y | x) =
aσ2y

σ2ε+a
2σ2y

x.

Therefore the optimality condition (9) is equivalent to

a(1− a) =
σ2ε
σ2y
. (10)

The value of the objective function is V = (a − 1)2σ2y + σ2ε; The mutual information
between x and y is

M(x, y) =
1

2
(log(a2σ2y + σ2ε)− log(σ2ε)). (11)

Thus our problem is equivalent to maximizing V subject to

a2σ2y
σ2ε
≤ K. (12)

Given this constraint, which involves a, it is not a priori obvious that the optimality
condition (9) should hold. In contrast, if x and y have a discrete distribution,M(x, y) only
depends on the probability weights of their joint distribution, and it is always possible to
pick the values of x while leaving M(x, y) unchanged so as to match (9). That M(x, y) is
not independent of the values of x because of the presence of a in (11) is a weakness of
the entropy concept applied to continuous distributions.
Nevertheless, since one picks both σε and a optimally given the constraint (12), one has

one degree of freedom left to match the optimality condition (9)-(10), which turns out to
hold at the optimum. Indeed, at the optimum a = K

K+1 and σ
2
ε = K

(K+1)2σ
2
ε, implying

that (10) holds.
This proves that the underreaction of x to y does not come from a failure of (9) that

would be the price to pay for matching the information capacity constraint. And, if this
were the case, it would be an artifact of the use of continuous entropy. Instead, this
underreaction is optimal given the presence of (endogenous) noise, exactly as if the noise
were exogenous instead.
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and so does the aggregate price level. These considerations apply to any

model where agents are allowed to introduce noise in their policy functions

in order to save on information capacity. In particular, underreaction would

also arise if the distribution of the exogenous variable (y) were purely discrete

or if that of the endogenous variable (x) turned out to be discrete yet noisy

conditional on y as in Matejka and Sims (2010).

On the other hand, in the quantized model developed here, noisy policies

are precluded. The information capacity constraint is matched by lumping

the realizations of y in clusters within which the same policy is pursued. The

actual value of x within each cluster does not affect the mutual information

between x and y, since, as we have seen, it only depends on the probability

weights of the discrete random variable x. Therefore, within each cluster

one will pick the optimal value of x conditional on being in that cluster,

ignoring the information capacity constraint. Consequently, if, in the absence

of information constraints, it is optimal for x to react one-for-one to y, this

will remain so in the quantized solution when one moves across clusters.

In the aggregate, money neutrality tends to arise in a similar fashion as in

Caplin and Spulber (1987): the large price adjustment of firms that are near

the frontier between two clusters tends to offset the price inertia of those

firms that remain in the same cluster. Thus the model, resembles a menu

cost model rather than the Lucas misperception model, and has much less

aggregate price stickiness.

7 Discussion

The general message of this paper is that information processing constraints

yield lumpy behavior. Thus, when the exogenous variables change, inat-

tention results in inaction, while in the standard approach it is associated

with inadequacy, i.e. embodies excess noise. In both cases, the endogenous

variable does not react enough to the exogenous one, although here there

will be a jump if one crosses the frontier between clusters.
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Perhaps the most straightforward example of discreteness in the economic

sphere is the system used by the credit rating agencies: instead of providing

a continuous default probability, they rely on lumpy letter grades such as

AAA, B+, and so forth. Thus, investors can save on information processing

by applying simple rules that treat each credit rating category uniformly.

The existence of lumpiness in the adjustment of economic variables has

been documented in a number of areas. For example, Doms and Dunne

(1998), studying investment at the plant level, find that "Many plants oc-

casionally alter their capital stocks in lumpy fashions. Of the plants in a

balanced panel, over half experience a capital adjustment of at least 37 % in

one year, and by 50% in two consecutive years". In the area of price setting,

Klenow and Kryvstov (2008) find (table III) that individual price changes are

usually large, with a mean size of 14 %. Dhyne et al. (2006) report similar

findings, along with substantial heterogeneity in the degree of lumpiness of

price adjustment across sectors. More recently, Eichenbaum et al. (2008),

using scanner data from the retail trade sector, find that firms pick their

prices among a number of finite "reference" prices, and that the evidence is

consistent with the view that it is not costly to change prices as long as the

new price remains a reference price. This is exactly what happens in the

model described above. On the other hand, reference prices change infre-

quently, which may be interpreted as the outcome of a costly reoptimization

process in light of perceived changes in the underlying distribution of shocks

or in the technology for processing information.14

Finally, evidence of lumpiness in employment can be found in Davis et al

(1996) or Caballero et al. (1997). The latter, in particular, found that the

distribution of employment changes is typically bimodal.

Of course, rational inattention is not the only reason why there could

be lumpiness. The above literature has mostly focused on fixed and linear

adjustment costs and rational inattention and adjustment costs are not mu-

14Analysing this reoptimization process in the quantized case is an important topic for
further research. It would allow to construct truly dynamic models of price setting in the
fashion of the one spelled out in Section 5.
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tually exclusive mechanisms. The rational inattention mechanism may be

of particular interest when large adjustment costs are implausible, as in the

area of price setting. Furthermore, a range of novel predictions may be gen-

erated regarding the determinants of lumpiness: The greater an economic

agent’s ability to process information, the less lumpy its behaviour. Thus

one may speculate that advances in information technologies have reduced

lumpiness15, or that firms with a greater fraction of highly skilled workers

have less lumpy behavior —this may help explain, for example, the finding by

Doms and Dunne (1998) that smaller plants have a more lumpy adjustement,

if one is willing to believe that smaller plants employ fewer skilled workers,

or by Dhyne et al (2006, fig. 1) that some sectors (like gasoline) have much

less lumpy price adjustment than others (like haircuts).

15This is the message of the empirical study by Bartel et al. (2005) in the dimension of
product diversity.
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APPENDIX

Proof of Theorem 1.

We have that

M(ε) = H(Y ; ε)−HX(Y ; ε).

Let us compute Hx(Y ; ε).We denote by p(y) the distribution of y and by

g(x) =
∫
y
fε(x | y)p(y)dy the unconditional distribution of x. By Bayes’s law

the conditional distribution of y is fε(y | x) = fε(x|y)p(y)
g(x)

. Therefore we have

that

Hx(Y ; ε) =

∫
x

(
−
∫
y

fε(x | y)p(y)

g(x)
log

fε(x | y)p(y)

g(x)

)
g(x)dx

=

∫
x

(
−
∫
y

fε(x | y)p(y) log
fε(x | y)p(y)

g(x)

)
dx

=

∫
x

−∫
y

1

ε
f̂

(
x− x(y)

ε

)
p(y)

 log
(

1
ε
f̂
(
x−x(y)

ε

)
p(y)

)
− log

(∫
u

1
ε
f̂
(
x−x(u)

ε

)
p(u)du

)  dy
 dx

= I1 + I2,

where

I1 = −
∫
x

(∫
y

1

ε
f̂

(
x− x(y)

ε

)
p(y) log

(
1

ε
f̂

(
x− x(y)

ε

)
p(y)

)
dy

)
dx

and

I2 =

∫
x

(∫
y

1

ε
f̂

(
x− x(y)

ε

)
p(y)dy

)
log

(∫
u

1

ε
f̂

(
x− x(u)

ε

)
p(u)du

)
dx.

Let Hn(Y ) = −
∫
Tn
p(y) log p(y)dy. Clearly,

∑
nHn(Y ) = H(Y ). Further-

more, ∫
y

1

ε
f̂

(
x− x(y)

ε

)
p(y) log

(
1

ε
f̂

(
x− x(y)

ε

)
p(y)

)
dy

=
∑
n

∫
Tn

1

ε
f̂

(
x− xn
ε

)
p(y) log

(
1

ε
f̂

(
x− xn
ε

)
p(y)

)
dy

=
∑
n

1

ε
f̂

(
x− xn
ε

)
(log

(
1

ε
f̂

(
x− xn
ε

))
Pn +Hn(Y )).
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Therefore,

I1 = −
∫
x

[∑
n

1

ε
f̂

(
x− xn
ε

)(
log

(
1

ε
f̂

(
x− xn
ε

))
Pn +Hn(Y )

)]
dx

= −
∑
n

Pn

∫
x

1

ε
f̂

(
x− xn
ε

)
log

(
1

ε
f̂

(
x− xn
ε

))
dx−

∑
n

Hn(Y )

∫
x

1

ε
f̂

(
x− xn
ε

)
dx

= log ε+Hf̂ +H(Y ),

where Hf̂ = −
∫
z
f̂(z) log f̂(z)dz is the entropy of distribution f̂() and the

last equality can be obtained straightforwardly by considering the variable

change z = x−xn
ε
.

Next, we have that∫
y

1

ε
f̂

(
x− x(y)

ε

)
p(y)dy =

∑
n

1

ε
f̂

(
x− xn
ε

)
Pn.

Therefore,

I2 =

∫
x

∑
n

1

ε
f̂

(
x− xn
ε

)
Pn log

(∑
k

1

ε
f̂

(
x− xk
ε

)
Pk

)
dx

= − log ε+
∑
n

Pn

∫
x

1

ε
f̂

(
x− xn
ε

)
log

(∑
k

f̂

(
x− xk
ε

)
Pk

)
dx

= − log ε+
∑
n

Pn

∫
z

f̂(z) log

(∑
k

f̂

(
z +

xn − xk
ε

)
Pk

)
dz.

Consider the function gn(z; ε) = f̂(z) log
(∑

k f̂
(
z + xn−xk

ε

)
Pk

)
. Clearly,

as ε → 0, it converges simply to gn(z) = f̂(z) log
(
f̂ (z)Pn

)
. Furthermore,

|gn(z; ε)| ≤ f̂(z)
∣∣∣log M̂

∣∣∣ , where M̂ = max f̂ . According to the Dominated

Convergence Theorem, it follows that limε→0

∫
z
gn(z; ε)dz =

∫
z
gn(z)dz.

From this we get that

lim
ε→0

(I2 + log ε) =
∑
n

Pn

∫ +∞

−∞
f̂(z) log

(
f̂ (z)Pn

)
.

= −Hf̂ − S(X).
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Therefore:

lim
ε→0

HX(Y ; ε) = lim
ε→0

log ε+Hf̂ +H(Y ) + I2

= Hf̂ +H(Y )−Hf̂ − S(X)

= H(Y )− S(X).

Consequently, M(ε) = H(Y ) − HX(Y ; ε) converges to S(X) as ε → 0.

QED.

Proof of Theorem 2.

Assume i = 1 to fix ideas. Let y, y′ ∈ T̊1 Let θ ∈ [0, 1] and y′′ = θy+ (1−
θ)y′. Assume y′′ ∈ Tk.
Then by the no-swapping condition we must have

V (xk, y
′′) + V (x1, y) ≥ V (x1, y

′′) + V (xk, y), (13)

and similarly for y′ replacing y :

V (xk, y
′′) + V (x1, y

′) ≥ V (x1, y
′′) + V (xk, y

′), (14)

First, consider the case where P (x1, xk, y; y′) holds. Consider the function

h(φ) = V (xk, φy + (1− φ)y′)− V (x1, φy + (1− φ)y′).

Then, applying the NSC to y and y′, we get that

h(0) ≤ h(θ) (15)

and

h(1) ≤ h(θ). (16)

However, h′(φ) = (y−y′) ·(∇2V (xk, φy+(1−φ)y′)−O2V (x1, φy+(1−φ)y′)).

Suppose xk 6= x1. Since P (x1, x1, y; y′) holds, h′() has a constant nonzero sign

over [0, 1], so that h() is strictly monotonous and (15) and (16) cannot hold

simultaneously. Therefore, it must be that xk = x1, i.e. y′′ ∈ T1.

Assume now that P (x1, xk, y; y′) does not hold. Since y′ ∈ T̊1, there exists

a bowl B(y′, r) ⊂ T1. Furthermore,U =

N⋃
i=2

M(x1, xi, y) is a finite reunion of
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manifolds, i.e. is at most of dimension n − 1, implying that B(y′, r) − U

is dense in B(y′, r). Thus there exists a sequence {ỹi, i = 1, ...} such that
ỹi → y′ and ỹi ∈ B(y′, r) − U . By construction, ỹi ∈ T1 and P (x1, xl, y, ỹi)

holds for any i and l 6= 1. In particular, this holds for l(i) such that ŷi =

θy + (1 − θ)ỹi ∈ Tl(i), if l(i) 6= 1. In such a case, we can apply the above

reasoning with ỹi replacing y′ and ŷi replacing y′′ and show that l(i) = 1.

Therefore, ŷi ∈ T1 for all i. Since, by continuity, ŷi → y′′, it follows that

y′′ ∈ T̄1.

Thus we have proved that C(T̊1) ⊂ T̄1. Furthermore, since T̊1 is dense,

C(T1) ⊂ C
(
T̊1

)
⊂ C(T̊1) ⊂ T̄1.

QED

Proof of Theorem 3.

Take i = 1 and j = 2 to fix ideas. Let B1,B2 be two open bowls such that

B1 ⊂ T1 and B2 ⊂ T2. Since B1 and B2 are connected and u() is continuous,

u(B1) and u(B2) are intervals and so is S = u(B1)∩u(B2). Assume S̊ = (a, b),

with a < b. Assume V (x1, u) − V (x2, u) is strictly increasing in u. This

is without loss of generality since u can always be redefined as −u. Let
µ1(z) = µ(u−1([a, z])∩B1), where µ() denotes the measure on Rp defined by

f(). For any interval (c, d) ⊂ (a, b), we have that (c, d) ⊂ u(B1), implying

u−1((c, d)) ∩ B1 6= ∅. Since u−1((c, d)) and B1 are open sets, so is their

intersection, which contains a bowl. Since f() is a density with full support,

µ(u−1((c, d)) ∩ B1) > 0. It follows that µ1 is strictly increasing in z, and

furthermore since f is a density, µ(u−1((c, d)) ∩ B1) is arbitrarily small for

d arbitrarily close to c. Consequently, µ1 is also continuous. Similarly we

define µ2(z) = µ(u−1(z, b)∩B2), which is continuous and strictly decreasing.

By continuity, we can pick a′ and b′ such that a < a′ < b′ < b and µ1(a′) =

µ2(b′) > 0. The set S1 = u−1([a, z]) ∩ B1 is such that µ(S1) > 0 and S1 ⊂
T1. Similarly, S2 = u−1([z, b]) ∩ B2 is such that µ(S2) = µ(S1) > 0 and

S2 ⊂ T2. Consider a new assignment such that T1 is replaced by (T1 −
S1) ∪ S2, and still assigned to x1, while T2 is replaced by (T2 − S2) ∪ S1,

and still assigned to x2, while all the other clusters are unchanged. Clearly,
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the new assignment has the same entropy as the initial one, and therefore

matches the information capacity constraint. Furthermore, the change in

the objective function induced by such a swap is ∆ =
∫
S1

(V (x2, u(y)) −
V (x1, u(y)))f(y)dy +

∫
S2

(V (x1, u(y)) − V (x2, u(y)))f(y)dy. By construction

u(y) > u(y′) for y ∈ S2 and y′ ∈ S1, implying that V (x1, u(y))−V (x2, u(y)) >

V (x1, u(y′)) − V (x2, u(y′)). Since
∫
S1
f(y)dy =

∫
S2
f(y)dy, it follows that

∆ > 0, which is impossible since the initial assignment is assumed optimal.

Therefore, we must have S̊ = ∅, implying that S has at most one point.
Consider now z ∈ u(T̊1)∩u(T̊2). By definition there exist two open bowls B1

and B2 such that y1 ∈ B1 ⊂ T1, y2 ∈ B2 ⊂ T2, and u(y1) = u(y2) = z. The

preceding argument implies that u(B1)∩ u(B2) = {z}. But, since u(B1) and

u(B2) are both intervals, this can only happen if z is at the boundary of each.

Assume for example that u(B1) = (a, z]. SinceB1 is open and y1 ∈ B1, for any

unitary vector v there exists λ > 0 such that [y1−λv, y1+λv] ⊂ B1. Over that

interval, u() must reach a local extremum at y1, implying that it is singular

at y1, which is ruled out by assumption. Thus we have a contradiction and

it must be that u(T̊1) ∩ u(T̊2) = ∅. QED.

Proof of Theorem 4.

Below I will denote by {Xi, xi} any quantized solution with partition
{Xi} such that x = xi over Xi, and by V {Xi, xi} the corresponding value
of the objective function. Consider {Ti, x̃i} which solves problem P1. Then

theorem 3 implies that {u(T̊i)} form a partition of ∪iu(T̊i). Furthermore, we

have that µ(Ti) = µ(T̊i) and T̊i ⊂ u−1(u(T̊i)), so that µ(T̊i) ≤ m(u(T̊i)).

Since
∑

i µ(T̊i) =
∑

i µ(Ti) = 1, it must be that µ(T̊i) = m(u(T̊i)) for all i

and that
∑

im(u(T̊i)) = 1. Therefore, {u(T̊i)} is almost surely a partition of
u(Rp) and V {u(T̊i), x̃i} ≤ V {Ui, xi}. Furthermore, since µ(Ti) = m(u(T̊i)),

{Ti} and {u(T̊i)} have the same mutual information. Finally, V {Ti, x̃i} =∑
i

∫
Ti
V (x̃i, u(y))f(y)dy =

∑
i

∫
T̊i
V (x̃i, u(y))f(y)dy =

∑
i

∫
u−1(u(T̊i))

V (x̃i, u(y))f(y)dy =∑
i

∫
u(T̊i)

V (x̃i, u)dm(u), where the equality again comes from the fact that

µ(Ti) = m(u(T̊i)) = µ(u−1(u(T̊i)). Thus V {Ti, x̃i}= V {u(T̊i), x̃i} ≤ V {Ui, xi}.
By a similar argument we can prove that {u−1(Ui), xi} has the same mutual

33



information as {Ui, xi} and that V {Ui, xi} = V {u−1(Ui), xi} ≤ V {Ti, x̃i}.
Therefore, V {Ui, xi} = V {Ti, x̃i}, implying that {u−1(Ui), xi} solves P1.

QED.

Proof of Theorem 5.

Lemma 1 implies that any optimummust be a partition by intervals, up to

a set of measure zero. It follows that one cannot improve on such a partition.

By Lemma 2, for any partition the optimal xn must be
yn+yn+1

2
, which proves

(v). Next, computing the value function for such a configuration, we get that

E(x(y)− y)2 =
1

12

N−1∑
n=0

(yn+1 − yn)3. (17)

For a given N, we minimize (17) subject to

y0 = 0,

yN = 1,

−
N−1∑
n=0

(yn+1 − yn) ln(yn+1 − yn) ≤ K.

The FOCs are:

(yn−yn−1)2−(yn+1−yn)2 = λ(ln(yn−yn−1)−ln(yn+1−yn)), 0 < n < N. (18)

Note that with N fixed but absent the capacity constraint, optimality

would imply that yn−yn−1 = yn+1−yn.All intervals would then be of constant
length 1/N and the resulting entropy would be lnN. Thus, if lnN < K, then

λ = 0 and the optimal solution is the unconstrained one. However, one can

always improve on this by picking a larger N, since the initial configuration

can always be replicated by collapsing the additional interval to a set of

measure zero by equating their bounds. Therefore the optimal N will be

such that lnN ≥ K, i.e. the capacity constraint will be binding. Let us then
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consider such an N. Call ∆n the length of interval n. The FOC (18) implies

that ∆2
n−λ ln ∆n is invariant across intervals. Since the function X2−λ lnX

is U-shaped, ∆n can at most have two values, let us call them ∆ and ∆′.

Clearly, the invariance property is then satisfied for λ = ∆′2−∆2

ln ∆′−ln ∆
. Without

loss of generality, assume ∆ ≤ ∆′. Let q the number of intervals of length ∆.

Since the whole [0,1] interval must be partitioned, it must be that

q∆ + (N − q)∆′ = 1

and

−q∆ ln ∆− (N − q)∆′ ln ∆′ = K.

Eliminating ∆′, we get

∆′ =
1− q∆
N − q ,

and we see that ∆ must solve

φ(∆) = −q∆ ln ∆− (1− q∆) ln

(
1− q∆
N − q

)
= K. (19)

The function φ(∆) is increasing and then decreasing and reaches its max-

imum at ∆ = 1/N, at which point we also have ∆′ = 1/N. Therefore, there

is at most one solution ∆ such that ∆ ≤ ∆′. Furthermore, φ(0) = ln(N − q)
and φ(1/N) = lnN. Therefore, there exists a solution for ∆ provided

ln(N − q) < K ≤ lnN.

In particular, for any N such that lnN ≥ K the set of values of q for

which this holds is non empty, since ln(N − q) = 0 for q = N − 1.

Despite that q is integer, equation (19) also defines a value of ∆ for any

real number q. Furthermore,

∂φ

∂q
= ∆(ln ∆′ − ln ∆) + ∆−∆′ < 0.16

Since φ′(∆) > 0, it follows that d∆
dq
> 0.

16It can be checked that this expression is always negative by noting that it would be
equal to zero at ∆ = ∆′ and that its derivative with respect to ∆′ is ∆/∆′ − 1 < 0.
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Next, note that the resulting loss function, up to a positive multiplicative

constant, is equal to V = q∆3 + (N − q)∆′3. Differentiating, we get

dV = (∆3 −∆′3)dq − 3q∆′2dq + 3∆′3dq + 3q∆2d∆− 3q∆′2d∆

= (∆3 −∆′3)dq + 3∆′2(∆′ − q)dq + 3q(∆2 −∆′2)d∆.

Since d∆
dq
> 0, ∆ < ∆′, and ∆′ < 1 ≤ q, all terms are negative if dq > 0.

Therefore, V is a decreasing function of q; given N, the optimal value of q is

the largest possible one, i.e. q = N − 1. The resulting loss function is then

V = (N − 1)∆3 + (1− (N − 1)∆)3, (20)

and ∆ now solves

φ̃(∆) = −(N − 1)∆ ln ∆− (1− (N − 1)∆) ln (1− (N − 1)∆) = K. (21)

What is the optimal value of N? First of all, differentiating φ̃ with respect

to N and ∆ we get

d∆

dN
= − ∆

N − 1
(1 +

1

ln ∆′ − ln ∆
) < 0. (22)

Next, differentiating (20) and using (22) we get that

dV

dN
= ∆3 − 3∆∆′2 + 3∆(∆′2 −∆2)(1 +

1

ln ∆′ − ln ∆
).

This expression is positive if and only if

2∆2 <
3(∆ + ∆′)(∆′ −∆)

ln ∆′ − ln ∆
.

Calling θ = ∆′/∆ > 1, this is equivalent to ln θ < 3(θ2 − 1)/2, which is

always true.

Thus dV/dN > 0. Consequently, the optimal value of N is the smallest

one such that lnN ≥ K, i.e. N = INT (eK).

QED

Derivation of (2)-(3).
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The budget constraint of the individual is∫ 1

0

picij +mj ≤ yj + sj,

where yj = pjxj is his income and sj is rebated seignioriage. In equilibrium

the total money stock is M =
∫ 1

0
mjdj and we assume for simplicity that

seignoriage is rebated proportionally to the value of output produced by the

individual:

sj = M
yj
Y
,∀j,

where

Y =

∫ 1

0

yjdj

is GDP. Aggregate real output is defined as X =
(∫ 1

0
xαj dj

)1/α

.

We assume that the money stock is drawn from a distribution with density

f(M) and c.d.f F (M).We also assume that the idiosyncratic shock is drawn

from a distribution with density h(z) and cumulative H(z).

Solving for the consumer’s optimal consumption and money holdings

yields, after a few steps, the following relationship:

cij =
mj

p
1

1−α
i p−

α
1−α

. (23)

Aggregating across individuals, this gives the demand curve for good i :

Ci =
M

p
1

1−α
i p−

α
1−α

. (24)

We assume that all producers meet demand. Therefore, xj = Cj.Next,

Y =

∫
pjxjdj

=

∫
pjCjdj

= M.

We can also check that X =
(∫

Cα
i di
)1/α

= M/p.
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Furthermore, aggregating (23) across goods we see that the aggregate

consumption index for individual j is equal to

cj =
mj

p
.

We also have that
∫ 1

0
picij = mj = pcj. Substituting into the budget

constraint, we get that

mj =
yj + sj

2
;

cj =
yj + sj

2p
.

Noting that sj = M
yj
Y
and yj = pjxj we get an indirect utility function

Vj = E ln

[
c

1/2
j

(
mj

p

)1/2(
M

p

)−ψ
− zjx1+µ

j

]

= E ln

[
pjxj(1 +M/Y )

2p

(
M

p

)−ψ
− zjx1+µ

j

]
(25)

= .E ln

[
pjxj
p

(
M

p

)−ψ
− zjx1+µ

j

]

It is this quantity that the individual maximizes when setting his price

pj subject to the demand curve (24). Substituting this demand curve into

(25) we can rewrite the objective function of the producer as

Vj = E ln

(pj
p

)− α
1−α M

p

(
M

p

)−ψ
− zj

M1+µ

p
1+µ
1−α
j p−

α(1+µ)
1−α


= E ln

[
p
− α
1−α

j − φjp
− 1+µ
1−α

j

]
+ E ln

[
p
2α−1
1−α +ψM1−ψ

]
,

where φj is defined by (3). This clearly amounts to maximizing (2).
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