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Abstract

We develop a new parametric estimation procedure for option panels observed with error. We
exploit asymptotic approximations assuming an ever increasing set of option prices in the mon-
eyness (cross-sectional) dimension, but with a fixed time span. We develop consistent estimators
for the parameters and the dynamic realization of the state vector governing the option price
dynamics. The estimators converge stably to a mixed-Gaussian law and we develop feasible
estimators for the limiting variance. We also provide semiparametric tests for the option price
dynamics based on the distance between the spot volatility extracted from the options and one
constructed nonparametrically from high-frequency data on the underlying asset. Furthermore,
we develop new tests for model fit over specific regions of the volatility surface and for the
stability of the risk-neutral dynamics over time. A comprehensive Monte Carlo study indicates
that the inference procedures work well in empirically realistic settings. In an empirical appli-
cation to S&P 500 index options, guided by the new diagnostic tests, we extend existing asset
pricing models by allowing for a flexible dynamic relation between volatility and priced jump
tail risk. Importantly, we document that the priced jump tail risk typically responds in a more
pronounced and persistent manner than volatility to large negative market shocks.
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1 Introduction

A voluminous literature spanning several decades has, unambiguously, established that time-varying

volatility and jumps are intrinsic features of financial prices. Moreover, there has been substantial

interest in linking return premiums in the economy to the compensation for such latent risks. In

parallel, the trading of derivative contracts has grown explosively, in part reflecting a desire among

investors to manage their volatility and jump risk exposures. As a result, ever more comprehensive

data for, in particular, exchange-traded options have become available over time. These options

span a variety of expiration dates (tenors) and strike prices (moneyness), effectively providing an

option or “implied volatility” surface for each trading day, indexed by moneyness and tenor. This

sequence of option surfaces – which we label an option panel – provides an ideal input for estimation

of dynamic asset pricing models. Specifically, in a frictionless parametric setting, the surface allows

for perfect recovery of the risk-neutral parameters and the (multivariate) state vector driving the

option price dynamics. Within realistic asset pricing models, both reduced form and structural, the

state vector typically contains much more information than just the current spot volatility level.

For example, it may include short- and long-run volatility factors as well as components governing

the jump intensity. Importantly, these state variables are intrinsically latent from the perspective

of the underlying asset price, even if a continuous trajectory of the latter is observed.

In practice, however, drawing inference from the option panel is complicated by the presence

of non-trivial observation errors in the option prices. The size of those errors vary across strikes

and tenor and depend on general market conditions, including possibly the state vector itself. The

convolution of the theoretical option price with the observation errors renders the state vector and

parameters unobservable directly from a noisy option panel. This situation resembles the recovery of

volatility from high-frequency returns, where the volatility is convoluted with Gaussian innovations

as well as jumps and microstructure noise. In that context, an elegant solution is to resort to

in-fill asymptotics in the time dimension and “average out” the Gaussian return innovations along

with the remaining confounding factors. This effectively renders volatility observable subject to

quantifiable estimation error. Below, we follow an analogous strategy in the spatial domain.

Consequently, we develop rigorous inference techniques for the implied (latent) state vector and

risk-neutral parameters, while avoiding parametric assumptions about the actual measure governing

the state vector dynamics. This is feasible as we develop asymptotic distributional approximations

assuming only that the number of options underlying each volatility surface is large, so we may

treat the time dimension as fixed. We may also allow the observation errors for the option prices to

exhibit limited dependence in the spatial (across strikes and tenors) and time series dimension. We
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accommodate variation in the number of option quotes as well as the strike range and tenor across

time – as in the data – and there is no requirement of stationarity in the pattern of maturity and

moneyness. Similarly, the observation error may have a non-ergodic and time-varying distribution.

Our estimation method is penalized nonlinear least squares (NLS). The objective function has

two parts. The primary component is the mean-square-error in fitting the observed option prices

using the parametric option pricing model. The second piece of the objective function penalizes

estimates depending on how much the option-implied volatility state deviates from a local nonpara-

metric estimate of spot volatility constructed from high-frequency data on the underlying asset.

This constraint stems from the no-arbitrage condition that the current (aggregate) diffusion coef-

ficient must be identical under the actual and risk-neutral measures. Assuming the option price

errors “average out” sufficiently when pooled in the objective function, we can consistently estimate

both the parameters of the risk-neutral density and the realized trajectory of the state vector.

We further establish the asymptotic properties of our estimator. The convergence is stable, i.e.,

it holds jointly with any (bounded) random variable defined on the probability space. The limiting

distribution is mixed Gaussian with an asymptotic variance that can depend on any random variable

adapted to the filtration. The limiting law reflects the flexibility of the estimation approach: we

can accommodate option errors that depend in unknown ways on the volatility state as well as

option characteristics such as moneyness and tenor. We also provide consistent estimators for the

asymptotic variance, thus enabling feasible inference. In analogy to standard NLS, if the option

errors are heteroskedastic, we may enhance efficiency by weighting the option fit appropriately for

the differing degrees of moneyness and tenor. Consequently, in contrast to much earlier work on

option pricing allowing for observation error, e.g., Bates (2000), Jones (2006), and Eraker (2004),

we do not impose any parametric assumption on the pricing errors, and we allow them to display

significant heteroskedasticity.

As noted previously, the recovery of the volatility state from the option surface has impor-

tant features in common with the “realized volatility” estimation of stochastic volatility (or time-

integrals thereof) based on high-frequency asset returns, see, e.g., Andersen and Bollerslev (1998),

Andersen et al. (2003), and Barndorff-Nielsen and Shephard (2002, 2006). In either case, the

volatility realization at specific points in time may be recovered pathwise. Moreover, both es-

timators converge stably with an asymptotic variance that depends on the observed trajectories

of asset prices, but do not require stationarity or ergodicity of the volatility process. While the

high-frequency (jump-robust) estimator of volatility is based on “averaging out” the noise in the

high-frequency return data, the option-based volatility estimator “averages out” the observation
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errors across the option surface. The major difference is that the option-based estimator exploits a

parametric pricing model while the estimator based on high-frequency returns is fully nonparamet-

ric. If the option pricing model is valid, the two volatility estimates should not differ in a statistical

sense. We formalize and operationalize this observation. Under correct model specification, we es-

tablish a joint stable convergence law for the two estimators, enabling us to devise a formal model

specification test based on the distance between the two volatility measures.

We propose additional new diagnostic tests for the option price dynamics. The first explores

the stability of the risk-neutral parameter estimates over distinct time periods. If the model is

misspecified, the period-by-period estimates will, in general, converge to a pseudo-true value, see,

e.g., White (1982) and Gourieroux et al. (1984). However, the latter changes over time as the

trajectory of the state vector varies across estimation intervals and, for incorrect model specification,

this cannot be accommodated by an invariant parameter vector. Hence, we develop a test based

on the discrepancy between the parameter estimates over subsequent time periods.

Yet another diagnostic focuses on model performance over specific parts of the implied volatility

surface. The empirical option pricing literature typically gauges performance based on the time-

averaged fit for a limited set of options. In contrast, we may test for adequacy of the model implied

option pricing day-by-day. This diagnostic exploits our feasible limit theory by quantifying the

statistical error over the relevant portion of the surface, and then determines if the pricing errors

are significant. In essence, the approach disentangles the impact of observation errors (noise) in

the option prices from the systematic errors stemming from a misspecified model.

We explore the finite-sample properties of the estimators through an extensive Monte Carlo

study using the double-jump stochastic volatility model of Duffie et al. (2000), commonly used in

the option pricing literature, as well as a two-factor model. The scale of this simulation study

exceeds what has been undertaken previously in the related literature. We find our inference

technique to perform well within realistically calibrated settings.

In the empirical application we propose a new three-factor stochastic volatility model and esti-

mate it using an extensive option panel for the S&P 500 index. The model generalizes the existing

two-factor specifications by allowing the intensity of the jump tail to depend on an additional fac-

tor that is not a component of market volatility (although it can depend on it). Our diagnostic

tests reveal that this feature is crucial for explaining the observed dynamic dependencies between

short maturity out-of-the-money puts and at-the-money options. The results imply a significant

time variation in the risk-neutral jump tail risk. Furthermore, the left and right jump tails ex-

hibit very different dynamics with the latter resembling the dynamics of market volatility more
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closely. Finally, we document that the response of the priced left tail risk often is substantially

more pronounced and persistent than for the volatility process following market crises.

The rest of the paper is organized as follows. Section 2 introduces our formal setup. Section 3

develops our estimators and derives the feasible limit theory. In Section 4, we develop diagnostic

tests for the option price dynamics. Section 5 contains a Monte Carlo study of the proposed esti-

mators. In Section 6, we exploit our new inference tools to analyze the option price dynamics of the

S&P 500 index. Section 7 concludes. All proofs are deferred to the appendix. In a supplementary

appendix we collect additional results pertaining to the Monte Carlo and the empirical application.

2 The Basic Modeling Framework

2.1 Setup and Notation

We first establish some notation. The underlying univariate asset price process is denoted Xt and

is defined on a filtered probability space
(

Ω(0),F (0), (F (0)
t )t≥0,P(0)

)
over the calendar time interval

[0, T ], for T > 0 fixed. It is assumed to be governed by the following general dynamics (under P(0)),

dXt

Xt−
= αtdt +

√
Vt dWt +

∫
x>−1

x µ̃(dt, dx) , (1)

where αt and Vt are càdlàg; Wt is a P(0)-Brownian motion; µ is an integer-valued random measure

counting the jumps in X, with compensator ν̃ P(dt, dx) = atdt ⊗ νP(dx) for some process at and

Lévy measure νP(dx), and the associated martingale measure is µ̃ = µ − ν̃ P. Furthermore, we

denote the expectations operator under P(0) by E[·]. We assume X satisfies the following condition.

Assumption A0. The process X in equation (1) satisfies:

(i) There exists a sequence of stopping times Tr increasing to infinity, and for each integer r there

exists a bounded process V
(r)
t satisfying Vt = V

(r)
t for t < Tr, and there are positive constants Kr

such that E

{
|V (r)
t − V (r)

s |2
∣∣∣∣∣F (0)

s

}
≤ Kr|t− s| for every 0 ≤ s ≤ t ≤ T .

(ii)
∫
x>−1 (|x|β ∧ 1) νP(dx) <∞, for some β ∈ [0, 2).

(iii) inft∈[0,T ] Vt > 0 and the processes αt, Vt and at are locally bounded.

Assumption A0 is quite weak and satisfied for almost all standard continuous-time asset pricing

models. A0(i) is satisfied if Vt is governed by a (multivariate) stochastic differential equation.

Assumption A0(ii) restricts the so-called Blumenthal-Getoor index of the jumps (see, e.g., Section

3.2 in Jacod and Protter (2012)) to be below β. Some of our results, such as Theorem 5 below,

depend on the value of this coefficient. Finally, assumption A0(iii) implies that, at each point
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in time, the price process has a non-vanishing continuous martingale component. We note that

assumption A0 does not involve any integrability or stationarity conditions for the model.

The risk-neutral probability measure, Q, is guaranteed to exist by no-arbitrage restrictions on

the price process, see, e.g., section 6.K in Duffie (2001), and is locally equivalent to P. It transforms

discounted asset prices into (local) martingales. In particular, for X under Q, we have,

dXt

Xt−
= (rt − δt) dt +

√
Vt dWt +

∫
x>−1

x µ̃(dt, dx) , (2)

where rt is the instantaneous risk-free interest rate and δt is the instantaneous dividend yield.

Moreover, with slight abuse of notation, Wt now denotes a Q-Brownian motion and the jump

martingale measure is defined with respect to the risk-neutral compensator ν̃Q(dt, dx).

We further assume the diffusive volatility and jump processes are governed by a (latent) state

vector, so that Vt = ξ1(St) and ν̃Q(dt, dx) = ξ2(St) ⊗ νQ(dx), where νQ(dx) is a Lévy measure1;

ξ1 and ξ2 are known functions in C2, and St denotes the p × 1 state vector. Moreover, rt and δt

are smooth functions of St, and the latter follows a jump-diffusive Markov process under Q. This

specification nests most continuous-time models used in empirical work, including the affine jump-

diffusion class of Duffie et al. (2000). The setting allows for volatility processes whose dynamics

closely approximate long-memory type dependence, but since St is finite dimensional and follows

a Markov process, we do rule out genuine long-memory volatility processes.

We stress that we do not impose any restriction on the dependence between the latent state

vector St and either Wt or the jump measure µ. That is, the so-called leverage effect, working

through either the diffusive or the jump component of Xt, or both, is allowed for.

We denote European-style out-of-the-money option prices for the asset X at time t by Ot,k,τ .

Assuming frictionless trading in the options market, the option prices are given as,

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(3)

where τ is the tenor, K the strike price, Ft,t+τ the futures price of the underlying asset at time t for

the future date t+ τ , and k = ln(K/Ft,t+τ ) the log-moneyness. The Markovian assumption on the

state vector, St, implies that
ert,t+τOt,k,τ

Ft,t+τ
is a function only of the tenor, state vector, and moneyness

(as well as t, if St is not stationary under Q), where rt,t+τ is the risk-free interest rate for the period

1The separability of the Lévy measure in a time-invariant jump measure on the jump size and a stochastic process
is a nontrivial restriction. It essentially amounts to restricting the time-variation of jumps of different sizes to be the
same. Nevertheless, this assumption is satisfied in most parametric jump models in empirical applications used to
date, e.g., it holds for the whole affine jump-diffusion class of models.
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[t, t+ τ ].2 We denote the Black-Scholes implied volatility (BSIV) corresponding to Ot,k,τ by κt,k,τ .

This merely represents an alternative, and convenient, pricing convention for the options, as the

BSIV is a deterministic and strictly monotone transformation of the ratio ert,t+τOt,k,τ /Ft,t+τ .

2.2 The Parametric Option Pricing Framework

Henceforth, we assume a parametric model for the risk-neutral distribution, characterized by the

q × 1 parameter vector θ, with θ0 signifying the true value, while we do not restrict the objec-

tive distribution for the underlying asset beyond what is implied by the equivalence of the two

probability measures.3 For expositional convenience we assume that the functions ξ1(·) and ξ2(·)
do not depend on the parameter vector.4 The option panel has a fixed time span, [0, T ], and we

observe the option surface at given times t = 1, . . . , T . We have a large cross-section of k values,

spanning a significant strike range, available each date for several different tenors, τ . This is a

natural assumption for active and liquid option markets.

In this section, we focus on the ideal scenario without measurement errors in the option prices.

The critical extension to the case involving such errors is provided in Section 3. The theoretical

value of the BSIV under the risk-neutral model is denoted κ(k, τ,St, θ).
5 For each date t, we have

a cross-section of option prices {Ot,kj ,τj}j=1,...,Nt for some integer Nt, where the index j runs across

the full set of strikes and tenors available on day t. The number of options for the maturity τ

is denoted N τ
t . The asymptotic theory developed below reflects the distribution of the available

options in the sample across the days. Henceforth, we rely on the following notation,

Nt =
∑
τ

N τ
t , N =

∑
t

Nt, N = min
t=1,...,T

Nt. (4)

For each pair, (t, τ), k(t, τ) and k(t, τ) denote the minimum and maximum log-moneyness, respec-

tively. The moneyness grid for the options at time t and tenor τ is denoted,

k(t, τ) = kt,τ (0) < kt,τ (1)... < kt,τ (N τ
t ) = k(t, τ).

The asymptotic scheme sequentially adds new strikes to the existing ones within [k(t, τ), k(t, τ)].

The following condition formally captures the notion of a large, yet heterogeneous, option panel.

2Renault (1997) discusses the homogeneity of the option price with respect to (Xt,K) more generally.
3For an alternative approach imposing minimal assumptions on the objective probability measure, while employing

a parametric specification for the stochastic discount factor, see Gagliardini et al. (2011). The inference procedures
differ very substantially in other important dimensions, as Gagliardini et al. (2011) invoke large time span asymptotics
and deal with a small and fixed cross-section of options for each day.

4This assumption is also almost universally satisfied for the models used in practical applications.
5Recall that St is a Markov process. If the dynamics of St is non-stationary under Q, then κ should also have a

subscript t. For notational simplicity, we impose stationarity, but the analysis readily accommodates non-stationarity.
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Assumption A1. For each t = 1, ..., T and each moneyness τ , the number of options N τ
t ↑ ∞

with N τ
t /Nt → πτt and Nt/N → ςt, for some positive numbers πτt and ςt. Moreover, we have

N τ
t ∆t,τ (i) → ψt,τ (k) uniformly on the interval (k(t, τ), k(t, τ)), where ∆t,τ (i) = kt,τ (i)−kt,τ (i−1)

and ψt,τ (·) takes on finite and strictly positive values.

Assumption A1 allows for a great deal of intertemporal heterogeneity in the observation scheme.

For example, the tenors need not be identical across days and the assumption of a fixed number

of maturities at each point in time is imposed only to simplify the exposition. Importantly, we

allow for a different number of options in the panel across days, maturities and moneyness. Also,

intuitively, the relative number of options on a given date will impact the inference for the state

vector on that date compared with other dates. Likewise, the relative number of options across

the various maturities and the local “sparseness” of the strikes should influence the quality of

inference for parameters and state variables differentially depending on their sensitivity to tenor

and moneyness. The quantities ςt, π
τ
t and ψt,τ (k) capture these facets of the panel configuration

and they do appear explicitly in the asymptotic distribution theory established later.

Of course, although the risk-neutral measure is guaranteed to exist, it is not unique because,

in general, financial markets are incomplete. Given our parametric setting, our next assumption

is exactly what is required to uniquely identify the parameterized Q measure (as well as the state

vector) given the observation scheme in assumption A1.

Assumption A2. For every ε > 0 and θ ∈ Θ, for some compact set Θ, we have,

inf
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

∑
τ

∫ k(t,τ)

k(t,τ)
(κ(k, τ,St, θ0)− κ(k, τ,Zt, θ))

2 dk > 0, a.s.

We emphasize that this identification condition varies across distinct realizations of the state

vector. Assumption A1 and A2 imply that, given correct model specification, we can recover the

parameter vector as well as the state vector realization without error at any point in time.6 While

the state variables change from period to period, the parameter vector should remain invariant.

Similarly, the fit to the option prices provided by the model should be perfect. These restrictions

may serve as the basis for specification tests. Moreover, the parametric model has implications for

the pathwise behavior of X across all equivalent probability measures. Most notably, the diffusion

coefficient of X, ξ1(St), should be identical for Q and P. This property is also testable: the diffusion

6In a setting with an increasing time span T , the time series of the recovered state vector, St , may be further used
to estimate, parametrically or nonparametrically, the associated P law. Hence, an option panel with increasing time
span (and wide cross-section) suffices for estimating both the Q and P measures, and thus also the risk premiums
associated with the state vector dynamics. In principle, there is no need for return data on the underlying asset.
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coefficient may be recovered nonparametrically from a continuous record of X and contrasted with

the model-implied ξ1(St). We develop formal tests for such pathwise restrictions of the risk-neutral

model in Section 4, covering the relevant case of noisy option and asset price observations.

There are marked differences in the information content of the option panel (with fixed time

grid) versus the price path of the underlying asset. This is most readily illustrated in the ideal, and

infeasible, setting of frictionless trading and error-free pricing. A continuous record for X allows

us to obtain the diffusive volatility, without error, from a local neighborhood of the current time,

and to identify the timing and size of any price jump. In contrast, error-free option data enable

us to directly observe the state vector, St. If the state vector consists of a single volatility factor,

Vt, as is often assumed, the two approaches provide equivalent, and perfect, inference about the

state of the system. If the model allows for price jumps, the option panel lets us infer the, possibly

time-varying, risk-neutral jump intensities and jump distributions, but does not reveal the actual

jump realizations. In contrast, the price path for X identifies the jumps, but does not pin down

the jump distribution. Finally, if we move to a multi-factor volatility setting, as implied by much

recent research, the options data are even more pivotal for inference. For example, if there are two

volatility factors, i.e., Vt = V1,t + V2,t, the high-frequency data for X directly informs us about the

aggregate value, Vt, only, while the option data let us identify V1,t and V2,t separately. While these

conclusions only apply for an ideal setting, it clarifies what type of information one may aspire to

obtain from either source, even if it will involve estimation and inferential errors in practice.

3 Inference for Option Panels with a Fixed Time Span

We now turn to the empirically relevant case of noisy observations. Figure 1 depicts a nonpara-

metric kernel regression estimate of the relative bid-ask spread in the quotes for S&P 500 index

options, in units of BSIV, as a function of moneyness, and normalized by volatility. The spread is

non-trivial and increases quite sharply for deep out-of-the-money (OTM) calls. Clearly, the noise

in any individual option price is quite significant. This fact motivates our use of an extensive

cross-section of option prices to mitigate and diversify the impact of measurement error.7

In the remainder of this section, we develop inference procedures for the parameter vector, θ,

governing the risk-neutral distribution and the realized trajectory of the state vector {St}t=1,...,T

based on an option panel, observed with error. We first introduce our assumptions regarding option

errors, then define our estimator and, in turn, establish consistency and asymptotic normality.

7A similar perspective underlies the Chicago Board Options Exchange (CBOE) computation of the volatility VIX
index. It includes all relevant short maturity S&P 500 index options within the prescribed strike range, with the
implicit premise that the observation errors largely “wash out” in the integration.
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Figure 1: Kernel regression estimate of the bid-ask spread of option implied volatility as a function
of moneyness. The estimates are based on the best bid and ask quotes for the S&P 500 options on
the CBOE at the end-of-trading for each Wednesday during January 1, 1996 – July 21, 2010. We
use all available options with maturities up to a year. F and σ denote, respectively, the futures
price and the Black-Scholes at-the-money implied volatility at the end of the trading day.

3.1 The Option Error Process

We stipulate that option prices, quoted in terms of BSIV, are observed with error, i.e., we observe

κ̃t,k,τ = κt,k,τ + εt,k,τ ,

where the errors, εt,k,τ , are defined on a space Ω(1) = 
t∈N,k∈R,τ∈Γ

At,k,τ for At,k,τ = R, with Γ

denoting the set of all possible tenors. Ω(1) is equipped with the product Borel σ-field F (1), with

transition probability P(1)(ω(0), dω(1)) from the original probability space Ω(0) – on which X is

defined – to Ω(1). We define the filtration on Ω(1) via F (1)
t = σ (εs,k,τ : s ≤ t). Then the filtered

probability space (Ω,F , (Ft)t≥0,P) is given as follows,

Ω = Ω(0)×Ω(1), F = F (0)×F (1), Ft = ∩s>tF (0)
s ×F (1)

s , P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).

Processes defined on Ω(0) or Ω(1) may trivially be viewed as processes on Ω as well, e.g., Wt continues

to be a Brownian motion on Ω. We henceforth adopt this perspective without further mention.

Intuitively, this formal representation may be motivated as follows. The option errors are

defined on the space Ω(1). We equip this space with the simple product topology as, at any point

in time, only a countable number of them appear in our estimation. Since the option errors can be

associated with any strike, point in time and maturity, we need a “large” space to support them.
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Finally, since we want to allow the option prices and the underlying process X to be dependent,

we define the probability measure via a transition probability distribution from Ω(0) to Ω(1). For

the formal analysis of Ω(1), see chapter I of Dellacherie and Meyer (1978).

Given the presence of observation error, we cannot identify the parameters and state vector

simply by inverting the option pricing formula. We must explicitly accommodate the impact of

noise on the inference. In particular, if a limited set of options is included, then inference is only

feasible under strict parametric assumptions regarding the error distribution. This is problematic,

as we have little evidence pertaining to the nature of these price errors. In contrast, a large

cross-section allows us to “average out” the errors and remain fully nonparametric regarding their

distribution. However, this error “diversification” only works if we can ensure that the effect of the

option price errors vanishes in a suitable manner. The following condition suffices for establishing

consistency of our estimator (recall the notation N = mint=1,...,T Nt).

Assumption A3. For every ε > 0 , t = 1, ..., T , and any finite positive-valued F (0)
T -adapted

process ζt(k, τ) on R× Γ continuous in its first argument, we have, for N → ∞ and θ ∈ Θ,

sup
{||Zt−St||>ε} ∪ {||θ−θ0||>ε}

∑Nt
j=1 ζt(kj , τj) [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt

j=1 [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

P−→ 0 .

If the state vector St has bounded support, assumption A3 follows from a uniform Law of Large

Numbers on compact sets for which primitive conditions are well known, see, e.g., Newey (1991).

Of course, for typical asset pricing models the (stochastic) volatility process, and thus St , has

unbounded support. Assumption A3 may then be shown to follow from uniform convergence on a

space of functions vanishing at infinity; see, e.g., Theorem 21 in Ibragimov and Has’minskii (1981).

Assumption A3′ provides sufficient conditions for Assumption A3 to hold.

Assumption A3′. For every t = 1, ..., T , we assume: (i) κ(k, τ,St, θ) is continuously differentiable

in (St, θ), (ii) κ−1(k, τ,St, θ) = O((log(||St||))−1) as ||St|| → ∞ and θ ∈ Θ for some region in

(k(t, τ), k(t, τ)) with positive Lebesgue measure, (iii) εt,k,τ and εt,k′,τ ′ are independent conditional

on F (0) , whenever (k, τ) 6= (k′, τ ′), E
(
εt,k,τ |F (0)

)
= 0 , E

(
|εt,k,τ |max{p,q}+ι|F (0)

)
= ζt,k,τ , for ζt,k,τ

being a continuous function in its second argument and ι > 0 arbitrary small.

Assumption A3′ provides conditions directly on the option error and option price. In particular,

condition (ii) requires the option price to diverge in step with the state vector. This is pretty

intuitive. Indeed, the BSIV for short maturity ATM options approximately equals spot volatility

and hence increases indefinitely as volatility does so. The smoothness of the option prices in (i) as

10



well as the independence and unbiasedness of the measurement errors in (iii) are implied by the

conditions for the asymptotic limit theory to hold, and they are discussed further below. This leaves

the weak moment restriction on the measurement noise in (iii) as the only separate assumption on

the error process. In the Appendix we verify that Assumption A3′ implies Assumption A3.

We require additional regularity for our limiting distributional results to hold.

Assumption A4. For the error process, εt,k,τ , we have,

(i) E
(
εt,k,τ |F (0)

)
= 0 ,

(ii) E
(
ε2t,k,τ |F (0)

)
= φt,k,τ , for φt,k,τ being a continuous function in its second argument,

(iii) εt,k,τ and εt′,k′,τ ′ are independent conditional on F (0) , whenever (t, k, τ) 6= (t′, k′, τ ′),

(iv) E
(
|εt,k,τ |4 |F (0)

)
<∞, almost surely.

Assumption A4 implies that the observation errors, conditional on the filtration F (0), are inde-

pendent. Nonetheless, the error process may display a stochastically evolving volatility which can

depend on option moneyness and tenor as well as any other process defined on the original prob-

ability space such as the entire history of Xt and St. Relative to the earlier literature, we avoid

parametric modeling of the error and allow for significant flexibility for its conditional distribu-

tion, including the variance and higher order moments. Assumption A4 does, however, rule out

correlated option errors, although this requirement may also be weakened.

Assumption A4 is analogous to the conditions imposed on the microstructure noise process

for high-frequency asset prices in Jacod et al. (2009) and subsequent papers. We stress that part

(i) is critical for our results, although it may be weakened by allowing for a bias that vanishes

asymptotically. Part (iii) excludes correlation in the error across strikes, but we can accommodate

weak (spatial) dependence, at the cost of more complex notation (and proof). On the other hand,

if the option errors contain a common component across all strikes, this error, obviously, cannot

be “averaged out” by spatial integration in the moneyness dimension. For example, Bates (2000)

assumes that option prices on a given day, for moneyness within certain ranges, may contain a

common error component. He interprets this as a model specification error. In our setting, such

features must be included in the theoretical value κ(k, τ,St, θ0) rather than being treated as errors.

Finally, if it is more appropriate to assume unbiased errors for the option price rather than the

BSIV – which constitutes a nonlinear transformation of the price – one should instead minimize

the distance between observed and model-implied option prices. In our empirical application,

we find the BSIVs to be approximately linear in prices across the relevant strike range, so the

distinction between unbiasedness of implied volatilities or prices is not a practical concern; see,

e.g., Christoffersen and Jacobs (2004) for a discussion of the impact of the error specification.

11



3.2 Consistency

In order to formally define our inference procedure, we first introduce an arbitrary consistent non-

parametric estimator for the spot variance, Vt , obtained from high-frequency data on the underlying

asset. We denote this estimator V̂ n
t , where n signifies the number of high-frequency observations

of X that are available within a unit interval of time (an explicit example of V̂ n
t is provided in Sec-

tion 3.3). Our estimates for the state vector and the risk-neutral parameters based on the option

panel (and the high-frequency data) are then obtained as follows,(
{Ŝnt }t=1,...,T , θ̂

n
)

= argmin
{Zt}t=1,...,T , θ∈Θ

T∑
t=1

 1

Nt

Nt∑
j=1

(
κ̃t,kj ,τj − κ(kj , τj ,Zt, θ)

)2
+ λn

(
V̂ nt − ξ1(Zt)

)2

 , (5)

for a deterministic sequence of nonnegative numbers {λn}. The estimation is based on minimizing

the mean squared error in fitting the panel of observed option implied volatilities, with a penaliza-

tion term that reflects how much the implied spot volatility deviates from a model-free volatility

estimate. The presence of V̂ n
t in the objective function serves to help identify the parameter vector

by penalizing values that imply “unreasonable” volatility levels.

The presence of the penalization term in (5) is reminiscent of the inclusion of information

regarding the P dynamics in option-based estimation, e.g., Bates (2000) and Pan (2002). There

is, however, a fundamental difference. We do not model the P dynamics and the penalization in

(5) concerns the pathwise behavior of the option surface, not its P law. This is therefore, a more

robust (parameter-free) and stronger (pathwise) restriction on the option dynamics.

The consistency of
(
Ŝnt , θ̂

n
)

follows from the next theorem.

Theorem 1 Suppose assumptions A1-A3 hold for some T ∈ N fixed and that {V̂ n
t }t=1,...,T is con-

sistent for {Vt}t=1,...,T , as n→∞. Then, if N →∞ and λn → λ for some finite λ ≥ 0 as n→∞,

we have that
(
Ŝnt , θ̂

n
t

)
exists with probability approaching 1 and further that,

||Ŝnt − St||
P−→ 0, ||θ̂n − θ0||

P−→ 0, t = 1, ..., T. (6)

Thus, in the presence of observation errors satisfying assumption A3, we can still recover the state

vector as well as the risk-neutral parameters consistently from the option panel. The key difference

between the parameters and the state vector is that the latter changes from day to day, while

the former must remain invariant across the sample. The longer the time span covered by the

sample, the more restrictive is this invariance condition for the risk-neutral measure. Another

major distinction stems from the penalization term constructed from high-frequency data as this

term involves only the state vector and not directly the risk-neutral parameters.
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3.3 The Limiting Distribution of the Estimator

In analogy to the high-frequency based realized volatility estimators, which also rely on in-fill

asymptotics, our limiting distribution results involve stable convergence. We use the symbol
L−s−→

to indicate this form of convergence. It is an extension of the standard notion of convergence in

law to the case where the limiting sequence converges jointly with any bounded variable defined on

the original probability space. It is particularly useful when the limiting distribution depends on

FT , as in our setting. For formal analysis of this concept, see, e.g., section VIII.5.c. in Jacod and

Shiryaev (2003). The stable convergence result in the following theorem is critical for enabling our

feasible inference as well as the development of our diagnostic tests in Section 4.

Theorem 2 Assume A1-A4 hold and κ(t, τ,Z, θ) is twice continuously-differentiable in its argu-

ments. Then, if N →∞ and λ2
nN → 0, for n→∞, we have,



√
N1 (Ŝn1 − S1)

...
√
NT (ŜnT − ST )√
N/T (θ̂n − θ0)


L−s−→ H−1

T (ΩT )1/2


E1

...

ET

E′

 , (7)

where E1,...,ET are p× 1 vectors and E′ is q× 1 vector, all defined on an extension of the original

probability space being i.i.d. with standard normal distribution, and we define

Φ =


Φ1,1
T . . . 0p×p Φ1,T+1

T
...

. . .
...

...

0p×p . . . ΦT,T
T ΦT,T+1

T

ΦT+1,1
T . . . ΦT+1,T

T ΦT+1,T+1
T

 , Φ = H, Ω, (8)

with the blocks of H and Ω for t = 1, ..., T given by
Ht,t
T =

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇Sκ(k, τ,St, θ0)′dk,

HT+1,T+1
T =

∑T
t=1

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ht,T+1
T =

(
HT+1,t
T

)′
=
∑

τ π
τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,
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Ωt,t
T =

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) φt,k,τ ∇Sκ(k, τ,St, θ0)∇Sκ(k, τ,St, θ0)′dk,

ΩT+1,T+1
T =

∑T
t=1

1
Tςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) φt,k,τ ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ωt,T+1
T =

(
ΩT+1,t
T

)′
= 1√

Tςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

1
ψt,τ (k) φt,k,τ ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk.

Several comments are in order. First, we reiterate that the limit result in (7) holds stably conditional

on the filtration of the original probability space. The limit is mixed-Gaussian, with a mixing

variable, H−1
T (ΩT )1/2, that is adapted to FT .8 The random asymptotic variance of the estimator

signifies that the precision in recovering the state vector varies from period to period, and that the

quality of inference in general depends on the values of the state vector and asset prices as well as

the number and characteristics of the options, i.e., tenor and moneyness. This provides important

flexibility as the features of the option data change from day to day. It also allows us to formally

compare estimates across different time periods and we make frequent use of this fact in the next

section. We stress that Theorem 2 does not require any form of stationarity or ergodicity of the

state vector, respectively volatility, under the statistical distribution. As noted previously, many

aspects of the limiting distributional theory established above resemble the corresponding theory

for volatility estimators based on high-frequency data, see, e.g., Barndorff-Nielsen et al. (2006).

Our setup may be contrasted to the cross-sectional regressions with common shocks analyzed by

Andrews (2005); see also Kuersteiner and Prucha (2011) for extensions. Andrews (2005) analyzes

cross-sectional least squares estimators where both the errors and regressors, conditional on an

F0-adapted random vector, are i.i.d. In our setting, the role of the regressors is taken on by

the state vector, St, but it is not directly observable and, critically, it exhibits strong temporal

dependence. Most importantly, the stable convergence results of Theorem 2 are valid for a much

wider σ-field than (a subfield of) F0 – as in Andrews (2005) – enabling feasible inference from option

prices that are highly correlated with the evolving return and volatility innovations. Further, in

Theorem 5 below, we show that the stable convergence of Theorem 2 holds jointly with that of a

high-frequency estimator for spot volatility, another result for which our general stable convergence

result is indispensable.

To implement feasible inference, we need to obtain the requisite consistent estimate of the (con-

ditional) asymptotic variance of
(
{Ŝnt }t=1,...,T , θ̂

n
)

, which in turn, can be done using a consistent

estimator of the option error, εt,k,τ . The formal result is stated in the following theorem.

8More formally, the matrices should be denoted HT (ω(0)) and ΩT (ω(0)) to highlight the fact that they depend on
the particular realization on the original probability space.
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Theorem 3 Under the conditions of Theorem 2, consistent estimates for HT and ΩT are given

by ĤT and Ω̂T , where for the same partition of the matrixes as in (8), we set
Ĥt,t
T = 1

Nt

∑Nt
j=1 ∇Sκ(kj , τj , Ŝ

n
t , θ̂)∇Sκ(kj , τj , Ŝ

n
t , θ̂)

′,

ĤT+1,T+1
T =

∑T
t=1

1
Nt

∑Nt
j=1 ∇θκ(kj , τj , Ŝ

n
t , θ̂)∇θκ(kj , τj , Ŝ

n
t , θ̂)

′,

Ĥt,T+1
T =

(
ĤT+1,t
T

)′
= 1

Nt

∑Nt
j=1 ∇Sκ(kj , τj , Ŝ

n
t , θ̂)∇θκ(kj , τj , Ŝ

n
t , θ̂)

′,

(9)


Ω̂t,t
T = 1

Nt

∑Nt
j=1

(
κ̂j − κ(kj , τj , Ŝt, θ̂)

)2

∇Sκ(kj , τj , Ŝ
n
t , θ̂)∇Sκ(kj , τj , Ŝ

n
t , θ̂)

′,

Ω̂T+1,T+1
T = (

∑T
t=1Nt
T )

∑T
t=1

1
N2
t

∑Nt
j=1

(
κ̂j − κ(kj , τj , Ŝ

n
t , θ̂)

)2

∇θκ(kj , τj , Ŝ
n
t , θ̂)∇θκ(kj , τj , Ŝ

n
t , θ̂)

′,

Ω̂t,T+1
T =

(
Ω̂T+1,t
T

)′
=

√∑T
t=1Nt
TN3

t

∑Nt
j=1

(
κ̂j − κ(kj , τj , Ŝ

n
t , θ̂)

)2

∇Sκ(kj , τj , Ŝ
n
t , θ̂)∇θκ(kj , τj , Ŝ

n
t , θ̂)

′.

(10)

Based on equations (9) and (10), as well as the limit result in (7), pivotal tests such as t-tests for

the parameters are readily constructed. This is a by-product of the stable convergence in equation

(7), which ensures that the result holds jointly with the convergence in probability of ĤT and Ω̂T

to their (random) asymptotic limits.

We also note that Theorem 2 allows for conditional heteroskedasticity in the option price error.

When the latter is present, the estimator in (5) is inefficient in the sense that the observations are

not weighted optimally. The next theorem accommodates the use of weighted least squares (WLS).

Theorem 4 Under the setting of Theorem 2, suppose there exist

φ̂t,k,τ
P−→ φt,k,τ > 0, uniformly on [k(t, τ), k(t, τ)], (11)

for τ ∈ Γ and t = 1, ..., T , as N →∞ and n→∞. Define

(
{Snt }t=1,...,T , θ

n
)

= argmin
{Zt}t=1,...,T , θ∈Θ

T∑
t=1


Nt∑
j=1

(κ̃t,k,τ − κ(kj , τj ,Zt, θ))
2

φ̂t,k,τ
+ λn

(
V̂ nt − ξ1(Zt)

)2

 , (12)

with λ2
nN → 0. Then

(
{Snt }t=1,...,T , θ

n
)

is consistent and further,

√
N


S
n
1 − S1

...

S
n
T − ST

θ
n − θ0


L−s−→ Λ

−1/2
T


E1

...

ET

E′

 , (13)

where E1,...,ET are p × 1 vectors and E′ is q × 1 vector, all defined on an extension of the orig-

inal probability space and jointly constituting an i.i.d. standard normal vector, and for the same
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partitioning of ΛT as in equation (8), the ΛT matrix is defined by,

Λt,t
T = ςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

φ−1
t,k,τ

ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇Sκ(k, τ,St, θ0)′dk,

ΛT+1,T+1
T =

∑T
t=1 ςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

φ−1
t,k,τ

ψt,τ (k) ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Λt,T+1
T =

(
ΛT+1,t
T

)′
= ςt

∑
τ π

τ
t

∫ k(t,τ)
k(t,τ)

φ−1
t,k,τ

ψt,τ (k) ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk.

A consistent estimate for ΛT is given by Λ̂T where, for the identical partition of the matrices as

used in equation (8), we set,

Λ̂t,t
T = 1∑T

t=1Nt

∑Nt
j=1 φ̂

−1
t,k,τ ∇Sκ(kj , τj , Ŝ

n
t , θ̂)∇Sκ(kj , τj , Ŝ

n
t , θ̂)

′,

Λ̂T+1,T+1
T = 1∑T

t=1Nt

∑Nt
j=1 φ̂

−1
t,k,τ ∇θκ(kj , τj , Ŝ

n
t , θ̂)∇θκ(kj , τj , Ŝ

n
t , θ̂)

′,

Λ̂t,T+1
T = 1∑T

t=1Nt

∑Nt
j=1 φ̂

−1
t,k,τ ∇Sκ(kj , τj , Ŝ

n
t , θ̂)∇θκ(kj , τj , Ŝ

n
t , θ̂)

′.

The weighting of the observations in (12) renders the (conditional) expected Hessian of the objective

function equal to the limiting (conditional) covariance matrix of the gradient or score of the objective

function, evaluated at ({St}t=1,...,T , θ0). This implies that the asymptotic conditional covariance

matrix of
(
{Snt }t=1,...,T , θ

n
)

is Λ−1
T . The derivation of the WLS estimator in Theorem 4 depends

critically on the stable convergence. As in the classical theory for M-estimators, the proof exploits

Slutsky’s theorem which implies (Xn, Yn)
L−→ (X,Y ) for two sequences Xn

L−→ X and Yn
P−→ Y ,

but, importantly, only when Y is non-random. This result may be extended to the case where the

limit Y is random only under the stable form of convergence, see, e.g., equation (2.2.5) in Jacod and

Protter (2012). For our WLS estimator, the limits of the weights and the elements of the Hessian

matrix are random, unlike the classical WLS estimator for which they are non-random constants.

Theorem 4 references a generic consistent estimator of the conditional asymptotic variance of

the option error, φt,k,τ . A consistent estimate for the conditional variance of εt,k,τ , as a function of

k (parametric or nonparametric), for each pair (t, τ), may be constructed in a manner similar to

the standard WLS estimators, see, e.g., Robinson (1987) and Newey and McFadden (1994).

The assumption, λ2
nN → 0, in Theorem 2 (and Theorem 4) ensures that the penalty term in

(5) (and (12)) has no first-order asymptotic effect in the estimation. This is convenient from an

empirical point of view as only boundedness in probability, and not consistency, is required of V̂ n
t .

Hence, we can apply the estimation procedure even in settings where V̂ n
t may be mildly biased due

to microstructure noise without having to perform noise-robust corrections.9

9We are grateful to a referee for pointing this out. Despite this convenient property, we exploit sufficiently sparse
high-frequency return observations in our empirical application in Section 6, that this bias will be negligible.

16



We can extend the above analysis to cover scenarios in which the penalty term is reflected in

the limiting distribution. The requirement is that we can establish the joint limiting distribution of

the nonparametric estimator V̂ n
t and the empirical processes arising from the option pricing error

– determining the limit in (7). This is feasible for the two nonparametric jump-robust realized

volatility estimators defined below,

V̂ ±,nt =
n

kn

∑
i∈I±,n

(∆t,n
i X)2 1

(
|∆t,n

i X| ≤ αn−$
)
, ∆t,n

i X = log
(
Xt+ i

n

)
− log

(
Xt+ i−1

n

)
, (14)

where α > 0, $ ∈ (0, 1/2), kn denotes a deterministic sequence with kn/n→ 0 and,

I−,n = {−kn + 1, ..., 0} and I+,n = {1, ..., kn} .

V −,nt and V +,n
t are estimators for the spot variance from the left and right, respectively, and may be

viewed as “localized” versions of the truncated variation estimator proposed originally by Mancini

(2001).10 If we denote the set of jump times for the variance process by J = {s : ∆Vs > 0}, then,

under weaker regularity conditions than in Assumption A0, V +,n
t and V −,nt are both consistent for

Vt, provided t /∈ J. We only need to estimate the spot volatility for a finite number of points in

time. Since the jump compensator, controlling the discontinuities in Vt, is absolutely continuous in

t, the probability of having jumps at any discrete time point is zero, since, almost surely, t /∈ J.

The theorem below provides the joint limit distribution of V̂ ±,nt and the option-based Ŝnt .

Defining the coefficient, γ = (2− β)$
∧ [

( 1
β ∧ 1)− 1/2 + ( [(1− β)$] ∨ 0 )

] ∧
1/4, we have,

Theorem 5 Under assumption A0, provided kn →∞ with
√
kn / n

γ → 0, and with β defined

as in A0(iii), we have for T ∈ N,

√
kn


V̂ +,n

1 − V1

...

V̂ +,n
T − VT

 L−s−→


√

2V1 . . . 0
...

. . .
...

0 . . .
√

2VT




Ẽ1

...

ẼT

 , (15)

where
(
Ẽ1, ..., ẼT

)′
is a T × 1 standard normal vector independent of the original filtration F and

defined on an extension of the original probability space.

If the conditions of Theorem 2 hold, the vector
(
Ẽ1, ..., ẼT

)′
is independent from the vector

(E1, ...,ET ,E
′)′ determining the limit distribution of

(
Ŝn1 , ..., Ŝ

n
T

)′
in equation (7).

Moreover, If (1, ..., T ) ∩ J = ∅, the results remain valid for V̂ −,nt replacing V̂ +,n
t , t = 1, ..., T .

10We stress that, for practical implementation, it is important to let the truncation level reflect the pronounced
intraday pattern in volatility – and we do so.
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It is optimal to choose $ close to 1/2 and, next, kn close to n1/2, provided the jumps are not

too active, i.e., their activity index satisfies β < 4/3 – a fairly mild restriction (recall Assumption

A0(ii)).11 The theorem reveals that the convergence of V̂ ±,nt holds jointly with that of Ŝnt and they

are asymptotically independent conditional on the filtration of the original probability space.

Using Theorem 5, we can extend Theorem 2 to the case where the penalization has an asymptotic

effect on the estimation (an analogous extension holds for the WLS estimator in Theorem 4).

Theorem 6 Assume A1-A4 are satisfied and κ(t, τ,Z, θ) is twice continuously-differentiable in its

arguments. Let V̂ n
t = V̂ −,nt for V̂ −,nt defined in (14) and the conditions of Theorem 5 hold. Then,

if N →∞ and n→∞, such that λn → λ ≥ 0 and λn
√
N/kn → λ ≥ 0, we have:



√
N1 (Ŝn1 − S1)

...
√
NT (ŜnT − ST )√
N/T (θ̂n − θ0)


L−s−→ (HT + DT )−1 (ΩT + ΣT )1/2


E1

...

ET

E′

 , (16)

where E1,...,ET are p × 1 vectors and E′ is a q × 1 vector, all defined on an extension of the

original probability space and all mutually independent standard normal vectors. Furthermore, with

the same partitioning of DT and ΣT as in equation (8), we define,

Dt,t
T = λ∇Sξ1(St)∇Sξ1(St)

′, Σt,t
T = λ

2
ςt2V

2
t ∇Sξ1(St)∇Sξ1(St)

′, t = 1, ..., T,

where λ = limn λn and the remainder of the elements in DT and ΣT are zero. Consistent estimates

for DT and ΣT are given by D̂T and Σ̂T where, for the same partition of the matrixes as in (8),

D̂t,t
T = λn∇Sξ1(Ŝt)∇Sξ1(Ŝt)

′, Σ̂t,t
T =

λ2
nNt

kn
2(V̂ n

t )2∇Sξ1(Ŝt)∇Sξ1(Ŝt)
′, t = 1, ..., T,

and the rest of the elements of D̂T and Σ̂T are zero.

The conditions on the sequence λn in Theorem 6 are weaker than those in Theorem 2, as kn →∞
(recall Theorem 5). The penalization term affects both the (conditional) expected Hessian of the

objective function and the (conditional) covariance matrix of the score of the objective function

evaluated at ({St}t=1,...,T , θ0).

Theorem 6 allows us to study the effect of the penalization in the objective function more

formally. We distinguish two cases. First, N � kn. Then we have λ = 0 and thus DT = 0.

11The relative speed condition between kn and n in Theorem 5 can be weakened slightly, if β ≥ 1, at the cost of
more lengthy derivations.
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Consequently, the penalty term in the objective function increases the covariance matrix of the

estimator. Hence, it is optimal to pick λn to ensure λ = 0, i.e., choose λn such that the penalization

has no first-order asymptotic effect on the estimator. This is intuitive. Since N � kn, the recovery

of the volatility state is done more efficiently via the options data. Comparatively speaking, the

high-frequency data only infuse noise into the estimation procedure.

For N � kn or N ∼ kn , it may be preferable to have λ > 0. The logic is transparent in the

(infeasible) case of kn = ∞ (and N � kn), i.e., a continuous record of X, from which Vt may be

recovered without error. Then option prices (observed with error) are suboptimal for recovering

Vt. Of course, the diffusive volatility is only a minor part of the full state and parameter vector,

({Snt }t=1,...,T , θ0), that we seek to estimate, so options remain critical for the inference.

4 Pathwise Risk-Neutral Model Tests

The hypothesis that our model for the risk-neutral dynamics is well-specified has numerous impli-

cations. The previous section develops the limit theory necessary to devise formal tests for this

hypothesis. We propose a battery of diagnostics, falling into three categories: the first concerns

the fit to the option surface, the second checks for stability of the risk-neutral parameters, and

the third assesses the equality between the option-implied volatility and a nonparametric volatility

estimate based on high-frequency data. The tests are all pathwise as they involve restrictions on

the observed path of the option surface and the underlying asset price. Importantly, they do not

restrict the statistical law for X, beyond what is implied by the risk-neutral law. As such, they

do not rely on a joint hypothesis that the model is correctly specified under both the P and Q

measures. For simplicity in this section, we derive all tests for the original setup in Theorem 2, i.e.,

the case of ordinary least squares in which the penalization has no first-order asymptotic effect.

4.1 Option Price Fit

We first develop a test based on the fit afforded by the parametric model. The previous section

supplies us with tools to formally separate observation errors from model misspecification errors

in fitting the option prices. The corollary below provides a t-test that captures the quality of the

model fit to the option surface at a specific point in time for a given tenor.

Corollary 1 Let K ⊂
(
k(t, τ∗) k(t, τ∗)

)
be a set with positive Lebesgue measure and denote by NKt

the number of options on day t with tenor τ∗ and log-moneyness belonging to the set K. Then,

under the assumptions of Theorem 2, we have,
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∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂
n)
)

√
Π̂′T Ξ̂T Π̂T

L−s−→ N (0, 1), Ξ̂T =

Ĥ−1
T Ω̂T (Ĥ−1

T )′ Ĥ−1
T Υ̂1,T

Υ̂′1,T (Ĥ−1
T )′ Υ̂2,T

 , (17)

Υ̂1,T =



0(t−1)p×1

1√
NtNKt

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂
n)
)2

∇Sκ(kj , τ
∗, Ŝnt , θ̂

n)

0(T−t+1)p×1

1√
NKt Nt

√∑T
t=1Nt
T

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂
n)
)2

∇θκ(kj , τ
∗, Ŝnt , θ̂

n)


,

Υ̂2,T =
1

NKt

∑
j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂
n)
)2

,

Π̂T =

01×(t−1)p
−1√
Nt

∑
j:kj∈K

∇Sκ(kj , τ
∗, Ŝnt , θ̂

n)′ 01×(T−t+1)p −
√

T∑T
t=1Nt

∑
j:kj∈K

∇θκ(kj , τ
∗, Ŝnt , θ̂

n)′
√
NKt

 .

The logic behind the test in Corollary 1 is straightforward. By aggregating the model-implied

option fit spatially, we “average out,” and thus alleviate, the effect due to the observation error in

the options but we retain the error due to inadequate model fit. Hence, for the result in equation

(17) to apply, it is necessary that K has positive Lebesgue measure and that κ(k, τ,Z, θ) is a smooth

function of log-moneyness. The t-statistics implied by the asymptotic limit result in equation (17)

resemble the conditional moment tests proposed by Newey (1985) and Tauchen (1985).

The asymptotic variance of the option fit
∑

j:kj∈K

(
κ̃t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂
n)
)

, is estimated

feasibly by Π̂′T Ξ̂T Π̂T . It accounts for the effect of the estimation error of
(
Ŝnt , θ̂

n
)

. It is critical

for the derivation of Corollary 1 that the convergence in equation (7) holds stably so that the

standardization of the model fit in equation (17) yields a variable with a limiting standard normal

distribution. The test in equation (17) can, of course, be extended to pool together the estimated

errors across options with different tenors as well as for options observed on different days.

The test will be powerful against alternatives for which the errors in fitting the options in

the region K tend to be highly correlated, as this “blows up” the numerator without affecting

the denominator of the ratio in (17). This will typically be the case, as standard models imply

smoothness in option prices as a function of moneyness. That is, if the fit is poor for a given strike,

due to model misspecification, the model-implied option prices will tend to deviate in the same

direction for nearby strikes. Furthermore, the test of Corollary 1 allows us to check the model fit

over shorter periods of time. This is more informative about potential sources of model failure than

assessing the time-averaged option price fit, as is common practice. For example, we may be able
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to associate specific types of model failure with broader economic developments that point towards

omitted state variables in the model or a fundamental lack of stability in the risk-neutral measure.

4.2 Time-Variation in Parameter Estimates

Our second test is based on the variation of the risk-neutral parameters over time. Under standard

regularity conditions, model misspecification will imply that the estimator converges to a pseudo-

true parameter vector, see, e.g., White (1982) and Gourieroux et al. (1984). However, in our setting

the state variables change from period to period. This should induce a corresponding movement

in the pseudo-true parameter vector for the misspecified model. That is, under misspecification,

the time-variation in the option prices cannot be “rationalized” by shifts in the state variables, so

we should expect “spill-over” in terms of intertemporal variation in the (pseudo-true) risk-neutral

parameter estimates over distinct time periods.

Designing a test for parameter variation is straightforward using Theorem 2, as the estimates

obtained from option panels spanning disjoint time periods should be asymptotically independent

when conditioned on the filtration of the original probability space.12

Corollary 2 In the setting of Theorem 2, denote the risk-neutral parameter estimates from two

option panels covering disjoint time periods by θ̂n1 and θ̂n2 . If the risk-neutral model is valid for both

of these distinct time periods, we have,

(
θ̂n1 − θ̂n2

)′ (
Âvar(θ̂n1 ) + Âvar(θ̂n2 )

)−1 (
θ̂n1 − θ̂n2

)
L−s−→ χ2(q), (18)

where Âvar(θ̂n1 ) and Âvar(θ̂n2 ) denote consistent estimates of the asymptotic variances of θ̂n1 and

θ̂n2 based on equations (9)-(10) in Theorem 3, and q denotes the dimension of the parameter vector.

The analogous result applies for a subset of the parameter vector of dimension r < q, but with r

replacing q in equation (18).

4.3 Distance between Model-Free and Option-Implied Volatility

Our final diagnostic tests whether the spot volatility estimated nonparametrically from high-

frequency data on the underlying asset is equal to the spot volatility, Vt , implied by the option data

given the model for the risk-neutral distribution of X. This restriction follows from the fact that

the diffusion coefficient of X should be invariant under an equivalent measure change (recall P and

Q are locally equivalent). Hence, if the option price dynamics is successfully captured by the state

12Of course, this can be generalized to the case of overlapping estimation periods by appropriately accounting for
the conditional covariance of the two parameter estimates.

21



vector St, the two estimates should not be statistically distinct. This is, of course, the identical

constraint that we exploit in our penalization term during estimation. Nonetheless, the condition

may be formally tested if we account suitably for the specification of the objective function in (5).

To render the test feasible, we use the two nonparametric jump-robust volatility estimators

V̂ ±,nt defined in (14) in the previous section. Using the joint asymptotic convergence result for

(V̂ ±,nt , Ŝnt ) in Theorem 5, we can derive the asymptotic behavior of the difference V̂ ±,nt − ξ1(Ŝnt ).

We state this important result in the following corollary.

Corollary 3 Under the conditions of Theorems 2 and 5, we have for kn →∞, N →∞ and

λ2
nN → 0,  ξ1(Ŝnt )− V̂ −,nt√

∇Sξ1(Ŝnt )′χ̂t∇Sξ1(Ŝnt )
Nt

+
2(V̂ −,nt )2

kn


t=1,...,T

L−s−→


Ĕ1

...

ĔT

 , (19)

where χ̂t is the part of Ĥ−1
T Ω̂T (Ĥ−1

T )′ corresponding to the variance-covariance of Ŝnt and where

(Ĕ1, ..., ĔT )′ is a vector of standard normals independent of each other and of F .

Yet again, we stress that we do not need a parametric model for Vt under the statistical measure, P,

to test the equality of the spot volatility implied by the underlying asset dynamics and the model-

dependent option-implied dynamics. However, the test does hinge critically on the characterization

of the joint stable asymptotic law in Theorem 5. Consequently, this pathwise restriction on the spot

volatility cannot be formally tested under the usual approach to option-based parametric inference

which precludes the application of this type of limit theory.

The test in Corollary 3 compares two alternative estimators of the spot diffusive volatility: a

parametric one based on the option data and a nonparametric one based on the high-frequency

record for X. As discussed after Theorem 6, depending on the relative growth of the option data

and the high-frequency increments used in estimation of V̂ ±,nt , we can have either the option-based

or the high-frequency based estimator be more efficient for recovery of Vt. In typical applications

with a rich set of derivatives data (as is the case in our empirical application later), however, the

option-based estimator tends to dominate and hence the second term in the denominator on the

left side of (19) is usually substantially larger than the first one. In this case, i.e., for N � kn,

our test in Corollary 3 is reminiscent of the Hausman (1978) specification test.13 Under the null of

correct risk-neutral model specification, ξ1(Ŝnt ) is more efficient than V̂ ±,nt while V̂ ±,nt is a robust

13We thank a referee for pointing out this connection.
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estimator of the spot volatility, which remains valid (i.e., consistent and asymptotically normal)

even when the risk-neutral parametric model is misspecified.14

Unfortunately, we cannot design a similar test regarding the distance between the option-

based estimate of the jump intensity ξ2(Ŝnt ) and a nonparametric one derived from high-frequency

data. First, while high-frequency data for X allows us to estimate the “realized” jumps on a

given path, it does not produce an estimate of their intensity. The jump intensity depends on

the probability measure, and reliable estimation will require applying large time span asymptotics

under the P measure. Secondly, since the jump intensity is tied to the probability distribution, the

jump intensity under the risk-neutral and statistical distribution are generally different. In fact,

there is strong parametric and nonparametric evidence indicating that they differ significantly.15

Finally, to increase power, the tests in Corollaries 1-3 should be applied in parallel. For example,

a misspecified model might generate spot volatility estimates that are close to the model-free ones,

but in so doing provide a poor fit to option prices or induce parameter instability. Likewise, a

faulty model may fit parts of the option panel well – the vector {St}t=1,...,T provides flexibility in

this regard – but this typically produces implausible volatility estimates or unstable parameters.

5 Numerical Experiments

5.1 Model Specification and Parameter Identification

This section provides evidence on the finite sample performance of our inference procedures in the

context of a model widely exploited in empirical work, namely the so-called “double-jump” model

of Duffie et al. (2000). The model under the risk-neutral distribution is specified as,

dXt

Xt−
=
√
Vt dWt + dLx,t , dVt = κd (v − Vt) dt+ σd

√
Vt dBt + dLv,t , (20)

where (Wt, Bt) is a two-dimensional Brownian motion with correlation corr (Bt,Wt) = ρd ; (Lx,t, Lv,t)

is a compound Poisson jumps process with intensity λj and the distribution of the jump size (Zx, Zv)

is governed by the marginal distribution of Zv, which is exponential with mean µv, while, condi-

tional on Zv, log(Zx + 1) is Gaussian with mean µx + ρjZv and standard deviation σx , and, finally,

Lx,t is a jump martingale. The model also involves the cross-parameter restriction, σd ≤
√

2κd v.

14Note that in this situation, i.e., for N � kn, ξ1(Ŝnt ) is converging at a faster rate than V̂ ±,nt , so that the

asymptotic behavior of ξ1(Ŝnt )− V̂ ±,nt is driven by V̂ ±,nt .
15The aspects of the risk-neutral model for jumps in X we can test from the underlying asset data are those that

hold Q-almost surely. This includes the so-called jump activity index, which should be identical under P and Q.
However, to uncover the latter nonparametrically from high-frequency data, we must sample X very finely and this
renders the inference highly sensitive to market microstructure effects. Hence, we abstain from testing this restriction.
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Finally, for simplicity, we have fixed the risk-free rate and the dividend yield to be zero. The vector

of risk-neutral parameters is thus given by θ = (ρd, v, κd, σd, λj , µx, σx, µv, ρj).

To ensure that our numerical experiments reflect empirically relevant features of the asset and

option price dynamics, we fix the parameters to the consensus values from the literature provided

by Broadie et al. (2009). Although our inference procedure only requires a full characterization of

the data generating process under the risk-neutral measure, in the simulation experiment, we still

need to generate the dynamics of the state variables from the actual probability measure. Hence, we

adopt the standard approach of the empirical option pricing literature, see, e.g., Singleton (2006),

chapter 15, and assume that X follows the same general model under both the P and Q measures,

but with differing values for some key parameters, reflecting the presence of risk premiums. The

full set of parameter values, adapted from Broadie et al. (2009), is reported in Table 1. We also

follow them in fixing ρj = 0, leaving eight parameters to be estimated for each Monte Carlo sample.

Table 1: Parameter Setting for the Numerical Experiments

Under P Under Q
Parameter Value Parameter Value Parameter Value Parameter Value

ρd −0.4600 λj 1.0080 ρd −0.4600 λj 1.0080
v 0.0144 µx −0.0284 v 0.0144 µx −0.0501
κd 4.0320 σx 0.0490 κd 4.0320 σx 0.0751
σd 0.2000 µv 0.0315 σd 0.2000 µv 0.0930

Figure 2 depicts the sensitivity of the option surface with respect to the parameters of the

double-jump model across different values of the state variable, i.e., alternative levels of (stochastic)

volatility. The figure reveals that the parameters have qualitative different effects on the option

surface. This should ensure that the parameters can be identified in practice as long as the option

cross-section is sufficiently wide and the option panel spans a time period with a significant degree

of variation in the realization of the (volatility) state vector. For example, the long-run mean of the

volatility parameter, v, primarily impacts the longer term options while the short maturity options

are determined largely by the current volatility state. The same logic applies to the identification

of the mean reversion parameter, κd . Not surprisingly, the sensitivity of options with respect to κd

increases when the (stochastic) volatility state is far from its long-run mean as this enhances the

strength of the mean-reversion. Likewise, turning to the jump parameters, it is evident that each

of them has a unique effect on the option surface. For example, µx has the largest impact on OTM

short-maturity put options and its effect decreases for longer maturities. On the other hand, the
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volatility of jumps parameter, σx , has a more symmetric impact on the short maturity puts and

calls with a diminishing effect for the longer maturities. Overall, Figure 2 reveals that there are

large benefits from using options with a wide range of strikes and levels of moneyness as well as

from pooling observations across different days in the estimation.
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Figure 2: Option Sensitivity to Parameters in Double-Jump Model. The figure plots the first
derivatives of options (in terms of implied volatility) with respect to the parameters of the double-
jump model. The parameters are set at the values reported in Table 1. Moneyness is reported in
terms of volatility units, i.e., log(K/F )/(σ

√
T ) with notation as in Figure 1. Each of the segments

in the plots corresponds to maturities τ = 10, τ = 45, τ = 120 and τ = 252 days (starting from
left to right). The solid, dashed and dotted lines correspond to estimates at the 5th, 50th and 95th
quantile of volatility respectively.

5.2 Monte Carlo Experiments

We now present the findings from an extensive simulation study based on the double-jump model

with parameters fixed at the values given in Table 1. We apply our inference procedures on a total

of 1, 000 Monte Carlo replications.16

16The computational burden is very significant, but a variety of improvements to the speed in computing option
prices within this framework and the use of a network of computers renders the exercise feasible. To the best of our
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The Monte Carlo setting aims at broadly mimicking the features of models estimated previously

in the literature as well as the data used in our empirical application in Section 6. To this end, the

option panel is constructed as follows. We simulate the underlying asset for a year and sample the

options every fifth day, corresponding to weekly observations, as is common in empirical work (time

is measured in business days). For each such day, we calculate option prices for four maturities:

τ = 10, τ = 45, τ = 120 and τ = 252 days, which resemble the available maturities in the actual

data. Finally, for each maturity we compute 50 out-of-the-money option prices for an equispaced

log-moneyness grid, covering the range [−4, 1] · σ
√
τ , where σ is the ATM BSIV on the given day.

This corresponds to using a time-varying coverage of moneyness depending on the level of volatility,

again roughly mimicking the available strike ranges in the actual data.17 For the option error we

assume εt,k,τ = σt,k,τZt,k,τ , where Zt,k,τ are standard normal variables, independent across time,

moneyness and time-to-maturity, and σt,k,τ = 0.5ψk/Q0.995 for ψk denoting the relative bid-ask

estimate from the kernel regression on the actual data, plotted on Figure 1, and Q0.995 denoting

the 0.995-quantile of the standard normal distribution. This noise structure allows for significant

time-variation of the (conditional) noise variance depending on both the level of volatility and

moneyness. Finally, we set λn = 0 in (5) and, for the nonparametric volatility estimator, we use

V̂ −,nt with n = 400 – equivalent to sampling every 1-minute over a 6.5 hour trading day – and

kn = 120, corresponding to a window of 2 hours. α and $ were calculated as in Bollerslev and

Todorov (2011) and we refer to that source as well as the supplementary appendix for further

details.

In Table 2, we report the results from the Monte Carlo for the parameter vector. The parameter

estimates display no significant biases and most are estimated with good precision. The more

challenging parameters to estimate, based on the relative size of the inter-quantile range, are ρd

and σd. Given the relatively short one-year samples and the close relation between the option

sensitivities for these two parameters, displayed in the first two panels of column one in Figure 2,

this finding is not surprising. Of course, longer samples and different underlying parameter values

may render it easier to separately identify the two parameters.

Turning next to the diagnostic tests, Table 3 reports on the size of the various tests developed

in Section 4. Generally, the small sample behavior is quite satisfactory. The tests for the fit to the

knowledge, it constitutes the first comprehensive simulation study of inference procedures for the double-jump model
at this level of complexity. An account of our computational approach is provided in the supplementary appendix.

17On average, over 230 bid-ask quotes with positive bid prices for OTM options are reported daily, at the end-of-
trading, for the S&P 500 options at the CBOE over 1996− 2010, and the number is significantly higher in the second
half of the sample. In the simulation, we would garner more precise inference using samples beyond one year, but
this horizon provides a sensible compromise, in practice, between the joint objectives of accuracy in estimation and
minimization of the period over which we assume invariance of the risk-neutral measure.
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Table 2: Monte Carlo Results: Estimation of the Risk-Neutral Parameters

Parameter True Value Median IQR Parameter True Value Median IQR

ρd −0.4600 −0.4564 0.3911 λj 1.0080 1.0080 0.1798
v 0.0144 0.0144 0.0035 µx −0.0501 −0.0501 0.0134
κd 4.0320 4.0321 0.1939 σx 0.0751 0.0751 0.0057
σd 0.2000 0.2022 0.1240 µv 0.0935 0.0935 0.0055

option panel is near perfectly sized, while there is a mild degree of under-rejection for the volatility

test as well as the omnibus test for parameter stability. The test in Panel C of Table 3 (recall

λn = 0 in the estimation) indicates that, even in the presence of observation error, the option panel

alone recovers the path of stochastic volatility with good precision.

Table 3: Monte Carlo Results: Diagnostic Tests

Test Nominal size of test
1% 5% 10%

Panel A: Fit to Option Panel

Out-of-the-money, short-maturity puts 0.88% 4.80% 10.03%
Out-of-the-money, short-maturity calls 0.89% 4.95% 10.00%
Out-of-the-money, long-maturity puts 1.00% 4.93% 9.96%
Out-of-the-money, long-maturity calls 0.93% 5.15% 10.47%

Panel B: Parameter Stability

1.48% 6.33% 10.55%

Panel C: Distance implied-nonparametric volatility

1.68% 4.10% 6.45%

Note: Panel A reports rejection frequencies across the full sample for the option fit
to specific portions of the option surface on a given Wednesday. This test is based
on the result in Corollary 1, using the first two maturities for the first two tests and
the last two maturities for the remainder of the tests in this panel. The test in Panel
B is given in Corollary 2, and the test in Panel C is provided in Corollary 3.

Corollary 2 can also be used to test for stability of the individual parameters. This is likely a

less powerful test, as it fails to exploit the information about the joint fit across the full parameter

vector and it does not account for the correlation among the estimates. It is evident from Table 4

that the tests for those parameters, which are estimated relatively imprecisely, e.g., ρd and σd, tend

to be particularly undersized in small samples. In comparison, the omnibus test in Table 3 performs
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considerably better. We conclude that, overall, the developed method of inference appears to be

reasonably sized, even for small samples, given parameters calibrated to commonly observed values.

Table 4: Monte Carlo Results: Tests for Stability of Individual Parameters

Parameter Nominal Size Parameter Nominal Size
1% 5% 10% 1% 5% 10%

ρd 0.00% 0.42% 1.90% λj 1.90% 6.96% 10.97%
v 1.48% 6.96% 10.97% µx 0.63% 6.33% 11.39%
κd 1.48% 6.96% 12.66% σx 0.84% 5.06% 8.65%
σd 0.63% 4.43% 8.86% µv 0.63% 5.70% 9.49%

Note: The parameter stability test is given in equation (18).

6 Empirical Application

We apply our inference procedure to data on European style S&P 500 equity-index (SPX) options

traded at the CBOE. We use the closing bid and ask prices reported by OptionMetrics, applying

standard filters and discarding all in-the-money options, options with a tenor of less than 7 days, and

options with zero bid prices. We then compute the mid bid-ask BSIV.18 The data span January 1,

1996 to July 21, 2010. Following earlier empirical work, e.g., Bates (2000) and Broadie et al. (2009),

we sample every Wednesday. The full sample includes 760 days, and we use an average of 234 bid-ask

quotes per day for estimation. The nonparametric volatility estimate needed for the penalization in

the objective function and for the diagnostic tests is constructed from one-minute high-frequency

data on the S&P 500 futures covering the extent of the options data. The construction of the

high-frequency estimate follows the steps outlined in Section 5. In the estimation, we set λn = 0.2.

We first estimate a two-factor extension of the double-jump volatility model (20) which nests

almost all models considered in the empirical option pricing literature (the supplementary appendix

reports results for the original one-factor double-jump volatility model). The two-factor model

(under the risk-neutral measure) is given by,

dXt

Xt−
= (rt − δt)dt+

√
V1,tdW1,t +

√
V2,tdW2,t + dLx,t,

dV1,t = κd,1(v1 − V1,t)dt+ σd,1
√
V1,tdB1,t + dLv,t, dV2,t = κd,2(v2 − V2,t)dt+ σd,2

√
V2,tdB2,t,

(21)

where (W1,t,W2,t, B1,t, B2,t) is a four-dimensional Brownian motion with W1,t ⊥W2,t, W1,t ⊥ B2,t,

18The two shortest maturities, beyond seven calendar days, are also used by the CBOE for the VIX computation.
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and W2,t ⊥ B1,t and corr (W1,t, B1,t) = ρd,1 as well as corr (W2,t, B2,t) = ρd,2. Moreover, (Lx,t, Lv,t)

is a bivariate jump process with intensity λj,0 + λj,1V1,t− and a joint jump (size) distribution

(Z1, Z2), where the marginal distribution of Z2 is exponential with mean µv and, conditional on

Z2 , log(Z1 + 1) is normal with mean µx + ρjZ2, and variance σ2
x . For simplicity, we assume that

rt and δt are deterministic, where the LIBOR rate for the corresponding maturity represents the

interest rate while the dividend yield is obtained from OptionMetrics.19

From model (21), we obtain the original one-factor double-jump model (20) if we impose λj,1 = 0

and σd,2 = v2 = 0. Importantly, the extended two-factor model (21) allows for a time-varying jump

intensity. This is a feature of asset prices implied by many structural models and generated through

different channels: time-varying probability of negative jump (rare disaster) in consumption growth,

e.g., Wachter (2013), or in its conditional mean and/or variance, e.g., Drechsler and Yaron (2011),

or through the time-varying risk aversion of the representative agent, e.g., Du (2010). We further

note that jumps now impact V1,t directly, implying that the time-varying jump intensity, λj,1 > 0,

induces self-affectation: a jump today increases the probability of future jumps. Estimation results

for the extended model are reported in Table 5.

Table 5: Parameter Estimates of Two-Factor Model

Parameter Estimate Standard Error Parameter Estimate Standard Error

ρd,1 −0.9800 0.0253 λj,0 0.0217 0.0027
v1 0.0331 0.0019 λj,1 6.0683 0.8749
κd,1 1.2327 0.0638 µx −0.0145 0.0136
σd,1 0.2640 0.0113 σx 0.0877 0.0082
ρd,2 −0.1824 0.0388 µv 0.1501 0.0124
v2 0.0066 0.0001 ρj −0.7756 0.0718
κd,2 29.8797 0.5951
σd,2 0.2341 0.0569

Note: Parameter estimates for the two-factor model (21), using S&P 500 equity-
index options sampled every Wednesday from January 1996 through July 2010.

The estimates imply that the first volatility factor is very persistent while the second volatility

factor has a much lower mean and shorter half-life. Interestingly, the main determinant of the jump

intensity is the time-varying component. This is important, as λj,1 > 0 allows for time-varying jump

risk premia, which have been identified by Bates (2000), Pan (2002) and Bollerslev and Todorov

(2011). The mean jump intensity is 28.4%, i.e., a jump occurs about every 3-4 years, and the mean

19For reviews of the various approaches adopted previously for estimation and inference in the empirical option
pricing literature, see, e.g., Bates (2003) and Garcia et al. (2010).
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jump size is approximately −13%. These jump estimates are roughly in line with those from studies

exploiting both asset returns and options, see, e.g, Singleton (2006), chapter 15, for a review. The

correlation between price and volatility jumps is strongly negative. The fact that λj,1 and ρj both

are positive imply intricate interactions between future volatility and jumps: high volatility today

increases the likelihood of future jumps while the occurrence of jumps increases the future level

of volatility. Finally, the estimated mean volatility is 22.8%, which is consistent with a negative

volatility risk premium.

Figure 3 depicts the weekly Z-scores for the fit to the volatility surface by the two-factor model.

Each of the six panels displays one Z-score for each of the 760 weekdays for a total of 4560 separate

statistics. Clearly, the confidence bands are violated at a frequency dramatically exceeding the

5% level. Even more strikingly, there are systematic patterns in the violations which may indicate

economically important failures of the model.20 First of all, we notice the relatively poor fit for

all long-maturity options as well as a fairly pronounced and statistically significant mispricing of

short maturity OTM puts. This occurs despite the presence of two volatility factors in the model

which should allow for a reasonable degree of flexibility in fitting the term structure of risk and

risk premia. Importantly, there is also a distinct temporal pattern in the directional pricing errors

for specific regions of the surface as well as a strong dependence in the mispricing across the

different parts of the surface. For example, from the end of 1997 till the end of 1999, the model

mostly underprices short-maturity OTM puts and, simultaneously, it overprices short-maturity

ATM options and OTM calls (albeit not always in a statistically significant manner). Furthermore,

during parts of this period we observe pronounced and persistent underpricing of long-maturity

OTM put options. A similar pattern of mispricing across the option surface emerges in early

2009 and lasts through the end of our sample. On the other hand, during the tranquil period of

2004-2007, we observe a good fit for the ATM options but an underpricing of OTM put options.

Obviously, from an econometric perspective, the model is strongly rejected. Rejection rates from

the formal diagnostic tests developed in Section 4 – including tests for the fit to specific regions of

the option surface as well as for parameter stability and coherence between the option-implied and

time series estimates of spot volatility – are provided in the supplementary appendix. Clearly, the

use of a broad cross-section of options enables us to exploit information regarding the fit across

diverse regions of the surface as well as over time, ensuring a more powerful test for empirical

option pricing models than applied hitherto. And the verdict is clear. The standard models fail

20Under the null hypothesis of correct model specification, there is some correlation between the Z-scores over time
because of the error in estimating the parameter vector. This dependence, however, is relatively small because of the
high precision in recovering the parameters.
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statistically in important dimensions. In terms of the ramifications for economic interpretation, the

impact of the rejections is less clear, but we take a first step in addressing this question below.
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Figure 3: Option Price Fit for the Two-factor Model. The short-maturity options are those with the
two shortest tenors available on a given day and the long-maturity options are all remaining options
with a tenor of less than one year. OTM signifies out-of-the-money and ATM is at-the-money.
OTM puts are those with moneyness [−4,−1] × σ

√
τ , ATM options are those with moneyness

[−1, 1] × σ
√
τ , and OTM calls are those with moneyness [1, 3] × σ

√
τ , where σ is the ATM BSIV

on the given day.

So what is the main source of option mispricing within our general two-factor model? The

Z-scores provide guidance. The persistent bias in the fit to specific regions of the option surface

suggests that part of the problem stems from the dynamic links between the different sources of risk

within the model. This intuition arises from the fact that short-maturity OTM put option prices

are determined largely by the left tail of the jump risk, while the short-maturity ATM options

(quoted in BSIV) are determined largely by the current level of diffusive volatility. Hence, the

tension in fitting, simultaneously, short maturity OTM puts and ATM options, evident in Figure 3,

reflects the inability of the model to capture the relation between jump risk and the volatility level

implied by the observed option prices. In model (21), this feature is tied to the jump intensity
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which is a linear function of the persistent component of the diffusive (spot) variance. Given the

minor role played by the transient factor in the spot volatility, this defect will not be rectified by

allowing the jump intensity to be linear in both volatility factors. Instead, it seems more promising

to consider a mechanism that enables the left tail of the volatility surface to display variation that

is not linked so tightly to the level of the volatility factors.

These points have broad implications also for popular structural models, like the long-run risk

model of Drechsler and Yaron (2011), further extended to allow for ambiguity aversion in Drechsler

(2013), as well as the model of time-varying rare disaster risk of Wachter (2013). These models all

imply that the risk-neutral jump intensity of the market returns is determined solely by fundamental

factors, exactly as the volatilities drive the jump intensity in our two-factor model (21). The above

evidence suggests, however, that this might be restrictive as the risk-neutral jump tails, in part, are

impacted by different sources of variation than the volatility factors. Thus, motivated by the Z-

score displays in Figure 3, we extend the two-factor model (21) by introducing an additional factor

in the risk-neutral jump intensity that, importantly, is not a component of spot volatility. We

further replace the jump distribution with one that allows for power law jump tail decay to better

reflect the nonparametric option-based evidence in Bollerslev and Todorov (2011). The extended

model takes the following form,

dXt

Xt−
= (rt − δt) dt +

√
V1,t dW1,t +

√
V2,t dW2,t +

∫
R2

(ex − 1) µ̃(dt, dx, dy),

dV1,t = κ1 (v1 − V1,t) dt + σ1

√
V1,t dB1,t + µv1

∫
R2

x2 1{x<0} µ(dt, dx, dy),

dV2,t = κ2 (v2 − V2,t) dt + σ2

√
V2,t dB2,t,

dUt = − κ3 Ut dt + µu

∫
R2

[
(1− ρ3)x2 1{x<0} + ρ3 y

2
]
µ(dt, dx, dy),

(22)

where (W1,t,W2,t, B1,t, B2,t) is defined as for the two-factor model (21). The jump measure µ has

a compensator given by dt⊗ νQt (dx, dy), where,

νQt (dx, dy) =
{(
c−1{x<0}λ−e

−λ−|x| + c+1{x>0}λ+e
−λ+x

)
1{y=0} + c−1{x=0, y<0}λ−e

−λ−|y|
}
dx⊗dy,

c− = c−0 + c−1 V1,t− + c−2 V2,t− + c−3 Ut−, c+ = c+
0 + c+

1 V1,t− + c+
2 V2,t− + c+

3 Ut− .

Before commenting on the modifications and extensions relative to model (21), we remark on a few

changes in notation motivated by the new specification of the jump processes. The first term in the

expression for the jump measure controls price-volatility co-jumps, exactly as in model (21), while

the second term governs the independent jumps in the new factor, U . Furthermore, the jumps in

U are either directly proportional to the volatility jumps (in V1) or independent from them. Both
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jump components of U have the same marginal distribution - they only differ in their interaction

with the other jump components of the model. To retain notational symmetry between the jump

components of U , we define the second term of the jump measure, µ, over the squared negative

realizations. In particular, this implies that all jumps in U are positive.

The distinct features of the extended model may be summarized as follows. First, the distri-

bution of the price jumps is now exponential, so we enforce an empirically realistic decay in the

jump intensity as a function of the jump size. Moreover, we allow the left and right jumps to have

different tail decay parameters, i.e., we break the dependence between the two tails. Second, the

price and volatility co-jumps are now perfectly dependent, with the squared price jumps impacting

the volatility dynamics. This is reminiscent of a GARCH specification for the volatility dynamics

in discrete time. Given the proliferation of parameters, a parsimonious formulation is desirable.

In addition, we allow only the negative price jumps to impact the volatility dynamics, as a more

general dependence structure between volatility and price jumps cannot be well identified from the

option panel. Third, the negative jumps now have an additional source of time variation, captured

by the process U .21 U is driven, in part, by the negative price jumps which allows for crisis periods

to elevate the jump intensity of the system. Importantly, U also contains an independent source of

variation, where the degree of dependence between jumps in U and X is captured by ρ3. Thus, our

specification encompasses scenarios of perfect dependence between the jump risks in V1 and U (for

ρ3 = 0) and scenarios of V1 and U being entirely independent state variables driving the dynamics

of the option panel (for ρ3 = 1). In addition, we note that V1 and U are connected not only through

this common jump component, but also via the joint time-variation in the jump intensity. This

latter feature generates “cross self-excitation” in which jumps in U excite the occurrence of jumps

in V1 and vice versa. Finally, the extended model (22) allows for separate time-variation in the

intensity of positive and negative jumps via discrepancies in the parameters c±1 and c±2 .22

The parameter estimates for the three factor model (22) are reported in Table 6. Interestingly,

compared with the two-factor model, the role of the factors in generating a persistent volatility

process is reversed. The first volatility factor – containing the volatility jumps – is now the more

21This feature can also be incorporated into the dynamics for the intensity of the positive price jumps, but since
the relevant parameter is not significant, we end up imposing the constraint c+3 = 0 in our final specification.

22From an implementation standpoint, it is critical that the model (22) remains within the general affine class of
Duffie et al. (2003). We refer to that paper for the ODE system of equations that must be satisfied by the coefficients
of the associated conditional characteristic function. During estimation, we impose the following conditions on the
parameters to guarantee covariance stationarity of the three latent factors,

κ1 >
2c−1 µv1
λ2
−

, and κ3 >
2c−3 κ1µu

κ1λ2
− − 2c−1 µv1

, and κ2 < 0, and σ2
i ≤ 2κivi, i = 1, 2.
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transient component. Both leverage coefficients are significantly negative but none is statistically

close to the boundary of −1. Turning to the jump parameters, we note that the jump intensity

loadings c±1 and c±2 are statistically distinct, reflecting differences in the time-variation of the left

and right jump tails. This feature is precluded in the original model (21) as it constrains the

time variation of the two jump tails to be identical. Moreover, the loading c−3 on the new jump

intensity factor is highly significant, indicating a strong role for this factor in the model dynamics.

Furthermore, the tail decay parameters λ± imply that negative jumps have significantly fatter jump

tails than positive jumps, as also established by nonparametric means in Bollerslev and Todorov

(2011). The implied negative and positive mean jumps sizes are −4.98% and 1.63%, and the average

frequencies are 2.76 and 5.25 jumps per year, respectively. Finally, the new jump intensity factor

is estimated to be quite persistent, while the coefficient ρ3, reflecting the link between the jumps

in U and V1, is estimated imprecisely.

Table 6: Parameter Estimates for the Three-Factor Model

Parameter Estimate Std. Parameter Estimate Std. Parameter Estimate Std.

ρ1 −0.9056 0.0342 σ2 0.1412 0.0072 c−2 0.5113 2.7825
v1 0.0092 0.0004 µu 0.7636 0.4854 c+

2 95.8730 16.6387
κ1 9.6847 0.2337 κ3 0.8390 0.1487 c−3 45.0050 4.8130
σ1 0.4022 0.0171 ρ3 0.2946 0.8398 λ− 20.0751 0.2726
ρ2 −0.8280 0.0295 c+

0 2.3751 0.1222 λ+ 61.4484 0.4747
v2 0.0385 0.0041 c−1 31.9110 2.2798 µv1 14.2240 0.4164
κ2 0.2967 0.0339 c+

1 92.4620 25.2328

Note: Parameter estimates of the three-factor model (22) for S&P 500 equity-index options sampled
every Wednesday over January 1996-July 2010.

We turn now to the analysis of model performance. Figure 4 displays the weekly model-implied

Z-scores for the fit to the different regions of the volatility surface. We observe a substantial im-

provement compared with the two-factor model for the OTM put and ATM options. In contrast,

the gains are moderate for the long maturity OTM calls and non-existent for the short maturity

OTM calls. This is not surprising as we decided, for parsimony, not to include a separate jump

intensity factor for the right tail in the three-factor model, focusing instead on improving perfor-

mance in the critical left tail. Overall, the mispricing of the OTM puts and the ATM options in

the three factor model is substantially less persistent compared to the two-factor model, indicating

that the dynamic interactions among the different risk factors are better accommodated by our
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extended model. Beyond the general improvement in fit for the short maturity OTM puts and

ATM options, we also observe that the periods 1998-1999 and 2009-2010 no longer are associated

with overpricing of short-maturity ATM options. Similarly, the short maturity OTM puts are no

longer underpriced during the quiet period 2004-2007. Finally, the fit to the long maturity OTM

puts and ATM options has improved greatly. Additional formal diagnostics for model performance

are collected in the supplementary appendix.23
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Figure 4: Option Price Fit for the Three-factor Model. Notation as for Figure 3.

To gain further insight into the success in capturing the evolution of the option surface over

time, we plot, on Figure 5, the fit of the model to the observed model-implied “volatility smirk,” i.e.,

the implied volatility as a function of moneyness, for two years within the sample along with a 95%

confidence band. We pick two very different episodes: year 2006 is characterized by quiet conditions

while 2009 represents a turbulent time for the market, following on the heels of the Fall 2008 crisis.

In both cases the model tracks the short maturity volatility smirk well, showing that the model can

23These diagnostics include the tests for parameter stability and equality of the high-frequency and model-implied
volatility estimators. In implementing the latter, we further rescale the high-frequency increments to account for the
pronounced intraday volatility pattern.
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Figure 5: Average Implied Volatility Curves for 2006 and 2009. The dots represent averages of
the observed Black-Scholes implied volatilities with moneyness within specific ranges. The shaded
regions on the plots correspond to a 95% confidence region constructed using Corollary 1 and the
three-factor model (22). The sold line represents the fitted values from the model. The top panels
represent 2006 and the bottom panels 2009, while the left panels refer to the shorter and the right
panels to the longer maturities.
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adapt to the dramatic difference in market conditions. The two years are also distinct in terms of

the pricing of the longer term options, with the flattening of the volatility smirk being relatively less

pronounced during the tranquil conditions of 2006 than for the turbulent times in 2009. In both

cases, a slight undervaluation of the long maturity OTM puts is evident but the overall fit seems

quite satisfactory. We also note the large difference in the width of the standard error bands across

the two years and across the tenors. Considering the discrepancy in scale for the two years, it is

evident that bands are much wider for 2009 than 2006. This primarily reflects the heterogeneity

of the measurement errors for the option prices across tranquil and volatile market conditions and

the associated precision of inference for the state vector over the course of the year. Similarly,

the bands are narrower for ATM than deep OTM options, reflecting the relative bid-ask spreads

and liquidity across moneyness.24 Finally, for the longer maturities, the implied volatility curve is

often less sensitive to the current value of the state vector and more dependent on the parameter

vector, θ. Since the estimation of θ exploits information across the full sample, we infer its value

with much greater precision than the current state vector which can lead to narrower confidence

bands for the more distant maturities, in spite of the bid-ask spreads typically being larger. In the

supplementary appendix, we provide similar plots for all the years in our sample. They illustrate

the advantages of our new fixed span asymptotics to dynamically evaluate the success of the model

in matching the observed option prices.

Figures 4 and 5 capture complementary aspects of the fit to the option panel. First, note

that Figure 4 indicates no systematic mispricing during either 2006 or 2009 for the short- or long-

maturity ATM options. This is reflected in Figure 5 by the model-implied prices falling within the

gray standard error bands. In contrast, the strongest indications of model failure in Figure 5 is the

model-implied overpricing for OTM call options at the long and, less strikingly, short maturity in

2006 as well as underpricing of long-maturity OTM put options in 2009. In Figure 4, the Z-scores

are on the lower boundary of the confidence band throughout 2006 for both maturities. Clearly, this

persistent bias in the pricing errors – with model prices exceeding market prices – signals deficiencies

in the fit, even if most of the individual Z-scores fall within the confidence band. Likewise, from

the middle to the end of 2009, we observe large Z-scores for the long maturity OTM puts. Hence,

the persistent biases in the model prices manifest themselves in significant pricing errors for the

corresponding region of the option surface in Figure 5.

The empirical evidence, summarized in Figure 4 as well as the supplementary appendix, suggests

24Time-averaging across the year renders the width slightly non-monotonic, as the number of options within each
moneyness category changes over time, leading to some randomness in estimation precision, which is also reflected in
the relative width.
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that our new three-factor model provides a much more coherent account of the observed option

surface dynamics than the standard two-factor model. The key to the improved performance

is the introduction of the new intensity factor U that allows for separation of the risk-neutral

jump intensity dynamics from the (components of) stochastic volatility. As a further test of this

hypothesis, we estimated an alternative three-factor model that only deviates from model (22) by

having the third factor enter as a component of stochastic volatility – fully in line with the more

traditional approach to the modeling of multi-factor volatility models. We report the results from

the estimation of this alternative model in the Supplementary Appendix. The findings confirm

that this more “traditional” three-factor specification fares substantially worse than model (22),

especially in terms of fitting the critical short-maturity OTM put options.
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Figure 6: Volatility and Negative Jump Intensity from the three factor model (22).

Figure 6 depicts the recovered stochastic volatility as well as the risk-neutral intensity of the

negative jumps from our three-factor model (22). It is evident that the volatility process shares

common low frequency features with the intensity of the left risk-neutral jump tail. At the same

time, the figure reveals pronounced differences as well. In particular, over the period following the

1997 Asian and the 1998 Russian crises, the intensity of the left jump tail remains elevated for an

extended period and mean-reverts much more slowly than the volatility. A similar pattern emerges

following the Fall 2008 crisis as well as the European crisis in August 2010. On the other hand,

following the collapse of the 2002 tech bubble and during the quiet period of 2004-2007, the market

volatility and the intensity of the left risk-neutral jump tail are quite closely aligned. Thus, overall,
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there is a striking heterogeneity in the dynamic relation between the two processes across time.

How do we synthesize and interpret the empirical evidence? As mentioned, a tight link between

volatility (components) and the risk-neutral jump intensity also arises naturally in equilibrium

models with a representative agent, equipped with Epstein-Zin preferences, who faces jump risk

either directly in consumption growth or in its conditional mean and variance. Our findings suggest

that, following periods of crises like in 1998 or the Fall of 2008, the compensation demanded for

bearing negative jump tail risk rises by a disproportional amount, rendering it incompatible with

the relatively fast reversion of stock volatility towards its pre-crises level. Intuitively, OTM put

options are too expensive for too long following such episodes to be rationalized by the concurrent

level of risk as captured by market volatility. Thus, our evidence suggests that the dynamic pricing

of jump tail risk is complex and falls outside the standard mean-variance paradigm, for which prices

of risk are proportional to volatility and its factors. Consequently, the latter is unable to rationalize

the joint dynamics of the stock market and the options written on it.

7 Conclusion

In this paper we consider the problem of estimating the parameters of the risk-neutral distribution

and the latent state variables from a panel of options, observed with error, with fixed time span

and increasing cross-sectional dimension. We prove consistency of the estimators and show that

they converge stably to mixed Gaussian laws. We further propose and implement feasible inference

based on the developed limit theory. We design novel tests for the observed option trajectories by

evaluating the option price fit and the parameter stability over time as well as the pathwise dis-

tance between the volatility implied by the option-based estimation and a nonparametric estimate

constructed from high-frequency data for the underlying asset.

An extensive Monte Carlo study confirms that the inference techniques work well over relatively

short time spans for realistically calibrated parameter settings. In an empirical application to S&P

500 equity-index options, we extend existing one- and two-factor stochastic volatility models by

allowing the left jump tail intensity to depend on an additional factor that is not a component of

the stochastic volatility process. This extension of the traditional asset pricing models is crucial for

explaining the observed dynamic dependencies between the short maturity OTM puts and ATM

options. Our estimation results imply that priced jump tail risks have a much more persistent

reaction to large negative shocks in the economy than the market volatility.
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8 Appendix

We first establish some preliminary results and then provide proofs for the theorems and corollaries.

8.1 Preliminary results

Lemma 1 Under the conditions of Theorem 2, we have

1√
N1

∑N1
j=1∇Sκ(kj , τj ,S1, θ0)ε1,kj ,τj

...
1√
NT

∑NT
j=1∇Sκ(kj , τj ,ST , θ0)εT,kj ,τj

1√
N1

∑N1
j=1∇θκ(kj , τj ,S1, θ0)ε1,kj ,τj

...
1√
NT

∑NT
j=1∇θκ(kj , τj ,ST , θ0)εT,kj ,τj


L−s−→

(
Ω̃T

)1/2



E1
...

ET

E′1
...

E′T


, (23)

where {Et}t≥1 are defined in Theorem 2, {E′t}t≥1 are vectors of standard normal variables, each of
size q × 1, independent of each other and of the filtration F as well as the vector {Et}t≥1 and

Ω̃ =



Ω̃1,1
T . . . 0p×p Ω̃1,T+1

T . . . 0p×q
...

. . .
...

...
. . .

...

0p×p . . . Ω̃T,T
T 0p×q . . . Ω̃T,2T

T

Ω̃T+1,1
T . . . 0q×p Ω̃T+1,T+1

T . . . 0q×q
...

. . .
...

...
. . .

...

0q×p . . . Ω̃2T,2T
T 0q×q . . . Ω̃2T,T

T


.

The block components of Ω̃T are defined as follows:

Ω̃t,t
T = Ωt,t

T , Ω̃t,T+t
T = (Ω̃T+t,t

T )′ =
∑
τ

πτt

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τ∇Sκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk,

Ω̃T+t,T+t
T =

∑
τ

πτt

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
φt,k,τ∇θκ(k, τ,St, θ0)∇θκ(k, τ,St, θ0)′dk, t = 1, ..., T.

Proof of Lemma 1. We denote

χ
(t)
j =

(
∇Sκ(kj , τj ,St, θ0)εt,kj ,τj
∇θκ(kj , τj ,St, θ0)εt,kj ,τj

)
, t = 1, ..., T, (24)

which is a (p+ q)× 1 vector. We further denote the filtration F̃j = σ ({εt,ki,τi}t=1,...,T,i=1,...,j)∪F (0)
T

for j = 0, 1, ... (recall from A1 that the sequence of observation grids on the moneyness dimension
is nested). With this notation we will show

ΥNt
t =

1√
Nt

Nt∑
j=1

χ
(t)
j

L−s−→ Υt, t = 1, ..., T, (25)

where Υt is a F (0)
T -conditionally centered Gaussian process with F (0)

T -conditional variance of(
Ω̃t,t
T Ω̃t,T+t

T

Ω̃T+t,t
T Ω̃T+t,T+t

T

)
.
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We have that 1√
Nt

∑Nt
j=1 χ

(t)
j is adapted to F̃Nt , for Nt ∈ N. Moreover, we have that the nesting

property of the filtration, F̃N ⊂ F̃N+1 for N ∈ N, and furthermore FT =
∨
j F̃j . Therefore, we can

apply Theorem VIII.5.42 of Jacod and Shiryaev (2003). To establish (25) above it now suffices to
prove,

E
(
χ

(t)
j |F̃j−1

)
= 0,

1

Nt

Nt∑
j=1

E
(
χ

(t)
j χ

(t)′

j |F̃j−1

)
P−→

(
Ω̃t,t
T Ω̃t,T+t

T

Ω̃T+t,t
T Ω̃T+t,T+t

T

)
,

1

N2
t

Nt∑
j=1

E||χ(t)
j |F̃j−1||4

P−→ 0.

(26)

The first and the third result of (26) follow immediately upon making use of A4(i) and A4(iv). To
prove the second claim we apply assumption A4(ii) and A4(iii) as well as assumption A1, concerning
the mesh of the grid in the log-moneyness dimension of the options, the smoothness of the φt,k,τ
function in A4(iii), and the smoothness of κ(k, τ,Z, θ) in its first argument. In fact, we even have
the convergence holding almost surely.

Now we will prove that the convergence in (25) holds jointly for t = 1, ..., T with the limits

being F (0)
T -conditionally independent. For this it suffices show

E

(
Y

T∏
t=1

ft

(
ΥNt
t

))
−→ E

(
Y

T∏
t=1

E (ft (Υt) |FT )

)
, (27)

for ft(·) being Lipschitz functions on Rp+q, Y denoting a bounded random variable on FT , and Υt

indicating the limits in (25) (this follows from Corollary 1.4.5 of van der Vaart and Wellner (1996)).

We look first at the case when Y is adapted to F (0)
T . In this case, using A4(iii), we have

E

(
Y

T∏
t=1

ft

(
ΥNt
t

))
= E

(
Y

T∏
t=1

E
(
ft

(
ΥNt
t

)
|F (0)
T

))
.

Next, using Theorem VIII.5.25 of Jacod and Shiryaev (2003), we have

Q̂N
P−→ Q, (28)

where Q̂N (ω(0), ·) is the conditional distribution of the process ΥNt
t , which is a transitional proba-

bility kernel from (Ω(0),F (0)) into (Rp+q,B(Rp+q)) and Q is the conditional probability associated
with the limiting process Υt (conditional on the event ω(0) ∈ Ω(0)). This convergence is in the space
of probability measures equipped with the weak topology, therefore we have

E
(
ft(Υ

Nt
t )
∣∣F (0)

T

)
P−→ E

(
ft(Υt)

∣∣F (0)
T

)
. (29)

From here, since the functions ft(·) and the variable Y are bounded, we have

E

(
Y

T∏
t=1

E
(
ft

(
ΥNt
t

)
|F (0)
T

))
−→ E

(
Y

T∏
t=1

E
(
ft(Υt)|F (0)

T

))
, (30)

and therefore (27) holds when Y is F (0)
T -adapted.

We are left with the case when Y is adapted to F (1)
T . Due to separability of the σ-field F (1)

T , we
can proceed exactly as in step 4 of the proof of Theorem IX.7.28 in Jacod and Shiryaev (2003) and
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look only at the case when Y = h({εm}m∈M ) where M is a finite set of triplets (t, k, τ). Now, we let

Υ̃Nt
t denote a variable constructed from ΥNt

t by excluding the options corresponding to the triplets

(t, k, τ) ∈M . Since this is a finite number, the differences Υ̃Nt
t −ΥNt

t are obviously negligible. So,

we only need to verify (27) for the case where Υ̃Nt
t is replaced by ΥNt

t . However, due to assumption

A4(iii), we have that Υ̃Nt
t and Y are independent conditional on F (0)

T . From here, we can proceed

exactly as in the proof for the case when Y is adapted to F (0)
T . �

Lemma 2 Under the conditions of Theorem 5, we have

√
kn


V1

{
n
kn

∑
i∈I+,n

(
∆1,n
i W

)2
− 1

}
...

VT

{
n
kn

∑
i∈I+,n

(
∆T,n
i W

)2
− 1

}
 L−s−→


√

2V1 . . . 0
...

. . .
...

0 . . .
√

2VT


 Ẽ1

...

ẼT

 , (31)

where {Ẽt}t≥1 are defined in Theorem 5.

Proof of Lemma 2. Since kn/n → 0, it is no limitation to assume kn/n < 1, and we do so
henceforth. In particular, this implies that the sets {t + i

n}i∈I±,n for t = 1, ..., T are disjoint. The
validity of the Lemma now follows if we can show,√
kn

( {
n
kn

∑
i∈I+,n

(
∆1,n
i W

)2

− 1

}
. . .

{
n
kn

∑
i∈I+,n

(
∆T,n
i W

)2

− 1

} )
L−s−→

√
2
(
Ẽ1 . . . ẼT

)
.

The convergence in law follows from a standard central limit theorem, as

{
n
kn

∑
i∈I+,n

(
∆t,n
i W

)2
− 1

}
are independent of each other for different values of t, and further each of them equals

{
1
kn

∑kn
i=1 (Zi)

2 − 1
}

in probability, where Zi are i.i.d. standard normal variables. Thus we only need show that the
convergence holds stably, and for this it suffices to consider at bounded variables adopted to the
filtration generated by the Brownian motion Wt. We are now in position to directly apply Steps 3
and 4 of the proof of Proposition 8.2 of Jacod and Todorov (2010) to establish the result. �

Lemma 3 If the conditions of Theorem 2 and Theorem 5 hold, then the convergence in Lemma 1
and Lemma 2 holds jointly and further the vectors (E1, ...,ET ,E

′
1, ...,E

′
T )′ and (Ẽ1, ..., ẼT )′ in

Lemma 1 and Lemma 2 are independent.

Proof of Lemma 3. Exploiting the same notation as in the proof of Lemmas 1 and 2, we further
denote,

X
N
1 =

(
ΥN1

1 . . . ΥNT
T

)′
,

Xn
2 =

√
kn

(
V1

{
n
kn

∑
i∈I+,n

(
∆1,n
i W

)2

− 1

}
. . . VT

{
n
kn

∑
i∈I+,n

(
∆T,n
i W

)2

− 1

} )′
,

where recall N = mint=1,...,T Nt. In this notation, we must prove

E
(
Y f(X

N
1 )g(Xn

2 )
)
−→ E (Y E (f(X1)|FT )E (g(X2)|FT )) , (32)

for f(·) and g(·) being Lipschitz functions on RT (p+q) and RT , respectively, Y denoting a bounded
random variable on FT , and X1 and X2 representing the limits in (23) and (31), respectively.
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First we consider at the case where Y is adapted to F (0)
T . Exactly as in the proof of Lemma 1,

we can show
E
(
f(X

N
1 )
∣∣F (0)

T

)
P−→ E

(
f(X1)

∣∣F (0)
T

)
. (33)

From here, for every sufficiently small ε > 0, there exists Ñ > 0 such that for N > Ñ , we have

E
{
Y g(Xn

2 )
∣∣∣E(f(X

N
1 )
∣∣F (0)

T

)
− E

(
f(X1)

∣∣F (0)
T

)∣∣∣} ≤ Kε, (34)

for some positive constant K (that does not depend on ε and Ñ), where we also exploited the

boundedness of Y , f(X
N
1 ) and g(Xn

2 ). Next, using the fact that E
(
f(X1)

∣∣F (0)
T

)
Y is F (0)

T -adapted,

the definition of stable convergence, and the result of Lemma 2, we obtain the limit result in (32)

for the case where Y is F (0)
T -adapted.

We are left with the case where Y is adapted to F (1)
T . The proof is identical to the analogous

case for the proof of Lemma 1. Hence, the proof is omitted. �

Lemma 4 Under the conditions of Theorem 5 we have

n√
kn

T∑
t=1

∑
i∈I+,n

∣∣∣(∆t,n
i X)21

(
|∆t,n

i X| ≤ αn−$
)
− Vt(∆t,n

i W )2
∣∣∣ P−→ 0. (35)

Proof of Lemma 4. First, via a localization argument similar to that in, e.g., Lemma 4.6 of
Jacod (2008), it suffices to consider the case where the processes αt, Vt and at, as well as the jumps
of the process X, are bounded. Thus, we impose this condition for the remainder of this proof.

Applying Itô lemma, we have

d log(Xt) =

(
αt −

1

2
Vt

)
dt+

√
VtdWt +

∫
x>−1

xµ̃(dt, dx) +

∫
x>−1

(log(1 + x)− x)µ(dt, dx), (36)

note that log(1 + x)− x ∼ x2 for x→ 0 and therefore the last integral above is well defined in the
usual Riemann-Stieltjes sense. We further denote

At =

∫ t

0

(
αs −

1

2
Vs

)
ds, Zt =

∫ t

0

√
VsdWs, Yt =

∫ t

0

∫
x>−1

xµ̃(ds, dx)+

∫ t

0

∫
x>−1

(log(1 + x)− x)µ(ds, dx).

In this notation, we obtain the following decomposition for any i ∈ I+,n and t = 1, ..., T ,

(∆t,n
i X)21{|∆t,n

i X|≤αn−$} − Vt
(

∆t,n
i W

)2

= (∆t,n
i X)21{|∆t,n

i X|≤αn−$} − (∆t,n
i X)21{|∆t,n

i Y |≤α
2
n−$} + |∆t,n

i X −∆t,n
i Z|21{|∆t,n

i Y |≤α
2
n−$}

+ 2(∆t,n
i X −∆t,n

i Z)∆t,n
i Z1{|∆t,n

i Y |≤α
2
n−$} − (∆t,n

i Z)21{|∆t,n
i Y |>α

2
n−$}

+ (∆t,n
i Z)2 − Vt+ i−1

n

(
∆t,n
i W

)2
+ (Vt+ i−1

n
− Vt)

(
∆t,n
i W

)2
.

(37)

We now derive bounds for moments of each of the terms of the decomposition. These bounds will,
in combination, prove convergence of their (scaled) sums either in the L1 or L2 norms. Henceforth,
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in the proof of the lemma, K denotes a positive constant which is independent of n and typically
will take on different values across the different equations. First, we have,

|(∆t,n
i X)21{|∆t,n

i X|≤αn−$} − (∆t,n
i X)21{|∆t,n

i Y |≤α
2
n−$}| ≤ (∆t,n

i X)21{|∆t,n
i X−∆t,n

i Y |≥α
2
n−$}, (38)

and then using Hölder inequality, the boundedness of αt and Vt , and the Burkholder-Davis-Gundy
inequality, we get

E
∣∣∣(∆t,n

i X)21{|∆t,n
i X|≤αn−$} − (∆t,n

i X)21{|∆t,n
i Y |≤α

2
n−$}

∣∣∣ ≤ Kn−ζ , ∀ζ > 0. (39)

Next, by applying the Burkholder-Davis-Gundy inequality and/or the algebraic inequality |
∑

i |ai||p ≤∑
i |ai|p for any p ∈ (0, 1], we obtain

E|∆t,n
i Y |ζ ≤ Kn−1, ∀ζ ≥ β. (40)

Exploiting the above inequality, we deduce

E
{
|∆t,n

i X −∆t,n
i Z|21{|∆t,n

i Y |≤α
2
n−$}

}
≤ Kn−1−(2−β)$. (41)

Next, we decompose Yt depending on the value of β in Assumption A0. Yt =
∫ t

0

∫
x>−1 log(1 +

x)µ̃(ds, dx) +
∫ t

0 asds
∫
x>−1(log(1 + x)− x)νP(dx) when β in assumption A0 cannot be chosen less

than 1 and Yt =
∫ t

0

∫
x>−1 log(1+x)µ(ds, dx)−

∫ t
0 asds

∫
x>−1 xν

P(dx) otherwise. Then, upon making
use of the elementary inequality 1(|a+ b| < c) ≤ 1(|a| > c) + 1(|b| < 2c) for any a, b ∈ R and c > 0,
we get

E
∣∣∣(∆t,n

i X −∆t,n
i Z)∆t,n

i Z1{|∆t,n
i Y |≤α

2
n−$}

∣∣∣ ≤ Kn−1/2− 1
β
∧1−(1−β)$∨0

. (42)

Moreover, applying the Hölder inequality and the inequality (40) yields,

E
{

(∆t,n
i Z)21{|∆t,n

i Y |>α
2
n−$}

}
≤ Kn−1−(1−β$). (43)

Finally, using the boundedness of Vt from both below and above, along with Aassumption A0(i),
and the Itô isometry, we obtain,

E
∣∣∣∣(∆t,n

i Z)2 − Vt+ i−1
n

(
∆t,n
i W

)2
∣∣∣∣ ≤ Kn−1/2

√√√√∫ t+ i
n

t+ i−1
n

E(Vs − Vt+ i−1
n

)2ds ≤ Kn−3/2. (44)

E
{(
Vt+ i−1

n
− Vt

)
(∆t,n

i W )2
}
≤ Kn−3/2

√
i− 1. (45)

Combining these findings, we validate the convergence result in (35). �

8.2 Proof that Assumption A3′ implies A3

The proof consists of verifying the conditions of Theorem 21 of Ibragimov and Has’minskii (1981)
for uniform convergence on the space of functions vanishing at infinity equipped with the uniform
topology. We use the shorthand notation

ηNtθ (Zt) =

∑Nt
j=1 ζt(kj , τj) [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt

j=1 [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

,
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and we further fix some ε > 0. Using the continuous differentiability of κ(k, τ,St, θ) in its last two

arguments, as well as the integrability of εt,k,τ (conditional on F (0)
T ) together with the Burkholder-

Davis-Gundy inequality for discrete martingales (applied successively), as well as the conditional
integrability conditions for the error εt,k,τ in A3′(iii), we have for Nt sufficiently large

E
(
|ηNtθ (Zt)− ηNtθ (Zt + h)|p+ι

∣∣∣∣F (0)
T

)
≤ K||h||p+ι, E

(
|ηNtθ (Zt)|p+ι

∣∣∣∣F (0)
T

)
≤ K, (46)

for either ||θ− θ0|| > ε or ||Zt−St|| > ε and where K is F (0)
T -adapted finite-valued random variable

(recall that p is the dimension of the state vector St). Next, for every Zt, we have

E

(
sup

θ∈Θ: ||θ−θ0||>ε
|ηNtθ (Zt)|

∧
1

∣∣∣∣F (0)
T

)
−→ 0, a.s., (47)

using a criterion for uniform convergence on compact sets.
By Cauchy-Schwartz inequality and the fact that ζt(k, τ) is finite-valued, we have

|ηNtθ (Zt)| ≤ K

√√√√ 1
Nt

∑Nt
j=1 ε

2
t,kj ,τj

1
Nt

∑Nt
j=1 [κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]

2
,

for K some F (0)
T -adapted random variable. From here and our assumption for the behavior of

κ(k, τ,St, θ) as ||St|| → ∞, together with Chebyshev’s inequality, provided Nt is sufficiently big so
that we have at least one observation in the range for which assumption A3′(ii) holds, we have

lim
y→∞

sup
Nt,θ

P

(
sup
||Zt||>y

|ηNtθ (Zt)| > | log(y)|1/2−ι
∣∣∣∣F (0)

T

)
= 0. (48)

Combining (46)-(48), we have by an application of Theorem 21 of Ibragimov and Has’minskii (1981)

E

(
sup

{||Zt−St||>ε} ∪ {||θ−θ0||>ε}
|ηNtθ (Zt)|

∧
1

∣∣∣∣F (0)
T

)
→ 0. (49)

From here we have the asymptotic negligibility of Assumption A3. �

8.3 Proof of Theorem 1

We fix an arbitrarily small ε > 0. We make use of the following decomposition, for t = 1, ..., T and
j = 1, ..., Nt:(

κ̂t,kj ,τj − κ(kj , τj ,Zt, θ)
)2

=ε2t,kj ,τj + (κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ))
2

+ 2εt,kj ,τj (κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)) .
(50)

Assumption A2 implies that

δ = inf
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

∑
τ

∫ k(t,τ)

k(t,τ)
(κ(k, τ,St, θ0)− κ(k, τ,Zt, θ))

2 dk
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is almost surely positive (δ depends on the realization ω). The fact that δ > 0 implies there is at
least one time and maturity pairing for which there is a range of moneyness within the interval
(k(t, τ), k(t, τ)) with positive Lebesgue measure (this range can be different for different ω in the
probability space) over which the difference (κ(k, τ,St, θ0)− κ(k, τ,Zt, θ))

2 is strictly positive. But
then, since the mesh of the moneyness for each t = 1, ..., T and each time-to-maturity is of size
O(1/Nt), we have that the number of pairs (kj , τj) within this range of log-moneyness and time-to-
maturity is of order O(Nt) (note that ψt,τ (k) of assumption A1 is strictly positive). Next, because κ

is continuously differentiable in its log-moneyness argument, there exists an Ñ1 > 0, almost surely
(Ñ1 depends on ω, of course), such that for N > Ñ1 :

inf
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

1

Nt

Nt∑
j=1

(κ(kj , τj ,St, θ0)− κ(kj , τj ,Z, θ))
2 >

δ

2
. (51)

Now, assumption A3 implies that, for every infinite subsequence of N , there exists a further sub-
sequence, denoted N ′, along which we have,

sup
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

∣∣∣∣∣
∑T

t=1
1
Nt

∑Nt
j=1 (κ(kj , τj ,St, θ0)− κ(kj , τj ,Z, θ)) εt,kj ,τj∑T

t=1
1
Nt

∑Nt
j=1 (κ(kj , τj ,St, θ0)− κ(kj , τj ,Z, θ))

2

∣∣∣∣∣ −→ 0, a.s,

where N in the above almost sure convergence is an element of the subsequence N ′. Therefore, for

some ι ∈ (0, 1), there exists Ñ2, such that for N > max{Ñ1, Ñ2}, along the subsequence N ′, we
have on ω

sup
(
⋂T
t=1 {||Zt−St||≤ε} ∩ {||θ−θ0||≤ε})

c

T∑
t=1

1

Nt

Nt∑
j=1

(
κ̂t,kj ,τj − κ(kj , τj ,Zt, θ)

)2
>

T∑
t=1

1

Nt

Nt∑
j=1

ε2t,kj ,τj +
δ(1− ι)

2
, (52)

where, again, N is an element of the subsequence N ′ and we also exploited (51). Next, since

{V̂ n
t }t=1,...,T is consistent for {Vt}t=1,...,T , we have, for every infinite subsequence of n, a further

subsequence, denoted n′, along which we have almost sure convergence, i.e.,

V̂ n′
t → Vt, t = 1, ..., T, a.s.

Then, since λn converges to a finite λ, there exists n > 0 such that, for n > n along the subsequence
n′ and on the same ω for which (52) is true, we have,

λn sup
t=1,...,T

|V̂ n′
t − Vt|2 ≤

δ(1− ι)
4

. (53)

Combining (52) and (53) implies that, along the subsequences N ′ and n′, we have for N and n
sufficiently high,

sup
t=1,...,T

||Ŝnt − St|| < ε and ||θ̂n − θ0|| < ε, a.s. (54)

Therefore, since convergence in probability is equivalent to almost sure convergence on a subse-
quence to any infinite subsequence of the original series, see, e.g., Lemma 3.2 of Kallenberg (1997),
we have from (54),

P

(
sup

t=1,...,T
||Ŝnt − St|| > ε ∪ ||θ̂n − θ0|| > ε

)
−→ 0.

Since, the choice of ε was arbitrary, the above proves the consistency result of the theorem. �
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8.4 Proof of Theorem 2

Exploiting that the implied volatility function is differentiable with respect to the state variables
and the parameters of the risk-neutral distribution along with the consistency result in Theorem 1,

we have that {Ŝnt }t=1,...,T and θ̂n, with probability approaching 1, solve

1
N1

∑N1

j=1

(
κ̂1,kj ,τj − κ(kj , τj , Ŝ

n
1 , θ̂

n)
)
∇Sκ(kj , τj , Ŝ

n
1 , θ̂

n) + λn∇Sξ1(Ŝn1 )(V̂ n1 − ξ1(Ŝn1 )) = 0,

...
1
NT

∑NT
j=1

(
κ̂T,kj ,τj − κ(kj , τj , Ŝ

n
T , θ̂

n)
)
∇Sκ(kj , τj , Ŝ

n
T , θ̂

n) + λn∇Sξ1(ŜnT )(V̂ nT − ξ1(ŜnT )) = 0,∑T
t=1

1
Nt

∑Nt
j=1

(
κ̂t,kj ,τj − κ(kj , τj , Ŝ

n
t , θ̂

n)
)
∇θκ(kj , τj , Ŝ

n
t , θ̂

n) = 0.

(55)

Using a first-order Taylor expansion we obtain,

H̃T


Ŝn1 − S1

...

ŜnT − ST
θ̂n − θ0

 =


1
N1

∑N1

j=1 ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)
...

1
NT

∑NT
j=1 εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)∑T

t=1
1
Nt

∑Nt
j=1 εt,kj ,τj∇θκ(kj , τj ,St, θ0)

+ op

(
1√
N

)
,

where H̃T denotes the analogue of ĤT in which {Ŝnt }t=1,...,T is replaced by {S̃t}t=1,...,T and θ̂n with

θ̃ for {S̃t}t=1,...,T lying between {Ŝnt }t=1,...,T and {St}t=1,...,T and θ̃ residing in the interval between

θ̂n and θ0. The op term in the expansion stems from the presence of terms depending on V̂ n
t in the

first-order conditions, the fact that
(
Ŝnt , θ̂

n
t

)
is consistent (and hence asymptotically bounded in

probability), the fact that {V̂ n
t }t=1,...,T is asymptotically bounded in probability, and the assumed

relation λ2
nN → 0 in the theorem.

Since the mesh of the grid on the log-moneyness of the options decreases with N τ
t ∆t,τ (i) →

ψt,τ (k) uniformly on the interval (k(t, τ), k(t, τ)), we trivially have, pathwise,

1

Nt

Nt∑
j=1

∇Sκ(kj , τj ,Z, θ)∇Sκ(kj , τj ,Z, θ)
′ →

∑
τ

∫ k(t,τ)

k(t,τ)

1

ψt,τ (k)
∇Sκ(k, τ,Z, θ),∇Sκ(k, τ,Z, θ)′dk,

for any finite Z and θ. Moreover, since ∇Sκ(k, τ,Z, θ) is continuous in the arguments Z and θ,

the above convergence also holds locally uniformly in Z and θ. Therefore, since θ̃
P−→ θ0 and

S̃t
P−→ St for t = 1, ..., T , we have H̃T

P−→ HT . Combining this result with the limit result in
Lemma 1, we establish the asymptotic distribution result in (7). �

8.5 Proof of Theorem 3

We only show the consistency of the block Ω̂t,t
T , as the proofs for the other blocks of Ω̂T and ĤT

proceed in an identical fashion. Moreover, it suffices to prove consistency for each of the elements
of Ω̂t,t

T . First, using Assumptions A4(ii), A4(iii) and A4(iv), we have,

E


 1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
A(ι1,ι2)(kj , τj ,St, θ0)

2 ∣∣∣∣F (0)


=

1

N2
t

Nt∑
j=1

%t,kj ,τj

(
A(ι1,ι2)(kj , τj ,St, θ0)

)2
−→ 0, a.s., ι1, ι2 = 1, ..., p,

(56)
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where A(ι1,ι2)(k, τ,Z, θ) denotes the (ι1, ι2) element of the matrix∇Sκ(k, τ,Z, θ)∇Sκ(k, τ,Z, θ)′, and

where %t,k,τ = E
(

(ε2t,k,τ − φt,k,τ )2|F (0)
)

, which by Assumption A4(iv) is finite. The almost sure

convergence in (56) follows because of the pathwise boundedness of the functions A(ι1,ι2)(k, τ,Z, θ)
and %t,k,τ on the range of moneyness (k(t, τ), k(t, τ)). The convergence in (56) implies,

E

E


 1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
A(ι1,ι2)(kj , τj ,St, θ0)

2 ∣∣∣∣F (0)

∧ 1

 −→ 0. (57)

Using Jensen’s inequality and (57), as well as law of iterated expectations, we further have,

E


 1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
A(ι1,ι2)(kj , τj ,St, θ0)

2∧
1

 −→ 0, (58)

which is equivalent to

1

Nt

Nt∑
j=1

(
ε2t,kj ,τj − φt,kj ,τj

)
∇Sκ(kj , τj ,St, θ0)∇Sκ(kj , τj ,St, θ0)′

P−→ 0. (59)

Finally, using the fact that κ(k, τ,Z, θ) is twice continuously differentiable in all its arguments, we
have for some ε > 0, S = {S1, ...,ST }, k = mint=1,...,T minτ k(t, τ) and k = maxt=1,...,T maxτ k(t, τ),

sup
k∈(k,k)

sup
Z∈(S−ε,S+ε)

sup
θ∈(θ0−ε,θ0+ε)

{ ||∇Sκ(k, τ,Z, θ)||+ ||∇SSκ(k, τ,Z, θ)|| } < ∞ , a.s. (60)

Therefore, since for Nt sufficiently high, we will have Ŝnt sufficiently close to St and θ̂n sufficiently
close to θ0 , so that we have,

Ω̂t,t
T −

1

Nt

Nt∑
j=1

ε2t,kj ,τj ∇Sκ(kj , τj ,St, θ0)∇Sκ(kj , τj ,St, θ0)′
P−→ 0. (61)

Combining (59) and (61) with the the smoothness of φt,k,τ in its second argument and the smooth-

ness of ∇Sκ(k, τ,Z, θ) in the first argument, we conclude, Ω̂t,t
T

P−→ Ωt,t
T . �

8.6 Proof of Theorem 4

Consistency. The proof proceeds in exactly the same way as that of Theorem 1 once the following
is established

sup
||{Zt−St||>ε} ∪ {||θ−θ0||>ε}

{∑Nt
j=1 φ̂

−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt
j=1 φ̂

−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

−
∑Nt

j=1 φ
−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj∑Nt
j=1 φ

−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

}
P−→ 0.

(62)
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The asymptotic negligibility result in (62) follows from combining the following results:

(a) Using the uniform convergence in (11), we have

sup
j=1,...,Nt

|φ̂−1
t,kj ,τj

− φ−1
t,kj ,τj

| P−→ 0, as Nt →∞.

(b) By Cauchy-Schwartz inequality

1

Nt

Nt∑
j=1

φ−1
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)] εt,kj ,τj

≤

√√√√ 1

Nt

Nt∑
j=1

φ−2
t,kj ,τj

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

√√√√ 1

Nt

Nt∑
j=1

ε2t,kj ,τj .

(c) Using Assumption A4, exactly as in (56)-(59), we have

1

Nt

Nt∑
j=1

ε2t,kj ,τj
P−→

∑
τ

πτ

∫ k(t,τ)

k(t,τ)

φt,k,τ
ψt,τ (k)

dk.

(d) From Assumption A1 and A2, we have

sup
||{Zt−St||>ε} ∪ {||θ−θ0||>ε}

 1

Nt

Nt∑
j=1

[κ(kj , τj ,St, θ0)− κ(kj , τj ,Zt, θ)]
2

−1

,

is almost surely bounded in probability, i.e., for ω ∈ Ω̃ with P(Ω̃) = 1, there exists Ñ and K > 0
(depending on ω) such that the above is smaller than K for N > N .

Combining the results in (a)-(d) above, we readily have the asymptotic negligibility in (62) and

from here the consistency of
(
{Snt }t=1,...,T , θ

n
)

.

Asymptotic Normality. We proceed exactly as in the proof of Theorem 2. A first-order Taylor
expansion of the first-order conditions yields

(Λ̃T + R̃T )


S
n

1 − S1

...

S
n

T − ST
θ
n − θ0

 =
1

N


∑N1

j=1 φ
−1
1,kj ,τj

ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)
...∑NT

j=1 φ
−1
T,kj ,τj

εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)∑T
t=1

∑Nt
j=1 φ

−1
t,kj ,τj

εt,kj ,τj∇θκ(kj , τj ,St, θ0)

+ op

(
N−1/2

)
, (63)

where Λ̃T denotes the analogue of Λ̂T in which {Snt }t=1,...,T is replaced by {S̃t}t=1,...,T and θ
n

with θ̃

for {S̃t}t=1,...,T lying between {Snt }t=1,...,T and {St}t=1,...,T and θ̃ residing in the interval between θ
n

and θ0. R̃T is a matrix containing second-order derivatives of κ(k, τ,Z, θ). From the assumption of

the theorem, the latter are continuous and since θ̃
P−→ θ0 and S̃t

P−→ St for t = 1, ..., T , we easily

have R̃T
P−→ 0. Finally, the op term in the expansion stems from the presence of terms depending

on V̂ n
t in the first-order conditions, the fact that

(
S
n
t , θ

n
t

)
is consistent (and hence asymptotically

bounded in probability), the fact that {V̂ n
t }t=1,...,T is asymptotically bounded in probability, and
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the assumed relation λ2
nN → 0 in the theorem as well as the consistency result for φ̂t,k,τ in (11)

and the asymptotic result in (64) below.

The consistency of Λ̃T is proved in exactly the same way as the consistency of H̃T in Theorem 2.
Hence, to prove (13), we need to show stable convergence of the (scaled) term on the right-hand
side of (63). The latter is given by

1√
N


∑N1

j=1 φ
−1
1,kj ,τj

ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)
...∑NT

j=1 φ
−1
T,kj ,τj

εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)∑T
t=1

∑Nt
j=1 φ

−1
t,kj ,τj

εt,kj ,τj∇θκ(kj , τj ,St, θ0)

 L−s−→ Λ
−1/2
T


E1
...

ET

E′

 , (64)

and is proved exactly the same way as Lemma 1 since φt,k,τ is F (0)
T -adapted.

The consistency of Λ̂T is shown exactly in the same way as the consistency of ĤT in the proof
of Theorem 3. �

8.7 Proof of Theorem 5

The results follows directly from combining Lemmas 2-4. �

8.8 Proof of Theorem 6

The proof of the theorem follows the same steps as the proof of Theorem 2. Using a first-order
Taylor expansion of the first-order condition in (55) we obtain,

(H̃T + D̃T + R̃T )


Ŝn1 − S1

...

ŜnT − ST
θ̂n − θ0

 =


1
N1

∑N1

j=1 ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0) + λn∇Sξ1(S1)(V̂ n1 − V1)
...

1
NT

∑NT
j=1 εT,kj ,τj∇Sκ(kj , τj ,ST , θ0) + λn∇Sξ1(ST )(V̂ nT − VT )∑T

t=1
1
Nt

∑Nt
j=1 εt,kj ,τj∇θκ(kj , τj ,St, θ0)

 ,

(65)

where H̃T and D̃T denote the analogues of ĤT and D̂T in which {Ŝnt }t=1,...,T is replaced by

{S̃t}t=1,...,T and θ̂n with θ̃ for {S̃t}t=1,...,T lying between {Ŝnt }t=1,...,T and {St}t=1,...,T and θ̃ re-

siding in the interval between θ̂n and θ0; R̃T is a matrix containing second-order derivatives of
κ(k, τ,Z, θ) and ξ1(Z). From the assumption of the theorem, the latter are continuous and since

θ̃
P−→ θ0 and S̃t

P−→ St for t = 1, ..., T , we easily have R̃T
P−→ 0. From the proof of Theorem 2,

we have H̃T
P−→ HT and we can prove analogously D̃T

P−→ DT .
Hence to prove the convergence in (16), we are left with the term on the right-hand side of (65).

First, since the convergence result in Lemma 2 is stable, we also have (making use in addition of
Lemma 4)

√
kn

 ∇Sξ1(S1)(V̂ −,n1 − V1)
...

∇Sξ1(ST )(V̂ −,nT − VT )

 L−s−→


√

2V1∇Sξ1(S1)Ẽ1
...√

2VT∇Sξ1(ST )ẼT

 , (66)

where {Ẽt}t≥1 are defined in Theorem 5. Now exactly as in Lemma 3, we have the stable conver-
gence in (66) to hold jointly with that in (23) of Lemma 1. Combining this with the convergence in

50



probability of H̃T + D̃T + R̃T , together with the properties of the stable convergence (Proposition
VIII.5.33 in Jacod and Shiryaev (2003)), we have the result in (16).

Finally, the consistency of D̂T and Σ̂T can be proved exactly in the same way as the consistency
of ĤT and Ω̂T in the proof of Theorem 3. �

8.9 Proof of Corollary 1

The proof follows from a trivial extension of Lemma 1, the smoothness of the function κ(k, τ,Z, θ)

in its arguments, the consistency of {Ŝnt }t=1,...,T and θ̂n, as well as the properties of the stable
convergence. First, a Taylor expansion yields

∑
j:kj∈K

(
κ̂t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂)
)

=
∑
j:kj∈K

εt,kj ,τ∗ −

 ∑
j:kj∈K

∇Sκ(kj , τ
∗, S̃t, θ̃)

(Ŝnt − St

)

−

 ∑
j:kj∈K

∇θκ(kj , τ
∗, S̃t, θ̃)

(θ̂n − θ0

)
,

where {S̃t}t=1,...,T is between {Ŝnt }t=1,...,T and {St}t=1,...,T and θ̃ lies between θ̂n and θ0. Therefore,

using the consistency of {Ŝnt }t=1,...,T and θ̂, as well as the smoothness of κ(k, τ,Z, θ) (and its
derivatives with respect to Z and θ) in the log-moneyness, we obtain,

1√
NKt

∑
j:kj∈K

(
κ̂t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂)
)

= ΠT



√
N1(Ŝn1 − S1)

...√
NT (ŜnT − ST )√

N1+...+NT
T (θ̂n − θ0)

1√
NKt

∑
j:kj∈K εt,kj ,τ∗


+ op, (67)

where

ΠT =

(
01×(t−1)p −

∫
K

1

ψt,τ (k)
∇Sκ(k, τ,St, θ)

′dk 01×(T−t+1)p −
√
Tςt

∫
K

1

ψt,τ (k)
∇θκ(k, τ,St, θ)

′dk 1

)
.

Next, using the Taylor expansion in (56) and the consistency of {Ŝnt }t=1,...,T and θ̂n, we get,

1√
NKt

∑
j:kj∈K

(
κ̂t,kj ,τ∗ − κ(kj , τ

∗, Ŝnt , θ̂)
)

= ΠT

(
H−1
T 0pT+q×1

01×pT+q 1

)(
ζ{Nt}t=1,...,T

1√
NKt

∑
j:kj∈K εt,kj ,τ

∗

)
+ op, (68)

where we denote

ζ{Nt}t=1,...,T
=


1√
N1

∑N1
j=1 ε1,kj ,τj∇Sκ(kj , τj ,S1, θ0)

...
1√
NT

∑NT
j=1 εT,kj ,τj∇Sκ(kj , τj ,ST , θ0)√∑T

t=1 Nt
T

∑T
t=1

1
Nt

∑Nt
j=1 εt,kj ,τj∇θκ(kj , τj ,St, θ0)

 .

Then, upon following exactly the same steps as in the proof of Lemma 1, we obtain,(
ζ{Nt}t=1,...,T

1√
NKt

∑
j:kj∈K εt,kj ,τ∗

)
L−s−→ ZT , (69)
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where ZT , defined on an extension of the original probability space, is F (0)
T -Gaussian with a F (0)

T -
conditional covariance matrix given by

(
ΩT Υ1,T

Υ′1,T Υ2,T

)
, Υ1,T =


0(t−1)p×1

1√∫
K

1
ψt,τ (k)

dk

∫
K

1
ψt,τ (k)φt,k,τ∇Sκ(k, τ,St, θ0)dk

0(T−t+1)p×1
1√
Tςt

1√∫
K

1
ψt,τ (k)

dk

∫
K

1
ψt,τ (k)φt,k,τ∇θκ(k, τ,St, θ0)dk

 ,

Υ2,T =
1∫

K
1

ψt,τ (k)dk

∫
K

1

ψt,τ (k)
φt,k,τdk.

Then, using the same techniques as in the proof for consistency of Ω̂T (see (56)-(61) above), we can

show that, 1
NKt

Π̂′T Ξ̂T Π̂T
P−→ Π′T ΞT ΠT , where ΞT is defined exactly as Ξ̂T , but with each matrix

replaced by its analogue matrix without the hat. Now, using the definition of stable convergence,
we obtain the requisite limit result in (17). �

8.10 Proof of Corollary 2

The proof follows from an extension of Lemma 1 and Theorem 2 for two panels with disjoint time
intervals. �

8.11 Proof of Corollary 3

By Lemma 3, we have that { 1√
Nt

(
Ŝnt − St

)
}t=1,...,T and

√
kn{V̂ −,nt −Vt}t=1,...,T are, conditionally on

FT , asymptotically independent and normally distributed. Since the limit results of Lemma 3 hold
stably with respect to FT , and from Theorem 2, the corresponding part of the matrix Ĥ−1

T Ω̂T (Ĥ−1
T )′

provides a consistent estimator for the asymptotic variance of { 1√
Nt

(
Ŝn1 − S1

)
}t=1,...,T , then by

applying the Delta method (recall that ξ1 is continuously differentiable), we obtain the limit result
of the Corollary. �
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