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Abstract

Given the frequency of price changes, the real e¤ects of a monetary shock are smaller if

adjusting �rms are disproportionately likely to be ones with prices set before the shock. This

selection e¤ect is important in a large class of sticky-price models with time-dependent price

adjustment. We provide a very general analytical characterization of the relationship between

this selection e¤ect, the distribution of the duration of price spells, and the real e¤ects of

monetary shocks. We �nd that: 1) Selection is stronger and real e¤ects are smaller if the hazard

function of price adjustment is more strongly increasing; 2) Selection is weaker and real e¤ects

are larger if there is sectoral heterogeneity in price stickiness; 3) Selection is stronger and real

e¤ects are smaller if the durations of price spells are less variable. We also show that 4) If

monetary shocks a¤ect primarily the level of nominal aggregate demand, the mean and variance

of price durations are su¢ cient statistics for the real e¤ects of such shocks.
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1 Introduction

Infrequent price changes at the micro level do not automatically imply that monetary disturbances

have large real e¤ects at the macro level. For the same frequency of price changes, the real e¤ects of

a monetary shock are small if adjusting �rms are also the ones that are most likely to react strongly

to the shock. The importance of this selection e¤ect has been well understood at least since Caplin

and Spulber (1987). In their model, a small fraction of �rms making large price adjustments is

enough to completely o¤set monetary shocks and induce money neutrality.

In Caplin and Spulber (1987) �and in menu-cost models more generally �the selection e¤ect

that dampens monetary non-neutralities arises from self-selection: �rms always have the option

of incurring a menu cost to adjust their prices,1 so that not only prices, but the fraction of �rms

adjusting prices reacts to shocks. Furthermore, there is a selection e¤ect because adjusting �rms

are also the ones for which the current price is far enough from the target to justify paying the

menu cost.

We argue that selection e¤ects do not necessarily hinge on self-selection. In particular, selection

e¤ects are important in environments where the probability of a �rm adjusting a price only depends

on the time elapsed since the price was put in place and where the proportion of �rms adjusting

prices at any given time is constant. This is important because such time-dependent pricing rules

are prevalent in the sticky-price literature.

In this paper we study selection and monetary non-neutrality in a large class of time-dependent

sticky-price models. As in Dotsey, King, and Wolman (1997, section 3), price changes arrive

according to a general function of the time elapsed since the last price change. At any point in

time after a monetary shock, �rms are partitioned into two groups: those who have prices that pre-

date the shock (henceforth �old prices�), and those whose price post-dates the shock (henceforth

�new prices�). We say that there is positive selection when old prices are over-represented among

adjusting prices and negative selection otherwise. The constant hazard of adjustment model (Calvo,

1983) is the knife edge case where there is no selection. The constant duration model (Taylor, 1979)

is the extreme case where selection is most positive given the frequency of price changes.

Our goal is to characterize the role of such selection e¤ects in determining the real e¤ects of

nominal shocks. We use a scalar measure of the real impact of the shock �the cumulative output

gain associated with a one-time unexpected nominal expansion.2 To isolate the role of selection

from other factors that are well known to a¤ect the extent of monetary non-neutrality, we always

1While Caplin and Spulber (1987) do not consider menu costs explicitly, the state-dependent pricing rule that
they postulate can be rationalized by the presence of such costs.

2We show in the Appendix that this measure has a welfare interpretation.
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compare economies with the same average frequency of price changes, and, for most of the paper,

focus on an environment in which the optimal price for a given �rm is neither a strategic substitute

nor a strategic complement to the price of other �rms �what we refer to as strategic neutrality in

price setting.

We show that the real e¤ects of a permanent shock to the level of nominal income are larger

if selection is smaller. Furthermore, we show that, for a given average frequency of price changes,

real e¤ects depend solely on selection, and therefore the latter contains all the relevant information

about price-setting frictions. It follows that if two economies with the same average frequency of

price changes produce di¤erent real e¤ects in reaction to nominal shocks, then it must be the case

that price changing �rms are selected di¤erently.

We �nd that selection is a useful organizing principle for interpreting previous �ndings in the

literature:

1) Calvo (1983) contracts imply no selection, as the probability of price changes does not depend

on the time elapsed since the last price change (henceforth the �age� of the price). In contrast,

Taylor (1979) contracts imply the highest possible selection, since changing prices are always the

ones which have been in place for longest. This explains why, for a given frequency of price changes,

Taylor (1979) pricing implies smaller real e¤ects than Calvo (1983) pricing (Kiley, 2002).

2) If, as argued by Dotsey, King, and Wolman (1997), the hazard of price adjustment is increas-

ing over time, then selection is positive and the real e¤ects of a nominal shock are smaller than

under Calvo contracts.3 We also show that the more increasing the hazard of price adjustment

is, the larger selection e¤ects are. These �ndings follow from the simple intuition that a more

increasing hazard function implies that older prices have a relatively higher probability of being

changed.4

3) Heterogeneity in price stickiness is associated with more negative selection, as sectors with

low frequency of price changes are both more likely to have a large proportion of �old� prices

and to have a lower probability of having their �rms selected for price changes. This clari�es and

generalizes the �nding in Carvalho (2006) that the real e¤ects of a nominal shock are larger in an

economy with heterogeneity in price stickiness than in an otherwise identical economy with the

same average frequency of price changes.

4) Relatedly, when comparing two economies, one in which the distribution of the duration of

price spells is a mean preserving spread of the other, then selection is lower in the economy with

the more variable price spells, and the real e¤ects of the shock are larger.

3Wolman (1999) provides a similar intuition.
4Sheedy (2010) also explores models with increasing hazard functions and shows that they are able to generate

in�ation persistence.
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5) In the case of permanent level shocks to nominal aggregate demand, the mean and the

variance of the duration of price spells are su¢ cient statistics for the real e¤ects of the shock.5

This result is of particular interest because it provides guidance to the empirical literature that

explores microeconomic price data, and for calibration of models without the need to specify the

whole distribution of the duration of price spells.

Lastly, we show how these results generalize. In particular, we show that for any monetary

shock that implies a new path for nominal income which is always above the expected one, the real

e¤ects of the shock are smaller if selection is higher. Hence, results 1-4 continue to hold in this more

general case. In terms of result 5, we also show that if a shock a¤ects the growth rate (as opposed to

the level) of nominal income, then the third moment of the distribution of price spells also matters.

Finally, we run numerical simulations where we show that the average and the variance of price

spells is close to being su¢ cient statistics to describe the contribution of the distribution of the

duration of price spells to the real e¤ects of empirically plausible nominal shocks. We �nd that this

is true not only under strategic neutrality, but also under strategic complementarity and strategic

substitutability in price setting.

Our paper is not the �rst one to identify a role for selection in time-dependent pricing models.

Sheedy (2010) shows that selection for older prices is associated with higher in�ation persistence �

an issue that we do not examine. He does not, however, examine the implications of selection for

the real e¤ects of monetary shocks.

2 Model

A representative household derives utility from a continuum of di¤erentiated consumption goods

aggregated in a Dixit-Stiglitz composite, and supplies labor to the monopolistically competitive

�rms that produce these goods. The household owns these �rms, so it receives back whatever

pro�ts they generate. Firms hire speci�c labor types in competitive market. We assume a cashless

economy with a risk-free nominal bond in zero net supply as in Woodford (2003), and abstract

from �scal policy.

In our analysis, we rely on a �rst-order approximation of the model. This allows us to resort to

the certainty equivalence principle and focus on the dynamic response of the economy to one-time

5Without linking it to selection, we �rst proved this result in Carvalho and Schwartzman (2008). In ongoing work,
Alvarez et al. (2012) show that it also holds in a model in which the adjustment hazard function arises endogenously
from an optimal price-setting problem in the presence of information costs.
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shocks in a world of otherwise perfect foresight. The representative household maximizes:

Z 1

0
e��t

 
C (t)1�� � 1
1� � �

Z 1

0

Lj (t)
1+ 1

 

1 + 1
 

dj

!
dt

s:t: _B (t) = i (t)B (t) +

Z 1

0
Wj (t)Lj (t) dj � P (t)C (t) + T (t) ; for t � 0;

and subject to a no-Ponzi condition. Here � is the discount rate, C (t) is consumption of the

composite good, Lj (t) is the quantity of labor supplied for the production of variety j, Wj (t) is

the nominal wage for labor in variety j, T (t) are �rms��ow pro�ts received by the consumer, B (t)

denotes bond holdings that accrue interest at rate i (t), and P (t) is a price index to be de�ned

below.

The composite consumption good is given by:

C (t) �
�Z 1

0
Cj (t)

"�1
" dj

� "
"�1

; (1)

where Cj (t) is consumption of the variety of the good produced by �rm j. The elasticity of

substitution between varieties is " > 1. Denoting by Pj (t) the price charged by �rm j at time t,

the corresponding consumption price index is:

P (t) =

�Z 1

0
Pj (t)

1�" dj

� 1
1�"

:

The �rst-order conditions for the representative consumer�s optimization problem are:

Wj (t)

P (t)
= C (t)� Lj (t)

1
 ; (2)

_C (t)

C (t)
= ��

"
��

 
i (t) +

_P (t)

P (t)

!#
;

Cj (t) = C (t)

�
Pj (t)

P (t)

��"
; j 2 [0; 1] :

Firms transform labor into output one for one. They sell their products at a nominal price that

they only change infrequently. In the meantime, they commit to producing as much as necessary

to satisfy the demand for their output given their chosen price. The timing of those occasional

price changes depends probabilistically on the time elapsed since the �rm�s last price change �i.e.,

price setting is time dependent. Particular examples of time-dependent price-setting models include

Taylor (1979) and Calvo (1983). We follow Dotsey, King, and Wolman (1997), and generalize these

standard frameworks. We denote the probability of a price surviving for less than s by a generic
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cumulative distribution function G (s). The only restrictions we impose are that a) G (s) depends

only on the time elapsed since the price was last reset, but not on the particular date in which it

was reset, b) that lims!1G (s) = 1 so that all price spells come to an end with probability one.

Certain results will also require restrictions on G that we will introduce as needed.

A �rm that sets a new price at time t chooses the price Xj (t) to solve:

max
Xj(t)

Z 1

0
Q (t; t+ s) (1�G (s)) [Xj (t)Yj (t+ s)�Wj (t+ s)Nj (t+ s)] ds

s:t: Yj (t+ s) = Nj (t+ s) ;

Yj (t+ s) =

�
Xj (t)

P (t+ s)

��"
Y (t+ s) ;

where Q (t; t+ s) is a discount factor, Nj (t+ s) is the amount of labor demanded by the �rm,

and where the demand function already takes into account that goods market clearing implies

Cj (t) = Yj (t). The �rst-order condition yields:

Xj (t) =
"

"� 1

R1
0 Q (t; t+ s) (1�G (s))P (s)" Y (s)Wj (s) dsR1

0 Q (t; t+ s) (1�G (s))P (s)" Y (s) ds
:

We focus on the symmetric equilibrium in which, conditional on time-t information, the joint

distribution of future variables that matter for price setting is the same for all �rms, and therefore

they choose the same nominal price Xj (t). This allows us to drop the j�s and denote the price set

by any �rm at time t as X (t). We moreover assume uniform staggering of pricing decisions, so

that the price index satis�es:

P (t) =

�Z t

�1
� (1�G (t� v))X (v)1�" dv

� 1
1�"

; (3)

where ��1 �
R1
0 (1�G (s)) ds. Using integration by parts, it is straightforward to show that

��1 =

Z 1

0
sdG (s) ;

which is the average duration of price spells. We thus refer to � as the average frequency of price

changes in the economy.

The model is closed by a monetary policy speci�cation that ensures existence and uniqueness

of a rational expectations equilibrium. Following standard practice in the price-setting literature

(e.g. Mankiw and Reis, 2002), we leave the details of policy unspeci�ed and assume an exogenous

path for nominal aggregate demand, M (t) = P (t)Y (t).

We log-linearize the model around a deterministic, zero-in�ation symmetric steady state. In
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this log-linear environment, �rms that change prices at time t set (lowercase variables denote log-

deviations from the steady state):

x (t) =

R1
0 e��s (1�G (s))wj (t+ s) dsR1

0 e��s (1�G (s)) ds
: (4)

Log-linearizing the �rst-order condition for consumption/leisure choice of the household yields:

wj (t+ s) = p (t+ s) + �c (t+ s) +  �1lj (t+ s) :

From the production function, we have lj (t+ s) = yj (t+ s) and from market clearing, c (t+ s) =

y (t+ s). Moreover, the demand function for varieties in log-linear form tells us that yj (t+ s) =

y (t+ s)� " (x (t)� p (t+ s)), where x (t) is the price currently chosen by the �rm. Bringing all of
these together we can express the wage rate wj (t+ s) in terms of aggregates and x (t):

wj (t+ s) = p (t+ s) +
�
� +  �1

�
y (t+ s)� " �1 (x (t)� p (t+ s)) :

We can also use m (t+ s) = p (t+ s) + y (t+ s) to substitute out y (t+ s) and obtain:

wj (t+ s) =
�
1� � �  �1

�
p (t+ s) +

�
� +  �1

�
m (t+ s)� " �1x (t+ s) :

Substituting the expression above in the �rst-order condition for the �rm�s problem (equation

4) and rearranging yields

x (t) =

R1
0 e��s (1�G (s)) [�m (t+ s) + (1� �) p (t+ s)] dsR1

0 e��s (1�G (s)) ds
; (5)

where � = �+ �1

1+" �1
.

According to equation (5), the model implies strategic neutrality in price setting if � = 1.

This means that the marginal cost of production for a given �rm and, therefore, its desired price,

only depends on the exogenous process m (t+ s) and not on decisions made by other �rms. This

is a knife-edge case that requires speci�c constellations of primitive parameters such as � = 1

and  ! 1 (log utility in consumption and linear disutility of labor). More generally, pricing

decisions will be either strategic substitutes or strategic complements. If � < 1, there is strategic

complementarity in price setting, meaning that �rms will choose prices close to what they expect

the aggregate price level to be. With � > 1 pricing decisions are strategic substitutes.

Finally, the aggregate price level is given by

p (t) =

Z t

�1
� (1�G (t� v))x (v) dv:
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3 The real e¤ects of a monetary shock

Throughout most of the paper, we examine the commonly used case of a shock to the level of

nominal aggregate demand in an economy with strategic neutrality in price setting. This allows

us to isolate the role of selection from the well-known e¤ects of interactions between �rms�pricing

decisions. In the �nal sections we provide an analytical discussion of the e¤ect of more general

shocks and show with simulations that the main results survive the presence of pricing interactions.

The economy starts with a constant level of nominal aggregate demand M0, with associated

pricing decisionsXold, the aggregate price level P old, and constant output Y old. We then analyze the

impact of a one-time, unforeseen shock to nominal aggregate demand. The shock hits the economy

at t = t0, yielding thereafter a new permanent level for nominal aggregate demandMnew =M0e
�m,

and associated paths for pricing decisions, aggregate price level, and output �respectively, Xnew (t),

Pnew (t), and Y new (t). Because we focus on a log-linear approximation of the model around the

deterministic zero-in�ation steady state, in which certainty equivalence holds, the assumption of

a one-time unforeseen shock allows us to derive the impulse response functions of endogenous

variables to the shock while simplifying the exposition considerably. The assumptions that price

setting is purely time dependent and that price changes are uniformly staggered over time allow us

to set, for notational convenience, t0 = 0 without loss of generality.

mold (t) = m0; m
new (t) = m0 +�m: (6)

Firms choose di¤erent prices depending on whether their choice occurs before or after the shock

hits. Due to the absence of pricing interactions (� = 1), from (5) it follows immediately that

xold = mold, xnew = mnew:

Taking into account the di¤erent price-setting decisions made before and after t = 0, we can

write the evolution of the aggregate price level for t � 0 as:

pnew (t) = p (t) = ! (t)mnew + (1� ! (t))mold; (7)

where ! (t) � �
R t
0 1�G (v) dv is the fraction of �rms with new prices (i.e., who last set their prices

after the shock).

The e¤ects of the shock on real output are given by:

ynew (t)� yold = mnew � pnew (t)�
�
mold � pold

�
= �m (1� ! (t)) : (8)
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In words, the output e¤ect at t is proportional to the size of the shock �m and to the fraction of

�rms with old prices at t, 1� ! (t). Thus, for a given sized shock, the real e¤ects at t are larger if
the pool of old prices at t is larger.

We measure the degree of monetary non-neutrality by the discounted cumulative e¤ect of the

shock on output. More speci�cally, our measure of non-neutrality is given by:6

� =

Z 1

0
e��t

h
ynew (t)� yold

i
dt:

We refer to � generically as the real e¤ects of the monetary shock.

Using (8), we can write the real e¤ects of the shock as:

� = �m

Z 1

0
e��t (1� ! (t)) dt: (9)

The real e¤ects are increasing in the (integral over time of the) fraction of old prices in the popula-

tion. The longer the fraction of old prices in the population takes to shrink to zero after the shock,

the larger are its real e¤ects.

4 Selection and monetary non-neutrality

In this section we introduce the concept of selection that we analyze in this paper, and how we

measure it. In statistics, we say there is selection bias if a sample is not a random draw from the

population. In that case, sample moments provide biased estimates of population moments. By

analogy, our sample consists of the prices being reset at a given point in time, and the population

encompasses all existing prices. The sample moment we focus on is the fraction of old prices being

reset at t, and the population moment is the fraction of old prices still in place at t.

Because the distribution of the duration of price spells, G, is time-invariant, the fraction of

changing prices that are aged t or older is equal to 1�G (t) �the probability that a price survives
for t or longer. In turn, 1� ! (t) is the fraction of old prices in the population. In this context, we
say there is positive selection if 1�G (t) > 1�! (t) and negative selection otherwise. This suggests
a natural measure of selection at each point in time after a shock.

De�nition 1 Selection (at t), denoted by � (t), is de�ned as

� (t) � 1�G (t)
1� ! (t) � 1: (10)

6We show in the Appendix that, up to a �rst-order approximation, this measure is proportional to the ex-post
utility impact generated by the shock in an economy with a distorted steady state.
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A related measure of selection emphasizes not the selection at a given point in time, but the

cumulative selection since the shock hit.

De�nition 2 Cumulative selection (at t), denoted by � (t), is de�ned as

� (t) �
Z t

0
� (s) ds:

We refer loosely to selection in economy A being stronger than in economy B if either �A (t) >

�B (t) 8t and/or �A (t) > �B (t) 8t. It is easy to see that the �rst ordering implies the second, but
the converse is not necessarily true.

We are now ready to describe the role of selection in determining the extent of monetary non-

neutrality. Note that, after the monetary shock hits, the pool of new prices ! (t) increases as �rms

a) have the opportunity to change prices (this is given by the frequency of price changes, �) and

b) are doing so for the �rst time after the shock (1�G (t)):

@! (t)

@t
= �(1�G (t)) : (11)

Solving the di¤erential equation (11) and using the de�nitions above yields:

1� ! (t) = e
��

R t
0
1�G(v)
1�!(v) dv = e��t��

R t
0 �(v)dv = e��t���(t): (12)

It follows from the de�nition of the real e¤ects of the monetary shock (equation 9) and from

the solution to the di¤erential equation (11) that

�

�m
=

Z 1

0
e��t (1� ! (t)) dt =

Z 1

0
e�(�+�)t��

R t
0 �(v)dvdv =

Z 1

0
e�(�+�)t���(t)dt: (13)

We can thus derive three important immediate implications:7

Proposition 1 Given �,

1) The real e¤ects of a monetary shock are larger if selection, � (t), is smaller for all t.

2) The real e¤ects of a monetary shock are larger if cumulative selection; � (t) ; is smaller for

all t.

3) Let M be the set of all functions � : [0;1) ! R that can be constructed using De�nition

10. Let G� be the set of all functions G : [0;1)! [0; 1] satisfying
R1
0 (1�G (s)) ds = ��1. Then,

there is a mapping f :M! G� that allows us to recover G from �.

The last part of the proposition states formally that, given �, G can be obtained from �, so

that given �, � and G are equally valid primitives for the general class of time-dependent pricing
7All proofs are in the Appendix.
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models that we consider. This is important because it means that, once we know �, any interesting

properties of the c.d.f. of price durations G can be expressed in terms of properties of selection �.

Example 1: Calvo pricing

A leading example of time-dependent pricing used in the literature is the one proposed by Calvo

(1983). In his model, the probability of a given �rm changing its price over any given period of time

does not depend on the time elapsed since it last changed its price. This implies an exponential

decay of the survival probability of a price. In terms of our notation:

G (t) = 1� e��t:

Also, it is easy to verify that

! (t) = 1� e��t;

so that selection equals

� (t) =
e��t

e��t
� 1 = 0:

Thus, under Calvo pricing there is no selection. In other words, price changing �rms are a random

draw from the population.

The real e¤ects of a permanent shock to the level of nominal aggregate demand under Calvo

pricing for a small � are:

lim
�!0

� = �m

Z 1

0
e��tdt =

�m

�
: �

Example 2: Taylor pricing

A second leading example is based on Taylor (1979). In this model �rms set prices for a �xed

period of time (given by ��1). Thus, the distribution of price durations is degenerate at ��1.

In terms of our notation:

G (t) =

�
0 if t < ��1

1 otherwise

! (t) =

�
�t if t < ��1

1 otherwise,

so that the selection is given by:

� (t) =

� 1
1��t � 1 if t < �

�1

unde�ned otherwise.

Selection is positive wherever it is de�ned (i.e., wherever the pool of old prices is not empty).

In fact, within that range, selection is maximal, since all price changes come from the pool of old
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prices. To show this formally, note that under Taylor pricing, for any t < ��1,

� (t) =
1

1� �t � 1;

whereas under any alternative pricing rule with the same average frequency of price changes �,

� (t) =
1�G (t)
1� ! (t) � 1:

That 1�G (t) � 1 is immediate. We can also show that 1� ! (t) � 1� �t:

1� ! (t) = 1� �
Z t

0
(1�G (s)) ds = 1� �t+

Z t

0
G (s) ds � 1� �t:

Cumulative selection is:

� (t) =

�
� ln(1��t)

� � t if t < ��1
unde�ned otherwise.

Note, however, that limt!��1 � (t) =1. We can extend the de�nition of � (t) to t > ��1 as follows:

� (t) =

�
� ln(1��t)

� � t if t < ��1
1 otherwise.

Since under Taylor pricing selection is the highest possible for a given �, it follows that cumu-

lative selection is the highest possible. Thus, for a given �, Taylor pricing implies the smallest real

e¤ects among all time-dependent pricing models.8

The real e¤ects of a shock under Taylor pricing for a small � are:

lim
�!0

� = �m

Z 1

0
min f1� �t; 0g dt

= �m

Z ��1

0
(1� �t) dt

=
1

2

�m

�
;

which amounts to half the real e¤ects obtained under Calvo pricing with the same average frequency

of price changes. �

The result that Calvo pricing implies larger real e¤ects than Taylor pricing is not new (Kiley,

2002). What we show is that the di¤erence is due to the strong selection under Taylor pricing and

the complete lack of selection under Calvo pricing.

We now turn to general results concerning how the shape of the distribution of the duration of

8Without linking it to selection, we �rst proved this result in Carvalho and Schwartzman (2008) � a working
paper that we never submitted for publication.

12



price spells a¤ects the real e¤ects of monetary shocks. We show how these di¤erent results relate

to the overarching notion of selection.

4.1 Hazard functions

The empirical literature on price-setting has devoted quite a bit of e¤ort to measuring the shape

of the hazard function of price adjustment.9 The hazard function is de�ned as:

h (t) =
@G(t)
@t

1�G (t) :

Both Calvo (1983) and Taylor (1979) make strong assumptions about the shape of the hazard

function and, at least since the work of Dotsey, King, and Wolman (1997) and Wolman (1999) it

has been clear that the shape of the hazard function matters for the real e¤ects of monetary shocks.

We start by showing that the concept of selection is closely related to that of the hazard function.

Speci�cally, the following is true:

Lemma 1 Let � and h be, respectively, the selection function and hazard function associated with

a c.d.f. G. Then,

� (t) =

Z 1

t

h (s)

�
	t (s) ds� 1; (14)

where

	t (s) �
1�G (s)R1

t (1�G (v)) dv
:

The intuition for the result above is as follows. The hazard function is the continuous-time

analogue of the probability that a price will change at a given age, conditional on it having survived

up to that age. Selection is up to a constant, proportional to the continuous-time analogue of the

probability that a price will change at a given age conditional on it having survived up to that age

or longer. Thus, selection is related to the appropriately weighted average of hazard functions of

prices older than t. More speci�cally, selection at t is, up to a constant, proportional to the average

of the hazard functions across all prices that are older than t in the population. The constant of

proportionality is the average duration of price spells, ��1, and the weights 	t (s) are the fractions

of prices of age s among all prices older than t in the population.

From (14), we can show that if a hazard function is (everywhere) increasing �as suggested by

Dotsey, King, and Wolman (1999) �then there is positive selection (everywhere):

9Klenow and Malin (2010, section 5.3) provide a review of the empirical literature estimating hazard functions.
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Lemma 2 For a given distribution of price durations G (t), consider the corresponding hazard

h (t) = @G(t)
@t = (1�G (t)) and selection � (t) = 1�G(t)

1�!(t) � 1 functions. If h (t
0) > h (t) for all t0 > t,

then � (t) > 0 for all t > 0.

The result is intuitive. An increasing hazard function implies that the probability of a price

change increases with the age of the price. Thus, older prices are over-selected relative to the case

of a �at hazard function, in which there is no selection.

The general intuition extends to the comparison of two hazard functions. In this case, the

connection is with cumulative selection. Given two economies, one with a more increasing hazard

function than the other, we can show that the economy with the more increasing hazard function

will feature higher cumulative selection and lower monetary non-neutrality:10

Proposition 2 For two economies A and B with the same average frequency of price changes

(�A = �B) and for which the relevant moments and derivatives are de�ned, if:

1) there is a t� so that hA (t) � hB (t) for t � t� and hA (t) < hB (t) for t > t�;

or

2) @hA(t)
@t < @hB(t)

@t 8t;

Then �A(t) < �B(t) 8t:

An immediate corollary follows:

Corollary 1 The real e¤ects of a level shock are larger in economy A than in B: �A > �B:

Example 1: Calvo pricing

With Calvo pricing, the c.d.f. of durations is given by 1� e��t. The hazard function is:

h (t) =
�e��t

e��t
= �;

so that Calvo pricing implies a constant hazard function. Selection is:

� (t) =

Z 1

t

h (s)

�
	t (s) ds� 1 =

Z 1

t

�

�
	t (s) ds� 1 = 0:

The fact that Calvo pricing implies a constant hazard function for price changes provides some

additional intuition for why selection is zero in this case. A constant hazard function means that

the probability of a price change does not depend on the age of the price. Therefore, prices that

are being changed are, by necessity, representative of the age distribution of the population.
10The result is actually stronger than this, as all that is required is a single-crossing condition on the two hazards

(see the proof in the Appendix).
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One implication of Lemma 2 is that, for a given frequency of price changes, Calvo pricing

generates the largest real e¤ects among economies with non-decreasing hazard functions. �

Example 2: Taylor pricing

We return to the constant duration model proposed by Taylor (1979). In this setup, �rms keep

their prices �xed for ��1 periods and then change it with probability 1. The hazard function is

0 for all t � ��1 and not de�ned elsewhere. Strictly speaking, Proposition 2 does not apply to
Taylor pricing, since it does not have a well de�ned hazard function everywhere. Still, we can make

a heuristic argument based on an approximation of a discrete time setting that the hazard function

under Taylor is more increasing than any alternative. To see this, consider the c.d.f. of the discrete

time analogue of the Taylor pricing, given by:

Gt =

�
0 if t < ��1

1 if t � ��1:

Suppose each time period has length �t. The discrete time analogue of the hazard function is:

ht =
Gt�Gt�1

�t

1�Gt�1
=

8><>:
0 for t < ��1

1
�t for t = �

�1

unde�ned otherwise.

It follows that, for t = ��1, lim�t!0 ht =1.
At t = ��1, lim�t!0 ht is greater than any alternative hazard function, and at t = 0 the hazard

function is simply zero so that it is smaller than any alternative. This implies that, in the limit,

there is a single crossing at t = ��1 with any alternative hazard function, just as required by

Proposition 2. This provides an alternative proof that the Taylor economy has the smallest real

e¤ects among all economies with a given average frequency of price changes. �

4.2 Heterogeneity in price stickiness

We can also appeal to selection to shed light on the �ndings by Carvalho (2006) that nominal shocks

have larger real e¤ects in an economy with heterogeneity in price stickiness than in a one-sector

economy with the same frequency of price changes. These �ndings are of particular importance

because, as documented by Bils and Klenow (2004) and subsequent work, there is substantial

cross-sectoral heterogeneity in the frequency of price changes.

As a �rst step, we show that, by choosing a suitable adjustment hazard function, we can

represent a heterogeneous economy as a one-sector economy. Consider an economy with K sectors

indexed by k, each with a measure �k of �rms. For notational convenience, de�ne cross-sectoral
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averages as:

E [xk] �
X

�kxk:

The c.d.f. of price durations in sector k is Gk (t). The price level in this economy is:

p (t) = E [pk (t)] ;

where pk (t) is the price level in sector k. These sectoral price levels are aggregates of past pricing

decisions:

pk (t) =

Z t

�1
�k [1�Gk (t� s)]xk (s) ds;

where ��1k =
R1
0 (1�Gk (s)) ds:

Now, consider a permanent shock to the level of nominal aggregate demand as in equation (6).

Given this shock, the optimal pricing policy is:

8k, xk (t) =
�
m0 if t � 0
m1 if t > 0:

Since the pricing policy in all sectors is identical, we can simplify the notation by letting x (t) �
xk (t). Then:

p (t) =

Z t

�1
E [�k (1�Gk (t� s))]x (s) ds

=

Z t

�1
�het

�
1�Ghet (t� s)

�
x (s) ds;

where �het � E [�k] and Ghet (t) � E[�kGk(t)]
E[�k]

.

Hence, for our purposes, the multi-sector economy can be represented as a one-sector economy

with �het = E [�k] and Ghet (t) =
E[�kGk(t)]
E[�k]

. These calculations give rise to the following lemma:

Lemma 3 Consider an economy with multiple sectors with a fraction �k of �rms in sector k and

� = 0 (strategic neutrality in price setting). In this economy, the dynamics of p (t) and y (t) in

response to a shock to the level of nominal income as described in equation (6) are identical to

those of a one-sector economy with c.d.f. of price spells given by Ghet (t), average frequency of price

changes �het, and fraction of new prices !het (t) such that

Ghet (t) =
E [�kGk (t)]

E [�k]
; �het = E [�k] ; !

het (t) = E [!k (t)] ;

where the operator E takes the cross-sectional average given the weights �k.

The observational equivalence result relies on the fact that, for this type of nominal shock,
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pricing decisions do not depend on the anticipated duration of the price spell. While this is not

the case for more general shocks, in Section 5 we show that the results and intuitions that follow

do go through.

We now explore the specialized case withGk (t) = �G (�kt), for some �G such that
R1
0

�
1� �G (s)

�
ds =

1. In this case, the only di¤erence in the c.d.f. of price durations in di¤erent sectors is the scaling

constant �k. This can be interpreted as a �stretching�or �compressing�of time within each sector,

with prices in sector k taking �j
�k
times longer to change than in sector j.

Let 1� �! (t) =
R1
t

�
1� �G (s)

�
ds. It is easy to verify that:Z 1

0
(1�Gk (s)) ds =

Z 1

0

�
1� �G (�ks)

�
ds = ��1k ;

and Z 1

t
(1�Gk (s)) ds =

Z 1

t

�
1� �G (�ks)

�
ds = 1� �! (�kt) :

To establish the role of heterogeneity in price stickiness we need a point of comparison. Following

Carvalho (2006), we pick an otherwise identical one-sector economy which has the same average

frequency of price changes as the multi-sector one:

De�nition 3 The one-sector equivalent economy to a multi-sector economy characterized by the

sectoral c.d.f.�s of price spells Gk (t) = �G (�kt) with
R1
0

�
1� �G (t)

�
dt = 1 and sectoral weights �k

is an economy with one sector and c.d.f. of price durations given by �G (E [�k] t), where E [�k] �P
�k�k.

The following proposition compares the cumulative selection function in both economies:

Proposition 3 Let �het (t) denote cumulative selection of a multi-sector economy and �1sect (t)

denote cumulative selection of its one-sector equivalent. Then,

�het (t) < �1sect (t) 8t:

Thus, cumulative selection in the multi-sector economy is always smaller than in its one-sector

equivalent. It follows immediately that a level shock to nominal aggregate demand in the multi-

sector economy will have larger real e¤ects than in its one-sector equivalent. We state this in the

following corollary, which is a generalization of Carvalho (2006):

Corollary 2 Let �het denote the real e¤ects of a permanent level shock to nominal aggregate de-

mand in a multi-sector economy, and �1sect denote the e¤ects of the same shock in its one-sector

equivalent. Then,

�het > �1sect:
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The examples below help us give the intuition for the result.

Example 1: Calvo pricing

Consider an economy with multiple sectors associated with di¤erent average frequencies of price

adjustment, and no selection within each sector. In this economy:

Gk (t) = 1� e��kt; !k (t) = 1� e��kt:

Using Lemma 3, selection in this economy is:

�het (t) =
1�Ghet (t)
1� !het (t) � 1 =

E[�ke��kt]
E[�k]

E [e��kt]
� 1 =

cov
�
�k; e

��kt
�

E [�k]E [e��kt]
< 0: (15)

Thus, in a heterogeneous economy with no within-sector selection, (aggregate) selection is neg-

ative. The covariance term in (15) neatly summarizes the intuition. In the heterogeneous economy,

price changes are disproportionately selected from sectors with high frequency of price changes.

However, exactly because these sectors have a high frequency of price changes, they have the least

fraction of old prices.

In contrast, selection in the one-sector equivalent economy is zero:

�1sect (t) =
1�G1sect (t)
1� !1sect (t) � 1 =

e�E[�k]t

e�E[�k]t
� 1 = 0:

Hence, since selection is lower in the multi-sector economy than in its one-sector equivalent, the

real e¤ects of the nominal shock increase if we allow for heterogeneity in price stickiness. �

Example 2: Taylor pricing

We now consider the case where the duration of price spells is constant within each sector:

Gk (t) = 1l (�kt � 1) ; !k (t) = max f�kt; 1g ;

so that

Ghet (t) =
E [�k1l (�kt � 1)]

E [�k]
=
E [�kj�kt � 1] Pr [�kt � 1]

E [�k]
;

!het (t) = E [min f�kt; 1g] = Pr [�kt � 1] + E [�ktj�kt < 1] (1� Pr [�kt � 1]) ;

with Pr [�kt � 1] � E [1l (�kt � 1)] denoting the measure of sectors where the frequency of price
changes is higher than t�1.
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In turn, in the one-sector equivalent economy

G1sect (t) = 1l (E [�k] t � 1) ; !1sect (t) = min fE [�k] t; 1g

It is easy to compare selection in both economies:

�het (t) =
1� E[�kj�kt�1] Pr[�kt�1]

E[�k]

(1� Pr [�kt < 1]) (1� E [�kj�kt < 1] t)
� 1

=
1

1� E [�kj�kt < 1] t
E [�kj�kt < 1]

E [�k]
� 1

<
1

1� E [�kj�kt < 1] t

<
1

1� E [�k] t
= �1sect (t) :

This shows that selection is weaker in the heterogeneous economy than in its one-sector equiv-

alent, and thus monetary non-neutralities are larger in the former economy. �

4.3 The variance of price durations

We have seen that there is a direct relationship between selection and the real e¤ects of nominal

shocks. We have also shown how this insight relates to the shape of hazard functions and the

existence of cross-sectoral heterogeneity in price stickiness.

These insights are interesting for their economic content. But they are not much help for

model calibration, since determining the selection or hazard functions is no easier then completely

describing the distribution of the duration of price spells in a given economy.11 In this section we

show that, given the type of shocks and price setting environment we have been considering so far,

the degree of monetary non-neutrality only depends on the average and the variance of the duration

of price spells. In subsequent sections we consider more general shock processes and environments

and show that the essence of the result still holds, with a few modi�cations.

We start by establishing a link between the variance of price spells and cumulative selection.

For that purpose we use the concept of �mean preserving spread�, that is, we increase the variance

of a distribution of price spells by adding to it another distribution with zero mean.

Building on results from Section 4, we start from the sequence of equalities:

1� �
Z t

0
(1�G (s)) ds = 1� ! (t) = e�����(t):

11For a structural model calibrated using microeconomic estimates of the full distribution of the duration of price
spells, see Vavra (2010).
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If GA (t) is obtained from a mean preserving spread of GB (t), then:Z t

0
(1�GA (s)) ds �

Z t

0
(1�GB (s)) ds 8t:

It follows immediately that:

e�����A(t) � e�����B(t) 8t

() �A (t) � �B (t) 8t:

Note that we can reverse the steps so that if we have two economies with �B (t) � �A (t) and the
same average duration of price spells ��1, then it must be the case that GA is a mean preserving

spread over GB.

We state the result in the following proposition:

Proposition 4 Consider two economies, A and B, characterized by the distribution of price spells

GA and GB, where GA is obtained from a mean preserving spread over the distribution described

by GB. Then, �A (t) � �B (t) 8t. Conversely, if �A (t) � �B (t) and �A = �B, then GA is a mean
preserving spread over GB.

Since economy A has lower cumulative selection at all t than economy B, it follows that the

real e¤ects of a permanent level shock to nominal aggregate demand in economy A is larger than

in B.

We can in fact go further and make a one-to-one mapping between the variance of the duration

of price spells and the real impact of such a monetary shock. We state the main result in the section

formally in the proposition below:12

Proposition 5 Suppose an economy is characterized by a distribution of price spells G with �nite

�rst and second uncentered moments ��1 and ��2 + �2, where � is the frequency of price changes

and �2 is the variance of the duration of price spells. The real e¤ects of a permanent level shock to

nominal aggregate demand of size �m satisfy

lim
�!0

� =
1

2

�
��1 + ��2

�
�m:

The result is striking because, for a given frequency of price changes �, the variance of price

durations is a su¢ cient statistic for the real e¤ects of the shock.

We now turn to particular examples which should help give intuition about the link between

the variance of price durations and selection.
12Without linking it to selection, we �rst proved this result in Carvalho and Schwartzman (2008).
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Example 1: Calvo pricing

Under Calvo pricing, the variance of the duration of price spells is �2 = ��2. Thus, applying

Proposition 5, the real e¤ects of a shock when �! 0 are

� =
�m

2

�
��1 + ��2

�
=
�m

2

�
��1 + ��1

�
= �m��1:

One interesting feature of Calvo pricing is that it has zero selection, so that it implies real e¤ects

which are larger than any environment where selection is positive for a given average frequency of

price change. This, in turn, implies that the variance of price durations under Calvo pricing is the

largest among any environment with non-negative selection. �

Example 2: Taylor pricing and a perturbation

One corollary of Proposition 5 is that, since the constant duration model has zero variance of

price durations, it also has the least real e¤ects among all possible time-dependent pricing models

for a given average frequency of price changes, con�rming earlier results. Applying Proposition

5, the real e¤ects of a shock under the Taylor model when �! 0 are

� =
�m

2

�
��1 + ��2

�
=
�m

2

�
��1 + 0

�
=
�m

2
��1:

The dynamics of the variables of interest in response to a permanent nominal income shock are

depicted in Figure 1. The lines marked m and p show the evolution of nominal income and the

aggregate price level in response to a monetary shock. The di¤erence between the two is the path of

output. Nominal aggregate demand increases discretely at t = 0 and the price level increases slowly.

The slope of the path for the price level is given by �, the fraction of adjusting �rms, multiplied

by 1�G(t); the fraction of adjusting �rms which are old. Between 0 and ��1 this fraction is equal
to one: All adjusting �rms are drawn from the pool of old prices. Therefore, selection is maximal.

From ��1 onward there are no old prices left, and thus the aggregate price level stops increasing.

The real impact of the nominal shock with � ! 0 is depicted by the shaded triangle marked �

between the level of nominal aggregate demand and the price level p.

To gain more intuition about the link between the variance of price durations, selection, and the

real e¤ects of a nominal shock, we consider now the following mixture of Taylor (1979) price-setting

distributions:

G (t) =
1

2
1l
�
t � ��1 ��

�
+
1

2
1l
�
t � ��1 +�

�
, 0 < � < ��1:

That is, a newly set price can last for an interval of length ��1�� or ��1+� with equal probability.
In the mixture model the variance is higher than in the Taylor model, and is equal to �2 > 0.
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Figure 1: Response of the price level to a permanent shock to the level of nominal income.

Selection is now given by:

� (t) =

� 1
1��t � 1 if t < �

�1 ��
1

1��t+�� � 1 if ��1 �� < t < ��1 +�:

Selection drops when t > T � �. The intuition is straightforward. Up to t = ��1 � � all

adjusting prices come from the pool of old prices. At T �� half of the prices adjusted at t = 0 are

up for adjustment again. The pool of adjusting prices thus also starts to include a fraction �new�

prices. Selection is, therefore, less than maximal.

This example sheds light on the relationship between the variance of durations and the selection

e¤ect. An increase in the variance increases the probability that prices that were last set very

recently be reset. After a shock, this means an increased probability that prices that were last set

after the shock be selected again for change. This lowers selection for old prices.

Given the lower selection e¤ect and the higher variance, the real e¤ects of the shock under the

Taylor mixture case are larger. This is evident in Figure 1. The p0 line shows the response of the

price level to a shock to the level of nominal aggregate demand in this mixture model. Note that

the slope of p0 is less steep between ��1 �� and ��1 + �, re�ecting the weaker selection e¤ect.

In this segment, half of the �rms which change prices have already responded to the shock, so that

these price changes have no additional o¤setting e¤ect. For � ! 0 we can read the di¤erence in
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the cumulative real impact of the nominal shock between the two models from the shaded triangle

marked �0��. It is immediately clear that the cumulative real e¤ects of the shock are larger under
the Taylor mixture model than under the pure Taylor. The real e¤ects under the mixture model

are:

�0 =
�m

2

�
��1 + ��2

�
=
�m

2

�
��1 + ��2

�
: �

5 General shocks

So far we have considered only permanent shocks to the level of nominal aggregate demand. This

section provides results for more general shocks.13 We retain the simplifying assumption of strategic

neutrality in price setting.

One di¢ culty in establishing an analytical solution for general shocks is that �rms which set

prices after the shock will set di¤erent prices depending on when they do it. For example, if the

shock leads aggregate nominal income to grow at a faster rate, �rms resetting their prices later

will adjust their price by a greater amount. We are able to handle these cases thanks to the

following proposition, which we prove and discuss at length in a companion paper (Carvalho and

Schwartzman, 2012):

Proposition 6 Suppose an economy is characterized by a distribution of price spells G. Suppose

it starts from a deterministic path for nominal aggregate demand mold (t) and at t = 0 this path is

subject to a one-time unexpected shock that switches it to mnew (t). The real impact of the shock

satis�es:

� =

Z 1

0
e��t (1� ! (t))

�
mnew (t)�mold (t)

�
:

The proof is in Carvalho and Schwartzman (2012). It relies on a general result that, under

strategic neutrality in price setting, the real e¤ects of a monetary shock in a generalized version of

the sticky-information model of Mankiw and Reis (2002) are the same as in a sticky-price model as

long as the distribution of price durations matches the distribution of the duration of price plans in

the sticky-information model (and the two economies are otherwise identical in terms of all other

structural features).

As in Section 4, we can write the result in terms of cumulative selection:

� =

Z 1

0
e�(�+�)t���(t)

�
mnew (t)�mold (t)

�
dt:

13Since we rely on a log-linear approximation to the model around a zero in�ation steady state, these more general
shocks should not involve permanently non-zero in�ation. However, in some cases we resort to shocks that do have
such permanent e¤ects as an approximation to shocks that induce persistent deviations of in�ation from zero. In the
context of speci�c models of price setting, Carvalho (2008, Appendix A.6) shows that this is appropriate as long as
the discount rate (�) is not strictly equal to zero.
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Thus, as was the case before, the same monetary shock in two economies with the same av-

erage frequency of price changes will di¤er only if the distribution of price durations in these two

economies are associated with di¤erent cumulative selection functions � (t). Furthermore, so long

as mnew (t) > mold (t) for all t (or vice versa) the monetary shock will have a smaller real impact in

the economy with larger cumulative selection � (t) everywhere. This last result implies that most

of the �ndings from earlier sections apply to more general monetary shocks. We summarize those

in the proposition below:

Proposition 7 Consider a shock to nominal aggregate demand characterized bymnew (t) > mold (t)

for all t.

I) Consider the impact of the shock in two economies, A and B, characterized by distribu-

tions of price durations GA (t) and GB (t), with
R1
0 (1�GA (t)) dt =

R1
0 (1�GB (t)) dt = ��1.

Then, �A < �B if:

I.1) �A (t) � �B (t) 8t,
I.2) �A (t) � �B (t) 8t,
I.3) Economy A features Taylor (1979) pricing and economy B does not.

I.4) Economy B features Calvo (1983) pricing and economy A features an increasing hazard

function.

I.5) The associated hazard function hA (t) is more increasing than hB (t) according to the cri-

terion in Proposition 2.

I.6) GB is a mean-preserving spread on GA.

II) Consider a heterogeneous economy with sectoral distribution of price durations Gk and sec-

toral weights �k. Then:

II.1) Let �het be the cumulative real impact of the shock in a multi-sector economy. It is the

same as in a one-sector economy characterized by Ghet (t) = E[�kGk(t)]
E[�k(t)]

.

II.2) Suppose Gk (t) = �G (�kt) for some �G such that
R1
0

�
1� �G (t)

�
dt = 1. Let �1sect be the

cumulative impact of the shock in the one sector equivalent economy de�ned as in De�nition 3.

Then �het > �1sect.

Allowing for more general shocks uncovers additional implications of selection which are not

apparent when studying level shocks. Let ~�m � limT!1
1
T

R T
0

�
mnew (t)�mold (t)

�
dt and assume

that it is �nite. Also, let �0 be the real e¤ects of a level shock of size ~�m. Then:

lim
�!0

� = �0 +

Z 1

0

�
e��t��(t) � �0

~�m

��
mnew (t)�mold (t)� ~�m

�
dt;
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where

lim
�!0

�0 = ~�m

Z 1

0
e��t��(t)dt:

�0 can be interpreted as the size of the real e¤ects in response to a level shock that matches the

average shift in nominal aggregate demand. The second term summarizes the e¤ect of having the

di¤erence between the e¤ective and expected paths for nominal income change over time. Generally

speaking, since e��t��(t) is decreasing in t, given �0, � is larger if mnew (t)�mold (t) is particularly

large when cumulative selection is low. This is typically soon after the shock, when most prices

have not yet been reset.

We now consider the e¤ect of permanent shocks to the growth rate of nominal aggregate demand.

Such shocks are relevant for periods of disin�ation such as the early 80s in the U.S. In the Appendix

we present a proposition that encompasses both Propositions 5 and 8, by generalizing the result

to any shock whose impulse response function can be well approximated by a polynomial function.

The growth rate shock is:

m (t) =

(
mold; t < 0

mold + bt; t � 0:
(16)

Proposition 8 Suppose an economy is characterized by a distribution of price spells G with associ-

ated selection function �, hazard function h and �nite �rst, second, and third uncentered moments

��1, ��2+�2; and ��3+3�2��2+��3 where � is the frequency of price changes, �2 is the variance

of the duration of price spells, and � is the skewness of the duration of price spells. The real e¤ects

of a shock to the growth rate of nominal income described by equation (16) satisfy

lim
�!0

� =
b

6

�
��2 + 3�2 + ���3

�
:

Thus, for a given variance and mean of price durations, the real e¤ects of a shock to the growth

rate of nominal income will be larger if the distribution of price durations is skewed to the right.

The intuition is that positive skewness produces a larger fraction of old prices late after the shock,

when the gap between the actual and the expected paths for nominal income is largest. In terms

of selection, a large skewness means that selection drops quickly as time passes. Since the shock

builds over time, this low selection later in time has a disproportionate impact on the real e¤ects

of the shock.

Example 1: Calvo pricing

Under Calvo pricing we have:
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�2 = ��2;

� = 2;

so that, under a growth rate shock,

lim
�!0

� =
b

6

�
��2 + 3��2 + 2���3

�
= b��2: �

Example 2: Taylor pricing

Under Taylor pricing we have:

�2 = 0;

� = 0;

so that, under a growth rate shock,

lim
�!0

� =
b

6
��2:

The real impact of a permanent growth rate shock is 6 times as large under Calvo pricing than

under Taylor pricing. �

6 Interactions in pricing decisions

The analytical results presented so far hold under strategic neutrality in price setting. Also, so far

we only considered limiting shock processes that may not be the most empirically plausible. In this

section we perform some quantitative exercises to assess whether our main conclusions extend to

more general cases. For the simulations, we consider the discrete time analogue of the model. In

discrete time:

xt =
X
(1�Gt) [�mt + (1� �)pt] ;

where 1 � Gt is the discrete time analogue of the survival function 1 � G (t), and � determines

whether pricing decisions are strategic complements or strategic substitutes. In our experiments

we compare the results with � = 1 (strategic neutrality), � = 1=3 (strategic complementarity) and

� = 3 (strategic substitutability).

In order to perform the quantitative exercises, it remains to parameterize the shock process

and the survival function. We follow Mankiw and Reis (2002) and consider a shock process that is
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mean reverting in the growth rate of nominal aggregate demand:

�mt = 0:5�mt�1 + �t: (17)

In order to assess the importance of higher moments in the distribution of durations of price

spells, we consider �rst a family of survival functions which imply the same average duration of price

spells but increasing variance and decreasing selection to verify the extent to which the variance

of price spells a¤ects the real e¤ects of this more plausible shock process. Next we assess whether

the third moment of price durations matters by considering a family of survival functions with the

same �rst two moments but di¤erent third moments.

For the �rst experiment, the family of survival functions that we consider are truncated expo-

nentials:

1�Gt =
(
�t if t < T

0 if t � T:

For each T , we pick � to ensure that the average duration of price spells equals 2 quarters. This

family includes the two leading cases of constant duration (Taylor, 1979) and constant hazard

(Calvo, 1983). The �rst is obtained if T coincides with the average duration. In that case, � = 0.

The second is obtained with T !1. As T increases, selection decreases and the variance of price
spells increases.

Figure 2 shows the cumulative real e¤ect of monetary shocks in (17) for di¤erent variances

of price spells and for di¤erent levels of strategic interaction between �rms�pricing decisions. As

expected, the real e¤ects are larger under strategic complementarity. They are also increasing in the

variance of price spells, irrespective of the nature of pricing interactions. Such interactions appear to

shift the lines relating the size of the real e¤ects with the variance of price durations in an essentially

parallel fashion. Selection is also quantitatively important. Moving from constant duration to

constant hazard function implies an increase in real e¤ects of similar magnitude to moving from

strategic neutrality to the strategic complementarity under our chosen parameterizations.

We have veri�ed that, irrespective of the nature of pricing interactions, the variance of the du-

ration of price spells is an important moment to take into account when calibrating time-dependent

sticky-price models. In other words, the kind of selection that we emphasize matters a great deal.

We now show that incorporating information on the skewness of price durations is not important.

To that end we consider a mixture of the two leading cases of constant hazard and constant duration

models:

1�Gt =
(
q�t + 1� q if t < T

q�t if t � T:
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Figure 2: Response of the price level to a shock to the level of nominal income.
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Under this mixture model, with probability q the survival function for a newly set price is the same

as in Calvo (1983), and with probability 1� q it is the same as in Taylor (1979).
For each T , we pick q and � to match an average duration of price spells of 2 quarters, and

a standard deviation of the duration of price spells of 1:6 quarters, corresponding roughly to the

numbers reported by Klenow and Krystov (2008, page 881, Table V). Figure 3 shows, for di¤erent

values of �, how the real e¤ects of the monetary shock depend on the skewness of price durations.

Irrespective of the nature of pricing interactions, skewness does not seem to matter much.

1.5 2 2.5 3 3.5 4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lo
g

 C
u

m
u

la
ti
v
e

 R
e

a
l 
E

ff
e

c
t

Skewness of Durations (quarters)

Average Duration = 2 quarters, Standard Deviation of Durations = 1.6 quarters

 

 

α = 1/3

α = 1

α = 3

Figure 3: Response of the price level to a shock to the level of nominal income.

7 Summary and conclusion

We investigate the di¤erent ways in which the shape of the distribution of duration of price spells

a¤ects the real e¤ects of nominal aggregate demand shocks. We highlight a mechanism that so far

has barely been given attention in the literature: a selection for the time in which prices were last
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adjusted. In the extreme case of the Taylor (1979) model, at �rst all price adjustments come from

�rms that have not yet responded to the shock. This high degree of selection implies relatively

small real e¤ects of the nominal shock. If, however, as in Calvo (1983) or, in fact, any other time

dependent scheme, there is variance in the duration of price spells, some of the price changes do

not a¤ect the price level by much, since they come from �rms that have already responded to the

shock.

We provide analytical expressions for the mapping between the distribution of durations of

price spells and the real e¤ects of nominal shocks under assumptions that are common in the price

setting literature. Importantly, we verify that, even when they do not hold exactly, the lessons from

our analysis remain relevant in more general �and arguably empirically more plausible �settings.

A major take away from the paper is that when calibrating time-dependent pricing models, it is

crucial to take into account not only the �rst, but also the second moment of the distribution of

the duration of price spells. We also show that these moments should be enough under reasonable

parameterizations.

While we focus on price-setting models, there is no a priori reason why many of the results and

intuitions developed here could not be extended to other settings in which economic inertia stems

from the fact that economic agents make decisions infrequently and in a largely time-dependent

manner. These may include (but are not limited to), consumption decisions as in Lynch (1996),

Gabaix and Laibson (2002) and Du¢ e (2010), money demand decisions as in Alvarez et al. (2009),

and portfolio rebalancing problems as in Chien et al. (2010).
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A Appendix

A.1 A welfare-based measure of real e¤ects

We measure the degree of monetary non-neutrality by the discounted cumulative e¤ect of the shock

on the output gap:

� =

Z 1

0
e��t [y1 (t)� y0 (t)] dt;

where � is the discount rate and y0 (t) is the counter-factual path for output that would have held

if the shock had never happened. Here we show that, up to a �rst order approximation, it is

proportional to the total impact of the shock on the representative agent�s utility. As such, it has

a welfare interpretation.

To see that, log-linearize the utility function to get:

u (t) =

Z 1

t
e��s

�
C1��

Z
cj (t+ s) dj � L1+

1
 

Z
lj (t+ s) dj

�
dt;

where u (t) is the linear approximation of the utility function as measured from t = 0 onward, C is

steady state consumption and L is steady state aggregate hours worked.

In equilibrium, cj (t+ s) = lj (t+ s) = yj (t+ s). Also, up to a �rst order approximation,

y (t) =
R
yj (t+ s) dj. Also, in steady state, C = L = Y . Hence,

u (t) =
�
Y 1�� � Y 1+

1
 

�Z 1

t
e��sy (t+ s) dt:

When comparing the utility under two di¤erent trajectories for the monetary shock we can

write:

u1 (0)� u0 (0) =
�
Y 1�� � Y 1+

1
 

�Z 1

0
e��t [y1 (t)� y0 (t)]

=
�
Y 1�� � Y 1+

1
 

�
�:

Thus, the utility impact of the shock is, up to a �rst order approximation, proportional to �.

It remains to prove that the �rst term, in brackets, is greater than zero, to be sure the e¤ect goes

in the right direction.

Optimal price-setting in the zero in�ation steady state implies that,

P =
"

"� 1W =
"

"� 1PL
1
 C� =

"

"� 1PY
1
 
+�
:

It follows that

Y =

�
1� 1

"

� 1

�+ 1
 ;
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and, since " > 0, � > 0 and  > 0,

Y 1�� � Y 1+
1
 > 0:

At this point it is important to pause for a comparison with the literature, in particular Wood-

ford (2001) and Benigno and Woodford (2005). First, in contrast to Woodford (2001) we do not

include in the model a subsidy that undoes the monopolistic distortion. This generates a �rst-order

positive utility impact of a surprise increase in nominal aggregate demand. The reason is that, by

surprising �rms, the nominal shock reduces their markup leading to more e¢ cient production.

The second point is that, in contrast with both Woodford (2001) and Benigno and Woodford

(2005), we only approximate the utility function up to �rst order. By doing this we miss the

component of the welfare cost of in�ation most emphasized in these papers: the ensuing dispersion

in prices that distorts allocation across varieties of products. Thus, our results do not speak to the

impact of nominal aggregate demand shocks on this component of welfare.

Lastly, we do not mean to imply that we have a superior welfare criterion to analyze optimal

policy than Woodford (2001) or Benigno and Woodford (2005), or that our results suggest that

surprise positive nominal shocks are a commendable policy. In particular, Benigno and Woodford

(2005) show that even in the presence of monopolistic distortions, for most reasonable parameter-

izations optimal policy under commitment should concern itself primarily with price stabilization

and should not attempt to undo the monopolistic distortion by surprising �rms. Still, we contend

that to the extent that monetary surprises do take place, it is important to understand how they

impact household�s welfare, and � provides a useful measure of this impact.

A.2 Proofs of propositions

Proof of Proposition 1. 1) and 2) follow from inspection of equation (13).

3) We check that f is given by

G(t) = 1� (1 + �(t))e��t��
R t
0 �(s)ds 8t:

Integrating equation (11) we �nd that

1� ! (t) = 1� �
Z t

0
(1�G (s)) ds:

From the sequence of equalities in (12) it follows that 1 � �
R t
0 (1�G (s)) ds = 1 � ! (t) =

e��t��
R t
0 �(s)ds. Thus, we can write

G(t) = 1� (1 + �(t))
�
1� �

Z t

0
(1�G (s)) ds

�
:
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Use the de�nition of � (t) to substitute it out:

G (t) = 1�
 
1 +

1�G (t)
1� �

R t
0 (1�G (s)) ds

� 1
!�
1� �

Z t

0
(1�G (s)) ds

�
= G (t) :

Proof of Lemma 1. We verify that the statement is true through a sequence of substitutions.

Substituting out 	t (s) we get that � (t) =
R1
t

h(s)
�

1�G(s)R1
t (1�G(v))dvds � 1. From equation (11) it

is easy to verify that �
R1
t (1�G (v)) dv = 1 � ! (t). Since it does not depend on s we can

take it out of the integral to get � (t) = 1
1�!(t)

R1
t h (s) (1�G (s)) ds � 1. Finally, note that

h (s) (1�G (s)) =
@G(s)
@s

1�G(s) (1�G (s)) =
@G(s)
@s , so that � (t) = 1

1�!(t)
R1
t

@G(s)
@s ds � 1 = 1�G(t)

1�!(t) � 1.
This is exactly how � (t) is de�ned in De�nition 10.

Proof of Lemma 2. First, note that � (0) = 0 always, since G (0) = ! (0) = 0. Second,

we can write � (t) = E
h
h(s)
� js � t

i
� 1, where the conditional expectation is taken with respect to

the probability measure 	0. If the hazard function is (weakly) increasing, it follows that � (t) =

E
h
h(s)
� jh (s) � h (t)

i
� 1. Also, since h (t) increases in t, so does � (t). Since � (0) = 0, � (t) > 0

8t > 0.

Proof of Proposition 2.

1) We prove this in two steps:

i) There is a unique t�� > 0 such that GA (t��) = GB (t
��) < 1, 1�GA (t) < 1�GB (t) if t < t�

and 1�GA (t) > 1�GB (t) if t > t�.

First we show that a t�� with GA (t��) = GB (t
��) < 1 exists. Suppose not, then GA (t) >

GB (t) 8t or vice versa (otherwise, since G is di¤erentiable, it is continuous and t�� must exist

by the intermediate point theorem). But this contradicts the assumption that �A = �B, since

�A =
R1
0 (1�GA (t)) dt and �B =

R1
0 (1�GB (t)).

Second, we show that t�� > t�. Note that:

1�GA (t) = e�
R t
0 hA(s)ds;

1�GB (t) = e�
R t
0 hB(s)ds:

Since hA (t) > hB (t) 8t < t�, it follows that

1�GA (t) < 1�GB (t) 8t < t�:
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It follows that t�� > t�.

Let t�� be the �rst crossing point. Since e�
R t��
0 hA(s)ds = e�

R t��
0 hB(s)ds, we can write

1�GA (t)� (1�GB (t)) = e�
R t
0 hA(s)ds � e�

R t
0 hB(s)ds

= e�
R t��
0 hA(s)ds

�
e
�
R t
t��t

hA(s)ds � e�
R t
t��t

hB(s)ds
�
if t > t��:

Now, recall that t�� > t�, so that if t > t��, then hA (t) < hB (t). Thus, the expression in parenthesis

is strictly positive. Thus there is no crossing point to the right of t��. There is also no crossing

point to the left of t��, since in that case we could repeat the exercise above to show that t�� cannot

exist. Thus, t�� is unique.

ii) If there is t��so that 1 � GA (t) < 1 � GB (t) for t < t�� and 1 � GA (t) > 1 � GB (t) for

t > t��, then �A (t) > �B (t) 8t.
For t < t�� it follows trivially that

R t
0 GB (s) ds <

R t
0 GA (s) ds 8t with the inequality strict for

t above a certain range. For t > t��,

@
R t
0 [GB (s)�GA (s)] ds

@t
= GB (t)�GA (t) > 0:

This means that we can bound
R t
0 [GB (s)�GA (s)] ds above as follows:

Z t

0
[GB (s)�GA (s)] ds <

Z 1

0
[GB (s)�GA (s)] ds 8t � t��

Using integration by parts plus the condition that the expected values are the same implies that

the bound is zero: Z 1

0
[GB (s)�GA (s)] ds = �

�
��1B � ��1A

�
= 0

Thus
R t
0 GB(s)ds <

R t
0 GA(s)ds 8t. We can verify from equation (11) that ! (t) = �

R t
0 (1�G (s)) ds.

Hence, it follows that 1� !B(s) > 1� !A(s) 8t. Since, from equation (13), 1� !(t) = e��t���(t),

it follows that �A(t) > �B(t) 8t.
2) Suppose the two functions do not cross. The either hA (t) > hB (t) for all t or vice versa.

In the �rst case, we have that GA (t) = 1 � e�
R t
0 hA(v)dv > 1 � e�

R t
0 hB(v)dv = GB (t) for all t (and

vice versa in the opposite case). But both of these violate the condition that
R1
0 (1�GA (t)) dt =R1

0 (1�GB (t)) dt which is necessary for ��1A = ��1B .

Let t� be a crossing point. Then, for any t < t�, hA (t) = hA (t
�) �

R t�
t

@hA(s)
@s ds and hB (t) =

hB (t
�) �

R t�
t

@hB(s)
@s ds. Since @hA(s)

@s < @hB(s)
@s and hA (t�) = hB (t

�) it follows that hA (t) > hB (t).

Likewise, for any t > t�, hA (t) = hA (t
�) +

R t�
t

@hA(s)
@s ds and hB (t) = hB (t

�) +
R t�
t

@hB(s)
@s ds so that

hB (t) > hA (t). Thus there is a single crossing point and part 1) applies.
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Proof of Corollary 1.

Follows from applying Proposition 1, part 2.

Proof of Lemma 3.

See text.

Proof of Proposition 3. First, use De�nition 3 and integrate both sides of equation (11)

to write 1� !1sect (t):

1� !1sect (t) = E [�k]

Z 1

t

�
1� �G (E [�k] s)

�
ds

= E [�k]

Z 1

E[�k]t

�
1� �G (v)

�
E [�k]

�1 dv

=

Z 1

E[�k]t

�
1� �G (s)

�
ds

= 1� �! (E [�k] t) :

Now, use Lemma 3 to write 1� !het (t):

1� !het (t) = E [�k]

Z 1

t

 
1�

E
�
�k �G (�ks)

�
E [�k]

!
ds

= E

�Z 1

t
�k
�
1� �G (�ks)

�
ds

�
= 1� E [�! (�ks)] :

We can show that �! is concave, i.e.:

!
�
�x+ (1� �)x0

�
= �! (x) + (1� �)!

�
x0
�
:

Given the de�nition of !, this is the same as:Z �x+(1��)x0

0
[1�G (s)] ds > �

Z x

0
[1�G (s)] ds+ (1� �)

Z x0

0
[1�G (s)] ds:
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W.l.o.g., let x0 > x. Then, we can writeZ �x+(1��)x0

0
[1�G (s)] ds > �

Z x

0
[1�G (s)] ds+ (1� �)

Z x0

0
[1�G (s)] ds

�

"Z �x+(1��)x0

0
[1�G (s)] ds�

Z x

0
[1�G (s)] ds

#
> (1� �)

"Z x0

0
[1�G (s)] ds�

Z �x+(1��)x0

0
[1�G (s)] ds

#

�

Z �x+(1��)x0

x
[1�G (s)] ds > (1� �)

Z x0

�x+(1��)x0
[1�G (s)] ds

(1� �)
�
x0 � x

�
�

R �x+(1��)x0
x [1�G (s)] ds

(1� �) (x0 � x) > � (1� �)
�
x0 � x

� R x0�x+(1��)x0 [1�G (s)] ds
� (x0 � x)R �x+(1��)x0

x [1�G (s)] ds
(1� �) (x0 � x) >

R x0
�x+(1��)x0 [1�G (s)] ds

� (x0 � x) :

Since
R �x+(1��)x0
x

1
(1��)(x0�x)ds =

R x0
�x+(1��)x0

1
�(x0�x)ds = 1, the inequality holds, since

R �x+(1��)x0
x [1�G (s)] ds

(1� �) (x0 � x) > 1�G
�
�x+ (1� �)x0

�
>

R x0
�x+(1��)x0 [1�G (s)] ds

� (x0 � x) :

From Jensen�s inequality, it follows that E [�! (�kt)] < �! (E [�kt]), and

1� !het (t) = 1� E [�! (�kt)] > 1� �! (E [�k] t) = 1� !1sect (t) :

The proposition follows from 1 � !(t) = e�����(t). Since �het = �1sect = E [�k], and 1 �
!het(t) > 1� !1sect (t), then it has to be the case that �het(t) < �1sect(t).

Proof of Proposition 4. Suppose GA (t) is a mean preserving spread over GB (t). ThenR t
0 GA (s) ds >

R t
0 GB (s) ds 8t. It follows that 1�!A (t) = 1��

R t
0 GA (s) ds < 1��

R t
0 GB (s) ds =

1� !B (t). It follows that �A (t) = � ln(1�!A(t))
� � t > � ln(1�!B(t))

� � t = �B (t).

Proof of Proposition 4. See Carvalho and Schwartzman (2012).

Proof of Proposition 7.

I.1) and I.2) follow from parts 1) and 2) of Proposition 1.

I.3) Follows from the fact that, under Taylor, �(t) is maximal and part I.2

I.4) Follows from Lemma 2 and the fact that under Calvo, �(t) = 0 and part I.2

I.5) Follows from Proposition 2 and part I.2.

I.6) Follows from Proposition 4 and part I.2.
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II.1) Given � = 0, we can treat each sector in the multi-sector economy as a separate econ-

omy. From Proposition 6 the real impact of the shock in an economy characterized by Gk is

�k =
R1
0 e��t (1� !k (t))

�
mnew (t)�mold (t)

�
dt where !k (t) = �k

R t
0 (1�Gk (t)) dt. The real im-

pact of the shock in the multi-sector economy is just the cross-sectoral average �het = E [�k] =R1
0 e��t (1� E [!k (t)])

�
mnew (t)�mold (t)

�
dt. Now, consider a one sector economy with ~G (t) =

E[�kGk(t)]
E[�k]

. The real impact of the shock in that economy is ~� =
R1
0 e��t (1� ~! (t))

�
mnew (t)�mold (t)

�
dt

where ~! (t) = E [�k]
R t
0

�
1� E[�kGk(t)]

E[�k]

�
dt . It follows that ~� = �het since E [!k (t)] = E

h
�k
R t
0 (1�Gk (s)) ds

i
=

E [�k]
R t
0

�
1� E[�kGk(s)]

E[�k]
ds
�
ds = ~! (t) :

II.2) This follows from II.1) and Proposition 3.

Propositions 5 and 8 are special cases of the proposition below:

Proposition A. 4 Suppose an economy is characterized by a distribution of prices G with
R1
0 (1�G (t)) tKdt <

1 and with associated selection function �, hazard function h. Let � be the random variable whose

realizations correspond to the di¤erent price spells in the economy. The real impact of a shock to

the level of nominal income characterized by mnew(t) =
PK

k=1 akt
k�1 is:

lim
�!0

� =
KX
k=1

ak
k (k + 1)

E
�
�k+1

�
E [� ]

:

Proof. Consider �rst a case with bounded support, i.e., there is z such that ! (t) = 1 8t � z:

lim
�!0

� =

Z 1

0

KX
k=1

(1� ! (t)) aktk�1dt

=

Z z

0

KX
k=1

(1� ! (t)) aktk�1dt

=

KX
k=1

ak

�
zk

k
(1� ! (z))� 0� (1� ! (0))�

Z z

0

tk

k

@ (1� ! (t))
@t

dt

�

= 0 +
KX
k=1

ak

Z z

0

tk

k

@! (t)

@t
dt

= �

Z z

0

KX
k=1

ak
tk

k
(1�G (t)) dt:
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Then,

lim
�!0

� = �

Z z

0

KX
k=1

ak
tk

k
(1�G (t)) tdt

= �

"
KX
k=1

ak
zk+1

k (k + 1)
(1�G (z))� 0� (1�G (0))�

Z z

0

tk+1

k (k + 1)
d (1�G (t))

#

= �

Z z

0

KX
k=1

ak
tk+1

k (k + 1)
dG (t)

= �

KX
k=1

ak
k (k + 1)

E
h
�k+1

i
=

KX
k=1

ak
k (k + 1)

E
�
�k+1

�
E [� ]

;

where the last line follows from ��1 = E [� ].

The case with unbounded support can be obtained by constructing a sequence of distribution

functions Gz (t) de�ned as:

Gz (t) =
G (t)

G (z)
1l (t � z) + 1l (t � z) ;

with associated �z =
�R1
0 (1�Gz (t)) dt

��1. We take the limit
lim
z!1

lim
�!0

� = lim
z!1

�z

Z 1

0

KX
k=1

ak
tk

k
(1�Gz (t)) dt:

We then use Lebesgue�s dominated convergence theorem (see, for example, Kolmogorov and

Fomin 1970) to show that this limit is equal to �
R1
0 ak

tk

k (1�G (t)). Let fz1; z2; :::; zn; :::g be an
in�nite sequence such that zk+1 > zk 8k and z1 > 0. Then, for all t, limn!1 �zn (1�Gzn (t)) tk =
�(1�G (t)) tk. Furthermore there is a �� < 1 such that, �zn (1�Gzn (t)) tk < �� (1�G (t)) tk.
That 1 � Gzn (t) < 1 � G (t) follows trivially from the de�nition of Gzn . To see that such a ��

exists, recall that �zn =
�R1
0 (1�Gzn (t)) dt

��1 and that for all n > 1,
R1
0 (1�Gzn (t)) dt =R zn

0

�
1� G(t)

G(zn)

�
dt >

R z1
0

�
1� G(t)

G(z1)

�
dt. Thus, it is enough to pick �� >

hR z1
0

�
1� G(t)

G(z1)

�
dt
i�1

.

If
R1
0 (1�G (t)) tkdt < 1 then ��

R1
0 (1�G (t)) tkdt < 1 and all the conditions of the

theorem are satis�ed. It follows that limn!1
R1
0 (1�Gzn (t)) tkdt =

R1
0 (1�G (t)) tkdt and

�
R1
0

PK
k=1 ak

tk

k (1�G (t)) dt = limz!1 �z
R1
0

PK
k=1 ak

tk

k (1�Gz (t)) dt.

40


