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Abstract. We study a dynamic natural experiment in which groups of women

are randomly exposed to breast cancer via workplace social interactions, through

colleagues who are diagnosed with the disease. We find that women in such (treat-

ment) groups reduce their propensity to perform a screening mammography by

almost 14 percentage points relative to other (control) women, on a basis of 72

percentage points, in the year in which the event occurs. This impact effect slowly

diminishes in the following years. The negative average treatment effect we iden-

tify masks important heterogeneity: the effect is much stronger in case of exposure

to severe (as opposed to milder) forms of breast cancer, is larger for younger and

healthier women, and is much weaker and much less persistent for medical doc-

tors and nurses. We interpret these results through the lens of a simple expected

utility model and existing “mechanism experiments” from the medical literature.

A plausible interpretation is the presence and prevalence of short—run anticipatory

feelings leading to information aversion and thus to a reduced propensity to screen

when breast cancer becomes more salient.
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1 Introduction

In this paper we study the dynamic effect of working with someone who
was diagnosed with breast cancer on one’s propensity to perform a screen-
ing mammography. That is, how does a woman’s propensity to screen
change over time after a colleague is diagnosed with breast cancer? As a
benchmark–and assuming that preferences and technology are unaffected
by the event in question–there is no effect to expect for a fully informed
and rational decision—maker: if risks are independent and if a woman is fully
informed about the underlying probability of developing the disease, then
the fact that a colleague was diagnosed with breast cancer brings no new
information. However, effects are possible if we depart from this benchmark,
although in this case the theoretical sign of the change is uncertain. For ex-
ample, suppose the proximate effect of knowing someone who is diagnosed
with breast cancer is an increase in the perceived probability of develop-
ing the disease, as repeatedly suggested in the medical literature.1 The net
effect of such increased risk perception on the propensity to screen is not
obvious because there are at least two underlying forces that work in op-
posite directions. First, an increased belief of developing the disease should
induce a woman to screen more frequently in order to take timely action in
case she is sick. Second, an increased perception that she may develop the
disease may induce a woman to screen less frequently because of the fear of
finding out that she is sick.2

Our research strategy is to resolve the question in a purely empirical way
and then offer a simple model that helps rationalize our empirical findings.
This strategy follows from the fact that although the model we will use has
empirical content–which we connect directly to the empirical analysis–we
would be unable to identify its structure.3 We gained access to rich infor-
mation about the universe of employees at a large medical organization in
the United States, which we used to construct a unique panel data set span-
ning three years and containing demographic, professional, socioeconomic,

1For instance, Evans et al., (1993), Helzlsouer et al. (1994), Hopwood (2000), and
Montgomery et al. (2003) all document that this is the case.

2The latter is far from a remote possibility. For instance, Caryn Lerman et al. (1998)
document that many women refuse to receive information on whether they have a genetic
predisposition to breast cancer.

3This is because of the unobservability of the perceived probabilities of having breast
cancer. In a different context, Lance Lochner (2007) uses repeated observations of the
perceived probability of being arrested for committing specific crimes, and thus is able to
identify the learning process triggered by indirect experiences of arrests. Unfortunately,
we cannot do this for the problem at hand.
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and high-quality health data for female employees at this organization. The
data set also contains detailed information about physical location at the
workplace, which allows us to construct reference groups in which social in-
teractions plausibly occur on a daily basis.4 Our baseline analysis considers
the screening behavior of women in the age group 50 and older. Women in
this group are the most at risk of developing breast cancer and are subject
to unambiguous screening guidelines. We find a large, negative effect at im-
pact. In the year during which a colleague was diagnosed with breast cancer,
treated women become almost 14 percentage points less likely to perform a
mammogram relative to control women (the baseline screening rate is about
72%). This initial effect vanishes over time, but at a slow pace: after two
years about half the initial effect is still present. We find important het-
erogeneity behind this average dynamic treatment effect. First, it is much
stronger for women who are exposed to more severe cases of breast cancer.
Second, it is somewhat stronger for younger and healthier women. Third,
when we isolate more knowledgeable employees such as medical doctors and
nurses, we find that the treatment effect is much weaker than average and
never statistically significant for this group. On the other hand, for all other
employees the treatment effect is much more persistent than average: com-
pared to an impact effect of about 13 percentage points, the propensity to
perform a mammogram after 2 years is still 11 points below the baseline for
those who are neither medical doctors nor nurses.

At the end of the paper we rationalize these results within an expected
utility model that is augmented with an anticipatory component of prefer-
ences, in light of existing “mechanism experiments” from the medical liter-
ature. We argue that the available evidence supports one particular causal
chain: experiencing breast cancer via workplace social interactions increases
the salience of the disease and leads to a lower probability of screening in the
short—run because of anticipatory feelings (fear of bad news) leading to in-
formation aversion. This interpretation is consistent with both the results of
small-scale controlled experiments and real life experiences, as documented
at the end of the paper.

The reason why with such a rich data set at hand we focus only on breast
cancer is that this disease has clear prevention guidelines that allow us to
unambiguously define “normal” screening behavior at an annual frequency.
Because it is recommended (with virtually universal consensus in the medi-

4 In this respect our study is close to the field experiment of Esther Duflo and Emmanuel
Saez (2003), who find that providing information on retirement plans to randomly selected
employees increases the enrollment rate of their initially uninformed co-workers as well.
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cal community) for women to perform a screening mammography every year
after age 50, we can look at the propensity to screen for breast cancer every
year after this age as an indicator of the propensity to take “normal” preven-
tive actions against the disease. This is much harder to do for other types
of tumors, given the longitudinal limitation of our data. Consider, for in-
stance, prostate cancer. Like breast cancer for women, in the United States
this is the most common nonskin cancer affecting men, and the second most
common cause of cancer—related death in this group. A recent statement
of the US Preventive Services Task Force says that “the current evidence
is insufficient to assess the balance of benefits and harms of prostate can-
cer screening in men younger than age 75 years”, and “recommends against
screening for prostate cancer in men age 75 years or older” (USPSTF, 2008).
In this case it would be impossible to determine what “normal” screening
behavior is. Or consider cervical cancer, where the guideline is that women
should have a Pap test every three years. With three years of data and
staggered screening it would be impossible, in our data set, to tell which
women are complying with the guidelines and which are not.

The remainder of the paper is organized as follows. Section 2 describes
the data. Section 3 illustrates the econometric design and discusses the iden-
tifying assumptions. Section 4 reports the results. Section 5 illustrates the
theoretical framework we use to rationalize the results. Section 6 concludes.

2 Data set

Our data come from a large health care provider in the United States that
has over 20,000 employees (70% of whom are women) at its main location.
All employees are eligible to participate in a self-administered health plan
run by the organization itself, and given the plan’s comprehensive nature
and the lack of comparable substitutes, participation is virtually universal.
The data were gathered from a variety of different sources, and we used
them to construct a three-year panel (2002, 2003, and 2004).

Demographic information like age, gender, marital status and family
size were gathered from electronic administrative records maintained for all
patients. We obtained information on occupation, whether an employee
was full or part-time, salary class, job title, and job tenure from databases
maintained by the Human Resources department. Information on physical
location of each employee–at different levels of spatial aggregation–was
obtained from the Information Technology department that maintains an
employee telephone and internal address directory. Unfortunately, these
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demographic and employment information were made available to us only
for year 2004, so (apart from age) we need to assume they are constant
between 2002 and 2004. Presumably, physical location at the workplace
changed for only few workers over the three years horizon, and so the mis-
classification of reference groups (described in detail below) is most likely
negligible. Information on health care utilization and costs were obtained
from administrative billing records that are maintained for all patients. We
used an electronic database that was developed to track patient visits to
their primary care physician along with routine preventive care to create a
variable that tracked whether an individual was up-to-date on breast can-
cer screening, as well as construct high quality indicators of health status.
This information is available for 2002, 2003, and 2004. We measure an in-
dividual’s health status using the classification scheme in Elixhauser et al.
(1998) which essentially uses health utilization data to create a set of in-
dicator variables revealing whether an individual has a history of medical
claims for a certain health condition. We refer to the conditions identified
by this classification scheme as “comorbidities”.5 We use indicators to also
construct a synthetic health status variable labeled “comor”. This variable
is a simple count of the number of comorbidities. Finally, we used a high
quality, locally maintained Tumor registry that keeps careful records of all
patients who are diagnosed with a malignant tumor of any type at the or-
ganization, or who are diagnosed elsewhere but treated at the organization,
to create a cancer diagnosis variable for all employees. This information is
available for all years between 2000 and 2004, which allows us to construct
longer breast cancer histories in the reference group. However, we do not
observe women who died from breast cancer because they are removed from
the administrative records. Presumably, these women are evenly distributed
across treatment and control groups, and so are unlikely to be an impor-
tant source of bias. The common element in all of these data was a patient
ID variable that allowed us to link records. Data obtained from the Hu-
man Resources department were pre-linked with the patient ID before being
made available to us in order to protect confidential personal information.

5While it is true that these conditions, because of the way we identify them, are known
only if a medical claim for a patient appears in the organization’s billing records at some
point during the employee’s tenure, they all correspond to serious, often chronic, health
problems that do not allow a person to stay away from a doctor for very long. Because
the individuals in our dataset are fully covered individuals with access to a premier health
care facility, it is very unlikely that more than a tiny fraction of those without a condition
in our final data set actually have it. Therefore, we are confident that the comorbidity
indicators we construct provide high-quality health information at the individual level.

5



Summary statistics for the final sample are reported in Tables 1 and 2.

Table 1. Summary statistics: demographic and job information

Variable Description Mean Std. Dev Min Max

age Age 54.55 3.56 50 64

married Married 0.71 0.45 0 1

divorced Divorced 0.15 0.36 0 1

widowed Widowed 0.01 0.09 0 1

separated Separated 0.03 0.17 0 1

famsize Family size 2.11 1.08 1 7

child Has children below 18 0.09 0.29 0 1

hourly Whether hourly pay 0.97 0.18 0 1

docnurse Medical doctor or nurse 0.25 0.43 0 1

fte % of full time employee 91.37 14.22 50 100

tenure Job tenure, years 19.35 10.61 0 46

new New employee (tenure=0) 0.01 0.11 0 1

salary Salary range 0.76 0.52 — —

t_chg Charges for health services 7.92 13.8 0 204.98

Notes: All means refer to year 2004, except for “new” which is an average over

the 2002—2004 period. Variable “docnurse” is constructed using information on job

titles available in our data set: docnurse=1 means that an individual is either a

medical doctor or a nurse; docnurse=0 means that an individual has a different

job title (e.g., patient appointment coordinator, assistant, secretary, etc.). Notice

that, due to data limitations, our definition of doctors may include some people

with a doctorate in areas outside medicine. These cannot be separated from med-

ical doctors. In addition, employees with medical or nursing degrees employed in

non-clinical jobs are not classified as doctors or nurses. Both these categories of

people are likely to be very small. Salary range is expressed as a % of the median.

Neither absolute values nor the maximum and minimum can be reported, upon an

explicit request of the organization to protect the confidentiality of this informa-

tion. Charges for health services is expressed in thousands of 2004 US dollars. The

age group is 50+.
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Table 2. Summary statistics: health information

Variable Description Mean Std. Dev Min Max

bcancer Breast cancer 0.004 0.060 0 1

comor Number of comorbidities 0.824 1.110 0 11

neuro Neurological disorders 0.013 0.115 0 1

chrnlung Chronic lung disease 0.052 0.221 0 1

dm Diabetes 0.046 0.209 0 1

dmcx Diabetes w/complications 0.014 0.117 0 1

hypothy Hypothyroidism 0.087 0.282 0 1

renlfail Renal failure 0.001 0.037 0 1

chf Congestive heart failure 0.001 0.037 0 1

arythm Arythmia 0.035 0.185 0 1

valve Valvular disorders 0.025 0.155 0 1

pulmcirc Pulmonary circular disorders 0.002 0.043 0 1

perivasc Perivascular disorders 0.009 0.092 0 1

para Parathyroid disorders 0.001 0.025 0 1

liver Liver disorders 0.008 0.087 0 1

ulcer Ulcers 0.002 0.044 0 1

tumor Tumor 0.061 0.240 0 1

arth Arthritis 0.021 0.145 0 1

coag Coagulation 0.004 0.061 0 1

obese Extreme obesity 0.088 0.283 0 1

wghtloss Significant weightloss 0.006 0.075 0 1

lytes Electrolyte disorders 0.013 0.114 0 1

bldloss Blood loss 0.001 0.025 0 1

anemdef Anemic Deficiency 0.045 0.207 0 1

alcohol Alcoholism 0.005 0.069 0 1

psych Psychoanalytic Disorders 0.059 0.235 0 1

depress Depression 0.031 0.173 0 1

lymph Lymphatic disorders 0.002 0.047 0 1

mets Metastatic cancer 0.006 0.078 0 1

htn Hypertension 0.231 0.422 0 1

Notes: All means refer to observations pooled over the 2002—2004 period. Cancer

information comes from the Tumor registry maintained by the organization. Co-

morbidity indicators are constructed from individual administrative health records

using the classification scheme of Elixhauser et al. (1998); see text for details. The

age group is 50+.
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The insurance plan for all female employees in the eligible age group (i.e.,
above 40) includes free annual mammograms. The facility for screening is
located on campus and is well enough staffed so as not to keep patients
waiting for an appointment. These women are reminded about their recom-
mended annual mammogram, if they have not already had one, each time
they visit their primary care physician. Their physician is provided a copy
of their electronic medical record and this lists the last time they had a
mammogram conducted. If they are due for a mammogram, the physician
generally schedules an appointment during the visit (or asks a nurse to do
so) unless the patient refuses an appointment. In this study we focus on the
age group 50 and older (about 3,200 women, or about 25% of the total), for
two reasons. First, mammograms are not universally recommended before
50 by the medical community in the US, and they may be perceived as a
less effective screening tool among younger women; thus both the screening
recommendation and the perception of “normal prevention” in our sample
may be ambiguous in the age range 41—49.6 Second, we lack screening in-
formation in the age range 41—49 for year 2002, and so including this group
would make the panel severely unbalanced. We show later that our results
do not depend on the exclusion of the available portion of information for
the 41—49 age group.7

Tables 3a and 3b report annual screening rates in our sample, by age
range, by health status (as summarized by the “comor” variable), and by
job title (as summarized by the “docnurse” variable). That is, the three
individual characteristics along which we find heterogeneous treatment ef-
fects. The screening rates are larger than corresponding national rates, as
expected for a group of women employed in the health industry with full

6There is some controversy over when women should begin breast cancer screening.
The American Cancer Society, American College of Radiology, American Medical Associ-
ation, National Cancer Institute and the American College of Obstetrics and Gynecology
recommend annual screening starting at age 40. The American College of Physicians
recommends that women in the age range 40—49 make decisions about mammography
together with their provider, based on the individual risk profile and the potential costs
and benefits of performing a mammogram. In November 2009 the US Preventive Services
Task Force advised women below 50 years old not to get routine mammograms, but to
discuss the pros and cons with their provider and decide together when to start screening.
This advice–whose rationale is the fact that mammograms may generate false alarms
and unnecessary treatment–has generated a lot of debate in the US. Moss et al. (2006)
perform a large randomized controlled trial in the UK and find that annual mammogra-
phies in the age range 39—48 do not lead to a significantly lower mortality rate relative to
control women who did not screen regularly.

7Of course we use women of all ages to identify cases of breast cancer in the period
2000-2004– information that is available for all women in the sample.
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health coverage. The tables show a downward trend in screening rates in all
age and health groups, in line with the national trend in the period under
investigation. In our sample, screening rates tend to increase with age, as
one expects given that age is the most important risk factor for the devel-
opment of breast cancer.8 Table 3b refers to the age group 50 and older,
and indicates that healthy women are much less likely to screen for breast
cancer than unhealthy ones–the gap is almost 20 percentage points, a very
large difference. A possible explanation is that unhealthy women see their
physician more often and so–given the way reminders are provided at the
organization–are more likely to be scheduled for a mammogram, possibly as
part of medical check-ups related to comorbidities. Finally, medical doctors
and nurses screen slightly less than other employees, although the difference
is not statistically significant in any of the three years.

A crucial piece of information is the administrative data on the physi-
cal location of employees at the workplace. Because we construct reference
groups based on such information, it is important to describe the “geog-
raphy” of our data set. The organization is administratively divided into
departments that are often subdivided into divisions. Smaller departments
tend to be physically located in one place, as are most divisions. Larger de-
partments and divisions may have multiple physical locations across campus.
The campus consists of about 30 buildings which house the vast majority
of employees. Most buildings are multi-storied; large departments will often
occupy multiple contiguous floors. It is common for two or more divisions
within a department or in different departments to occupy one floor. Each
floor has a mail room where the institution’s internal mail service regularly
delivers campus and external mail. In large buildings, a floor may have more
than one mail room, whereas in small buildings, different floors may share
a mail room. Each employee is assigned a mail room code based on their
main office location. This mail room code defines the smallest (on average)
clusters of employees observable in our data set. Therefore, we take the
mail room as our first definition of reference groups, labeled “Mail” groups:
this particular dimension defines groups of people who are likely to inter-
act closely on a daily basis–both because they are very likely to belong

8Based on estimates from the Surveillance, Epidemiology, and End Results reg-
istry (SEER), the NCI estimates that the probability of developing breast can-
cer over the next 30 years for a woman aged 40 is 7.53%. This number in-
creases to 9.68% at age 50 and then declines slightly to 9.54% at age 60–
see http://www.cancer.gov/cancertopics/pdq/screening/breast/healthprofessional/page3
The slight decline in the estimated 30 year rate may be partially due to a substantial
increase in all cause mortality for women over the age of 70.
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to the same department and division, and because they necessarily meet in
hallways, share facilities, etc.

Table 3a. Screening rates by year and age range

Year Age 41—49 Age 50+ Age 50—54 Age 55—59 Age 60+

2002 – 0.769 0.758 0.785 0.812

– n=2407 n=1512 n=757 n=138

2003 0.619 0.760 0.738 0.787 0.806

n=4086 n=2835 n=1685 n=898 n=252

2004 0.528 0.646 0.621 0.694 0.636

n=4194 n=3267 n=1828 n=1041 n=398

Notes: The table reports the average, by year and age range, of the individual

screening indicator, which takes value 1 if a woman performed a mammogram in a

given year and 0 otherwise; n is sample size. The increase in sample size reflects

the aging process.

Table 3b. Screening rates by year, health status, and job title

Year comor=0 comor>0 docnurse=1 docnurse=0

2002 0.680 0.865 0.747 0.776

n=1255 n=1144 n=582 n=1825

2003 0.654 0.856 0.731 0.768

n=1351 n=1475 n=685 n=2151

2004 0.541 0.762 0.640 0.648

n=1716 n=1538 n=810 n=2457

Notes: The first two columns report the average, by year and health status, of the

individual screening indicator for the age group 50+. Health status is summarized

by variable “comor”, which counts the number of comorbidities: comor=0 means

that an individual has no breast cancer and no comorbidities (i.e., is healthy);

comor>0 means that an individual has no breast cancer but at least one comorbidity

(i.e., is unhealthy); The last two columns report the same average, by year and job

title for the age group 50+. Job title is here summarized by the variable “docnurse”

(see Notes to Table 1 for details). The increase in sample size reflects the aging

process.
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A concern is that given the relatively small dimension of mail room
groups as well as the particular setting of our study, the Stabe-Unit-Treatment-
Value assumption may be violated: people may well interact with other em-
ployees outside the group defined by mailbox locations, which would result
in attenuation bias. Therefore, we use an alternative, larger definition of ref-
erence groups at the floor level, labeled “Floor” groups. On average, Floor
groups are almost three times larger than Mail groups, hence they extend
the possible range of social interactions and allow for broader patterns of
information sharing. Table 4 summarizes the number and size (counting
both men and women) of Mail and Floor groups.9 As a comparison, Esther
Duflo and Emmanuel Saez (2003) define reference groups as departments,
whose average size in terms of staff is about 30 in their data.

Table 4. Reference groups

Group Number Mean size Std. dev.

Mail 861 52.0 43.7

Floor 288 138.3 100.1

Notes: The Table reports the number and average size of the two alternative ref-

erence groups used in this study–reference groups defined by mailbox locations

(Mail) and floors within buildings (Floor)–as well as the standard deviation of

group size.

There are 10 women diagnosed with breast cancer in 2000, 21 in 2001, 14
in 2002, 20 in 2003, and 20 in 2004 in our data. These numbers correspond to
an annual incidence ranging between 0.23% and 0.29%, in line with national
estimates.10 The age distribution of cancer diagnoses is plotted in Figure
1. Occurrences below age 40 are about 10% of the total, and those above
49 almost 60% of the total. These sample statistics and by and large in
line with national estimates for the United States. These occurrences imply
that about 5% of women in Mail groups and about 13% of women in Floor
groups are treated–at different lags–every year between 2002 and 2004.

9There is a third, larger, definition of reference groups that we could use, namely entire
buildings. However, the average dimension of reference groups in this case would be very
large (about 1,200) and would very likely result in severe misclassification of treated and
control individuals.

10The 230,480 new cases of breast cancer estimated by the National Cancer Institute
in the US for 2011 are equivalent to an incidence of 0.31% of women above age 40, which
were estimated to be roughly 75 million in the US in 2010.
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Figure 1. Age distribution of breast cancer diagnoses, 2000—2004

Notes: The histogram represents the frequency distribution of breast cancer diag-

nosis, by age, pooling all female employees at the organization in the 2000-2004

period.

3 Econometrics

The outcome of interest is whether a woman performs a mammogram in a
given year or not. We denote the screening indicator by Yt = 0, 1. That is, a
woman may screen during year t (Yt = 1) or not (Yt = 0). We are interested
in the causal effect of breast cancer history in one’s reference group on the
individual propensity to screen. More precisely, belonging in year t to a
group g where someone was diagnosed with breast cancer during that year
is a binary event denoted T t

g = 0, 1. That is, a member of group g may be
diagnosed with breast cancer during year t (T t

g = 1) or not (T t
g = 0). We

denote by T
t
g = {Tk

g }
t
k=0 the history of such events in group g up to time

t. In order to avoid misclassification, each T t
g is then adjusted for the exact

dates (i.e., day and month of year t) when breast cancer was diagnosed in a
group and when women in that group screened, in a way to be illustrated in
detail below. The conditional probability of screening (a structural object
derived formally in Section 5) is equal to the conditional expectation of the
binary screening indicator:

Pr(Yt = 1|Tt
g,X) = E[Yt|T

t
g,X], (1)

where X are the conditioning variables. The goal of the empirical analysis
is to identify the dynamic average treatment effect of experiencing breast
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cancer in the group of co-workers (i.e., the effect of treatment history T
t
g)

on the average propensity to screen, Pr(Yt = 1|Tt
g,X).

3.1 Treatment and control groups

A possible definition of treatment in a given year is the event that a co-
worker was diagnosed with breast cancer during that year. This definition
raises two issues. First, one may wonder whether there is any treatment at
all. In fact we do not know whether a woman who develops breast cancer
shares such information with her colleagues or not. We claim that it is very
likely that co-workers soon become aware of the sick woman’s condition.
The reason is that a woman diagnosed with breast cancer typically leaves
the workplace for some time, either to complete therapy or because of a
decreased desire or ability to work, as documented by Michael Hassett et
al. (2009). Cathy Bradley et al. (2005) have analyzed the effects of a new
breast cancer diagnosis on labor supply of women who were employed before
the diagnosis. They find that six months after the diagnosis, sick women
are much less likely to be employed (about 20 percentage points relative
to the control group) and if they are employed their weekly hours of work
are 12% to 28% depressed relative to the control group, depending on the
stage of the malignancy. It is very unlikely that such substantial changes
in labor supply and prolonged absences go unnoticed by co-workers, even
in the absence of word-of-mouth. This is particularly unlikely for severe
cases of breast cancer: we will later exploit information on SEER grade (a
measure of the severity of cancer) to show how the treatment effect varies
with the severity of cases.

Second, because our data is at the annual frequency, this definition of
treatment would result in attenuation bias, because we would incorrectly
classify as “treated” women who could not respond to the emergence of
breast cancer in their group. To see why, notice that according to this
definition if a woman performed a mammogram in year t the day before a
co-worker was diagnosed with breast cancer then this person is classified as
treated, even if she was not treated when she decided to screen in year t. To
fix this shortcoming we exploit high frequency information in the data set.
Specifically, we know the exact calendar dates on which women in our sample
performed mammograms, as well as the exact calendar dates on which sick
women were diagnosed with breast cancer. We use this information to refine
the definition of treatment, as follows: a woman i in group g(i) is classified
as treated in year t if a colleague j ∈ g(i) of any age was diagnosed with
breast cancer during year t and if in that year i was not up-to-date with

13



breast screening the day that j was diagnosed with the malignancy. In this
case T t

g(i) = 1. If, instead, she was up to date that day then she is not used in
estimation that year. The control group, therefore, are all women belonging
to reference groups where no one was diagnosed with breast cancer. For these
women T t

g(i) = 0. Lagged treatment is defined in a similar way and denoted

T t−k
g(i) , where k is the lag. Given the longitudinal limitations of our data set we

restrict up front to treatment histories of the type Tt
g(i) = (T t

g(i), T
t−1
g(i) , T

t−2
g(i) ).

To illustrate, consider the timeline in Figure 2. Suppose that j ∈ g received
the bad news on April 1st, 2002 (“day x”, in the figure) If i ∈ g had not
performed a mammogram by that date, then she is classified as treated in
2002. Furthermore, she is classified as treated with 1 and 2 lags in 2003 and
2004, respectively. If i ∈ g had performed a mammogram on, say, February
1st, 2002 then i ∈ g is not used for estimation in 2002. However, in this
case i ∈ g is still classified as treated with 1 and 2 lags in 2003 and 2004,
respectively, and used for estimation in those years.11

Figure 2. Timeline.

11We can perform only a partial adjustment for exact calendar dates in years 2002 and
2003. The reason is that although we observe all dates of breast cancer diagnosis, we
only observe the date a woman last screened as of December 31st , 2004, not the complete
screening history. Therefore, in 2002 and 2003 we cannot adjust the treatment indicator
for those women who perform a mammogram every year. These are about 1/3 of the
total. We will show later that the adjustment does not affect the pattern we identify, and
that the impossibility to fully adjust for years 2002 and 2003 is very unlikely to do so.
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3.2 Identification

For any individual i we observe one of eight counterfactual outcomes at each
point in time:

Yit = Yit(T0,T1, T2) if T t
g(i),0 = T0 and T t

g(i),1 = T1 and T t
g(i),2 = T2, (2)

where (T0,T1, T2) ∈ {0, 1} × {0, 1} × {0, 1}. The maintained identifying
assumption is that the treatment is strictly exogenous conditional on indi-
vidual and group characteristics:

Tg(i)t ⊥ (Yit(T0,T1,T2))|xit,xg(i)t, θi, (3)

where xit and xg(i)t are time-varying individual and group covariates, re-
spectively, and θi are individual fixed effects, respectively. A look at Figure
2 reveals that this conditional independence assumption is actually twofold.
The first part requires that conditional on individual and group character-
istics, a cancer diagnosis in one’s reference group at any point in time is
as good as randomly assigned (i.e., is independent of potential outcomes in
any period).12 This part follows easily from the fact that cancer arises ran-
domly in one of two otherwise identical groups–the conditioning variables
ensuring that such two groups are “identical”. The second part requires
that being not up-to-date by the time a colleague is diagnosed with breast
cancer is also random with respect to potential outcomes. This part is more
problematic simply because the two potential outcomes are being up-to-date
or not at the end of the year. A testable, necessary condition for this second
part to hold is that the distributions of screening dates for women without
colleagues diagnosed with breast cancer and women who will have such a
colleague at some future point during the year are not statistically different
from each other. We show below why this is a necessary condition, and we
test it in our data.

Under assumption (3) women belonging to groups where no one is di-
agnosed with cancer in a given year are a valid counterfactual for women
belonging to groups where someone was and who were not up-to-date the
day their co-worker was diagnosed. We assume constant treatment effects
and we estimate the following linear probability model:

Yit = αt+ βxit + γxg(i)t + τ0T
t
g(i) + τ 1T

t−1
g(i) + τ2T

t−2
g(i) + θi + εigt, (4)

12Of course this is not true for women who are diagnosed with breast cancer, who we
exclude from the analysis after using them to classify other women as treated or not.
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where t is a vector of year dummies, τ0 is the contemporaneous treatment
effect, τ1 and τ2 the lagged effects at 1 and 2 years distance, respectively,
and εigt is the error term.

In order to corroborate the identifying assumptions, we first provide
standard evidence about the statistical equivalence of treatment and con-
trol groups with respect to observable covariates. Tables 5 and 6 report
the characteristics of treated and control women in Mail and Floor groups,
respectively, for each of the three years, as well as the size of the refer-
ence group across treatment status. These characteristics tend to be well-
balanced across the two groups. If in a given year we reject the hypothesis
of equality of means for some variable, the same hypothesis for the same
variable is either not rejected or the sign of the difference is reversed in an-
other year. The test, of course, is more stringent for Floor groups, which
are larger.

Table 5. Characteristics of treated and control groups, by year: Mail groups

2002 2003 2004

Variable treat. cont. p-val treat. cont. p-val treat. cont. p-val

group size 87.5 48.2 0.00 111.9 45.2 0.00 55.5 49.2 0.14

age 53.6 53.9 0.35 54.1 54.2 0.77 55.0 54.5 0.18

married 0.71 0.70 0.90 0.72 0.71 0.80 0.62 0.72 0.05

divorced 0.17 0.16 0.79 0.17 0.16 0.58 0.20 0.15 0.13

widowed 0.00 0.01 0.30 0.02 0.01 0.11 0.02 0.01 0.22

separated 0.03 0.03 0.89 0.02 0.03 0.36 0.02 0.03 0.62

famsize 2.13 1.98 0.14 2.11 2.04 0.38 1.94 2.16 0.11

child 0.04 0.06 0.42 0.10 0.08 0.19 0.12 0.09 0.32

hourly 0.95 0.96 0.42 0.98 0.96 0.22 0.99 0.96 0.18

docnurse 0.32 0.24 0.09 0.22 0.24 0.52 0.17 0.25 0.08

fte 87.3 91.2 0.01 92.7 91.2 0.15 92.7 91.3 0.34

tenure 22.3 19.7 0.02 17.1 19.8 0.00 18.7 19.4 0.54

new 0.01 0.02 0.62 0.02 0.01 0.71 0.02 0.01 0.26

salary 0.87 0.76 0.04 0.67 0.78 0.01 0.69 0.77 0.16

t_chg 10.1 8.1 0.19 11.7 7.7 0.00 7.6 7.9 0.84

comor 0.76 0.79 0.77 1.06 0.89 0.05 1.09 0.79 0.01

Notes: The Table compares, for each year, the means of the observable characteris-

tics of treated and control women in the age range 50+, when reference groups are

defined by mailbox locations (Mail); the p-value refers to the test of the hypothesis

that the difference between the two means is zero.
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Table 6. Characteristics of treated and control groups, by year: Floor groups

2002 2003 2004

Variable treat. cont. p-val treat. cont. p-val treat. cont. p-val

group size 220.5 126.6 0.00 234.9 123.2 0.00 253.5 122.1 0.00

age 53.7 53.9 0.46 54.0 54.2 0.14 54.6 54.5 0.81

married 0.71 0.70 0.57 0.71 0.71 0.80 0.70 0.71 0.49

divorced 0.14 0.16 0.35 0.16 0.15 0.61 0.16 0.15 0.52

widowed 0.01 0.01 0.56 0.01 0.01 0.21 0.01 0.01 0.21

separated 0.03 0.03 0.66 0.03 0.03 0.93 0.02 0.03 0.49

famsize 2.01 1.98 0.20 2.08 2.04 0.41 2.12 2.11 0.84

child 0.05 0.06 0.31 0.09 0.08 0.27 0.10 0.09 0.44

hourly 0.95 0.96 0.34 0.97 0.96 0.75 0.97 0.96 0.45

docnurse 0.42 0.22 0.00 0.24 0.24 0.82 0.15 0.27 0.00

fte 87.9 91.4 0.00 92.5 91.1 0.07 93.4 91.1 0.00

tenure 22.2 19.5 0.00 17.8 19.9 0.00 18.0 19.6 0.01

new 0.01 0.02 0.19 0.02 0.01 0.13 0.02 0.01 0.03

salary 0.92 0.74 0.00 0.73 0.77 0.19 0.71 0.77 0.02

t_chg 8.8 8.1 0.49 9.3 7.8 0.06 7.4 7.9 0.48

comor 0.77 0.79 0.74 1.02 0.88 0.05 0.84 0.79 0.46

Notes: The Table compares, for each year, the observable characteristics of treated

and control women in the age range 50+, when reference groups are defined by

floors within buildings (Floor); the p-value refers to the test of the hypothesis that

the difference between the two means is zero.

The only systematic difference pertains to group size: treated women
always belong to larger groups. This has an obvious explanation: treatment
is defined by belonging to a group where a woman was diagnosed with breast
cancer, and the larger the group the higher the probability of finding a sick
woman in that group. In the interest of space we do not report the analog of
Tables 5 and 6 for the comorbidity indicators summarized in Table 2: these
are also well-balanced across treatment and control groups.

Next, we provide evidence supporting the second part of the identifying
assumption. That is, being not up-to-date, in a given year, by the time a
colleague is diagnosed with breast cancer during that year is also as good
as randomly assigned. The derivation of a testable hypothesis requires a
little extra notation. Think of time as being partitioned in years but flowing
continuously within years, as in Figure 2. Let δ be the first instant of year
t, δ + 1 the first instant of year t + 1, and so on. Define the following two
binary random variables,
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Yt = I[screened between δ and δ + 1],

dt = I[colleague diagnosed with cancer between δ and δ + 1],

where I denotes the indicator function, and two auxiliary random variables:
σ, which denotes the instant a woman last screened, and x, which denotes
the instant a colleague was last diagnosed with cancer. It is understood that
if a woman never screened or if a colleague was never diagnosed with breast
cancer, then σ = −∞ and x = −∞, respectively. Let P be a probability
function. It follows from these definitions that

Pr(Yt = 1) = P (δ ≤ σ < δ + 1),

Pr(Yt = 1|dt = 1) = P (δ ≤ σ < δ + 1|δ ≤ x < δ + 1),

Pr(Yt = 1|dt = 0) = P (δ ≤ σ < δ + 1|x < δ).

The relation between Pr(Yt = 1|dt = 1) and Pr(Yt = 1|dt = 0) is left
unrestricted, because this is the treatment effect of interest. That is:

P (δ ≤ σ < δ + 1|dt = 1) � P (δ ≤ σ < δ + 1|dt = 0),

which can also be written as:

P (δ ≤ σ < δ + 1|δ ≤ x < δ + 1) � P (δ ≤ σ < δ + 1|x < δ). (5)

A necessary condition for the second part of the identifying assumption
to hold is that for any instant τ such that δ ≤ τ < δ+1, the following holds:

P (δ ≤ σ ≤ τ |τ ≤ x < δ + 1) = P (δ ≤ σ ≤ τ |x < δ). (6)

The right-hand side is simply the cumulative probability–at each date
of a given year–of screening in groups where no woman was diagnosed
with breast cancer during that year. The left-hand side, instead, is the
cumulative probability–at each date of a given year–of screening before
a co-worker is diagnosed with breast cancer, in those groups where breast
cancer will emerge during the remaining portion of that year. Condition (6)
does not restrict the relation in (5), and can be tested. Figure 3 illustrates
the empirical analogs of these two cumulative probabilities in our sample
for year 2004. The two cumulative probabilities look quite similar. If we
restrict to values below 0.5–the largest value taken by the RHS of (6) in the
data–then a formal Kolmogorov-Smirnov test cannot reject the hypothesis
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that the two distributions are equal. That is, the difference between the two
is not statistically significant, with an exact p-value of essentially 1, both at
the Mail and Floor group level.

Figure 3. Timing of screening

Notes: The picture shows the empirical analogs of the two sides of equation (6)

for Mail and Floor groups. The analogs of the RHS reported in the picture are

the cumulative frequency of screening in Mail and Floor groups where no woman

was diagnosed with breast cancer during 2004. The analogs of the left-hand side

are the cumulative frequency of screening before a co-worker is diagnosed with

breast cancer, in Mail and Floor groups where breast cancer will emerge during the

remaining portion of 2004.

4 Results

We begin inference with a nonparametric analysis of screening rates by treat-
ment status for both Mail and Floor groups, reported in Table 7. The p-
values refer to tests of the null hypothesis that the difference between the
screening rates of treated and control individuals is zero. The table shows
that the contemporaneous effect (“At time t”) of the treatment is negative,
except in 2003. However, the 2003 difference is not statistically significant
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at conventional significance levels. As for the lagged effect (“At time t− 1”
and “At time t−2”), this is generally also negative, except in 2004, although
lower in magnitude and statistically insignificant.

Table 7. Screening rates by year and treatment status.

Mail groups

At time t (current) At time t− 1 (lag 1) At time t− 2 (lag 2)

t treat. cont. p-val treat. cont. p-val. treat. cont. p-val.

2002 0.674 0.773 0.025 0.729 0.772 0.242 0.770 0.769 0.978

(0.048) (0.009) (0.037) (0.009) (0.054) (0.009)

n=95 n=2311 n=144 n=2263 n=61 n=2346

2003 0.778 0.757 0.513 0.735 0.761 0.521 0.730 0.761 0.363

(0.029) (0.008) (0.042) (0.008) (0.035) (0.008)

n=198 n=2627 n=113 n=2722 n=159 n=2677

2004 0.480 0.647 0.001 0.700 0.645 0.500 0.656 0.646 0.799

(0.051) (0.009) (0.031) (0.009) (0.040) (0.008)

n=98 n=3132 n=220 n=3032 n=131 n=3135

Floor groups

At time t (current) At time t− 1 (lag 1) At time t− 2 (lag 2)

t treat. cont. p-val. treat. cont. p-val. treat. cont. p-val.

2002 0.733 0.773 0.136 0.736 0.775 0.097 0.774 0.769 0.870

(0.029) (0.009) (0.022) (0.009) (0.032) (0.009)

n=273 n=2128 n=387 n=2020 n=177 n=2230

2003 0.785 0.753 0.164 0.752 0.763 0.666 0.725 0.769 0.066

(0.021) (0.009) (0.024) (0.009) (0.021) (0.009)

n=396 n=2417 n=335 n=2493 n=444 n=2392

2004 0.507 0.643 0.000 0.643 0.708 0.007 0.650 0.648 0.920

(0.024) (0.009) (0.021) (0.009) (0.024) (0.009)

n=424 n=2655 n=449 n=2788 n=383 n=2874

Notes: The two tables report the average, by year and lag of treatment, of the

individual screening indicator (which takes value 1 if a woman performed a mam-

mogram in a given year and 0 otherwise) of treated and control women in the age

range 50 and older, when reference groups are defined by mailbox locations (Mail)

and floors within buildings (Floor), respectively; n is sample size; standard devia-

tions are given in parentheses; the p-value refers to the test of the hypothesis that

the difference between the two means is different from zero.
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Next, we estimate equation (4) on the three-year panel using the fixed-
effects estimator and clustering standard errors at the individual level. All
specifications (except those using “comor” as a regressor) include the time-
varying comorbidity indicators summarized in Table 2, both at the individ-
ual level and at the group level–i.e., xit and xg(i)t in equation (4). The
baseline results are reported in Table 8. Columns 1 and 2 show a nega-
tive and significant response of the propensity to screen to the treatment
in the current year (bcancergroupt): women whose colleague was diagnosed
with breast cancer in a given year become amost 14 percentage points less
likely to screen during that year when groups are defined by campus mail
code and about 8 points when groups are defined by a floor within a build-
ing. This difference across the two alternative reference groups suggests that
there is no attenuation bias when using the smaller Mail groups. On the
contrary, the weaker effect in the larger group (where physical and social
distance from the woman diagnosed with cancer is, on average, higher) sug-
gests that Mail groups are a better measure of reference groups in our data.
The coefficients on the lagged treatment indicators (bcancergroupt−1 and
bcancergroupt−2) are also negative, and indicate that the effect of the treat-
ment has some persistence: after 2 years treated women are still about 7 (in
Mail groups) and 5 (in Floor groups) percentage points less likely to screen
than women in the control group. Columns 3 and 4 of Table 8 report results
from a “placebo” specification: the fact that breast cancer will emerge in a
group in the following year (bcancergroupt+1) does not help predicting the
screening propensity in the current year, as one would expect.

Table 9 shows the results we obtain from these regressions without cor-
recting the definition of treatment for the exact calendar dates of screening
and breast cancer diagnosis, as described in Section 3.1. The table shows
that the pattern we identify is not an artifact of the adjustment. The fact
that coefficients are smaller than in Table 8 (down to statistical insignifi-
cance at the Floor level) indicates that the adjustment is doing precisely
what it is supposed to do, namely remove the attenuation bias resulting
from classifying as treated women who are actually not treated because
they could not respond in a given year to the emergence of breast cancer
in the reference group that same year. Attenuation bias, of course, is more
severe at the Floor level: these groups are larger and so more control women
are misclassified as treated if one does not adjust for calendar dates.
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Table 8. Results: baseline

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.138** −0.083**

(0.030) (0.019)

bcancergroupt−1 −0.081** −0.048*

(0.026) (0.021)

bcancergroupt−2 −0.073* −0.051*

(0.031) (0.022)

bcancergroupt+1 0.028 −0.005

(0.022) (0.015)

Constant 0.722** 0.718** 0.710** 0.712**

(0.020) (0.030) (0.019) (0.030)

Reference Group Mail Floor Mail Floor

Age 50+ 50+ 50+ 50+

Fixed effects Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 8,099 7,931 8,147 8,147

Individuals 3,221 3,203 3,226 3,226

Notes: Linear probability models, fixed-effects estimator. In all models the depen-

dent variable, up2datet, is the individual screening indicator at time t = 1, 2, 3,
which takes value 1 if a woman performed a mammogram year t and 0 otherwise;

bcancergroupt is the current-year treatment indicator (whether someone in the

group was diagnosed with breast cancer); bcancergroupt−1 and bcancergroupt−2

are the first and second lags, respectively, of the treatment indicator (whether

someone in the group was diagnosed with breast cancer at time t − 1 and t − 2,
respectively); bcancergroupt+1 is the next-year treatment indicator (placebo); ref-

erence groups are defined by either mailbox locations (Mail) or floors within build-

ings (Floor); robust standard errors clustered at the individual level are given in

parentheses; * significant at 5%; ** significant at 1%.
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Table 9. Results: baseline, no calendar dates adjustment

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.070* −0.006

(0.029) (0.019)

bcancergroupt−1 −0.066* −0.028

(0.026) (0.020)

bcancergroupt−2 −0.055 −0.045*

(0.031) (0.021)

bcancergroupt+1 0.029 −0.005

(0.022) (0.015)

Constant 0.718** 0.715** 0.710** 0.712**

(0.019) (0.030) (0.019) (0.030)

Reference Group Mail Floor Mail Floor

Age 50+ 50+ 50+ 50+

Fixed effects Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 8,147 8,147 8,147 8,147

Individuals 3,226 3,226 3,226 3,226

Notes: Linear probability models, fixed-effects estimator. In all models the depen-

dent variable, up2datet, is the individual screening indicator at time t = 1, 2, 3,
which takes value 1 if a woman performed a mammogram year t and 0 otherwise;

bcancergroupt is the current-year treatment indicator (whether someone in the

group was diagnosed with breast cancer); bcancergroupt−1 and bcancergroupt−2

are the first and second lags, respectively, of the treatment indicator (whether some-

one in the group was diagnosed with breast cancer at time t− 1 and t− 2, respec-
tively); bcancergroupt+1 is the next-year treatment indicator (placebo); reference

groups are defined by either mailbox locations (Mail) or floors within buildings

(Floor). Contrary to Table 8, in this table variable bcancergroupt is not adjusted

for calendar dates of screening and breast cancer diagnosis (see Section 3.1 for de-

tails about such correction); robust standard errors clustered at the individual level

are given in parentheses. * significant at 5%; ** significant at 1%.
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Table 10 replicates the baseline regression after including women in the
age group 41—49. The pattern is insensitive to excluding or including this
group. However, for the reasons outlined in Section 2, we believe the most
reliable results are those based on the sample of women age 50 and older.13

Table 10. Results: baseline, including age group 41—49

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.140** −0.125**

(0.025) (0.017)

bcancergroupt−1 −0.054* −0.037*

(0.023) (0.018)

bcancergroupt−2 −0.054* −0.031

(0.026) (0.018)

bcancergroupt+1 −0.008 −0.012

(0.019) (0.013)

Constant 0.667** 0.664** 0.662** 0.660**

(0.017) (0.026) (0.017) (0.026)

Reference Group Mail Floor Mail Floor

Age 41+ 41+ 41+ 41+

Fixed effects Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 15,876 15,522 16,007 16,007

Individuals 7,345 7,322 7,352 7,352

Notes: Linear probability models, fixed-effects estimator. The dependent variable

and the regressors are defined as in Tables 8 and 9; robust standard errors clustered

at the individual level are given in parentheses. * significant at 5%; ** significant

at 1%.

13Notice that the possible residual attenuation bias in the lagged effect following from
the partial adjustment for calendar dates in 2002 and 2003 is most likely negligible. A
comparison of Table 8 and Table 9 reveals that not correcting for calendar dates in 2002
and 2003 would lead to lagged coefficients of 0.66 and 0.55 instead of 0.81 and 0.73 after the
correction. It’s unlikely that correcting the treatment indicator for the 1/3 of women for
whom we cannot perform the correction would generate sensibly larger lagged coefficients.
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We investigated possible heterogeneous responses underlying this average
treatment effect, and we found noteworthy heterogeneity along four dimen-
sions: severity of breast cancer, age, health, and job title. In particular, we
found differences deriving from: (i) exposure to cases of breast cancer of
different severity; (ii) age at the time of treatment; (iii) health status at
the time of treatment; (iv) being a doctor or nurse rather than an employee
with a different job title. Such heterogeneity is illustrated next.

We first exploit information on the severity of each case of breast cancer.
Our data contains information on breast cancer grade along the Surveillance,
Epidemiology, and End Results (SEER) four-grade scale. Simply put, a
grade on the SEER 1—4 scale (more precisely, the ICD-O-3 grade code) is a
measure of the speed at which breast cancer cells are growing, from low (1)
to high (4). We classify grades 1—2 as mild cases (these are 1/3 of all cases in
our data) and grades 3—4 as severe cases (these are the remaining 2/3 in our
data). The latter may be thought of as providing the “real” treatment, or a
stronger treatment: contrary to mild cases, severe cases are very unlikely to
go unnoticed, because they have more visible consequences and news about
them is likely to spread faster within the reference group. We re-estimated
the model separately for the two cases. The results are reported in Table 11.
Here the treatment is defined, alternatively, as belonging to a group where
someone was diagnosed with a grade 1—2 breast cancer (columns 1 and 2) or a
grade 3—4 cancer (columns 3 and 4). This table shows that at the Mail group
level the impact treatment effect when exposed to severe cases of breast
cancer is almost twice as large as the treatment effect when exposed to milder
cases: the point estimates of the contemporaneous effect are −18 and −10.7
percentage points, respectively. In the following year, though, the magnitude
of the residual effect is similar, although not always statistically significant.
At the Floor group level, instead, the effect when exposed to grade 1—2
cancer is not significantly different from zero. This heterogeneity has a
simple interpretation: because breast cancer status is private information,
it is possible that only severe cases become known to co-workers because
they have more visible effects–such as longer absences from work, aesthetic
effects of chemotherapy, etc. Along this line of interpretation, it is interesting
to note that mild cases have lagged effects similar to those of severe cases.
In Mail groups the magnitude is about 7 percentage points after one year.
Even mild cases are likely to become known after a year, when information
had sufficient time to spread or the sick woman’s condition worsened.

We next investigate heterogeneous responses in age by estimating the
model separately for two different age ranges: 50—54 (56% of the total) and
55+ (44%). The results are reported in Table 12. This table shows that at
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least the contemporaneous response of women between 50 and 54 years of
age is larger (in absolute value) than the response in the age range 55 and
older. That the response is larger for younger women is also suggested by a
comparison between Tables 8 and 10: when women in the age range 41—49
are included the contemporaneous response is slightly larger than when they
are excluded. This different behavioral response is consistent with what is
known about the evolution of noncognitive traits along the life cycle. For
instance, Daniel Read and N.L. Read (2004) find that in a health deci-
sion problem – When to face a hypothetical flu? – the discount factor
increases monotonically with age; Brent Roberts, Kate Walton, and Wolf-
gang Viechtbauer (2006) show that noncognitive traits such as emotional
stability and conscientiousness–which may have a bearing on the problem
we study–increase monotonically with age; finally, John Ameriks, Andrew
Caplin, John Lehay, and Tom Tyler (2007) find that younger individuals
have more self-control problems than older ones.

We then use the “comor” variable (total number of comorbidities) de-
scribed in Section 2 as a synthetic indicator (relative to the single comor-
bidity indicators) of a woman’s overall health status: a woman with zero
comorbidities (that is, no conditions) can be considered “healthy”. We es-
timate the model separately for women with zero comorbidities (51% of the
total) and with at least one comorbidity (49%). In this regression, of course,
we cannot include comorbidity indicators as additional regressors. The re-
sults are reported in Table 12. As this table shows, the negative effect
is somewhat stronger and more persistent for healthy women (comor=0),
especially at the Mail group level. A possible explanation is that women
with health conditions see doctors more often. As a consequence, they may
be more accustomed, or more strongly recommended by doctors, to per-
form clinical tests. This includes reminders to perform mammograms–as
illustrated in Section 2– which is consistent with the higher screening rate
reported in Table 3b.

Finally, we explore the role of one’s profession within the organization.
A group of obvious interest is the group of medical doctors and nurses.
This group, by training and experience, should be more knowledgeable than
average about health issues. In particular, it should be more aware of the
underlying cancer risk and of the benefits (and costs, as well) of screening
and so may be expected to respond more rationally to indirect experiences
of breast cancer. Table 14 shows that the impact treatment effect for this
group is substantially smaller than average, and actually never statistically
significant–although lack of significance may just reflect the reduced sample
size. The dynamic effect is also quite different. The effect for those who

26



are neither doctors nor nurses is very persistent: within the time horizon
we can exploit (i.e., 3 years) the impact effect declines by no more than 3
percentage points. Therefore, it seems that medical doctors and nurses are
indeed behaving more rationally in our data set.

Table 11. Results: severity of cancer

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.107* −0.022 −0.180** −0.091**

(0.036) (0.024) (0.047) (0.026)

bcancergroupt−1 −0.082* −0.029 −0.063 −0.033

(0.032) (0.026) (0.044) (0.027)

bcancergroupt−2 −0.078 −0.019 −0.054 −0.046

(0.046) (0.035) (0.042) (0.026)

Constant 0.714** 0.710** 0.720** 0.714**

(0.031) (0.020) (0.020) (0.030)

Cancer grade 1—2 1—2 3—4 3—4

Reference Group Mail Floor Mail Floor

Age 50+ 50+ 50+ 50+

Fixed effects Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 8,099 7,931 8,099 7,931

Individuals 3,221 3,203 3,221 3,203

Notes: Linear probability models, fixed-effects estimator. In all models the depen-

dent variable, up2datet, is the individual screening indicator at time t = 1, 2, 3,
which takes value 1 if a woman performed a mammogram year t and 0 otherwise;

bcancergroupt is the current-year treatment indicator (whether someone in the

group was diagnosed with breast cancer); bcancergroupt−1 and bcancergroupt−2

are the first and second lags, respectively, of the treatment indicator (whether

someone in the group was diagnosed with breast cancer at time t − 1 and t − 2,
respectively); cancer grade is measured on the SEER 1—4 scale, see text for details;

reference groups are defined by either mailbox locations (Mail) or floors within

buildings (Floor); robust standard errors clustered at the individual level are given

in parentheses; * significant at 5%; ** significant at 1%.
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Table 12. Results: age 50—54 vs. 55+

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.161** −0.094** −0.122** −0.037

(0.042) (0.026) (0.049) (0.030)

bcancergroupt−1 −0.078* −0.036 −0.073 −0.060

(0.038) (0.029) (0.049) (0.035)

bcancergroupt−2 −0.073 −0.070* −0.048 −0.025

(0.044) (0.032) (0.049) (0.033)

Constant 0.730** 0.732** 0.735** 0.740**

(0.029) (0.031) (0.031) (0.034)

Reference Group Mail Floor Mail Floor

Age 50-54 50-54 55+ 55+

Fixed effects Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 4,762 4,674 3,337 3,356

Individuals 2,295 2,277 1,417 1,418

Notes: Linear probability models, fixed-effects estimator. In all models the depen-

dent variable, up2datet, is the individual screening indicator at time t = 1, 2, 3,
which takes value 1 if a woman performed a mammogram year t and 0 otherwise;

bcancergroupt is the current-year treatment indicator (whether someone in the

group was diagnosed with breast cancer); bcancergroupt−1 and bcancergroupt−2

are the first and second lags, respectively, of the treatment indicator (whether

someone in the group was diagnosed with breast cancer at time t − 1 and t − 2,
respectively); reference groups are defined by either mailbox locations (Mail) or

floors within buildings (Floor); robust standard errors clustered at the individual

level are given in parentheses; * significant at 5%; ** significant at 1%.

28



Table 13. Results: no conditions vs. at least one condition

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.133** −0.079** −0.097* −0.072**

(0.046) (0.029) (0.040) (0.026)

bcancergroupt−1 −0.084 −0.037 −0.034 −0.066*

(0.044) (0.035) (0.033) (0.026)

bcancergroupt−2 −0.073 −0.042 −0.045 −0.032

(0.048) (0.036) (0.038) (0.029)

Constant 0.694** 0.690** 0.836** 0.852**

(0.034) (0.036) (0.030) (0.032)

Comorbidities 0 0 1 or more 1 or more

Reference Group Mail Floor Mail Floor

Age 50+ 50+ 50+ 50+

Fixed effects Yes Yes Yes Yes

Individual controls No No No No

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 4,285 4,213 4,129 4,033

Individuals 2,205 2,188 2,056 2,036

Notes: Linear probability models, fixed-effects estimator. In all models the depen-

dent variable, up2datet, is the individual screening indicator at time t = 1, 2, 3,
which takes value 1 if a woman performed a mammogram year t and 0 otherwise;

bcancergroupt is the current-year treatment indicator (whether someone in the

group was diagnosed with breast cancer); bcancergroupt−1 and bcancergroupt−2

are the first and second lags, respectively, of the treatment indicator (whether

someone in the group was diagnosed with breast cancer at time t − 1 and t − 2,
respectively); reference groups are defined by either mailbox locations (Mail) or

floors within buildings (Floor); robust standard errors clustered at the individual

level are given in parentheses; * significant at 5%; ** significant at 1%.
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Table 14. Results: medical doctors and nurses vs. the rest

1 2 3 4

up2datet up2datet up2datet up2datet
bcancergroupt −0.072 −0.059 −0.139** −0.085**

(0.065) (0.038) (0.034) (0.022)

bcancergroupt−1 −0.036 −0.052 −0.098** −0.058*

(0.051) (0.036) (0.032) (0.025)

bcancergroupt−2 −0.083 −0.036 −0.108** −0.053*

(0.069) (0.045) (0.036) (0.025)

Constant 0.743** 0.737** 0.703** 0.707**

(0.046) (0.050) (0.021) (0.022)

Job title MD/nurse MD/nurse other other

Reference Group Mail Floor Mail Floor

Age 50+ 50+ 50+ 50+

Fixed effects Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes

Group controls Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Observations 2,068 2,029 6,346 6,217

Individuals 809 806 2,451 2,437

Notes: Linear probability models, fixed-effects estimator. In all models the depen-

dent variable, up2datet, is the individual screening indicator at time t = 1, 2, 3,
which takes value 1 if a woman performed a mammogram year t and 0 otherwise;

bcancergroupt is the current-year treatment indicator (whether someone in the

group was diagnosed with breast cancer); bcancergroupt−1 and bcancergroupt−2

are the first and second lags, respectively, of the treatment indicator (whether

someone in the group was diagnosed with breast cancer at time t − 1 and t − 2,
respectively); In the Job title row, “MD/nurse” indicates the group of medical doc-

tors and nurses and “other” indicates the group of those who are neither medical

doctors nor nurses–see Notes to Table 1 for details; reference groups are defined by

either mailbox locations (Mail) or floors within buildings (Floor); robust standard

errors clustered at the individual level are given in parentheses; * significant at 5%;

** significant at 1%.
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5 Rationalization

Finally, we lay down a model to rationalize our results. The model consists
of a simple expected utility framework along the lines of Gabriel Picone
et al. (2004) and Julia Witt (2008). We consider a dynamic setting and a
noninfectious disease which may lead to death. Time is discrete and, in what
follows, time and age are indistinguishable. An individual’s health capital
at time t is denoted ht. Because the fundamental difference is between being
alive or not, we assume this stock can take only two values:

ht =

{
h > 0
0

if individual is alive at time t,

if individual is dead at time t.
(7)

The stock of health capital yields a benefits flow at a constant rate r
at the beginning of each period. We denote by st the individual’s sickness
status at time t, a binary variable:

st =

{
1
0

if individual is sick at time t,

if individual is healthy at time t.
(8)

The (subjective) probability of being sick at time t is denoted pt. A
screening test is available in every period at a cost c > 0, measured in utility
units. The test reveals the unknown sickness status without error.14 That
is, the uncertainty about one’s sickness status can be resolved by screening.
The screening indicator is denoted Yt = 0, 1. After screening the probability
of being sick is updated as follows:

pt =

{
1
0

if Yt = 1 and st = 1,
if Yt = 1 and st = 0.

(9)

If the individual screens (Yt = 1) and tests positive (st = 1) then she
receives medical care at no cost. Medical care allows health capital to be
maintained at level h > 0 with probability π. However, with probability
1 − π the intervention fails and health capital falls to 0. If the individual

14We ignore the possibility of test errors of type I and II (false negative and false positive,
respectively) so to keep the model as simple as possible. It is straightforward to extend
the model to allow for type I and II errors, but such errors would play no substantial
role in the interpretation of the results (an extended version of the model including such
extra parameters is available from the authors upon request). However, they may be
important in practice. For instance, the possibility of false positives implies the possibility
of unnecessary treatment–in which case screening per se can have a negative impact on
health.
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screens (Yt = 1) and tests negative (st = 1) or does not screen (Yt = 0), then
no medical care is received. However, if no medical care is received when
the individual is sick then her health capital drops to 0 with probability 1.
That is, the dynamics of health capital is given by:

ht+1 =

{
ht
0

if st= 0 or, w/prob. π, st= 1 and Yt= 1;
if ht= 0 or st= 1 and Yt= 0 or, w/prob. 1− π, st= 1 and Yt= 1

(10)
This extreme formulation captures in a straightforward way the idea that

screening for breast cancer does not add anything to a woman’s health, but
can save her life if breast cancer is present and is detected early enough.
Death occurs at an endogenous death τ :

τ = min{t : ht = 0},

and period utility is given by:

Ut =

{
rh− cYt + a(pt) + ε(Yt)
0

if t < τ
if t ≥ τ

where r is rate at which health capital yields its benefit, ε(Yt) represents un-
observed taste variation, and a(pt) is a decreasing and concave anticipatory
component of utility, to be described below. In order to ensure that in this
model death is the worst possible outcome, we assume that the support of
ε(Yt) is finite and that Ut(Yt) > 0 when t < τ .

Function a(pt) captures the dependence of preferences on beliefs about
having the disease, and is known as anticipatory utility.15 Simply put, this
component allows for utility from thinking today (worrying, in this case)
about what could happen in the future. Since having breast cancer is an
uncertain event until a woman screens, anticipatory utility is utility from
beliefs. In particular, the person has lower anticipatory utility the higher the
belief that she is sick because this means negative events such as dying are
more likely. This has implications for the propensity to collect information
about the likelihood of such events: by screening, one may find that she
is sick and thus experience the worst possible anticipatory feeling, a(1).
Notice that this is on top of the conventional forward—looking, intertemporal
utility effect, which is defined over outcomes (utility of health capital ht, in
this case). Concavity of a(.) means information aversion: when a(p) >

15See, among others, George Loewenstein (1987), Andrew Caplin and John Leahy
(2001), Andrew Caplin and Kfir Eliaz (2003), and Botond Kőszegi (2003; 2010).
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pa(1)+(1−p)a(0), for any p ∈ (0, 1), the person prefers to remain uncertain
about her true health state rather than learning it. Figure 4 illustrates; p∗

denotes the point at which the difference between a(p) and pa(1)+(1−p)a(0)
reaches the maximum.

Figure 4. Anticipatory utility and information aversion.

p

a(0)

a(1)
0 1

a(p)

(1–p)a(0) +pa(1)

p*

The individual takes the initial health stock h0 = h as given, discounts
the future by factor β ∈ (0, 1) and chooses a screening plan to maximize the
expected discounted present value of lifetime utility subject to the dynamics
of health capital (10) and to the endogenous death date τ . The Bellman
equation is:

V (ht) = max
Yt

{rh− cYt + a(pt) + ε(Yt) + βEV (ht+1)},

where the expectation is taken with respect to the perceived probability of
being sick, pt. Notice that EVt+1(0) = 0. This simple binary choice problem
is solved by comparing the payoff from not screening and screening at time
t. These are, respectively:

V (ht|Yt = 0) = rh+ a(pt) + ε(0) + β(ptEVt+1(0) + (1− pt)EVt+1(h))

V (ht|Yt = 1) = rh+ (1− pt)a(0) + pta(1)− c+ ε(1)

+β(pt(πEVt+1(h) + (1− π)EVt+1(0)) + (1− pt)EVt+1(h))
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The probability that the person screens at time t, given the perceived
probability of having the disease and the cost of screening, is equal to the
probability that V (ht|Yt = 1) ≥ V (ht|Yt = 0), or

Pr(Yt = 1|pt, π, c,Ct) = F [βptπEVt+1(h)− c
︸ ︷︷ ︸

net expected benefit

+(1− pt)a(0) + pta(1)− a(pt)
︸ ︷︷ ︸

information aversion component

],

(11)
where F denotes the probability function of ε(0) − ε(1). This probability
is affected by two main forces: the net expected benefit (the larger this is
the higher the probability of screening) and information aversion (the less
information averse the individual is–i.e., the closer to linear a(.) is–the
higher the probability of screening).

Equation (11) is the theoretical counterpart of the empirical probability
in (1). If we assume that preferences (i.e., F , β, V , and a), technology
(i.e., c and π) and own health (i.e., h) do not change when a colleague is
diagnosed with breast cancer, then in the model the only way such event
may alter screening behavior is by altering the perceived probability of being
sick. That is, it must be that

pt = p(Tt
g), (12)

where T
t
g = {T k

g }
t
k=0 is the history of such events in group g up to time

t, as illustrated in Section 3.16 Equation (12) offers a convenient way of
thinking about salience effects. Roughly speaking, increased salience means
that something is “more present” to an individual. From an operational
viewpoint, in a model with uncertainty about that “something”, this is
equivalent to a higher probability of that “something” being actually there,
thus inducing a behavioral response.17 That is, we can think of pt as being
increasing in the treatment, in the following sense:

16Another possibility is that the model is misspecified, and that the treatment affects
aspects of the decision problem different from the perceived probability of having the
disease. For instance, suppose that women diagnosed with breast cancer used to screen
regularly: the fact that despite a regular screening habit they were diagnosed with the
disease may lead their colleagues to think that screening is not useful, and thus to screen
less. In the model above this corresponds to a lower perceived π conditional on screening.
However, this story is inconsistent with what we see in our data: women diagnosed with
breast cancer had screening habits identical to those who were not.

17These “salience effects” may be important in many contexts. Recent experimental
work in economics shows that this is the case even for prices: Raj Chetty, Adam Looney
and Kory Kroft (2009) show that making a consumption tax more salient by posting tax-
inclusive prices in a grocery store reduces purchases; Amy Finkelstein (2009) shows that
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p(1,Tt−1
g ) ≥ p(0,Tt−1

g ),

p(T t
g , 1,T

t−2
g ) ≥ p(T t

g , 0,T
t−2
g ),

p(T t
g , T

t−1
g , 1,Tt−3

g ) ≥ p(T t
g , T

t−1
g , 0,Tt−3

g ),

... ≥ ... (13)

The available evidence from the medical literature is consistent with
this set of inequalities. Montgomery et al. (2003) find that having a friend
diagnosed with breast cancer increases the perceived risk of the disease. Sim-
ilarly, Kathy Helzlsouer et al. (1994) find that experiencing cancer through
family and friends is significantly associated with the perceived risk of can-
cer in general. Penelope Hopwood (2000) and both Evans et al. (1993) and
Caryn Lerman et al. (1995) report that experience of breast cancer in the
family leads to substantial overestimation of the probability of developing
the disease, despite the fact that less than 5% of breast cancer is hereditary
(Beth Newman et al., 1988). Constance Drossaert et al. (2002) asked a
group of women in the age range 50—69 to indicate to what extent the hy-
pothetical situation of hearing that an acquaintance has got breast cancer
would cause nervousness or anxiety: 10.8% said they would become ‘very’
nervous or anxious; 23.7% ‘rather’; 38.9% ‘a little’; only 26.6% reported ‘not
at all’.18

Such reactions are all examples of salience effects: experiencing breast
cancer via social interactions or family interactions makes the disease more
salient and induces a higher perceived probability of developing the disease.19

making a toll less salient by introducing an electronic toll collection system reduces the
elasticity of driving with respect to the toll.

18We are grateful to Dr. Drossaert for sharing this unpublished tabulation with us.
19We can characterize in the same way the dependence of pt on T

t
g by assuming that the

learning process is Bayesian. Suppose a woman observes that a co-worker is diagnosed with
breast cancer. Consider first the case in which this woman has the correct prior and knows
the statistical process governing the disease. Then the new evidence is uninformative, and
the posterior is equal to the prior. Suppose instead this woman has incorrect subjective
prior probabilities of developing breast cancer. If the prior is downward biased relative
to the objective probability then observing that a colleague is diagnosed with the disease
leads to a higher posterior probability–the new piece of information goes against the
prior. If, instead, the prior is upward biased then Bayesian updating cannot lead to a
downward revision of the probability of having breast cancer–the new piece of information
is confirming the prior. The opposite happens after observing the opposite signal. That
is, that no one in the group was diagnosed with breast cancer in a certain period. In
this case low priors remain low and high priors become smaller. Eventually this dynamics
converges to the objective probability. Now consider the case in which given the prior
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The ensuing behavioral response can be computed by differentiating (11)
with respect to pt and noticing that Vt+1 is independent of pt. A marginal
increase in the perceived probability of being sick induces a change in the
probability of screening equal to:

[ βVt+1(h)
︸ ︷︷ ︸

standard effect, >0

+ a(1)− a(0)− a′(pt)]
︸ ︷︷ ︸

anticipatory effect, ⋚0

f(.), (14)

where f(.) is the density associated with F , evaluated at the baseline in
(11). This equation makes clear that there are two effects at work. The first
effect is standard: when the perceived probability of being sick increases,
the probability of screening increases because a timely diagnosis has a pos-
itive value, and so information becomes more valuable. The second effect
is anticipatory, and is of uncertain sign: it is negative for sufficiently low
values of the perceived probability and positive otherwise. In Figure 4 the
threshold is p∗.

The causal chain implied by this model is illustrated in Figure 5. When a
co-worker is diagnosed with breast cancer the salience of the disease increases
via workplace social interactions: (A)→(B). Such increased salience leads to
a higher perceived probability of developing the disease: (B)→(C). This may
lead to a higher or lower propensity to screen, depending on whether the
higher instrumental value of screening offsets the possible lower anticipatory
value or not: (C)→(D).

Our empirical analysis identifies the (A)→(D) effect. The specific mech-
anisms in—between cannot be tested with our data. That is, we can neither
identify the role of social interactions, nor the effect on salience, nor the
effect on the perceived probability of developing breast cancer. However, we
can look at independent “mechanism experiments” (in the jargon of Jens

a woman does not know the rate at which breast cancer occurs and believes that the
binary signal (breast cancer emerges in the group or not) is generated by a random draw
without replacement. In this case it follows from the “law of small numbers” (Tversky and
Kahneman, 1971; Rabin, 2002) that a woman will over-infer from a small sample. In this
case, too, observing breast cancer in the group will lead to a higher perceived probability
of having the disease. Finally, consider the case (Rabin, 2002) in which a woman believes
that the binary signal she observes is generated by a random draw without replacement
(i.e., she believes in the “law of small numbers”, as above) but does know the rate at which
signals are drawn. Then she expects the next signal to be negatively correlated with the
one just observed. In other words, a woman observing that a colleague was diagnosed
with breast cancer in the group would think that it is unlikely that someone else in the
group has the disease. This would lead to a lower perceived probability of having breast
cancer, which is inconsistent with the evidence from the medical literature.
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Ludwig, Jeffrey Kling, and Sendhil Mullainathan, 2011) to support the as-
sumptions of our model. First, the aforementioned research by Constance
Drossaert et al. (2002) provides evidence in favor of the (A)→(B) step. Evi-
dence in favor of an (A)→(C) effect is provided by the four papers mentioned
above: Evans et al., (1993), Helzlsouer et al. (1994), Hopwood (2000), and
Montgomery et al. (2003). These papers suggest that experiencing breast
cancer through a person that is close in the social space increases the per-
ceived probability of developing the disease. Finally, the (B)→(D) effect
is identified by a controlled experiment performed by Jamie Arndt et al.
(2007). These authors’ experiment effectively replicates in a laboratory a
static version of the dynamic natural experiment we study. Specifically, they
increase the salience of breast cancer by inducing a group of treated (young)
women to think hard about the disease through a questionnaire on “life atti-
tude”, and find that the treatment causes a significant drop in the intention
to conduct breast exams in the future. They interpret such avoidance inten-
tion as a defence in front of the activation of death-related thoughts. Given
that, empirically, the (A)→(D) effect is negative while the (A)→(C) effect
is positive, a model with anticipatory feelings and information aversion is
a parsimonious way of rationalizing the evidence we have produced in this
paper.

Figure 4. Causal chain.

Our results–notably the finding that the impact effect is large and then
vanishes in time as the distressing event becomes more and more distant–
are also consistent with anecdotal evidence of short-run emotional reac-
tion (“fear of cancer”) described by women who experienced breast cancer
through colleagues or family members. For instance, Sara Austin offers on
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Women’s Health on msnbc.com, a touching account of her temporary fear of
screening (because of the fear that the disease could materialize) after her
mother died of breast cancer. The following passage is particularly revealing:
“It has taken me nearly two years from the time my doctor recommended
a mammogram for me to actually get one. I delayed making an appoint-
ment for more than a year, the prescription sitting in a stack of junk mail.
Now my reprieve is over [...]. I am well insured, well informed [...] and well
aware of the lifesaving difference early detection can make. The only thing
standing in my way has been a mix of scary emotions”.20

6 Conclusions

In this paper we have exploited a natural experiment occurring repeatedly in
time in a unique panel data set of employees at a large medical organization
in the United States to study the reaction of women in the age range 50 and
older to the event that a colleague is diagnosed with breast cancer. It is plau-
sible that such events soon become known–through social interactions–to
co-workers physically close in the workplace. Presumably, such knowledge
makes breast cancer more salient and may lead to changes in the propensity
to screen. We have estimated a dynamic treatment effect model and we
have found a negative contemporaneous effect. This effect has persistence
and slowly decays over time. We have found important heterogeneity behind
this average treatment effect. Our results are consistent with theories of in-
formation aversion. Our large-scale dynamic natural experiment confirms
the findings of smaller laboratory experiments in which salience of breast
cancer is artificially manipulated, and is consistent with a large medical and
economic literature on risk perception and noncognitive traits. We are well
aware of the fact that the external validity of our study is limited: women
in our sample work in the heath industry, have full health coverage, and
most of them are well educated. Despite this limitation, our results point to
a potentially important and overlooked source of screening avoidance, and
suggest that (i) information campaigns that make a noninfectious disease
so salient as to induce death-related thoughts may have effects that are the
opposite of the intended ones–i.e., they may induce some women to screen
less; (ii) the apparent under-use of mammographies in the United States21

20“When cancer-screening fears are all too real. 1 in 5 women does not want to know if
she has the disease, survey shows.” January 19, 2009

21This question receives recurrent attention by the media. See, for instance “Mammo-
grams in Decline”, The New York Times, May 15, 2007.
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may be partly due to fear of being diagnosed with breast cancer; in this
case, as suggested by Andrew Caplin and Kfir Eliaz (2003) for AIDS, it
may be optimal to decrease the informativeness (to patients) of screening
tests when the test is positive, because this would mitigate the fear of bad
news and thus increase the propensity to screen; (iii) in order to avoid the
rate of regular clinical breast screening to fall below the socially efficient
level, one should pay particular attention to women in social environments
in which someone was diagnosed with breast cancer; (iv) the effect of in-
formation aversion in health matters may be more relevant when salience is
stronger and may be stronger for relatively young and healthy individuals.
More knowledgeable individuals (such as medical doctors and nurses in our
study) seem less subject to such an effect. For other individuals, the effect is
highly persistent. We believe these issues are important and deserve further
investigation in future research.
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