
Electronic copy available at: http://ssrn.com/abstract=1787285

Predicting Market Returns Using Aggregate Implied Cost of Capital

Yan Li, David T. Ng, and Bhaskaran Swaminathan1

First Draft: March 2011

This Draft: November 2012

Theoretically the market-wide implied cost of capital (ICC ) is a good proxy for time-varying

expected returns. We find that the implied risk premium, computed as ICC minus one-month

T-bill yield, strongly predicts future excess market returns ranging from one month to four years.

This predictive power persists even in the presence of popular valuation ratios and business cycle

variables, both in-sample and out-of-sample, and is robust to alternative implementations and

standard errors. Overall, we provide strong evidence of a positive relationship between the ICC

and future returns, a key contribution to both the ICC and the predictability literature.

JEL Classification: G12

Keywords: Implied Cost of Capital, Implied Risk Premium, Market Predictability, Valuation

Ratios

1Yan Li, liyanlpl@temple.edu, Department of Finance, Fox School of Business, Temple University, Philadelphia,
PA 19122; David T. Ng, dtn4@cornell.edu, Dyson School of Applied Economics and Management, Cornell University,
Ithaca, NY 14853; and Bhaskaran Swaminathan, swami@lsvasset.com, LSV Asset Management, 155 North Wacker
Dr., Chicago, IL 60606. We thank Sudipta Basu, Hendrik Bessembinder, Robert Engle, Frank Diebold, Stephan
Dieckmann, Wayne Ferson, George Gao, Hui Guo, Jingzhi Huang, Ming Huang, Kewei Hou, Andrew Karolyi, Dana
Kiku, Charles Lee, Xi Li, Maureen O’Hara, Robert J. Hodrick, Roger K. Loh, Lilian Ng, Matt Pritsker, David Reeb,
Michael Roberts, Oleg Rytchkov, Thomas Sargent, Steve Sharpe, Nick Souleles, Robert F. Stambaugh, Amir Yaron,
Yuzhao Zhang, and seminar participants at Cornell University, Journal of Investment Management Conference,
Singapore Management University, the Federal Reserve Board, Shanghai Advanced Institute of Finance, Temple
University, University of Hong Kong, the Wharton School, and Xiamen University for helpful comments. Finally, we
are grateful to Thompson Financial for providing the earnings per share forecast data, available through I/B/E/S.
Any errors are our own.

1



Electronic copy available at: http://ssrn.com/abstract=1787285

1 Introduction

The implied cost of capital (ICC ) is the expected return that equates a stock’s current price to

the present value of its expected future free cash flows where, empirically, the free cash flows are

estimated using a combination of short-term analyst earnings forecasts, long-term growth rates pro-

jected from the short-term forecasts, and historical payout ratios.2 If markets are efficient, the ICC

represents the true expected return; if not, it also captures mispricing. The ICC has historically

been used to estimate the unconditional equity premium, compute individual firm cost of equity,

and address various other cross-sectional asset pricing issues.3 Pastor, Sinha, and Swaminathan

(2008) use the ICC in a time-series setting and show theoretically that the aggregate market-wide

ICC can be a good proxy of time-varying expected returns. They use the aggregate ICC to exam-

ine the inter-temporal asset pricing relationship between expected returns and volatility and find

a positive relationship between the two.4

In this paper, we examine whether the aggregate ICC can also predict future returns on the

market, specifically, whether high ICC predicts high returns. This has implications for both the

ICC literature and the predictability literature. A key requirement for the usefulness of the ICC

is to show that the ICC (positively) predicts future returns. Existing cross-sectional studies on

the ICC have been unable to conclusively establish such a positive relationship (see Richardson,

Tuna, and Wysocki (2010), Hou, van Dijk, and Zhang (2010), and Plumlee, Botosan, and Wen

(2011)). The absence of this evidence, however, might be more due to the noise in computing

individual firm ICC s under the various methods used in the literature than due to any theoretical

issues with the ICC approach (see Lee, So, and Wang (2010)). The aggregate ICC is likely to

be less noisy (since it is computed by averaging individual firm ICC s) and, therefore, might be

more successful in predicting future returns. The success of the aggregate ICC in detecting the

positive inter-temporal mean-variance relationship (as discussed earlier) is certainly encouraging in

this regard.

The ICC also introduces a new measure to the predictability literature, one that is based on a

2See the next section for details on our implementation.
3There is a large literature on the ICC. For example, the ICC has been used to study the unconditional equity

premium (Claus and Thomas (2001) and Fama and French (2002)), test theories on betas (Kaplan and Ruback
(1995), Botosan (1997), Gebhardt, Lee, and Swaminathan (2001), Gode and Mohanram (2003), Brav, Lehavy, and
Michaely (2005), and Easton and Monahan (2005)), international asset pricing (Lee, Ng, and Swaminathan (2009)),
default risk (Chava and Purnanandam (2010)), asset anomalies (Wu and Zhang (2011)), cross-sectional expected
returns (Hou, van Dijk, and Zhang (2010)), stock return volatility (Friend, Westerfield, and Granito (1978)), and the
cost of equity (Hail and Leuz (2006), Botosan and Plumlee (2005), Hughes, Liu, and Liu (2009), and Lee, So, and
Wang (2010)). Chen, Da, and Zhao (2012) use the ICC as the measure of discount rate, and examine the relative
importance of discount rate news and cash flow news in driving stock price movements.

4Tests based on realized returns have been inconclusive (see Pastor, Sinha, and Swaminathan (2008)).
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theoretically justifiable valuation model that takes into account future growth opportunities that

are ignored by traditional valuation ratios such as the dividend yield and the earnings yield. The

predictability literature, historically, has had difficulty identifying forecasting variables that can

predict future returns both in sample and out-of-sample (see Welch and Goyal (2008)).5 Clearly,

it would be of interest to know whether the ICC performs better.

We estimate the aggregate ICC as follows. First, we estimate the ICC for each stock in the

S&P 500 index each month (based on membership in the S&P 500 as of that month). Next, we

value-weight the individual ICC s to obtain the aggregate ICC. Finally, since the aggregate ICC is

in nominal terms, we subtract the one-month T-bill yield from the ICC to compute the implied

risk premium, IRP.6 We use IRP as our primary measure to forecast future excess market returns.

Using monthly data from January 1977 to December 2011, we find that the implied risk premium

is a strong predictor of excess market returns over the next four years, with adjustedR2 ranging from

6.6% at the 1-year horizon to 30.5% at the 4-year horizon. Specifically, high IRP predicts high excess

returns. The predictive power of IRP remains strong even after we control for widely-used valuation

ratios such as the earnings-to-price ratio, dividend-to-price ratio, book-to-market ratio, and the

payout yield, business cycle variables such as the term spread, default spread, consumption-to-

wealth ratio, and the investment-to-capital ratio, and other forecasting variables such as measures of

investor sentiment, the net equity issuance, inflation, stock market variance, long-term government

bond yield, and lagged stock returns.7 In contrast, most of the existing forecasting variables

including valuation ratios and business cycle variables perform poorly during this sample period.

Since long horizon forecasting regressions are rife with small sample biases, we use rigorous

Monte Carlo simulations to assess the statistical significance of our regression statistics.8 The

5For recent debate on the existence of aggregate stock market predictability see, among others, Stambaugh (1986,
1999), Fama and French (1988a), Bekaert and Hodrick (1992), Nelson and Kim (1993), Lamont (1998), Lee, Myers,
and Swaminathan (1999), Goyal and Welch (2003), Lewellen (2004), Ang and Bekaert (2007), Boudoukh, Michaely,
Richardson, and Roberts (2007), Boudoukh, Richardson, and Whitelaw (2008), Cochrane (2008), Lettau and Nieuwer-
burgh (2008), Rytchkov (2008), Brennan and Taylor (2010), and Kelly and Pruitt (2011).

6The predictions about time-varying expected returns are really about real expected returns. We have two choices:
either predict real returns using real ICC or predict excess returns using excess ICC, i.e., the implied risk premium.
We follow the latter procedure to be consistent with the prior literature. However, we also report robustness tests
using real ICC to predict real returns where we simply subtract the monthly inflation rates from monthly nominal
ICC s to compute monthly real ICC s.

7A partial list of references include, for valuation ratios: Fama and Schwert (1977), Campbell (1987), Campbell
and Shiller (1988), Fama and French (1988a, 1989), Kothari and Shanken (1997), Lamont (1998), Pontiff and Schall
(1998), and Boudoukh, Michaely, Richardson, and Roberts (2007); for term spread and default spread: Campbell
(1987) and Fama and French (1989); net equity issuance (Baker and Wurgler (2000)); inflation: Nelson (1976), Fama
and Schwert (1977) and Campbell and Vuolteenaho (2004); stock market variance: French, Schwert, and Stambaugh
(1987) and Guo (2006); long-term government bond yield: Campbell (1987) and Keim and Stambaugh (1986); lagged
stock returns (Fama and French (1988b)); consumption-to-wealth ratio (Lettau and Ludvigson (2001)); investment-
to-capital ratio (Cochrane (1991)), and the sentiment measures (Baker and Wurgler (2006)).

8See, among others, Richardson and Stock (1989), Hodrick (1992), Nelson and Kim (1993), Cavanagh, Elliott, and
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predictive power of IRP remains strong even under these stringent simulated p-values. We use

alternate standard errors that are less biased in small samples (see page 361, Hodrick (1992) and Ang

and Bekaert (2007)) and corresponding simulated p-values to evaluate the statistical significance

of IRP and find that IRP continues to significantly predict future returns. Our findings are also

robust to a host of other checks, including alternative ways of constructing IRP and reasonable

perturbations in the forecasting horizons of the free cash flow model.9 Several studies find that

analyst earnings forecasts tend to be optimistic. We construct an aggregate measure of the growth

rate implicit in analysts’ two-year ahead and one-year ahead earnings forecasts and use it as a

proxy of time-varying analyst optimism bias. Our results show that IRP continues to predict

future returns significantly even after controlling for the aggregate implied growth rate.10

Recently, out-of-sample forecasting tests have received much attention in the literature. No-

tably, Welch and Goyal (2008) show that estimates of U.S. equity premium based on a simple

historical average perform better than a range of widely used predictors in out-of-sample forecasts.

We perform a variety of out-of-sample tests and find that IRP is also an excellent out-of-sample

predictor of future market excess returns. During 1998-2011 and 2003-2011 (the two periods we use

to evaluate the out-of-sample performance), IRP delivers higher and more economically meaningful

out-of-sample R2 than its competitors and provides positive utility gains of more than 4% a year to

a mean-variance investor. Rapach, Strauss, and Zhou (2010) argue that it is important to combine

individual predictors in the out-of-sample setting. We further conduct a forecasting encompassing

test, which provides strong evidence that IRP contains distinct information above and beyond that

contained in existing predictors.

There are two key reasons for IRP ’s superior performance: (a) IRP is estimated from a the-

oretically justifiable discounted cash flow valuation model that takes into account future growth

opportunities that are ignored by traditional valuation ratios, and (b) empirically IRP is strongly

mean-reverting and hence a better proxy of time-varying expected returns (unit root tests strongly

reject the null of a unit root in IRP but not in the traditional valuation measures). In our em-

pirical analysis, we show that IRP is also superior to the forecasted earnings-to-price ratio, which

is constructed based on analyst forecasts but does not contain growth beyond the first year. This

Stock (1995), Stambaugh (1999), Torous, Valkanov, and Yan (2004), Campbell and Yogo (2006), Polk, Thompson,
and Vuolteenaho (2006), Ang and Bekaert (2007), and Boudoukh, Richardson, and Whitelaw (2008).

9We try including and excluding share repurchases, create equal-weighted instead of value-weighted IRP, include
all stocks instead of just S&P 500 index stocks, subtract the 30-year treasury yield instead of the 1-month T-bill
yield, and use Easton (2004) method to construct IRP. Our results are robust to these alternative specifications. See
Section 4.2.4 for more discussions.

10Also, we use median analyst forecasts as opposed to mean forecasts in estimating the ICC to reduce the influence
of outlier forecasts.

4



shows that there is additional information in the long-term growth rates that are projected from

the short-term earnings forecasts to estimate the ICC.

Overall, our paper makes three key contributions to the literature: (a) we provide strong evi-

dence in favor of aggregate stock market predictability, (b) we introduce a new forecasting variable,

the ICC, which forecasts future returns better than existing forecasting variables both in sample

and out-of-sample, and (c) we validate the usefulness of the ICC approach by showing that the

ICC can positively predict future returns.

Finally, our paper also sheds some light on the risk vs. mispricing debate on the predictability of

returns. The ICC measures the discount rate implicitly used by the market to arrive at the current

price. As discussed earlier, if markets are not efficient, the ICC can also contain a mispricing

component. Our multivariate tests show that IRP strongly predicts future returns even after

controlling for a host of business cycle proxies including the consumption-to-wealth ratio. This

suggests that at least some of the predictive power of IRP could be due to mispricing, i.e., IRP is

low when the market is overvalued and high when the market is undervalued.

Our paper proceeds as follows. We describe the methodology for constructing the aggregate

ICC and IRP in Section 2. Section 3 provides the data source and summary statistics. Section 4

and Section 5 present the in-sample and out-of-sample return predictions, respectively. Section 6

concludes the paper.

2 Empirical Methodology

In this section, we first explain why the implied cost of capital is a good proxy for expected returns.

We then describe the construction of the implied cost of capital.

2.1 ICC as a Measure of Expected Return

The implied cost of capital is the value of re that solves the infinite horizon dividend discount

model:

Pt =

∞∑
k=1

Et (Dt+k)

(1 + re)
k
, (1)

where Pt is the stock price and Dt is the dividend at time t.

Campbell, Lo, and MacKinlay (1996)(7.1.24) provide a log-linear approximation of the dividend

discount model which allows us to express the log dividend-price ratio as:

dt − pt = − k

1− ρ
+ Et

(
∞∑
j=0

ρjrt+1+j

)
− Et

(
∞∑
j=0

ρj 4 dt+1+j

)
, (2)
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where rt is the log stock return at time t, dt is the log dividends at time t, and ρ = 1/(1+exp(d− p),

k = log(ρ)−(1−ρ) log(1/ρ−1), and d− p is the average log dividend-to-price ratio. From equation

(2), it is natural to define the ICC as the value of re,t that solves

dt − pt = − k

1− ρ
+ re,tEt

(
∞∑
j=0

ρj

)
− Et

(
∞∑
j=0

ρj 4 dt+1+j

)
,

and thus

re,t = k + (1− ρ) (dt − pt) + (1− ρ)Et

(
∞∑
j=0

ρj 4 dt+1+j

)
.

Therefore, the ICC contains information about both the dividend yield and future dividend growth.

Pastor, Sinha, and Swaminathan (2008) show theoretically that ICC is an excellent proxy of time-

varying expected returns and use it empirically to detect the inter-temporal asset pricing relation-

ship between expected returns and volatility.

2.2 Construction of the Firm-Level ICC

We compute the firm-level ICC as the internal rate of return that equates the present value of

future dividends/free cash flows to the current stock price, following the approach of Pastor, Sinha,

and Swaminathan (2008). We use the term “dividends” interchangeably with free cash flows to

equity (FCFE) to describe all cash flows available to equity.

There are two key assumptions in our empirical implementation of the free cash flow model: (a)

short-run earnings growth rates converge in the long-run to the growth rate of the overall economy

and (b) competition will drive economic profits on new investments to zero in the long-run (the

marginal rate of return on investment—the ROI on the next dollar of investment—will converge

to the cost of capital). As explained below, we use these assumptions to forecast earnings growth

rates and free cash flows during the transition from the short-run to the long-run steady-state.

To implement equation (1), we need to explicitly forecast free cash flows for a finite horizon.

We do this in two parts: i) the present value of free cash flows up to a terminal period t+T , and ii)

a continuing value that captures free cash flows beyond the terminal period. We estimate free cash

flows up to year t + T , as the product of annual earnings forecasts and one minus the plowback

rate:

Et (FCFEt+k) = FEt+k × (1− bt+k) , (3)

where FEt+k and bt+k are the earnings forecasts and the plowback rate forecasts for year t + k,

respectively.
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We forecast earnings up to year t + T in three stages. (i) We explicitly forecast earnings (in

dollars) for year t + 1 using analyst forecasts. I/B/E/S analysts supply earnings per share (EPS)

forecasts for the next two fiscal years, FY1, and FY2 respectively, for each firm in the I/B/E/S

database. We construct a 12-month ahead earnings forecast FE1 using the median FY1 and FY2

forecasts such that FE1 = w × FY1 + (1−w)× FY2, where w is the number of months remaining

until the next fiscal year-end divided by 12. We use median forecasts instead of mean in order to

alleviate the effects of extreme forecasts especially on the optimistic side by individual analysts.

(ii) We then use the growth rate implicit in FY1 and FY2 to forecast earnings for t + 2; that is,

g2 = FY2/FY1 − 1, and the two-year-ahead earnings forecast is given by FE2 = FE1 (1 + g2).

Constructing FE1 and FE2 in this way ensures a smooth transition from FY1 to FY2 during the

fiscal year and also ensures that our forecasts are always 12 months and 24 months ahead from the

current month.11 Firms with growth rates above 100% (below 2%) are given values of 100% (2%).

(iii) We forecast earnings from year t+ 3 to year t+T + 1 by assuming that the year t+ 2 earnings

growth rate g2 mean-reverts exponentially to steady-state values by year t+T +2. We assume that

the steady-state growth rate starting in year t+T +2 is equal to the long-run nominal GDP growth

rate, g, computed as a rolling average of annual nominal GDP growth rates. Specifically, earnings

growth rates and earnings forecasts using the exponential rate of mean reversion are computed for

years t+ 3 to t+ T + 1 as follows (k = 3, ..., T + 1):

gt+k = gt+k−1 × exp [log (g/g2) /T ] and (4)

FEt+k = FEt+k−1 × (1 + gt+k) .

The exponential rate of mean-reversion is just linear interpolation in logs and provides a more rapid

rate of mean reversion for very high growth rates. We forecast plowback rates using a two-stage

approach. (i) We explicitly forecast plowback rate for years t + 1 as one minus the most recent

years dividend payout ratio. We estimate the dividend payout ratio by dividing actual dividends

from the most recent fiscal year by earnings over the same time period.12 In our primary approach,

we exclude share repurchases and new equity issues due to the practical problems associated with

determining the likelihood of their recurrence in future periods. Payout ratios of less than zero

11In addition to FY1 and FY2, I/B/E/S also provides the analysts forecasts’ of the long-term earnings growth rate
(Ltg). An alternative way of obtaining g2 is to use Ltg. In untabulated results, we show that g2 = FY2/FY1 − 1 is
a better measure than g2 = Ltg, because the former is a better predictor of the actual earnings’ growth rate in year
t + 2.

12If earnings are negative, the plowback rate is computed as the median ratio across all firms in the corresponding
industry-size portfolio. The industry-size portfolios are formed each year by first sorting firms into 49 industries
based on the Fama–French classification and then forming three portfolios with an equal number of firms based on
their market cap within each industry.
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(greater than one) are assigned a value of zero (one). (ii) We assume that the plowback rate in year

t+ 1, b1, reverts linearly to a steady-state value by year t+ T + 1 computed from the sustainable

growth rate formula. This formula assumes that, in the steady state, the product of the return on

new investments and the plowback rate ROE ∗ b is equal to the growth rate in earnings g. We

further impose the condition that, in the steady state, ROE equals re for new investments, because

competition will drive returns on these investments down to the cost of equity.

Substituting ROE with cost of equity re in the sustainable growth rate formula and solving for

plowback rate b provides the steady-state value for the plowback rate, which equals the steady-state

growth rate divided by the cost of equity g/re. The intermediate plowback rates from t+ 2 to t+T

(k = 2, ..., T ) are computed as follows:

bt+k = bt+k−1 −
b1 − b
T

. (5)

The terminal value TV is computed as the present value of a perpetuity, which is equal to the

ratio of the year t+ T + 1 earnings forecast divided by the cost of equity:

TVt+T =
FEt+T+1

re
, (6)

where FEt+T+1 is the earnings forecast for year t + T + 1.13 It is easy to show that the Gordon

growth model for TV will simplify to equation (6) when ROE equals re.

Substituting equations (3) to (6) into the infinite-horizon free cash flow valuation model in

equation (1) provides the following empirically tractable finite horizon model:

Pt =

T∑
k=1

FEt+k × (1− bt+k)

(1 + re)
k

+
FEt+T+1

re (1 + re)
T

. (7)

Following Pastor, Sinha, and Swaminathan (2008), we use a 15-year horizon (T = 15) to implement

the model in (7) and compute re as the rate of return that equates the present value of free cash

flows to the current stock price. To be consistent, the stock price is also obtained from the I/B/E/S

database as of the same date as the I/B/E/S earnings forecasts. The resulting re is the firm-level

ICC measure used in our empirical analysis.

13Note that the use of the no-growth perpetuity formula does not imply that earnings or cash flows do not grow
after period t+ T . Rather, it simply means that any new investments after year t+ T earn zero economic profits. In
other words, any growth in earnings or cash flows after year T is value-irrelevant.
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2.3 Construction of the Aggregate ICC

Each month, the value-weighted aggregate ICC is constructed as follows:

ICCt =
n∑

i=1

vi,t
n∑

i=1
vi,t

ICCi,t,

where i indexes firm, and t indexes time. vi,t is the market value for firm i at time t, and ICCi,t is

the ICC for firm i at time t. We construct the value-weighted aggregate ICC using firms in the S&P

500, but we also conduct a variety of robustness checks in Section 4.2.4 based on ICC s constructed

using the firms in the Dow Jones Industrial Average (DJIA) or all firms in NYSE/AMEX/Nasdaq.

To mitigate the impact of outliers, each month we delete extreme ICC s which lie outside the five

standard deviations of their monthly cross-sectional distributions. However, the results are robust

to not trimming outliers.

In predicting future returns there are two choices: (a) use real ICC to predict real returns, or

(b) use excess ICC, i.e., the implied risk premium (IRP) which is ICC minus the risk-free rate to

predict excess returns. In this paper, consistent with prior literature, we forecast excess returns

using the IRP. The IRP is computed by subtracting the one-month T-bill yield (Tbillyield) from

the aggregate ICC :

IRP t = ICCt − Tbillyieldt.

We also perform robustness tests in Section 4.2.4 based on a IRP computed by subtracting the

30-year treasury yield.

3 Data and Summary Statistics

We compute the aggregate ICC and IRP at the end of every month from January 1977 to December

2011 using all firms that belong to the S&P 500 index as of the given month. We obtain market

capitalization and return data from CRSP, accounting data such as common dividends, net income,

book value of common equity, and fiscal year-end date from COMPUSTAT, and analyst earnings

forecasts and share price from I/B/E/S. To ensure we only use publicly available information, we

obtain accounting data items for the most recent fiscal year ending at least 3 months prior to the

month-end when the ICC is computed. Data on nominal GDP growth rates are obtained from

the Bureau of Economic Analysis. Our GDP data begins in 1930. Each year, we compute the

steady-state GDP growth rate as the historical average of the GDP growth rates using annual data

up to that year.
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We use the CRSP NYSE/AMEX/Nasdaq value-weighted returns including dividends from

WRDS as our primary measure of aggregate market returns (Vwretd).14 We compare the perfor-

mance of IRP to a long list of forecasting variables that have been proposed in the literature. The

most important group represents the traditional valuation ratios: dividend-to-price-ratio (D/P),

earnings-to-price ratio (E/P), and book-to-market ratio (B/M ). Whether these valuation ratios

predict future returns, especially after taking into account various econometric issues with pre-

dictive regressions (e.g., Boudoukh, Richardson, and Whitelaw (2008), Cochrane (2008)), is still

open to debate. In addition to standard valuation ratios, we also consider other commonly used

predictors which are listed below. Just like the ICC, all monthly predictors are computed as of the

end of the month.

• Dividend-to-price-ratio (D/P) is the value-weighted average of firm-level dividend-to-price
ratios for the S&P 500 firms, where the firm-level D/P is obtained by dividing the total
dividends from the most recent fiscal year end (ending at least 3 months prior) by market
capitalization at the end of the month.15

• Earnings-to-price ratio (E/P) is the value-weighted average of firm-level earnings-to-price
ratios for the S&P 500 firms, where the firm-level E/P is obtained by dividing earnings from
the most recent fiscal year end (ending at least 3 months prior) by market capitalization at
the end of the month.

• Book-to-market ratio (B/M ) is the value-weighted average of firm-level ratio of book value
to market value for the S&P 500 firms, where the firm-level B/M is obtained by dividing
the total book value of equity from the most recent fiscal year end (ending at least 3 months
prior) by market capitalization at the end of the month.

• Payout Yield (P/Y ) is the sum of dividends and repurchases divided by contemporaneous
year-end market capitalization (Boudoukh, Michaely, Richardson, and Roberts (2007)), ob-
tained from Michael R. Roberts’ website.

• Default spread (Default) is the difference between BAA and AAA rated corporate bond yields,
obtained from the economic research database at the Federal Reserve Bank at St. Louis
(FRED).

• Term spread (Term) is the difference between AAA rated corporate bond yields and the
one-month T-bill yield, where the one-month T-bill yield is the average yield on one-month
Treasury bill obtained from WRDS.

• T-bill rate (Tbill) is the one-month T-bill rate obtained from Kenneth French’s website.

• Long-term treasury yield (Yield) is the 30-year treasury yield obtained from WRDS.

• Net equity expansion (ntis) is the ratio of new equity issuance to the sum of new equity and
debt issuance (Baker and Wurgler (2000)), with data obtained from Jeffrey Wurgler’s website.

14Results based on other measures of the aggregate market return such as the S&P 500 return yield similar results.
15Fama and French (1988a) construct D/P based on the value-weighted market return with and without dividends.

This alternative measure of D/P has a correlation of 0.96 with our constructed measure, and yields very similar
results.
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• Inflation (infl) is the change in CPI (all urban consumers) obtained from FRED.

• Stock variance (svar) is the sum of squared daily returns on the S&P 500 index with data
obtained from WRDS.

• Lagged excess market returns (Lagged Vwretd) is the lagged value-weighted market return
including dividends from WRDS subtracting the one-month T-bill rate.

• Sentiment index (senti) is the first principal component of six sentiment proxies (Baker and
Wurgler (2006)), with data obtained from Jeffrey Wurgler’s website.16

• Consumption-to-wealth ratio (cay) is the cointegrating residual from a regression of log con-
sumption on log asset (nonhuman) wealth, and log labor income (Lettau and Ludvigson
(2001)), with data obtained from Martin Lettau’s website.

• Investment-to-capital ratio (i/k) is the ratio of aggregate (private nonresidential fixed) in-
vestment to aggregate capital for the entire economy (Cochrane (1991)), obtained from Amit
Goyal’s website.

We have monthly data for P/Y, ntis, infl, svar, Lagged Vwretd, and senti from January 1977 to

December 2010, and quarterly data for cay and i/k from 1977.Q1 to 2008.Q4.17 All other variables

have monthly data from January 1977 to December 2011. It is also worth noting that P/Y is

provided in logarithm.

[INSERT TABLE 1 HERE]

Table 1 presents univariate summary statistics for all forecasting variables. Panel A shows

that the average annualized IRP is 7.07% and its standard deviation is 2.68%. The first order

autocorrelation of IRP is 0.95 which declines to 0.10 after 24 months, and to −0.20 after 36 months.

In contrast, the valuation ratios E/P, D/P, and B/M are much more persistent, with first-order

autocorrelations between 0.98 and 0.99 that hover above 0.40 even after 60 months. Appendix A

shows that unit root tests strongly reject the null of a unit root for IRP, but not for the valuation

ratios. Clearly, IRP is a much more stationary process that exhibits faster mean reversion. Panel

A shows that the ex post risk premium computed from value-weighted excess market returns (this

is not continuously compounded; we use continuously compounded returns only in the regressions),

Vwretd, is 6.66% which is comparable to the average IRP of 7.07%. The sum of autocorrelations

at long horizons are negative for Vwretd which suggests there is long-term mean reversion in stock

returns.
16The six sentiment proxies include the closed-end fund discount, NYSE share turnover, the number of IPOs, the

average first-day IPO returns, the share of equity issuance, and the dividend premium. There is a second sentiment
index which is the principal component of the six sentiment proxies orthoganalized to variables measuring business
cycles. The correlation between the two sentiment indices is 0.96, and they yield very similar results. So we only
include the first index in our analysis.

17Although our data on Lagged Vwretd end in December 2011, we use the data from January 1977 to December
2010 to be consistent with the length of svar in our multivariate regression (see Section 4.2.3).
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In Panel B, IRP is positively correlated with each of the valuation ratios, which suggests that

they share common information about time-varying expected returns. IRP is also significantly

positively correlated with Term and Default, which suggests that IRP also varies with the business

cycle. The high negative correlation (−0.66) between IRP and i/k (Panel D) suggests that the

aggregate investment in the economy drops as the cost of capital rises. This is intuitive and as

expected. Overall, the summary statistics in Table 1 indicate that the ICC has intuitive appeal as

a measure of time-varying expected return.

[INSERT FIGURE 1 HERE]

Figure 1 plots IRP over time, together with its median and two-standard-deviation bands

calculated based on the median using all historical data starting from January 1987. It also marks

the NBER recession periods in shaded areas and some notable dates and the risk premia on those

dates. Overall, consistent with existing theories (e.g., Campbell and Cochrane (1999); Barberis,

Huang, and Santos (2001)), there is some evidence of a countercyclical behavior on the part of IRP

especially during recessions when it tends to be high. The implied risk premium reached a high of

12.8% in March 2009 at the depth of the market downturn. At the end of 2011, the implied risk

premium was still a high 9.7%.

[INSERT FIGURE 2 HERE]

Figure 2 plots D/P, E/P, B/M, and P/Y. The plots suggest that there is some commonality

in the way these valuation ratios vary over time. IRP in Figure 1 appears more stationary than

these valuation ratios, which is also confirmed by the unit root tests in Appendix A.

4 In-sample Return Predictions

4.1 Forecasting Regression Methodology

We begin with the multiperiod forecasting regression test in Fama and French (1988a,b, 1989):

K∑
k=1

rt+k

K
= a+ b×Xt + ut+K,t, (8)

where rt+k is the continuously compounded excess return per month defined as the difference be-

tween the monthly continuously compounded return on the value-weighted market return including
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dividends from WRDS and the monthly continuously compounded one-month T-bill rate (i.e., con-

tinuously compounded Vwretd).18 Quarterly returns are defined in the same way. Xt is a 1×k row

vector of explanatory variables (excluding the intercept), b is a k× 1 vector of slope coefficients, K

is the forecasting horizon, and ut+K,t is the regression residual.

We conduct these regressions for different horizons: in monthly regressions, K = 1, 12, 24,

36, and 48 months, and in quarterly regressions, K = 1, 4, 8, 12, and 16 quarters. One problem

with this regression test is the use of overlapping observations, which induces serial correlation in

the regression residuals. Specifically, under both the null hypothesis of no predictability and the

alternative hypotheses that fully account for time-varying expected returns, the regression residuals

are autocorrelated up to lag K − 1. As a result, the regression standard errors from ordinary least

squares (OLS) would be too low and the t-statistics too high. Moreover, the regression residuals

are likely to be conditionally heteroskedastic. We correct for both the induced autocorrelation and

the conditional heteroskedasticity following Hansen (1982). Under generalized method of moments,

the GMM estimator θ = (a, b) has an asymptotic distribution
√
T (θ̂ − θ) ∼ N(0,Ω), where Ω =

Z−10 S0Z
−1
0 , Z0 = E(xtx

′
t), with xt = (1 X

′
t)
′, and S0 is the spectral density evaluated at frequency

zero of ωt+K = ut+K,txt. Under the null hypothesis that returns are not predictable,

S0 =

K−1∑
j=−K+1

E(ωt+Kω
′
t+K−j). (9)

In our main empirical analysis, we estimate S0 using the Newey-West correction (Newey and West

(1987)) with K − 1 moving average lags.

We call the resulting test statistic the asymptotic Z-statistic. Since the forecasting regressions

use the same data at various horizons, the regression slopes will be correlated. It is, therefore, not

correct to draw inferences about predictability based on any one regression. To address this issue,

Richardson and Stock (1989) propose a joint test based on the average slope coefficient. Following

their paper, we compute the average slope statistic, which is the arithmetic average of regression

slopes across different horizons, to test the null hypothesis that the slopes at different horizons

are jointly zero. To compute the statistical significance of the average slope estimate, we conduct

Monte Carlo simulations, the details of which are described below.

While the asymptotic Z-statistics are consistent, they potentially suffer from small sample

biases for the following reasons. First, while the independent variables in the OLS regressions are

predetermined they are not necessarily exogenous. This is especially the case when we use valuation

18The continuously compounded Vwretd and the discretely compounded Vwretd have a correlation of 0.9989, and
our results are robust to using Vwretd.
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ratios, since valuation ratios are a function of current price. Stambaugh (1986, 1999) shows that in

these situations the OLS estimators of the slope coefficients are biased in small samples. Secondly,

while the GMM standard errors consistently estimate the asymptotic variance-covariance matrix,

Richardson and Smith (1991) show that they are biased in small samples due to the sampling

variation in estimating the autocovariances. Lastly, as demonstrated by Richardson and Smith

(1991), the asymptotic distribution of the OLS estimators may not be well behaved if K is large

relative to T , i.e., the degree of overlap is high relative to the sample size.

To account for these issues, we generate finite sample distributions of Z(b) and the average slopes

under the null of no predictability and calculate the p-values based on their empirical distributions.

Monte Carlo experiments require a data-generating process that produces artificial data whose

time-series properties are consistent with those in the actual data. Therefore, we generate artificial

data using a Vector Autoregression (VAR), and our simulation procedure closely follows Hodrick

(1992), Swaminathan (1996) and Lee, Myers, and Swaminathan (1999). Appendix B describes the

details of our simulation methodology.19

4.2 Forecasting Regression Results

In this section we discuss the results from our forecasting regressions involving IRP. We first

compare IRP to various valuation ratios, and then compare IRP to a long list of forecasting

variables that have been used to predict returns in the literature. Finally, we conduct a variety of

robustness checks.

4.2.1 Regression Results with Valuation Ratios

Univariate Regression Results In this section, we examine the univariate forecasting power

of IRP and other commonly used valuation ratios, by setting X = IRP , D/P, E/P, B/M, or P/Y

in equation (8). High IRP represents high ex-ante risk premium, and hence we expect high IRP

to predict high excess market returns. Prior literature has shown that high valuation ratios (E/P,

D/P, B/M ) predict high stock returns. Boudoukh, Michaely, Richardson, and Roberts (2007)

show that Payout Yield (P/Y ) is a better forecasting variable than the dividend yield and that it

positively predicts future returns. Thus, for all regressions, a one-sided test of the null hypothesis

19In our reported results below, the variables in the VAR vary with each regression. For example, in the univariate
regression of (8) with only one predictive variable in Xt, the VAR contains two variables, namely, rt and the predictive
variable Xt. In a multivariate regression with two predictive variables in Xt, the VAR contains three variables, namely,
rt and the two predictive variables in Xt. In unreported results, for predictive variables with the same sample size,
we also run a single VAR containing all variables and obtain similar results.
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is appropriate.

[INSERT TABLE 2 HERE]

Panels A-D of Table 2 present univariate regression results for IRP, D/P, E/P, and B/M,

respectively, using monthly data from January 1977 to December 2011. Panel E provides the

univariate regression results for P/Y, using monthly data from January 1977 to December 2010.

Following Boudoukh, Michaely, Richardson, and Roberts (2007), we use the logarithm of P/Y in

Panel E.

We observe that as expected, all variables have positive slope coefficients. Because a one-sided

test is appropriate, the conventional 5% critical value is 1.65. Using this cut-off, IRP is statistically

significant at all horizons with the smallest Z(b) being 1.849 at the 1-month horizon. Among the

valuation ratios, only D/P and P/Y have Z(b) larger than 1.65 in any of the horizons. The adjusted

R2 of IRP is also much larger than that of the valuation ratios: IRP explains 1% of future market

returns at the 1-month horizon, and 30.5% at the 4-year horizon. For all variables, the adjusted

R2 increases with horizons. As pointed out by Cochrane (2005), the increase in the magnitude of

the adjusted R2 with forecasting horizon is due to the persistence of the regressors.

However, when judged by simulated p-values, D/P is no longer significant, and its simulated

p-values are all above 0.22. Since D/P is not statistically significant at any individual horizons, it is

not surprising that it is not significant in the joint horizon test either, with a simulated p-value for

the average slope estimate of just 0.349. This finding is consistent with our discussion in Section

4.1 on the importance of using simulated p-values to assess the statistical significance of forecasting

variables. That D/P does not predict future market returns is also consistent with recent studies

(e.g., Ang and Bekaert (2007); Boudoukh, Richardson, and Whitelaw (2008)).

Unlike the traditional valuation measures, IRP is statistically significant based on both conven-

tional critical values and simulated p-values (at the 10% significance level or better) at all horizons.

Not surprisingly, the average slope statistic of 1.748 is highly significant with a simulated p-value of

0.020. This suggests that on average, an increase of 1% in IRP in the current month is associated

with an annualized increase of 1.748% in the excess market return over the next four years which is

economically quite significant. Among all the valuation ratios, the payout yield P/Y, performs the

best in univariate tests with some forecasting power at the 3-year and 4-year forecasting horizons.

The average slope, however, is not significant (p-value 0.156).
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Bivariate Regression Results Because IRP is positively correlated with traditional valuation

ratios, it is important to know whether IRP still forecasts future market returns in their presence.

Given the high correlations among these valuation ratios (see Table 1), to avoid multicollinearity

issues, we run bivariate regressions with IRP as one of the regressors and one of the valuation ratios

as the other regressor. Based on equation (8), X is one of the following four sets of regressors: (1)

IRP and D/P, (2) IRP and E/P, (3) IRP and B/M, and (4) IRP and P/Y. Again, we expect the

slope coefficients of all forecasting variables to be positive, and therefore, one-sided tests of the null

of no predictability are appropriate.

[INSERT TABLE 3 HERE]

Table 3 presents the bivariate regression results. The results in Panels A to D show that IRP

continues to strongly predict future returns even in the presence of the other valuation measures.

The slope coefficients of IRP are significant at most horizons and the average slope coefficients (in

the range of 1.503 to 1.627) are all highly significant with simulated p-values ranging from 0.043 to

0.051. In contrast, traditional valuation measures have little or no predictive power in the presence

of IRP. The slope coefficients are insignificant at all horizons and not surprisingly, the average slope

statistics are also insignificant. The results provide strong evidence that IRP is a better predictor

of future returns than traditional valuation measures. We next turn to evaluating the forecasting

performance of IRP in the presence of (countercyclical) forecasting variables that proxy for the

business cycle.

4.2.2 Regression Results with Business Cycle Variables

Fama and French (1989) find that business cycle variables such as the default spread and term

spread predict stock returns. Given the high positive correlation between IRP and default and term

spreads, it is important to determine whether IRP has the ability to forecast future excess returns

in the presence of these variables. Ang and Bekaert (2007) show that the short rate negatively

predicts future returns at shorter horizons, and while dividend yield does not have predictive power

per se, it predicts future market returns in a bivariate regression with the short rate. Therefore,

we also examine the predictive power of IRP in the presence of the one-month T-bill rate (Tbill).

Finally, we also control for the 30-year treasury yield (Yield).

Panels F-I of Table 2 presents univariate regression results for Term, Default, Tbill, and Yield.

Since Term, Default and Yield move countercyclically with the business cycle, we expect positive
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signs for these variables. For Tbill, we expect a negative sign at shorter horizons. Thus, for these

regressions, a one-sided upper or lower tail test of the null hypothesis is appropriate.

The regression results indicate that Term is a strong predictor of future market returns. It has

statistically significant predictive power beyond the 2-year horizon based on simulated p-values, and

the average slope coefficient is also significant (p-value 0.067). Default, however, is not a statistically

significant predictor of future returns. Slope coefficients of Tbill and Yield both have the expected

signs although none of them are statistically significant.

Panels E-H of Table 3 present the bivariate regression results with X = (IRP, Term), (IRP,

Default), (IRP, Tbill) and (IRP, Yield), respectively. Note that in all these regressions, IRP

strongly and positively predicts future market returns. In the presence of Term, IRP is statistically

significant at the 1-month and 4-year horizons (p-values 0.009 and 0.039), and the average slope

statistic is still highly significant (p-value 0.019). Term, on the other hand, is unable to predict

future market returns in the presence of IRP. In fact, the slope coefficients corresponding to Term

turn negative. Given the high correlation of 0.80 between IRP and Term (see Table 1, Panel B), it

appears that the information common to the two variables is being absorbed by IRP. IRP remains

highly significant at all horizons in the presence of Default, Tbill or Yield, and its average slope

remains highly significant with p-values ranging from 0.010 to 0.021. In contrast, none of these

variables is significant in the presence of IRP. The slope coefficients corresponding to Default turn

negative while those of Tbill turn positive (Panels F and G). The slope coefficients corresponding

to Yield remain mostly positive but only marginally significant at the 4-year horizon. Overall, the

results provide strong evidence that the predictive power of IRP is not subsumed by the information

in the business cycle variables.

4.2.3 Regression Results with Other Variables

We now examine whether IRP forecasts future returns in the presence of several other forecast-

ing variables that have been examined in the literature. The first group of variables includes

net equity issuance (ntis), inflation (infl), stock variance (svar), lagged excess market returns

(Lagged Vwretd), and the sentiment measure (senti) (January 1977-December 2010); and the sec-

ond group of variables includes consumption-to-wealth ratio (cay) and investment-to-capital ratio

(i/k) (1977.Q1-2008.Q4). Since IRP is obtained every month, we take its quarter-end values as the

quarterly IRP.

[INSERT TABLE 4 HERE]
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Baker and Wurgler (2000) show that ntis is a strong predictor of future market returns between

1928 and 1997. In particular, firms issue relatively more equity than debt just before periods of low

market returns. So we expect negative coefficients for ntis. Baker and Wurgler (2006) suggest that

when sentiment is high, subsequent returns tend to be low, so we expect a negative sign for senti.

We should note, however, that the construction of senti uses ex post information which makes it

hard to interpret senti as an ex ante forecasting variable. For infl and svar, we expect negative

signs. For Lagged Vwretd, we expect a positive sign within a year and a negative sign afterwards.

Since we do not have a consistent sign for Lagged Vwretd, the average slope coefficient for Lagged

Vwretd is not very informative. We nevertheless report it together with its p-value calculated based

on the assumption that we expect a positive sign for Lagged Vwretd.

Lettau and Ludvigson (2001) propose cay as a measure of time-varying expected returns with

high cay predicting high returns. Since cay also uses ex post information, it is not really an ex ante

forecasting variable either. We nevertheless want to know how IRP predicts future returns in its

presence. Based on Cochrane (1991), we expect a negative sign for i/k.

We run multivariate regressions with X = (IRP, ntis, infl), (IRP, svar, Lagged Vwretd), (IRP,

senti), and (IRP, cay, i/k), and the results are provided in Panels A-D of Table 4. The results

in Panels A and B show that even after controlling for ntis, infl, svar, and Lagged Vwretd, IRP

remains statistically significant at all horizons except the 1-year and 2-year horizons, and the

average slopes are highly significant, with p-values of 0.014 and 0.013, respectively. None of the

other predictors show any consistent predictive power in the presence of IRP. Panel C shows that

IRP strongly predicts future returns even in the presence of the sentiment measure (which uses

ex-post information in its construction). The slope coefficients corresponding to IRP are highly

significant at all horizons, and the average slope coefficient is also highly significant (p-value 0.024).

The sentiment measure is significant only at the 1-month horizon. Panel D shows that IRP predicts

future returns strongly even after controlling for cay and i/k. The individual slope coefficients are

significant at the 2-year, 3-year, and 4-year horizons and the average slope coefficient is significant

at the 10% level. cay and i/k are not significant in the presence of IRP. The superior forecasting

power of IRP even in the presence of variables with ex post information is quite impressive. The

finding that IRP strongly predicts future returns even in the presence of cay (and other business

cycle variables) suggests that IRP may also contain information about aggregate market mispricing.
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4.2.4 Further Analysis of IRP

The Role of Growth Forecast Section 2.1 shows that the ICC (and thus IRP) contains

information about both dividend yield and future dividend/earnings growth. In this section, we

investigate the role of information about future growth rates in the superior forecasting power of

IRP. Specifically, for each firm, we use FE1/P as an alternative measure of expected return based

on the no growth perpetuity valuation model which assumes that earnings do not grow beyond

the first year. We then value-weight firm-level FE1/P s to obtain an aggregate FE1/P . If growth

beyond the first year is an important ingredient of IRP, we would expect IRP to outperform FE1/P

in predicting future market returns.

[INSERT TABLE 5 HERE]

Panel A1 of Table 5 provides the univariate regression result of (8) with X = FE1/P . We find

that FE1/P has a positive sign at all horizons but is not statistically significant at any horizon.

Panel A2 provides the bivariate regression of (8) with X = (IRP, FE1/P ). The results show that

IRP remains a strong predictor of future returns even in the presence of FE1/P . This suggests that

the earnings growth forecasts embedded in IRP beyond the first year is important in predicting

future returns.

Alternative Model Specifications We conduct a variety of robustness checks in this section.

First, we estimate IRP using free cash flow models with finite horizons of T = 10 and T = 20

(recall our main approach uses T = 15 in equation (7)). While the horizons affect the average risk

premium (the mean of IRP is 5.32% for T = 10 and 8.05% for T = 20), the regression results

are unaffected, both in univariate and in multivariate regressions. Panel B of Table 5 presents

the univariate regression results for IRP when they are estimated from T = 10 and for T = 20,

respectively. In both regressions, IRP is statistically significant in all forecasting horizons, and its

slope coefficient across all horizons is also significant (p-value 0.012 if T = 10, and p-value 0.027 if

T = 20).

Due to difficulty of determining the likelihood of recurrence for repurchases and new equity

issues, our main measure of IRP excludes repurchases and new equity issues. As another robustness

check, we construct IRP by incorporating repurchases and new equity issues, and provide the

univariate regression on this alternative IRP measure (IRP repurchase) in Panel B of Table 5.

IRP repurchase still positively forecasts future returns and is significant at all horizons, and it is

also significant in the joint horizon test (p-value 0.017).
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So far, our measure of implied risk premium is obtained by value-weighting the firm-level ICC s

for the S&P 500 index firms to obtain the aggregate ICC, and then subtracting the one-month

T-bill yield from the aggregate ICC. We now consider three alternative ways of constructing the

implied risk premium. First, we equally-weight the firm-level ICC s for the S&P 500 firms to obtain

the aggregate ICC, and then subtract the one-month T-bill yield to construct an equally-weighted

implied risk premium measure (IRP equal). Secondly, rather than use the firms in the S&P 500

index, we compute the value-weighted ICC using all firms in the sample. The implied risk premium

(IRP all) is then obtained by subtracting the one-month T-bill yield from the aggregate ICC based

on all firms.20 Finally, we value-weight the firm-level ICC s to obtain the aggregate ICC. Rather

than subtract the one-month T-bill yield from the aggregate ICC, we instead subtract the 30-year

treasury yield to obtain the implied risk premium (IRP yield). Note that in this case, we should

ideally use the excess of market returns over 30-year bond returns as the dependent variable.

Nevertheless, for comparability, we still use the excess of market returns over T-bill returns as the

dependent variable.

Panel B of Table 5 provides the univariate regression results for the three alternative measures

of IRP. The results show that all three measures of implied risk premium positively predict future

market returns at all forecasting horizons. In particular, IRP all provides very similar results to

IRP : it is significant at every individual horizon as well as in the joint horizon test. IRP equal is

significant at all horizons except the 1-year horizon. IRP yield has statistical significance at the

1-month and 4-year horizons. The average slope statistic is highly significant for all three measures,

with p-values being 0.015, 0.038, and 0.033 for IRP all, IRP equal, and IRP yield. In addition to

the methodology used in this paper, there are several other procedures used in the literature to

compute ICC. Rather than going through all of them, we pick a procedure recommended by

Easton (2004) that directly computes the aggregate ICC using a regression approach. Panel B of

Table 5 reports results using IRP from this alternate approach. The evidence suggests that this

alternate IRP also predicts future returns strongly.

So far, we have used IRP to predict future excess market returns. We now investigate the

power of real ICC to predict future real returns, where the real ICC is the difference between the

aggregate ICC and the one-month inflation rate (based on CPI for all urban consumers), and the

real market returns are the difference between monthly continuously compounded nominal returns

and the one-month inflation rate. Panel B of Table 5 provides the results for real ICC using

20We also show that our results robust to constructing IRP using the firms in the Dow Jones Industrial Index.
These results are available upon request.
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monthly data from January 1977 to August 2011. We find that the real ICC is a strong predictor

of future real market returns: it is significant at all horizons at the 5% level, and the average slope

has a p-value of 0.000.

Analyst Forecast Optimism Our calculation of IRP uses analysts’ forecast of future earnings,

which might be biased. Notably, several studies find that analyst forecasts tend to be optimistic.

We are interested in time variation in this optimism bias and the role, if any, it might play in the

predictive power of IRP. Optimistic analyst forecasts, all else equal, should lead to higher estimates

of IRP. In order for analyst optimism to explain our findings, high optimism should predict high

returns. We use the growth rate implicit in the FY2 and FY1 forecasts, g2 = FY2/FY1 − 1 as our

measure of time-varying analyst optimism.21 If the growth rate is higher than average then analysts

are likely to be more optimistic than usual. Note that the time-variation in the implied growth rate

could also be due to the business cycle. We are agnostic as to what causes this time-variation and

are only interested in examining whether this time-variation adversely affects the predictive power

of IRP. For each firm, each month, we compute the implied growth rate g2 and then value-weight

the firm-level growth rates to obtain the aggregate growth rate. Panel C1 of Table 5 provides

univariate forecasting regression results involving the aggregate implied growth rate. There is a

positive relationship between the implied growth rate and future returns although the relationship

is insignificant and accompanied by very low R2. Panel C2 provides bivariate results involving

IRP and the implied growth rate. The results show that IRP continues to strongly predict future

returns with a positive sign even after controlling for the implied growth rate. The coefficients

on the implied growth rate, on the other hand, turn negative in the presence of IRP and remain

insignificant. These results provide strong evidence that our results are not driven by time-varying

analyst optimism.

Alternate Standard Errors Hodrick (1992) develops alternate standard errors for long horizon

forecasting regressions that are less biased in small samples than the Newey-West (1987) standard

errors and lead to lower type I errors. Our calculation of Z(b) is based on the Newey-West standard

errors; however, we draw inferences based on the simulated p-values of Z(b), which are obtained

by comparing Z(b) to its empirical distributions under the null. Thus, our simulated p-values take

into account and correct for the small sample bias associated with the Newey-West standard errors.

Nevertheless, we conduct a robustness check using the standard errors suggested by Hodrick (1992)

21We have entertained an alternative definition for forecast optimism using FE1/E0, where E0 is the realized
earning per share in the most recent fiscal year end, and find similar results (available upon request).
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to confirm that our results are not sensitive to the choice of standard errors.22

When estimating S0 in (9), rather than use the Newey-West standard errors which sum up

future autocovariance matrices, we adopt the procedure in Hodrick (1992) by summing up xtx
′
t−j

into the past:

Ŝ0 =
1

T

T∑
t=K

ωktωk
′
t,

where

ωkt = ut+1,t(
K−1∑
i=0

xt−i)/K.

[INSERT TABLE 6 HERE]

Panel A of Table 6 provides the Z-statistics based on the Newey-West standard errors (Z(b)) and

the Hodrick (1992) standard errors (Z(b)hd), together with their 95% critical values simulated under

the null hypothesis. To save space, we report both statistics only for IRP and D/P. Consistent with

Hodrick (1992), the magnitudes of Z(b)hd are indeed smaller than those of Z(b) at longer horizons,

suggesting that Z(b)hd is more conservative if we use conventional critical values to draw inferences.

The 95% simulated critical values for Z(b) are much larger than the conventional critical value of

1.65 and increase with the forecasting horizon indicating the increasing bias at longer horizons.

Although the 95% simulated critical values for Z(b)hd are also larger than 1.65, they are smaller

than those of Z(b), indicating a smaller bias in Z(b)hd.

Panel B reports univariate regression results for IRP, D/P, E/P, and B/M using Hodrick

(1992) standard errors to construct the Z-statistics, and reports the corresponding simulated p-

values. The results show that IRP statistically significantly predicts future market returns even

using the alternative standard errors and the other valuation ratios do not. For IRP, the simulated

p-values are smaller than 10% at all horizons, and the p-value of the average slope coefficient is

0.020. In fact, the p-values based on Z(b)hd are even smaller than Z(b) in horizons beyond 2 years,

which are calculated based on the Newey-West standard errors (Panel A of Table 2). This shows

that the predictive power of IRP is very strong, and is not sensitive to the use of a particular

standard error.

Panel C of Table 6 provides the bivariate regression results based on Z(b)hd. Consistent with

the results reported in Panels A-C of Table 3, while IRP remains statistically significant in the

presence of these valuation ratios, none of the other valuation ratios are significant in the presence

of IRP.
22In unreported results, we show that our results are also robust to using Hansen and Hodrick (1980) standard

errors.
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5 Out-of-Sample Return Predictions

Recently, evaluating the out-of-sample performance of return prediction variables has received much

attention in the literature (see Spiegel (2008) and Welch and Goyal (2008), for more extensive survey

of the vast literature on return predictability). Most notably, Welch and Goyal (2008) show that a

long list of predictors used in the literature is unable to deliver consistently superior out-of-sample

forecasts of the U.S. equity premium relative to a simple forecast based on the historical average.

In this section, we evaluate the performance of IRP in out-of-sample forecast tests.

5.1 Econometric Specification

We start with the following predictive regression model:

rt+1 = αi + βixi,t + εi,t+1, (10)

where rt+1 is the continuously compounded excess return per month defined as the difference be-

tween the monthly continuously compounded return on the value-weighted market return including

dividends from WRDS and the monthly continuously compounded one-month T-bill rate (i.e., con-

tinuously compounded Vwretd), xi,t is the ith monthly forecasting variable: IRP t, D/P t, E/P t,

B/M t, Termt, Default t, Tbill t, Yield t, and εi,t+1 is the error term. Following Welch and Goyal

(2008), we use a recursive method to estimate the model and generate out-of-sample forecasts of

the market returns. Specifically, we divide the entire sample T into two periods: an estimation

period composed of the first m observations and an out-of-sample forecast period composed of

the remaining q = T −m observations. The initial out-of-sample forecast based on the predictive

variable xi,t is generated by

r̂i,m+1 = α̂i,m + β̂i,mxi,m,

where α̂i,m and β̂i,m are obtained using ordinary least squares (OLS) by estimating (10) using

observations from 1 to m. The second out-of-sample forecast is generated according to

r̂i,m+2 = α̂i,m+1 + β̂i,m+1xi,m+1,

where α̂i,m+1 and β̂i,m+1 are obtained by estimating (10) using observations from 1 to m + 1. So

when generating the next-period forecast, the forecaster uses all information up to the current

period, which mimics the real-time forecasting situation. Proceeding in this manner through the

end of the forecast period, for each predictive variable xi, we can obtain a time series of predicted

market returns {r̂i,t+1}T−1t=m.
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Following Campbell and Thompson (2008), Welch and Goyal (2008), and Rapach, Strauss, and

Zhou (2010), we use the historical average excess market returns rt+1 =
∑t

j=1 rj as a benchmark

forecasting model. If the predictive variable xi contains useful information in forecasting future

market returns, then r̂i,t+1 should be closer to the true market return than rt+1. We now introduce

the forecast evaluation method.

5.2 Forecast Evaluation

Following the literature, we compare the performance of alternative predictive variables using the

out-of-sample R2 statistics, R2
os. This is similar to the familiar in-sample R2, and is defined as

R2
os = 1−

∑q
k=1 (rm+k − r̂i,m+k)2∑q
k=1 (rm+k − rm+k)2

.

The R2
os statistic measures the reduction in mean squared prediction error (MSPE) for the predictive

regression (10) using a particular forecasting variable relative to the historical average forecast. For

different predictive variables xi, we can obtain different out-of-sample forecast r̂i,m+k and thus

different R2
os. If a forecast variable beats the historical average forecast, then R2

os > 0. A predictive

variable that has a higher R2
os performs better in the out-of-sample forecasting test.

We formally test whether a predictive regression model using xi has a statistically lower MSPE

than the historical average model. This is equivalent to testing the null of R2
os ≤ 0 against the

alternative of R2
os > 0. Since our approach is equivalent to comparing forecasts from nested models

(setting βi = 0 in (10) reduces our predictive regression using xi to the benchmark model using the

historical average), we use the adjusted-MSPE statistic of Clark and West (2007):23

ft+1 = (rt+1 − rt+1)
2 −

[(
(rt+1 − r̂i,t+1)

2
)
−
(

(rt+1 − r̂i,t+1)
2
)]

.

The adjusted-MSPE ft+1 is then regressed on a constant and the t-statistic corresponding to

the constant is estimated. The p-value of R2
os is obtained from the one-sided t-statistic (upper-tail)

based on the standard normal distribution.24

To explicitly account for the risk borne by an investor over the out-of-sample period, we also

calculate the realized utility gains for a mean-variance investor (see Marquering and Verbeek (2004);

Campbell and Thompson (2008); Welch and Goyal (2008); Wachter and Warusawitharana (2009);

23The most popular method for testing these kinds of hypotheses is the Diebold and Mariano (1995) and West (1996)
statistic, which has a standard normal distribution. However, as pointed out by Clark and McCracken (2001) and
McCracken (2007), the Diebold and Mariano (1995) and West (1996) statistic has a nonstandard normal distribution
when comparing forecasts from nested models. Hence we use the adjusted statistic.

24Clark and West (2007) demonstrate that, in Monte Carlo simulations, this adjusted-MSPE statistic performs
reasonably well in terms of size and power when comparing forecasts from nested linear predictive models.
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Rapach, Strauss, and Zhou (2010)). More specifically, based on the forecasts of expected return

and expected variance of stocks, a mean-variance investor with relative risk aversion parameter

γ makes her optimal portfolio decision by allocating her portfolio monthly between stocks and

risk-free asset. If she forecasts the expected return using historical average, then her allocation to

stocks in period t+ 1 is:

w1,t =

(
1

γ

)(
rt+1

σ̂2t+1

)
. (11)

If she forecasts the expected return using a particular predictive variable, then her allocation to

stocks is:

w2,t =

(
1

γ

)(
r̂i,t+1

σ̂2t+1

)
. (12)

In both portfolio decisions, σ̂2t+1 is the forecast for the variance of stock returns. We estimate σ̂2t+1

using a ten-year rolling window of monthly returns.

If an investor uses the historical average to make her portfolio decision, her average utility level

over the out-of-sample period is:

U1 = µ1 −
1

2
γσ̂21, (13)

where µ1 and σ̂21 correspond to the sample mean and variance of the return on the portfolio formed

based on (11) over the out-of-sample period. The utility level can also be viewed as the certainty

equivalent return for the mean-variance investor.

If an investor uses a predictive variable to make her portfolio decision, then her average utility

level over the out-of-sample period is:

U2 = µ2 −
1

2
γσ̂22, (14)

where µ2 and σ̂22 correspond to the sample mean and variance for the return on the portfolio formed

based on (12) over the out-of-sample period.25

We measure the utility gain of using a particular predictive variable as the difference between

(14) and (13). We multiply this difference by 1200 to express it in average annualized percentage

return. This utility gain can be viewed as the portfolio management fee that an investor with

mean-variance preferences would be willing to pay to access a particular forecasting variable. We

report the results based on γ = 3 .

In order to explore the information content of IRP relative to other forecasting variables, we also

follow Rapach, Strauss, and Zhou (2010) to conduct a forecast encompassing test due to Harvey,

25Following Campbell and Thompson (2008), we constrain the portfolio weight on stocks to lie between 0% and
150% (inclusive) each month.
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Leybourne, and Newbold (1998). The null hypothesis is that the model i forecast encompasses the

model j forecast against the one-sided alternative that the model i forecast does not encompass the

model j forecast. Define gt+1 = (ε̂i,t+1 − ε̂j,t+1) ε̂i,t+1, where ε̂i,t+1 (ε̂j,t+1) is the forecasting error

based on predictive variable i (j), i.e, ε̂i,t+1 = rt+1 − r̂i,t+1, and ε̂j,t+1 = rt+1 − r̂j,t+1. The Harvey,

Leybourne, and Newbold (1998)’s test can be conducted as follows:

HLN = q/ (q − 1)
[
V̂ (g)−1/2

]
g,

where g = 1/q
q∑

k=1

gt+k, and V̂ (g) =
(
1/q2

) q∑
k=1

(gt+k − g)2. The statistical significance of the test

statistic is assessed according to the tq−1 distribution.

5.3 Out-of-sample Forecasting Results

Existing studies of the out-of-sample forecasting performance of predictive variables are mainly

conducted at lower frequencies, namely, at annual and quarterly frequencies. Because we construct

IRP at the monthly frequency, we evaluate the performance of these variables at a relatively high

frequency. We consider two out-of-sample forecast periods: in the first case, the forecast period is

from January 1998 to December 2011, and in the second case, the forecast period is from January

2003 to December 2011. The reason for choosing the first forecast period is that existing studies

such as Welch and Goyal (2008) and Rapach, Strauss, and Zhou (2010) have shown that many

commonly used forecasting variables perform poorly starting in the late 1990s. We chose the

second forecasting period to understand how the various forecasting variables performed during

the recent housing boom and subsequent financial crisis. In our in-sample analysis, we forecast

returns up to four years, and we observe that the predictive power of IRP gets stronger at longer

horizons. In the out-of-sample context, since we predict just the next month’s return, it is desirable

to include predictors from the past and therefore we propose a 2-year moving average of IRP as

our out-of-sample forecasting variable. Similarly, we also use a 2-year moving average for valuation

ratios such as D/P, E/P, and B/M.

[INSERT FIGURE 3 HERE]

Before presenting the test statistics R2
os, we first plot the differences between cumulative squared

prediction error for the historical average forecast and the cumulative squared prediction error for

forecasting models using different predictive variables in Figure 3 for the forecast period of January

1998-December 2011. This figure provides a visual representation of how each model performs over

the forecasting period. If a curve lies above the horizontal line at zero, then the forecasting model

26



outperforms the historical average model. As pointed out by Welch and Goyal (2008), the units

on these plots are not intuitive, what matters is the slope of the curves: a positive slope indicates

that a particular forecasting model consistently outperforms the historical average model, while a

negative slope indicates the opposite. A forecasting model which consistently beats the historical

average model will always have a positive slope. Among the various forecasting variables, IRP

performs the best: it stays above zero for most periods and its slope is closest to being always

positive. The performance of D/P, E/P and B/M are mixed. The curves stay above zero only

some of the times and the slopes are positive only for a relatively short window from the late 1990s

to early 2000. The curves of the business cycle variables and interest rates do not even stay above

zero.

[INSERT TABLE 7 HERE]

Panel A of Table 7 reports the R2
os statistics for each of the forecasting variables for the two

forecasting periods: January 1998-December 2011 and January 2003-December 2011. In both

forecasting periods, IRP produces positive R2
os of 1.22% and 1.61%, respectively. Campbell and

Thompson (2008) argue that even very small positive R2
os values, such as 0.5% for monthly data,

can signal an economically meaningful degree of return predictability for a mean-variance investor,

which provides a simple assessment of a variable’s forecasting power in practice. On the other hand,

valuation ratios D/P, E/P, and B/M produce positive R2
os only in the first forecast period (0.44%,

0.22%, and 0.26%), and not in the second period. The business cycle variables yield negative R2
os

in both forecast periods, suggesting that these variables cannot beat the simple historical average

forecast model. This is consistent with the findings in Welch and Goyal (2008) that valuation ratios

and business cycle variables have poor out-of-sample forecasting performances. In contrast, IRP

consistently outperforms the historical average in both forecasting periods.

As discussed in Section 5.2, when R2
os is greater than zero, statistical significance can be assessed

using the adjusted-MSPE measure in Clark and West (2007). For the variables that produce positive

R2
os, we obtain the p-value of R2

os based on the adjusted-MSPE measure of testing R2
os ≤ 0 against

the alternative of R2
os > 0. We see that IRP yields statistically significant R2

os in both forecasting

periods, while R2
os associated with the valuation ratios in the first forecast period are not significant.

These results are consistent with what we observe in Figure 3.

Panel A of Table 7 also reports the utility gains from using a specific forecasting model against

the historical average. IRP produces positive utility gains in both forecasting periods, indicating

that mean-variance investors should be willing to pay for access to the information in IRP to
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form their optimal portfolios; the utility gain based on IRP is more than 4% a year. Among other

forecasting variables, valuation ratios produce some positive utility gains in the first forecast period;

in the second forecast period, only D/P produces positive utility gains. Overall, the economic

magnitude of the utility gains for other variables is much smaller than that of IRP.

We now turn to the question of whether IRP brings new information that is not contained in the

existing variables. Panel B of Table 7 provides p-values corresponding to the Harvey, Leybourne,

and Newbold (1998) forecast encompassing test statistic. The p-values correspond to an upper tail

test of the null hypothesis that the forecast from the row variable (R) encompasses the forecast

from the column variable (C) against the alternate that it does not. The results in Panel B of

Table 7 show that we cannot reject the null that IRP encompasses the other forecasting variables

while we can strongly reject the null that IRP is encompassed by other forecasting variables. This

suggests that IRP is more informative than the other forecasting variables in predicting future

returns. We also reject the null that valuation ratios are encompassed by Term, Tbill, and Yield

in the first forecast period but not in the second forecast period.

6 Conclusion

In sum, our results show that IRP is an excellent predictor of future market returns both in-

sample and out-of-sample. In particular, our results provide the first unambiguous evidence of a

positive relationship between ICC and future returns. This is especially important for the ICC

literature since it validates the usefulness of the ICC approach. Our paper also introduces a

new variable to the predictability literature, one that vastly outperforms the existing forecasting

variables. The superior performance of ICC should not be surprising since it is computed from

a theoretically justifiable valuation model that takes into account future growth rates and makes

reasonable economic assumptions in estimating the expected returns of individual stocks. The

success of ICC in predicting future returns also has implications for the asset allocation literature

which has traditionally relied on dividend-to-price ratio as the key forecasting variable. Now, there

is an alternative which directly measures forward-looking expected returns and risk premiums.

Finally, our work suggests that the ICC may also be a proxy of aggregate market mispricing since

it is able to predict future returns even in the presence of several business cycle proxies.
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Appendices

Appendix A: Unit Root Test

In this appendix, we formally test the stationarity of the various variables by conducting Phillips-
Perron unit root tests (see Phillips (1987) and Perron (1988)). We run two types of Phillips-Perron
unit root tests: regressions with an intercept but without a time-trend, and regressions with both
an intercept and a time-trend. The two types of regressions are given below:

Without time trend: ∆Yt = a+ (c− 1)Yt−1 + ut, (15)

With time trend: ∆Yt = a+ bt+ (c− 1)Yt−1 + ut.

The null hypothesis in both regressions is that the variable Yt has a unit root; that is, c = 1. We
report the test statistic based on the regression coefficient, (c−1), which allows for serial correlation
up to twelve lags in the regression residuals.

Table A1 summarizes the results of the Phillips-Perron unit root tests. We strongly reject
the null hypothesis of a unit root for IRP, but not for traditional valuation ratios. This result is
consistent with the autocorrelations reported in Panel A of Table 1 , i.e., it takes a shorter time
for IRP to return to its mean than for D/P, E/P, B/M, and P/Y.

[INSERT TABLE A1 HERE]

Appendix B: Monte Carlo Simulation Procedure

For each regression, we conduct a Monte Carlo simulation using a VAR procedure to assess the
statistical significance of relevant statistics. We illustrate our procedure for the bivariate regression
involving IRP and D/P. The simulation method is conducted in the same way for other regressions.

Define Zt = (rt, IRP t, D/Pt)
′, where Zt is a 3× 1 column vector. We first fit a first-order VAR

to Zt using the following specification:

Zt+1 = A0 +A1Zt + ut+1, (16)

where A0 is a 3× 1 vector of intercepts and A1 is a 3× 3 matrix of VAR coefficients, and ut+1 is a
3× 1 vector of VAR residuals. The estimated VAR is used as the data generating process (DGP)
for the simulation.

The point estimates in (16) are used to generate artificial data for the Monte Carlo simulations.
We impose the null hypothesis of no predictability on rt in the VAR. This is done by setting the slope
coefficients on the explanatory variables to zero, and by setting the intercept in the equation of rt
to be its unconditional mean. We use the fitted VAR under the null hypothesis of no predictability
to generate T observations of the state variable vector, (rt, IRP t, D/P t). The initial observation
for this vector is drawn from a multivariate normal distribution with mean equal to the historical
mean and variance-covariance matrix equal to the historical estimated variance-covariance matrix
of the vector of state variables. Once the VAR is initiated, shocks for subsequent observations are
generated by randomizing (sampling without replacement) among the actual VAR residuals. The
VAR residuals for rt are scaled to match its historical standard errors. These artificial data are
then used to run bivariate regressions and generate regression statistics. This process is repeated
5, 000 times to obtain empirical distributions of regression statistics. The Matlab numerical recipe
mvnrnd is used to generate standard normal random variables.
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Table 1 Summary Statistics for Forecasting Variables

This table provides summary statistics of forecasting variables used in the paper. The NYSE/AMEX/Nasdaq
value-weighted market excess returns (Vwretd), the implied risk premium (IRP), the dividend-to-price ratio
(D/P), the earnings-to-price ratio (E/P), the book-to-market ratio (B/M ), the term spread (Term), the
default spread (Default), the one-month T-bill rate (Tbill), and the 30-year treasury yield (Yield), are
monthly data from January 1977 to December 2011; the payout yield (P/Y ) (in logarithm), net equity
expansion (ntis), inflation (infl), stock variance (svar), lagged excess market returns (Lagged Vwreted), and
the sentiment measure (senti) are monthly data from January 1977 to December 2010; the consumption-to-
wealth ratio (cay), and investment-to-capital ratio (i/k) are quarterly data from 1977.Q1 to 2008.Q4. Panel
A provides the mean, standard deviation, and autocorrelations for these variables, and Panels B-D provide
the pairwise correlations among them, with p-values in parentheses. The implied risk premium (IRP) is
our new forecasting variable calculated as the difference between the aggregate implied cost of capital and
the one-month T-bill yield. All variables except B/M, P/Y, svar, senti and cay are reported in annualized
percentages. The autocorrelations for Vwretd represent the sum of autocorrelations up to the given lag while
the autocorrelations for all other variables represent the autocorrelation at that lag. The detailed description
for these variables are provided in Section 3.

Panel A: Mean, Standard Deviation and Autocorrelations

Autocorrelation at Lag

Variable Mean Std. Dev. 1 12 24 36 48 60

IRP 7.07 2.68 0.95 0.56 0.10 -0.20 -0.25 -0.09

Vwretd 6.66 15.87 0.08 0.02 -0.26 -0.24 -0.36 -0.51

D/P 2.61 1.05 0.98 0.87 0.79 0.73 0.64 0.52

E/P 6.88 2.53 0.99 0.84 0.73 0.65 0.54 0.40

B/M 0.45 0.18 0.99 0.88 0.82 0.74 0.65 0.53

P/Y -2.26 0.25 0.98 0.71 0.57 0.39 0.37 0.29

Term 3.06 1.59 0.91 0.43 0.08 -0.27 -0.36 -0.14

Default 1.11 0.48 0.96 0.47 0.29 0.19 0.08 0.08

Tbill 5.23 3.34 0.97 0.78 0.56 0.38 0.28 0.31

Yield 7.24 2.60 0.99 0.87 0.77 0.69 0.56 0.45

ntis 16.67 11.21 0.76 0.49 0.40 0.27 0.16 0.06

infl 3.91 1.15 0.65 0.28 0.21 0.16 0.06 0.05

svar 0.26 0.54 0.46 0.03 -0.01 -0.01 -0.03 0.00

senti 0.17 0.77 0.97 0.59 0.18 0.00 -0.15 -0.27

cay 0.53 1.82 0.93 0.46 0.14 -0.26 -0.44 -0.42

i/k 3.65 0.33 0.96 0.11 -0.35 -0.29 -0.10 0.06
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Panel B: Correlation of Monthly Forecasting Variables from 1977.01 to 2011.12

IRP D/P E/P B/M Term Default Tbill Yield

IRP

D/P 0.26

(0.00)

E/P 0.21 0.95

(0.00) (0.00)

B/M 0.29 0.98 0.97

(0.00) (0.00) (0.00)

Term 0.80 -0.15 -0.21 -0.14

(0.00) (0.00) (0.00) (0.01)

Default 0.38 0.53 0.63 0.57 0.15

(0.00) (0.00) (0.00) (0.00) (0.00)

Tbill -0.37 0.68 0.65 0.63 -0.60 0.28

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Yield -0.01 0.80 0.72 0.76 -0.23 0.38 0.87

(0.82) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel C: Correlation of Monthly Forecasting Variables from 1977.01 to 2010.12

IRP P/Y ntis infl svar Lagged Vwretd senti

IRP

P/Y 0.38

(0.00)

ntis 0.17 0.34

(0.00) (0.00)

infl -0.24 0.24 0.19

(0.00) (0.00) (0.00)

svar 0.16 -0.04 0.07 -0.31

(0.00) (0.43) (0.18) (0.00)

Lagged Vwretd 0.02 0.04 -0.09 0.07 -0.37

(0.76) (0.38) (0.06) (0.14) (0.00)

senti -0.06 -0.16 0.28 -0.12 0.03 -0.07

(0.26) (0.00) (0.00) (0.01) (0.48) (0.15)

Panel D: Correlation of Quarterly Forecasting Variables from 1977.Q1 to 2008.Q4

IRP cay i/k

IRP

cay 0.12

(0.19)

i/k -0.66 -0.11

(0.00) (0.22)
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Table 2 Univariate Regressions for IRP, Valuation Ratios, and Business Cycle
Variables

This table summarizes univariate forecasting regression results in equation (8). The dependent variable in
these regressions is the average monthly continuously compounded excess returns defined as the difference
between the average monthly continuously compounded value-weighted market return including dividends
from WRDS and the average monthly continuously compounded one-month T-bill return. The independent
variables are the implied risk premium (IRP), the dividend-to-price ratio (D/P), the earnings-to-price ratio
(E/P), the book-to-market ratio (B/M ), the payout yield (P/Y ), the term spread (Term), the default
spread (Default), the one-month T-bill rate (Tbill), and the 30-year treasury yield (Yield), in Panels A-I,
respectively. P/Y is in logarithm form and spans January 1977 to December 2010. All other variables span
January 1977 to December 2011. Since our dependent variable is average monthly excess returns, we divide
IRP, D/P, E/P, B/M, Term, Default, Tbill, and Yield also by 12. This rescaling is done simply to ensure
that the magnitude of slope coefficients is not too small and does not affect their statistical significance.
In forecasting horizons beyond one-month, the regressions use overlapping observations. b is the slope
coefficient from the OLS regressions. avg. is the average slope coefficient. Z(b) is the asymptotic Z-statistics
computed using the GMM standard errors with K − 1 Newey-West lag correction. These standard errors
correct for the autocorrelation in regressions due to overlapping observations and for generalized conditional
heteroskedasticity. The adj.R2 is obtained from the OLS regression. The p-values of Z-statistics and the
average slope coefficient are obtained by comparing the test statistics with their empirical distribution
generated under the null of no predictability from 5,000 trials of a Monte Carlo simulation. The artificial
data for the simulation are generated under the null using the VAR approach described in Appendix B.

Panel A: IRP Panel B: D/P Panel C: E/P

K b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 2.023 1.849 0.052 0.009 3.423 1.298 0.221 0.004 1.196 1.058 0.320 0.003

12 1.627 2.295 0.076 0.066 3.424 1.594 0.271 0.046 1.131 1.281 0.359 0.030

24 1.772 2.522 0.079 0.173 2.744 1.384 0.352 0.070 0.890 1.125 0.440 0.043

36 1.773 3.175 0.048 0.267 2.247 1.421 0.379 0.084 0.709 1.052 0.491 0.048

48 1.546 3.900 0.035 0.305 2.236 1.875 0.316 0.128 0.664 1.225 0.481 0.066

avg. 1.748 0.020 2.815 0.349 0.918 0.441

Panel D: B/M Panel E: P/Y Panel F: Term

K b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 0.158 1.036 0.365 0.003 0.787 0.752 0.245 0.002 0.958 0.534 0.312 0.001

12 0.169 1.395 0.365 0.034 1.127 1.417 0.161 0.042 1.792 1.532 0.129 0.029

24 0.130 1.174 0.470 0.048 1.183 1.847 0.119 0.113 2.170 2.364 0.056 0.095

36 0.112 1.178 0.499 0.062 0.964 2.328 0.089 0.125 2.069 3.171 0.019 0.144

48 0.103 1.374 0.485 0.081 0.863 2.991 0.064 0.160 1.644 3.008 0.037 0.137

avg. 0.134 0.519 0.985 0.156 1.726 0.067

Panel G: Default Panel H: Tbill Panel I: Yield

K b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 -2.292 -0.289 0.683 0.000 -0.394 -0.456 0.308 0.001 -0.248 -0.217 0.589 0.000

12 3.586 0.799 0.357 0.011 -0.275 -0.373 0.362 0.003 0.398 0.383 0.385 0.004

24 2.580 0.731 0.385 0.013 -0.237 -0.697 0.288 0.005 0.645 0.920 0.262 0.022

36 1.674 0.537 0.453 0.009 -0.066 -0.204 0.429 0.001 0.822 1.464 0.180 0.059

48 2.411 0.723 0.428 0.022 0.128 0.393 0.577 0.003 0.893 1.975 0.132 0.103

avg. 1.592 0.470 -0.169 0.380 0.502 0.354
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Table 3 Bivariate Regressions Involving IRP, Valuation Ratios, and Business
Cycle Variables

This table summarizes bivariate forecasting regression results in equation (8). The independent variables are
the implied risk premium (IRP) and dividend-to-price ratio (D/P) in Panel A, IRP and earnings-to-price
ratio (E/P) in Panel B, IRP and book-to-market ratio (B/M ) in Panel C, IRP and the payout yield (P/Y )
in Panel D, IRP and the term spread (Term) in Panel E, IRP and the default spread (Default) in Panel
F, IRP and the one-month T-bill rate (Tbill) in Panel G, and IRP and the 30-year treasury yield (Yield)
in Panel H. The dependent variable in these regressions is the continuously compounded excess return per
month defined as the difference between the monthly continuously compounded return on the value-weighted
market return including dividends from WRDS and the monthly continuously compounded one-month T-bill
rate. P/Y is in logarithm form and spans January 1977 to December 2010. All other variables span January
1977 to December 2011. Since our dependent variable is average monthly excess returns, we divide IRP, D/P,
E/P, B/M, Term, Default, Tbill, and Yield also by 12. This rescaling does not affect the significance of the
slopes. K is the forecasting horizon in months. In forecasting horizons beyond one-month, the regressions
use overlapping observations. b and c are the slope coefficients from the OLS regressions. avg. is the average
slope coefficient. Z(b) and Z(c) are the asymptotic Z-statistics computed using the GMM standard errors
with K − 1 Newey-West lag correction. These standard errors correct for the autocorrelation in regressions
due to overlapping observations and for generalized conditional heteroskedasticity. The adj.R2 is obtained
from the OLS regression. The p-values of Z-statistics and the average slope coefficient are obtained by
comparing the test statistics with their empirical distribution generated under the null of no predictability
from 5,000 trials of a Monte Carlo simulation. The artificial data for the simulation are generated under the
null using the VAR approach described in Appendix B.

Panel A: Bivariate Regression Involving IRP and D/P

IRP D/P
K b Z(b) pval c Z(c) pval adj.R2

1 1.794 1.584 0.100 2.236 0.824 0.325 0.006
12 1.348 1.878 0.135 2.455 1.180 0.304 0.084
24 1.571 2.834 0.058 1.523 1.079 0.357 0.188
36 1.623 3.501 0.041 1.007 1.023 0.393 0.278
48 1.362 3.998 0.032 1.163 1.513 0.312 0.332

avg. 1.539 0.045 1.677 0.416

Panel B: Bivariate Regression Involving IRP and E/P

IRP E/P
K b Z(b) pval c Z(c) pval adj.R2

1 1.870 1.703 0.085 0.789 0.703 0.381 0.006
12 1.462 2.084 0.112 0.806 1.008 0.369 0.076
24 1.655 2.753 0.071 0.500 0.950 0.400 0.181
36 1.689 3.495 0.044 0.349 0.890 0.433 0.274
48 1.459 4.167 0.034 0.365 1.172 0.391 0.320

avg. 1.627 0.043 0.562 0.478

Panel C: Bivariate Regression Involving IRP and B/M

IRP B/M
K b Z(b) pval c Z(c) pval adj.R2

1 1.870 1.655 0.089 0.079 0.506 0.510 0.005
12 1.407 1.985 0.126 0.109 0.941 0.424 0.075
24 1.641 2.870 0.060 0.059 0.760 0.489 0.177
36 1.673 3.578 0.038 0.039 0.655 0.532 0.270
48 1.441 3.914 0.035 0.040 0.792 0.517 0.312

avg. 1.607 0.048 0.065 0.563

36



Panel D: Bivariate Regression Involving IRP and P/Y

IRP P/Y
K b Z(b) pval c Z(c) pval adj.R2

1 2.164 1.879 0.053 0.060 0.055 0.513 0.006
12 1.220 1.821 0.139 0.680 0.851 0.297 0.065
24 1.264 2.083 0.130 0.726 1.229 0.238 0.173
36 1.587 3.163 0.057 0.408 1.292 0.243 0.288
48 1.279 3.452 0.056 0.411 1.766 0.186 0.323

avg. 1.503 0.051 0.457 0.344

Panel E: Bivariate Regression Involving IRP and Term

IRP Term
K b Z(b) pval c Z(c) pval adj.R2

1 4.443 2.515 0.009 -5.060 -1.783 0.951 0.012
12 2.154 1.659 0.158 -1.102 -0.529 0.632 0.066
24 1.964 1.598 0.197 -0.398 -0.251 0.543 0.170
36 1.927 2.051 0.141 -0.313 -0.268 0.544 0.264
48 1.846 3.473 0.039 -0.617 -1.058 0.744 0.309

avg. 2.467 0.019 -1.498 0.801

Panel F: Bivariate Regression Involving IRP and Default

IRP Default
K b Z(b) pval c Z(c) pval adj.R2

1 2.540 2.368 0.013 -7.622 -0.967 0.837 0.008
12 1.618 2.179 0.086 0.128 0.030 0.494 0.062
24 1.883 2.814 0.053 -1.451 -0.536 0.643 0.172
36 1.917 3.417 0.038 -2.063 -0.834 0.707 0.274
48 1.583 3.582 0.040 -0.643 -0.231 0.563 0.303

avg. 1.908 0.010 -2.330 0.698

Panel G: Bivariate Regression Involving IRP and Tbill

IRP Tbill
K b Z(b) pval c Z(c) pval adj.R2

1 2.135 1.896 0.043 0.243 0.277 0.646 0.005
12 1.712 2.191 0.076 0.203 0.273 0.623 0.063
24 1.841 2.320 0.085 0.197 0.555 0.699 0.171
36 1.831 3.083 0.044 0.229 0.867 0.758 0.270
48 1.617 4.001 0.020 0.346 1.501 0.856 0.324

avg. 1.827 0.010 0.244 0.698

Panel H: Bivariate Regression Involving IRP and Yield

IRP Yield
K b Z(b) pval c Z(c) pval adj.R2

1 2.021 1.850 0.052 -0.233 -0.206 0.482 0.005
12 1.617 2.251 0.082 0.344 0.367 0.312 0.064
24 1.727 2.556 0.078 0.472 0.909 0.201 0.180
36 1.673 3.224 0.056 0.491 1.364 0.145 0.283
48 1.409 3.798 0.039 0.533 1.747 0.118 0.336

avg. 1.689 0.021 0.321 0.302
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Table 4 Multivariate Regressions with Other Forecasting Variables

This table provides multivariate regression results of equation (8). The independent variables are IRP, ntis,
and infl in Panel A, IRP, svar, and Lagged Vwretd in Panel B, IRP and senti in Panel C, and quarterly IRP,
cay, and i/k in Panel D. Panels A-C use monthly data from January 1977 to December 2010, and Panel D uses
quarterly data from 1977.Q1 to 2008.Q4. The quarterly IRP is the quarter-end monthly IRP. The dependent
variable in these regressions is the continuously compounded excess return per month (per quarter) defined
as the difference between the monthly (quarterly) continuously compounded return on the value-weighted
market return including dividends from WRDS and the monthly (quarterly) continuously compounded one-
month T-bill rate. K is the forecasting horizon in months (quarters) for monthly (quarterly) regressions.
In forecasting horizons beyond one-month (one-quarter), the regressions use overlapping observations. b,
c, and d are the slope coefficients from the OLS regressions. avg. is the average slope coefficient. Z(b),
Z(c), and Z(d) are the asymptotic Z-statistics computed using the GMM standard errors with K − 1
Newey-West lag correction. These standard errors correct for the autocorrelation in regressions due to
overlapping observations and for generalized conditional heteroskedasticity. The adj.R2 is obtained from the
OLS regression. The p-values of Z-statistics and the average slope coefficient are obtained by comparing the
test statistics with their empirical distribution generated under the null of no predictability from 5,000 trials
of a Monte Carlo simulation. The artificial data for the simulation are generated under the null using the
VAR approach described in Appendix B.

Panel A: Multivariate Regression Involving IRP, ntis and infl

IRP ntis infl
K b Z(b) pval c Z(c) pval d Z(d) pval adj.R2

1 2.787 2.457 0.012 -0.062 -2.341 0.011 0.162 0.158 0.621 0.025
12 1.675 2.143 0.091 -0.019 -1.666 0.104 -0.197 -0.516 0.471 0.080
24 1.683 2.012 0.129 -0.003 -0.407 0.398 -0.075 -0.282 0.600 0.140
36 1.832 2.955 0.062 0.000 -0.019 0.524 0.044 0.186 0.759 0.268
48 1.520 3.669 0.042 0.003 0.579 0.693 0.063 0.434 0.834 0.297

avg. 1.899 0.014 -0.016 0.041 -0.001 0.619

Panel B: Multivariate Regression Involving IRP, svar and Lagged Vwretd

IRP svar Lagged Vwretd
K b Z(b) pval c Z(c) pval d Z(d) pval adj.R2

1 2.622 2.408 0.015 -1.107 -2.169 0.030 0.049 0.860 0.173 0.027
12 1.534 1.989 0.104 0.074 0.497 0.620 0.010 0.604 0.185 0.052
24 1.695 2.155 0.111 -0.061 -0.629 0.299 -0.011 -0.983 0.655 0.140
36 1.843 3.270 0.041 -0.227 -2.395 0.055 -0.013 -2.122 0.862 0.284
48 1.538 3.858 0.033 -0.155 -1.393 0.160 -0.013 -2.736 0.906 0.307

avg. 1.846 0.013 -0.295 0.021 0.004 0.266

Panel C: Bivariate Regression Involving IRP and senti

IRP senti
K b Z(b) pval c Z(c) pval adj.R2

1 2.110 1.905 0.049 -0.425 -1.453 0.098 0.011
12 1.518 2.136 0.088 -0.337 -1.555 0.157 0.088
24 1.677 2.357 0.093 -0.206 -1.346 0.256 0.171
36 1.818 3.268 0.051 -0.061 -0.920 0.414 0.275
48 1.522 3.742 0.042 -0.014 -0.235 0.643 0.294

avg. 1.729 0.024 -0.209 0.302

Panel D: Multivariate Regression Involving Quarterly IRP, cay and i/k

IRP cay i/k
K b Z(b) pval c Z(c) pval d Z(d) pval adj.R2

1 4.532 0.849 0.272 0.717 2.173 0.049 0.829 0.279 0.634 0.012
4 5.306 1.769 0.130 0.534 1.939 0.161 1.076 0.611 0.713 0.091
8 4.320 2.866 0.043 0.477 2.200 0.161 -0.161 -0.102 0.513 0.235
12 3.605 4.535 0.007 0.505 2.446 0.163 -0.966 -0.829 0.350 0.403
16 3.186 5.055 0.006 0.487 3.157 0.123 -0.942 -1.031 0.333 0.523

avg. 4.190 0.100 0.544 0.170 -0.033 0.534

38



Table 5 Growth Forecast, Alternative IRP Specifications and Analysts’
Forecast Optimism

This table provides a variety of analysis discussed in Section 4.2.4. Panel A analyzes the role of the dividend
growth component of IRP in forecasting future market returns. FE1/P is the expected return which does
not incorporate forecasts of future dividend growth. Panel A1 provides the univariate regression of FE1/P ,
and Panel A2 provides the bivariate regression of IRP and FE1/P . Panel B provides univariate regression of
(8) for alternative measures of IRP. It first provides the results for three alternative measures of IRP which
are obtained with forecasting horizon T = 10, T = 20, and incorporating share repurchases and new stock
issues, respectively. It also provides the results for three alternative measures of IRP : IRP equal, IRP all,
and IRP yield, where IRP equal is the equally-weighted average of the firm-level IRP for firms in the S&P
500 index; IRP all is the value-weighted average of the firm-level IRP for all firms in our sample universe,
and IRP yield is the value-weighted average of the firm-level IRP for firms in the S&P 500 index, but the
firm-level IRP is calculated by subtracting the 30-year treasury yield from the firm-level ICC. Panel B also
provides the regression results for IRP where ICC is calculated based on Easton (2004)’s method. Finally, it
provides the results of regressing real market returns on real ICC, where the real ICC is the difference between
our main measure of the aggregate ICC and the one-month inflation rate, and the real market returns are
the difference between the monthly continuously compounded nominal returns and the one-month inflation
rate. Panel C investigates whether the predictive power of IRP is due to analysts forecast optimism, where
AE is our measure of aggregate analyst forecast optimism . Panel C1 reports the univariate regression of AE,
and Panel C2 reports the bivariate regression of IRP and AE. The dependent variable in these regressions
is the continuously compounded excess return per month defined as the difference between the monthly
continuously compounded return on the value-weighted market return including dividends from WRDS and
the monthly continuously compounded one-month T-bill rate. All regressions use data from January 1977
to December 2011. K is the forecasting horizon in months. In forecasting horizons beyond one-month, the
regressions use overlapping observations. b and c are the slope coefficients from the OLS regressions. avg.
is the average slope coefficient. Z(b) and Z(b) are the asymptotic Z-statistics computed using the GMM
standard errors with K−1 Newey-West lag correction. These standard errors correct for the autocorrelation
in regressions due to overlapping observations and for generalized conditional heteroskedasticity. The adj.R2

is obtained from the OLS regression. The p-values of Z-statistics and the average slope coefficient are
obtained by comparing the test statistics with their empirical distribution generated under the null of no
predictability from 5,000 trials of a Monte Carlo simulation. The artificial data for the simulation are
generated under the null using the VAR approach described in Appendix B.

Panel A: The Role of Growth Forecast

Panel A1: Univariate Regression of FE1/P Panel A2: Bivariate Regression Involving IRP and FE1/P

FE1/P IRP FE1/P

K b Z(b) pval adj.R2 b Z(b) pval c Z(c) pval adj.R2

1 0.609 0.641 0.481 0.001 1.970 1.771 0.062 0.231 0.241 0.578 0.005

12 0.949 1.251 0.366 0.028 1.469 2.068 0.097 0.665 0.941 0.389 0.075

24 0.763 1.145 0.429 0.043 1.657 2.757 0.058 0.428 0.959 0.409 0.181

36 0.716 1.265 0.428 0.067 1.655 3.476 0.036 0.358 1.134 0.386 0.278

48 0.651 1.460 0.414 0.085 1.429 4.150 0.027 0.344 1.401 0.358 0.324

avg. 0.738 0.484 1.636 0.040 0.405 0.525
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Panel B: Alternative Model Specifications

T=10 T=20 IRP repurchase

K b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 2.403 1.983 0.039 0.011 1.849 1.795 0.056 0.009 2.069 1.743 0.058 0.009

12 1.932 2.390 0.065 0.077 1.439 2.124 0.092 0.056 1.732 2.286 0.070 0.064

24 1.940 2.331 0.095 0.175 1.625 2.433 0.084 0.154 1.937 2.649 0.062 0.169

36 1.876 2.982 0.057 0.269 1.623 2.971 0.058 0.237 1.917 3.207 0.041 0.255

48 1.633 3.972 0.030 0.305 1.416 3.622 0.042 0.273 1.612 3.455 0.047 0.269

avg. 1.957 0.012 1.590 0.027 1.854 0.017

IRP all IRP equal IRP yield

K b Z(b) pval adj.R2 b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 2.224 1.913 0.047 0.010 1.868 1.763 0.058 0.007 3.278 1.778 0.061 0.009

12 1.797 2.481 0.061 0.074 1.321 1.856 0.121 0.041 2.086 1.614 0.162 0.039

24 1.923 2.707 0.064 0.183 1.483 2.207 0.099 0.117 2.147 1.691 0.183 0.092

36 1.890 3.279 0.041 0.270 1.497 2.977 0.056 0.200 2.160 2.039 0.150 0.141

48 1.607 3.715 0.041 0.291 1.313 3.727 0.034 0.236 2.182 3.249 0.053 0.216

avg. 1.888 0.015 1.497 0.038 2.371 0.033

IRP Based on Easton (2004) Real ICC for Real Returns

K b Z(b) pval adj.R2 b Z(b) pval adj.R2

1 2.069 1.743 0.058 0.009 1.070 1.888 0.034 0.008

12 1.732 2.286 0.070 0.064 0.936 3.017 0.008 0.069

24 1.937 2.649 0.062 0.169 0.756 3.377 0.004 0.101

36 1.917 3.207 0.041 0.255 0.711 3.820 0.002 0.128

48 1.612 3.455 0.047 0.269 0.648 4.156 0.002 0.150

avg. 1.854 0.017 0.824 0.000

Panel C: Analysis on Analysts’ Forecast Optimism

Panel C1: Univariate Regression of AE Panel C2: Bivariate Regression Involving IRP and AE

AE IRP AE

K b Z(b) pval adj.R2 b Z(b) pval c Z(c) pval adj.R2

1 0.529 0.190 0.436 0.000 2.299 1.761 0.055 -1.897 -0.556 0.701 0.006

12 -0.259 -0.190 0.547 0.000 2.016 2.512 0.058 -2.487 -1.438 0.875 0.080

24 0.592 0.660 0.289 0.003 2.055 2.745 0.063 -1.682 -1.626 0.888 0.188

36 0.781 0.815 0.245 0.008 1.983 3.481 0.035 -1.275 -1.387 0.836 0.281

48 1.237 1.480 0.116 0.031 1.676 3.595 0.043 -0.707 -0.707 0.654 0.309

avg. 0.576 0.297 2.006 0.008 -1.610 0.913
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Table 6 Analysis Using Hodrick (1992) Standard Errors

Panel A of this table provides two Z-statistics of univariate regressions of equation (8) for IRP and D/P.
Z(b) is the Z-statistics based on the Newey-West standard errors, and Z(b)hd is the Z-statistics based on
the Hodrick (1992) standard errors. 95% and 95%hd are the 95th percentile of the empirical distributions
from the Monte Carlo simulations conducted under the null hypothesis (Appendix B) for Z(b) and Z(b)hd,
respectively. Panels B and C report the univariate regressions and bivariate regressions of equation (8) when
the Z-statistics are calculated based on Hodrick (1992) standard errors Z(b)hd. The dependent variable in
these regressions is the continuously compounded excess return per month defined as the difference between
the monthly continuously compounded return on the value-weighted market return including dividends from
WRDS and the monthly continuously compounded one-month T-bill rate. The independent variable in Panel
B is IRP, D/P, E/P, or B/M, and the independent variables in Panel C are IRP and D/P, IRP and E/P, or
IRP and B/M. Since our dependent variable is average monthly excess returns, we divide IRP, D/P, E/P,
and B/M also by 12. This rescaling does not affect the significance of the slopes. All regressions use monthly
data from January 1977 to December 2011. K is the forecasting horizon in months. In forecasting horizons
beyond one-month, the regressions use overlapping observations. b and c are the slope coefficients from the
OLS regressions. avg. is the average slope coefficient. Z(b)hd and Z(c)hd are the asymptotic Z-statistics
computed using the Hodrick (1992) standard errors. The adj.R2 is obtained from the OLS regression. The
p-values of Z(b)hd and Z(c)hd (pvalhd) and the average slope coefficient are obtained by comparing the test
statistics with their empirical distribution generated under the null of no predictability from 5,000 trials of
a Monte Carlo simulation. The artificial data for the simulation are generated under the null using the VAR
approach described in Appendix B.

Panel A: Z-Statistics and Simulated 95% Critical Values for IRP and D/P

IRP D/P

K b Z(b) 95% Z(b)hd 95%hd b Z(b) 95% Z(b)hd 95%hd

1 2.023 1.849 1.865 1.849 1.865 3.423 1.298 2.090 1.298 2.090

12 1.627 2.295 2.639 1.680 1.941 3.424 1.594 3.043 1.311 2.196

24 1.772 2.522 2.908 2.135 1.989 2.744 1.384 3.522 1.085 2.236

36 1.773 3.175 3.125 2.146 2.011 2.247 1.421 4.110 0.928 2.249

48 1.546 3.900 3.421 2.539 2.097 2.236 1.875 4.519 0.940 2.363

Panel B: Univariate Regression Based on Hodrick (1992) Standard Errors

IRP D/P

K b Z(b)hd pvalhd adj.R2 b Z(b)hd pvalhd adj.R2

1 2.023 1.849 0.052 0.009 3.423 1.298 0.221 0.004

12 1.627 1.680 0.084 0.066 3.424 1.311 0.233 0.046

24 1.772 2.135 0.039 0.173 2.744 1.085 0.316 0.070

36 1.773 2.146 0.039 0.267 2.247 0.928 0.385 0.084

48 1.546 2.539 0.022 0.305 2.236 0.940 0.391 0.128

avg. 1.748 0.020 2.815 0.349

E/P B/M

K b Z(b)hd pvalhd adj.R2 b Z(b)hd pvalhd adj.R2

1 1.196 1.058 0.320 0.003 0.158 1.036 0.365 0.003

12 1.131 1.090 0.318 0.030 0.169 1.135 0.333 0.034

24 0.890 0.899 0.402 0.043 0.130 0.882 0.443 0.048

36 0.709 0.728 0.479 0.048 0.112 0.794 0.490 0.062

48 0.664 0.652 0.518 0.066 0.103 0.744 0.522 0.081

avg. 0.918 0.441 0.134 0.519
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Panel C: Bivariate Regression Based on Hodrick (1992) Standard Errors

IRP D/P

K b Z(b)hd pvalhd c Z(c)hd pvalhd adj.R2

1 1.794 1.584 0.100 2.236 0.824 0.325 0.006

12 1.348 1.408 0.133 2.455 0.947 0.287 0.084

24 1.571 2.051 0.041 1.523 0.625 0.409 0.188

36 1.623 2.056 0.049 1.007 0.417 0.485 0.278

48 1.362 1.922 0.069 1.163 0.445 0.474 0.332

avg. 1.539 0.045 1.677 0.416

IRP E/P

K b Z(b)hd pvalhd c Z(c)hd pvalhd adj.R2

1 1.870 1.703 0.085 0.789 0.703 0.381 0.006

12 1.462 1.533 0.120 0.806 0.796 0.354 0.076

24 1.655 2.111 0.047 0.500 0.526 0.444 0.181

36 1.689 2.126 0.051 0.349 0.364 0.510 0.274

48 1.459 2.250 0.043 0.365 0.346 0.524 0.320

avg. 1.627 0.043 0.562 0.478

IRP B/M

K b Z(b)hd pvalhd c Z(c)hd pvalhd adj.R2

1 1.870 1.655 0.089 0.079 0.506 0.510 0.005

12 1.407 1.464 0.130 0.109 0.740 0.415 0.075

24 1.641 2.136 0.036 0.059 0.418 0.531 0.177

36 1.673 2.113 0.042 0.039 0.280 0.584 0.270

48 1.441 2.031 0.055 0.040 0.263 0.601 0.312

avg. 1.607 0.048 0.065 0.563
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Table 7 Out-of-Sample Test

This table summarizes the out-of-sample analysis of forecasting models using different forecasting variables.
Panel A reports the R2

os statistic of Campbell and Thompson (2008). Statistical significance of R2
os is

obtained based on the p-value for the Clark and West (2007) out-of-sample adjusted-MSPE statistic; the
statistic corresponds to a one-sided test of the null hypothesis that the competing forecasting model using
a specific forecasting variable has equal expected squared prediction error relative to the historical average
forecasting model against the alternative that the competing model has a lower expected squared prediction
error than the historical average benchmark model. Panel A also reports the utility gain (Ugain), which
is the portfolio management fee (in annualized percentage return) that an investor with mean-variance
preferences and risk aversion coefficient of three would be willing to pay to have access to the forecasting
model using a particular forecasting variable relative to the historical average benchmark forecasting model;
the weight on stocks in the investor’s portfolio is constrained to lie between zero and 1.5 (inclusive). Panel B
reports the p-values of the forecasting encompassing test statistic of Harvey, Leybourne, and Newbold (1998)
(HLN statistic). The HLN statistic corresponds to a one-sided (upper-tail) test of the null hypothesis that
the forecast from the row variable (R) encompasses the forecast from the column variable (C) against the
alternative hypothesis that the forecast from the row variable (R) does not encompass the forecast from the
column variable (C). We consider two forecast periods, namely, January 1998-December 2011 and January
2003-December 2011. The dependent variable in these regressions is the continuously compounded excess
return per month defined as the difference between the monthly continuously compounded return on the
value-weighted market return including dividends from WRDS and the monthly continuously compounded
one-month T-bill rate. In these tests, we perform a 2-year moving average for IRP, D/P, E/P, and B/M.

Panel A: Out-of-Sample R2
os and Utility Gains

Forecast Period: Forecast Period:

1998.01-2011.12 2003.01-2011.12

R2
os pval Ugain R2

os pval Ugain

IRP 1.22 0.06 4.15 1.61 0.09 5.44

D/P 0.44 0.16 1.38 -0.07 0.35

E/P 0.22 0.27 0.40 -0.66 -1.71

B/M 0.26 0.23 0.57 -0.29 -0.65

Term -0.53 -1.32 -0.51 -1.46

Default -0.90 -1.33 -1.65 -2.00

Tbill -1.18 -2.21 -0.55 -1.40

Yield -1.62 -1.84 -0.54 -0.72
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Panel B: Forecast Encompassing Test

Forecast Period: 1998.01-2011.12

Column Variables (C)

Row Variables (R) IRP E/P D/P B/M Term Default Tbill Yield

IRP 0.40 0.50 0.51 0.76 0.71 0.84 0.79

E/P 0.09 0.70 0.70 0.71 0.74 0.73 0.76

D/P 0.07 0.23 0.41 0.69 0.69 0.73 0.73

B/M 0.07 0.22 0.55 0.73 0.73 0.77 0.77

Term 0.03 0.07 0.10 0.09 0.53 0.74 0.66

Default 0.04 0.11 0.16 0.14 0.29 0.44 0.51

Tbill 0.01 0.03 0.04 0.03 0.10 0.28 0.67

Yield 0.01 0.02 0.04 0.03 0.09 0.18 0.19

Forecast Period: 2003.01-2011.12

Column Variables (C)

Row Variables (R) IRP E/P D/P B/M Term Default Tbill Yield

IRP 0.43 0.58 0.54 0.67 0.65 0.69 0.61

E/P 0.07 0.83 0.64 0.50 0.65 0.40 0.43

D/P 0.05 0.13 0.15 0.30 0.56 0.27 0.29

B/M 0.06 0.28 0.83 0.47 0.64 0.39 0.42

Term 0.07 0.21 0.43 0.29 0.63 0.39 0.35

Default 0.06 0.19 0.27 0.22 0.22 0.21 0.21

Tbill 0.06 0.17 0.34 0.22 0.33 0.61 0.43

Yield 0.06 0.16 0.37 0.24 0.31 0.64 0.45
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Table A1 Phillips-Perron Unit Root Tests

This table summarizes the results of Phillips-Perron unit root tests on the forecasting variables. IRP, D/P,
E/P, B/M, Term, Default, Tbill, and Yield are monthly data from January 1977 to December 2011, P/Y,
ntis, infl, svar, Lagged Vwretd, and senti are monthly data from January 1977 to December 2010, and cay
and i/k are quarterly data from 1977.Q1 to 2008.Q4. Two types of unit root tests specified in equation
(15) are performed. T is the number of observations. The Phillips-Perron test allows for regression errors
to be serially correlated and heteroskedastic. The test statistics are computed using serial correlation up to
twelve lags in the regression residuals. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively.

Variables without Time Trend with Time Trend T

IRP -20.52*** -20.63* 420

D/P -4.49 -15.73 420

E/P -6.05 -11.48 420

B/M -3.95 -7.01 420

P/Y -10.20 -13.87 408

Term -34.49*** -38.84*** 420

Default -20.15** -20.80* 420

Tbill -7.85 -32.69*** 420

Yield -2.43 -18.83* 420

ntis -127.89*** -177.33*** 408

infl -192.01*** -227.33*** 408

svar -280.11*** -278.55*** 408

Lagged Vwretd -352.31*** -351.74*** 408

senti -14.61** -14.41 408

cay -7.90 -8.21 128

i/k -9.84 -10.03 128
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Figure 2: Time series of valuation ratios. This figure depicts the dividend-to-price ratio (D/P),
earnings-to-price ratio (E/P), and book-to-market ratio (B/M ) from January 1977 to December
2011, and the payout yield (P/Y, in logarithm) from January 1977 to December 2010.
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Figure 3: Cumulative squared prediction error for the historical average benchmark forecasting
model minus the cumulative squared prediction error for the forecasting model using the implied
risk premium (IRP), dividend-to-price ratio (D/P), earnings-to-price ratio (E/P), book-to-market
ratio (B/M ), term spread (Term), default spread (Default), T-bill rate (Tbill), and 30-year treasury
yield (Yield), during the forecast period of January 1998-December 2011. The dotted line in each
panel goes through zero.
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