
Optimally Climate Sensitive Policy

under Uncertainty & Learning

Svenn Jensen∗ Christian Traeger†

November 2013

Abstract

The equilibrium response of the global temperature to greenhouse gas
emissions is highly uncertain. We derive the optimal climate policy un-
der uncertainty, acknowledging Baysian uncertainty, passive and active
learning, and temperature stochasticity. Our analysis employs a stochastic
dynamic programming implementation of the integrated assessment model
DICE (Nordhaus, 2008). We find that the stochasticity of temperatures in-
duces precautionary savings, while Bayesian uncertainty over the climate’s
sensitivity to greenhouse gas emissions increases the optimal present day
carbon tax by approximately 25%. Currently, the scientific community
does not agree on the correct Bayesian prior or even its expected value.
We therefore re-evaluate optimal policy using a model of smooth ambiguity
aversion, acknowledging low confidence into the Bayesian prior. We find
that neither ambiguity, nor the anticipation of learning change the optimal
policy.
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1 Introduction

Anthropogenic greenhouse gas emissions are presently changing the energy bal-

ance of our planet. Various climatic feedbacks make the resulting warming over

the next decades and centuries highly uncertain. The economic losses from cli-

mate change are convex in the temperature and, thus, the optimal mitigation

policy is very sensitive to the parameterization of this climatic response to an-

thropogenic emissions. How should we tax (or cap) greenhouse gases today ac-

knowledging the climatic uncertainty?

Climate sensitivity captures the equilibrium warming from doubling the CO2

concentration with respect to preindustrial levels.1 The scientists on the Inter-

governmental Panel on Climate Change (IPCC) find that “equilibrium climate

sensitivity is likely in the range 1.5◦C to 4.5◦C”, adding that “no best estimate

for equilibrium climate sensitivity can now be given because of a lack of agree-

ment on values across assessed lines of evidence and studies” (IPCC, 2013). The

economic losses from climate change differ largely across this likely interval: the

loss of global production with a 4.5◦C warming is 7 times higher than in the case

of a 1.5◦C warming, using the wide-spread damage function of the DICE model

(Nordhaus, 2008). Moreover, climate sensitivity values ranging 4.5◦C-10◦C still

carry considerable probability mass (Meinshausen et al., 2009). We introduce

uncertainty about climate sensitivity into a stochastic dynamic programming in-

tegrated assessment model of climate change. Our integrated assessment model

closely resembles the DICE model by Nordhaus (2008), which integrates emis-

sions and climate into a Ramsey growth model. Economic production results

in greenhouse gas emissions, which accumulate in the atmosphere, cause lagged

warming, and ultimately impact economic output. The decision maker controls

the mitigation policy and investment into produced capital. Like most integrated

assessment models, the original DICE model is deterministic and cannot deter-

mine the optimal policy unless the decision maker knows (or is assumed to know)

the climate’s response to emissions with certainty. Our stochastic dynamic pro-

gramming implementation enables us to derive optimal policies in the face of

1We are currently 70% toward such doubling, evaluating the different anthropogenic green-
house gases by their 100 year global warming potential CO2 equivalents.
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uncertainty.

Our model captures four different components of uncertainty that affect the

optimal policy choice: climate sensitivity uncertainty, passive learning, active

learning, and temperature stochasticity. First, incorporating uncertainty about

climate sensitivity allows us to pin down a value of the optimal carbon tax, even if

we are unable to pin down a value for climate sensitivity. The interaction between

the economy and the climate system is non-linear and complex. A priori, it is

unclear whether uncertainty implies a tax above or below the optimal policy that

would prevail in a deterministic setting assuming a climate sensitivity of 3◦C

(in middle of the IPCC’s likely parameter range). Second, we capture passive

learning: the future decision maker has better information about the climate’s

response to emissions. This aspect of learning is frequently invoked in the policy

debate to argue in favor of a wait and see policy. Third, we capture active

learning: by increasing emissions, the policy maker can speed up the learning

about climate sensitivity. Active learning always increases the emission level, but

the magnitude of the policy effect is unclear. Fourth, temperature is stochastic

over time. Temperature observations help our Bayesian decision maker to learn

about climate sensitivity. The stochasticity of temperature determines the speed

of learning. In addition, this temperature volatility affects economic damages

and the optimal policies directly.

We solve the model numerically using projection methods to determine the

value function and control rules on a six dimensional state space. We find that

short-term temperature stochasticity has no impact on the optimal abatement,

but triggers precautionary savings. In contrast, Bayesian uncertainty increases

the optimal carbon tax by 25% and reduces emissions by 15%, both compared

to the policy that assumes expected values for the climate sensitivity parameter.

Second, we show that both passive and active learning play a very minor role

in determining optimal present day policy: varying the speed of learning has a

negligible impact on optimal present day emissions. The speed of learning is a

major focus of earlier studies on climate sensitivity uncertainty.

Our study employs a standard Bayesian learning model: the decision maker

has a subjective prior over climate sensitivity and the likelihood function gov-

erns stochastic temperatures. However, the scientific community does not even
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agree on a current subjective prior over climate sensitivity. The scientific work-

ing group of the IPCC does not publish an expected value of climate sensitivity

(IPCC, 2013), and Meinshausen et al. (2009) reviews different probability dis-

tributions for climate sensitivity in the scientific literature, all of which differ in

the expected values of the current prior. The decision-theoretic literature distin-

guishes between known risks or unique subjective beliefs, and situations of deep

or hard uncertainty, usually referred to as situations of ambiguity. The behav-

ioral literature finds that decision maker’s behave differently in situations where

they know the risk as opposed to situations whether they cannot judge the un-

derlying probability distribution. A prominent model of ambiguity aversion that

relates closely to the standard Bayesian model is the smooth ambiguity model

by Klibanoff et al. (2009). Here, the decision maker evaluates the subjective

prior with a higher uncertainty aversion than the risk aversion that applies to the

evaluation of the objective risk of the likelihood function.

Acknowledging the low confidence of and disagreement on the climate sensi-

tivity prior, we employ the smooth ambiguity model to analyze ambiguity and

ambiguity aversion with respect to the ignorance over the climate sensitivity

prior. Traeger (2011) provides a normative foundation of our approach. He shows

that even in the von Neumann-Morgenstern framework, a fully rational decision-

makers can have different degrees of aversion with respect to known probabilities

and with respect to low confidence priors. We find that ambiguity aversion has

a negligible effect on optimal policies. Thus, neither anticipated learning, nor

ambiguity with respect to the true climate sensitivity should hold a policy maker

from setting the optimal policy to the level optimal under our current subjective

prior over climate sensitivity. This policy implies a significantly higher carbon

tax than a deterministic climate change assessment relying on an expected value

of climate sensitivity.

Relation to the Literature

Closest to our analysis is the seminal work by Kelly and Kolstad (1999), who

investigate Bayesian learning about climate sensitivity in a similar model. While

they analyze learning time in detail, they do not consider the separate contri-
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butions of uncertainty, learning and stochasticity on near term optimal policies.

Analyzing initial beliefs, they find that a decision maker does not hedge against

bad outcomes: an uncertain decision maker’s choice of abatement is closer to

the optimal policy under certain low climate sensitivity than certain high climate

sensitivity. We find the opposite, possibly from our more symmetric comparison

as well as our higher numerical precision.

Leach (2007) expands the work by Kelly and Kolstad (1999) by modeling

a second climate parameter, the warming delay, as uncertain. He finds that

modeling more than a single parameter as uncertain may practically prohibit

learning. His findings hence complement our result that the speed of learning has

very little influence on the currently optimal policies, much less than the level of

stochasticity and the prior uncertainty. Leach (2007) also briefly considers the

effect on optimal abatement in his setting, suggesting that a decision maker may

lower abatement rates in order to speed up learning, which contrasts with our

findings.

More recently, Kelly and Tan (2013) investigate uncertainty about climate

feedbacks in a numeric integrated assessment framework. They focus on the

impact of catastrophic damages resulting from a fat tailed probability distribution

and highly convex damages. Their results suggest that the uncertainty effect is

considerable in the first decade but wears off quickly as the probability mass in

the tail shrinks (and the tail thin) and a catastrophic outcome becomes highly

improbable.

Lemoine and Traeger (2013) model abrupt and irreversible changes in climate

sensitivity resulting from the climate system crossing an unknown temperature

threshold. The learning in their model consists of realizing that any temperature

level reached without crossing the threshold is safe. Before and after crossing the

threshold the climate sensitivity is known deterministically. In contrast, our deci-

sion maker learns the climate sensitivity smoothly over the course of decades and

centuries. Lemoine and Traeger (2013) capture an extreme of sudden irreversible

changes due to highly non-convex feedback processes. There, learning ahead of

time is impossible. In contrast, we capture a world with smooth feedbacks and

continuous learning.

Millner et al. (2013) relate to our analysis in that they model ambiguity
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aversion in the context of climate sensitivity. They assume that the decision

maker has a prior over which climate model governs the warming of the world.

The different possible models differ by climate sensitivity distributions. The

authors find that ambiguity aversion has small welfare effects given the standard

DICE damage function and large welfare effects when employing a more convex

damage function. In contrast to Millner et al. (2013) we do not analyze the

welfare effect of a given policy, but derive the optimal policy under uncertainty.

Moreover, our decision maker behaves as a fully consistent Bayesian learner.

Another related strand of literature compares the performance of different

climate policy instruments under various uncertainties (Hoel and Karp, 2001;

Kelly, 2005; Karp and Zhang, 2006; Fischer and Springborn, 2011). Closest to our

work are Karp and Zhang (2006) who compare taxes and quotas under learning

about the relation between greenhouse gas concentrations and economic damages

in a analytic integrated assessment model. They supplement their analytic results

with a numerical application which suggests that anticipated learning reduces

initial abatement levels considerably. In contrast, we find that learning does not

affect near term abatement rates. The main differences compared to our model

are their choice of linear-quadratic functional forms and the level of detail with

which the climate and the economy are modeled (their model features three, ours

six state variables).

2 Model

Our model is a recursive implementation of the integrated assessment model

DICE (Nordhaus, 2008). It interacts a Ramsey growth economy with a sim-

ple climate model. We produce a single good by combining labor, capital and

productivity in a Cobb-Douglas function. Production causes emissions which, if

unabated, increase the stock of greenhouse gases in the atmosphere and, with a

delay, the global surface temperature. The precise relation between greenhouse

gas concentrations and temperatures depends on the climate sensitivity, which

the social planner does not know. Temperatures above pre-industrial level (year

1900) hurt production. The social planner can reduce future damages by pur-

chasing emission abatement. Alternatively, she can invest the produced good in
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Figure 1: The main relations in the climate-enriched economy model. Control
variables are represented by dashed rectangles. Main state variables are depicted
by solid rectangles. Climate sensitivity (‘CS’) is uncertain. The decision maker
has a prior over its value (2 state variables). Temperature is stochastic.

physical capital or allocate it to consumption. Appendix A contains a complete,

formal description of our model, and Figure 1 depicts a stylized representation.

We formulate our model as a discrete time, infinite horizon dynamic pro-

gramming problem. With this structure we can introduce stochastic temperature

shocks in each period, model the social planner’s prior over climate sensitivity by

state variables, and introduce recursively defined ambiguity aversion preferences.

We simplify the ocean feedbacks in DICE to reduce the computational costs of the

recursive approach. Instead of the ocean carbon sink and the ocean temperature,

we calibrate a decay rate for atmospheric carbon and a heat transfer between the

atmosphere the ocean respectively. This adjustment saves us two computation-

ally costly state variables. Our calibration matches the baseline DICE scenario

under certainty closely. Please refer to Traeger (2012a), who derives the recursive

implementation in detail.

2.1 Temperature stochasticity

For given climate sensitivity s, temperature Tt evolves according to

T̃t+1 = (1− σ)Tt + σ s

[
ln Mt

Mpre

ln 2
+

EFt+1

λ

]
− σoceanΔTt + ε̃t . (1)
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Temperature in the next period Tt+1 depends on the current temperature Tt,

radiative forcing from atmospheric carbon stocks Mt (above pre-industrial level

Mpre) as well as other, exogenous forcing EFt, and heat exchange with the ocean

ΔTt. The parameters σ and σocean capture delays, while s is the climate sensitiv-

ity2. Each year random events ε̃ shock temperature. These “weather fluctuations”

are normally distributed with mean zero. For a given value of climate sensitivity,

the next period’s temperature is then normally distributed

T̃t+1 ∼ N (μT,t+1(s), σ
2
T ) with σ2

T = 0.042, 0.2, 0.7 .

The temperature mean from taking expectations in equation (1) is

μT,t+1 = s χt(Mt, t) + ξ(Tt, t)

where

χt(Mt, t) = σforc
log Mt+1

Mpre

log 2
+

EFt + 1

ηforc
, and

ξ(Tt, t) = (1− σforc)Tt − σoceanΔTt .

The variance σ2
T is exogenous. Empirical estimates suggest annual volatility in

global mean temperature in σ2
T = 0.042.3 For our analysis we will also use consid-

erably larger values. First, this estimate measures only global averages, whereas

the within-country fluctuations are significantly larger, closer to our next higher

value of σ2
T = 0.2. The effective damage increase of stochastic temperatures is

captured better by a country’s temperature volatility. Third, and that motivates

our value of σ2
T = 0.7, stochasticity this high inhibits learning almost completely,

which allows us to isolate the effect of uncertainty about climate sensitivity from

the learning effect (see next section).

2Table B at the end of the paper contains all parameter definitions and values.
3Kelly and Kolstad (1999) and Leach (2007) both use σ2

T = 0.1. Averaging temperatures
over 174 countries and estimating yearly fluctuations with respect to a common trend over 109
years results instead in the lower σ2

T = 0.042. We thank Christian Almer from the University
of Bern for the estimates.
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2.2 Uncertainty and Bayesian learning about climate sen-

sitivity

The social planner is uncertain about the value of climate sensitivity and holds

the following initial prior Π(s)

s̃0 ∼ Π(s) = N (μs,0, σ
2
s,0) with μs,0 = 3 σ2

s,0 = 1, 2, 3 .

Most commonly, estimates of climate sensitivity take fat-tailed distributional

forms such as the log-normal. To simplify the characterization of learning, we

assume a normal distribution. Given this limitation, σ2
s,0 = 3 is a rounded-up

empirical approximation to the set of distributions found in IPCC (2013)4 To

analyze the dynamics of learning, we vary the prior variance σ2
s,0 = 1, 2, 3.

We can learn the value of climate sensitivity from observing the CO2 stock

and temperatures over time. All the feedbacks that are not part of the climate

sensitivity are known. Every period the decision maker foresees what a future

realization of the temperature teaches her about climate sensitivity distribution

and updates her prior accordingly.

Her posterior in period t is the prior conditional on historic temperature

realizations Π(s|T̂1, ..., T̂t). This posterior also depends on the historic CO2 stock

information which we suppress for notational convenience. Given the current

stock Mt, a realization of temperature T̂t+1 in the subsequent period results in

the updated posterior Π(s|T̂1, ..., T̂t+1). In Appendix B we show that the updated

posteriors are again normally distributed so that at all times Π(s|T̂1, ..., T̂t) =

N (μs,t, σ
2
s,t) for some μs,t and σ2

s,t. Moreover, we prove the following updating

rules for the expected value

μs,t+1 =
χ2
tσ

2
s,t
T̂t+1−ξt

χt
+ σ2

Tμs,t

χ2
tσ

2
s,t + σ2

T

4IPCC (2013) considers climate sensitivity values between 1.5 to 4.5 degrees Celsius as likely
and values below 1 degree and above 6 degrees Celsius as extremely and very unlikely respec-
tively. The AR5 does not provide a best estimate due to lack of scientific consensus. A normal
distribution with mean 3 and variance 3 has the one standard deviation bands [1.27,4.73].
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and the variance

σ2
s,t+1 =

σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

. (2)

The new expected value of the parameter s is a weighted mean of the previous

expected value and the inferred “climate sensitivity observation”, T̂t+1−ξt
χt

. The

weight on the new observation is proportional to the precision (the inverse of

the variance) of the temperature and the magnitude of the multiplicative factor

χt, which increases in the carbon stock. The decision maker learns faster the

lower the temperature stochasticity and the larger the carbon stock. This insight

follows from observing that the first summand in the bracket in equation (2)

grows in 1/σ2T and in χt. With uncertainty about climate sensitivity, temperature

realizations are themselves uncertain (not only stochastic) and governed by the

predictive distribution T̃t+1 ∼ N (ξt + χtμs,t, χ
2
tσ

2
s,t + σ2

T ). We can conveniently

use this distribution (derived in Appendix B) to evaluate the uncertainty in the

optimization.

2.3 Welfare specification and Bellman equation

The social planner maximizes her value function subject to the exogenous and

endogenous equations of motion for the economy and the climate. The physical

state variables describing the system are capital k, CO2 stockM , and temperature

T , and the informational state variables for the climate sensitivity prior Π(s)

are μs,t and σ2
s,t. Time t captures all exogenously evolving processes, such as

population and technology growth and temperature feedbacks. For numerical

reasons, we express capital (and production and consumption) in effective labor

units, i.e. kt = Kt/AtLt where At is technology level and Lt population at time t.5

The Bellman equation reads

V (kt,Mt, t, Tt, μs,t, σ
2
s,t) = max

ct,μt

(ct)
1−η̂

1− η̂
(3)

+βt E
[
V (kt+1,Mt+1, t+ 1, T̃t+1, μ̃s,t+1, σ̃

2
s,t+1)

]
5This variable change avoids unbounded growth of the state space in the capital dimension,

see Traeger (2012a) for the transformation of the Bellman equation.
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For any given state of the system, maximum obtainable welfare today Vt is the

sum of instantaneous welfare from current consumption ct and expected dis-

counted maximized future welfare Vt+1. The social planner has constant relative

risk aversion (CRRA) preferences with η = 2 (Nordhaus, 2008). This instanta-

neous utility function describes her risk aversion as well as her desire to smooth

consumption over time.6 The discount factor βt contains a pure rate of time

preference of 1.5 percent.7, and the decision maker takes expectations over the

uncertain climate sensitivity prior and temperatures using the predictive distribu-

tion. By choosing the consumption level ct, she balances immediate consumption

against future physical capital stocks, while her abatement decision μt trades off

immediate consumption and lower future carbon concentration.

The social cost of carbon is the discounted sum of future welfare costs caused

by the marginal emission unit. We can recover the optimal social cost of carbon

from the value function as the ratio of the marginal value of a ton of carbon and

the marginal value of a unit of the consumption good

SCCt =
∂MtV (·)
∂ktV (·) AtLt .

Another useful welfare measure is the so called balanced growth equivalent. It

measures welfare effects of a set of optimal abatement and consumption policies

(Mirrlees and Stern, 1972; Anthoff and Tol, 2009). It is the per capita consump-

tion c̄ that, growing at some fixed rate g, would yield the same welfare as the

(optimal) policy A

c̄A(·) =
[

(1− η)V A(·)
L∞

1−exp[(1−η)g−δu] − L∞−L0

1−exp[(1−η)g−δu−g∗L]

] 1
1−η

.

With the balanced growth equivalent we can conveniently compare the policies

under two alternative scenarios A and B by the percentage difference in their

respective consumption paths

ΔABc̄(·) = c̄A − c̄B

c̄A
= 1−

[
V B(·)
V A(·)

] 1
1−η

.

6Those two preferences are a priori unrelated and could be disentangled, see Traeger (2012b).
7Due to our transformation it in addition comprises labor and technological growth rates.
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2.4 Numerical implementation

We solve the dynamic programming equation (3) by function iteration, using the

collocation method to approximate the value function. As basis functions we

choose Chebychev polynomials with 22, 400 Chebychev nodes and coefficients8.

The normal distributions for temperature stochasticity and the climate sensitiv-

ity prior are approximated by Gauss-Legendre quadrature with 3 nodes9. Our

convergence criterion is a change in the value function coefficients of less than

10−4. The code is written in Matlab, we use the CompEcon toolbox by Miranda

and Fackler (2002) to generate and evaluate the Chebychev polynomials, and let

the solver KNITRO to carry out the optimization.

3 Results

In this section we present the results for three different scenarios that build upon

each other: Pure temperature stochasticity, climate sensitivity uncertainty and

learning. We introduce and discuss ambiguity aversion separately in Section 4.

3.1 Temperature stochasticity

Figure 2 presents our results for pure temperature stochasticity, and Table 1

contains and compares our main findings in this paper. In this scenario, the

decision maker knows the climate sensitivity. The four panels show the abatement

rate, the social cost of carbon, the investment rate and emissions over the current

century. We distinguish four scenarios: deterministic temperature (‘certainty’)

and three levels of stochasticity (σ2
T = 0.042, 0.2, 0.7). To generate the stochastic

scenario paths, we draw the expected value of temperature in each period, such

that each period the shock is zero. This ‘expected path’ procedure insures that

for a given set of abatement and investment policies, temperatures coincide under

certainty and stochasticity, and the difference we initially observe is a direct result

of the optimal reaction to stochasticity.

8Along each dimension of the state space we use the following node numbers: k = 7,M =
4, t = 8, T = 4, c = 5, s = 5. The results are robust to increasing time nodes to 12 and
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Figure 2: Optimal abatement rate, social cost of carbon, emissions and investment
rate for the current century. Temperature is either deterministic or stochastic with one
of the three variances σ2

T = 0.042, σ2
T = 0.2 and σ2

T = 0.7.

We find that temperature stochasticity has no economically significant effect

on the optimal abatement policy and the associated social cost of carbon. Indi-

vidual shocks have no direct lasting impact on the climate system, so the decision

maker sees no need to accomodate them by adjusting abatement. Investment in

manmade capital however slightly increases: we observe a modest precautionary

temperature nodes to 8.
9Results are unaffected by increasing the number of Gauss-Legendre nodes to 15.
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Abatement Tax Investment Emissions
Rate Change US$ Change Rate Change GtC Change

Certainty 16 10.9 24.7 7.91

Stochasticity 16 0 % 10.9 0 % 24.8 0 % 7.91 0 %
(σ2
T = .042)

Stochasticity, medium 15.9 -0.6 % 10.8 -1 % 24.9 1 % 7.93 0 %
(σ2
T = .2)

Stochasticity, high 15.7 -1.9 % 10.5 -3.7 % 25.3 2.4 % 7.97 0.8 %
(σ2
T = .7)

Learning 17.8 11.3 % 13.2 21.1 % 24.7 0 % 7.76 -1.9 %
(σ2
s,0 = 3, σ2

T = .042)

Slow Learning 18 12.5 % 13.5 23.9 % 24.8 0.4 % 7.75 -2.0 %
(σ2
s,0 = 3, σ2

T = .2)

Ambiguity, RRA=10 17.8 11.3 % 13.3 22.0 % 24.5 -0.8 % 7.76 -1.9 %
(σ2
s,0 = 3, σ2

T = .042)

Ambiguity, RRA=50 18 12.5 % 13.5 23.9 % 24.5 -0.8 % 7.74 -2.1 %
(σ2
s,0 = 3, σ2

T = .042)

Table 1: Optimal 2014 values of abatement (% of business as usual emissions), carbon
tax (in US$ per ton of CO2), investment rate (in % of production) and emissions (in
GtC). The second value in each column shows the percentage change relative to the
certainty scenario. Yellow highlighting indicates main effects.

savings effect. All else equal, a high temperature realization causes high damages

for one period. Production falls, and investment (in absolute terms) is lower. The

single shock is propagated via the capital stock and remains in the economy for

multiple time periods. To insure against this expected welfare loss, the decision

maker invests more in manmade capital at any given time. The higher level of

investment leads to a higher capital stock which eventually increases total emis-

sions. In the present setting, temperature stochasticity alone does not influence

the optimal social cost of carbon. Of course, this result crucially depends on

the absence of non-linear, self-enforcing feedbacks (the melting of the Antarctic

ice-sheet, or methane release from thawing permafrost, for example).

3.2 Climate sensitivity uncertainty

Figure 3 shows the evolution of the climate sensitivity prior variance for the

current century for two different initial priors and three different values of tem-

perature stochasticity. Temperature is realized at its expected value, therefore

the climate sensitivity prior mean remains unchanged at μs,0 = μs,t = 3. The
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Figure 3: shows how the climate sensitivity prior variance σ2
s,t evolves over time for

two initial values (σ2
s,0 = 2 and σ2

s,0 = 3) and three levels of temperature stochasticity

(σ2
T = 0.042, 0.2, 0.7). The mean μs,t remains constant at 3 as observations confirm

this value in each period.

expectations of the decision maker are confirmed with every single observation,

yet for σ2
T = 0.7 her confidence in her prior does increase only slightly over the

first 100 years when temperature stochasticity is high. Therefore we interpret this

case as representing uncertainty rather than learning. Only with lower levels of

temperature volatility, in particular σ2
T = 0.042, meaningful learning takes place.

Figure 4 shows the same set of graphs as Figure 2. Temperature is stochastic

with σ2
T = 0.7, whereas climate sensitivity is either known with certainty or

subjectively uncertain with a prior mean of μs,0 = 3. We distinguish two possible

prior variances, σ2
s,0 = 2 and σ2

s,0 = 3. Again we plot the paths along the expected

values for temperature stochasticity. The decision maker’s climate sensitivity

prior is unbiased, so her expectation coincides with the true value.

Subjective uncertainty about the value of climate sensitivity modestly raises

the abatement rate. and the social cost of carbon. When the climate sensitivity is

known, we optimally abate 15.5% of emissions in 2014. With climate sensitivity

uncertainty and an initial prior of N (3, 3), abatement in 2014 is 17.7%, or about

15% higher for the uncertainty case. The corresponding social cost of carbon is

almost 30% higher.

The decision maker acts with precaution in the face of possibly very different

realities: In comparison to stochasticity, subjective uncertainty means the “re-
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Figure 4: Optimal abatement rate, social cost of carbon, emissions and investment rate
for the current century with stochastic temperature (σ2

T = .7), and known and uncertain
climate sensitivity. The unbiased prior mean is μs,0 = 3. Initial prior variances are
σ2
s,0 = 1, 2 3.

alized shock” lasts as long as the carbon stock, i.e. for several centuries. The

temperature stochasticity σ2
T = 0.7 is so high that a single temperature observa-

tion recieves very little weight when the decision maker updates her prior, and

the decision maker anticipates that she will learn very little. Unlike stochastic

temperature, subjective uncertainty does not affect the investment rate, such that

higher abatement rates translate without moderation into lower emissions. Short

term fluctuations in temperature (“weather”) and long term uncertainty about
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the severity of climate change hence require different optimal policy responses:

Temperature stochasticity leads to precautionary savings in capital which over

time increase emissions, whereas we meet climate sensitvity uncertainty optimally

by increasing abatement, directly reducing emissions.

3.3 Learning about climate sensitivity
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Figure 5: Optimal abatement rate, social cost of carbon, investment rate and emissions
for the current century. Climate sensitivity is either certain or uncertain. In the latter
case the decision maker holds an unbiased prior with a initial variance of σ2

s,0 = 3. We

show three different temperature stochasticities: σ2
T = 0.042, 0.2, 0.7.
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How does learning at different speeds translate optimal abatement policies?

We compare learning for the three different values of temperature stochasticity

in Figure 5. Again we display the abatement rate, the social cost of carbon, in-

vestment and emissions. The paths for high temperature stochasticity (σ2
T = .7)

and known climate sensitivity (‘CS certain’) are the same as in Figure 4. The

new abatement paths with lower temperature volatilities start out at the same

level as their high volatility counterpart. The identical initial levels show that the

anticipation of learning and the speed of learning do not affect optimal current

climate polices. Abatement efforts are not lowered because it is optimal to “wait

and see” (passive learning) or because higher carbon stocks speed up the learning

process (active learning).10 Present day climate policies are determined by the

uncertainty in climate sensitivity alone. The optimal carbon tax is 21.1 percent

higher with a temperature volatility of σ2
T = .42. Table 1 shows the optimal

levels of abatement, the optimal social cost of carbon, investment and emissions

for the year 2014. Only after considerable time the difference in confidence in

the prior leads to the different paths approaching the level of pure temperature

stochasticity at different speeds. We also observe an interesting interaction be-

tween climate and economy for emissions: The emission paths for σ2
T = .2 and

σ2
T = .7 cross. Investment increases permanently, as the temperature stochastic-

ity is irreducible. For high stochasticity σ2
T = .7 also the impact from subjective

uncertainty last for the entire century. For σ2
T = .2 on the contrary, the increase

in abatement wears off as the decision maker becomes more confident over time.

Hence emissions increase faster, and eventually overtake emissions for the high

stochasticity scenario.

Another important aspect of the learning dynamics is the correction of wrong

expectations. In Figure 6 we show how a decision maker with a wrong initial

prior adjusts abatement, and how the mean of her prior evolves. Here we use

the low, empirically accurate temperature volatility of σ2
T = 0.042. Correcting

the wrong belief takes long, even with low temperature volatility. Secondly, the

decision maker insures herself against a “too low” expected climate sensitivity:

The initial abatement rate under uncertainty is biased towards the optimal policy

10This contradicts the result by Leach (2007) in a setting with two uncertain parameters.
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Figure 6: Abatement rate and dynamics of climate sensitivity prior mean (μs,0 = 3)
for varying levels of true climate sensitivity (CS= 2, 3, 4), a prior variance of σ2

s,0 = 3

and temperature stochasticity σ2
T = 0.042.

under high, certain climate sensitivity.11

4 Ambiguity aversion

Ambiguity aversion captures the attitude of a decision maker who prefers a world

with well known probabilities to a world governed by subjective uncertainty.

We model those two preferences by two different aggregator functions (Klibanoff

et al., 2009). The social planner evaluates risk with her standard constant relative

risk aversion (CRRA) preferences. The second aggregator function f(z) = [(1 −
η)z]

1−RAA
1−η characterizes her additional aversion to subjective risk.12 Given those

11This result contrasts with Kelly and Kolstad (1999), who however note that they face
numerical difficulties.

12RAA stands for: Constant coefficient of Relative Ambiguity Aversion. Traeger (2012b)
defines the measure analogously to Arrow-Pratt relative risk aversion.
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preferences, the Bellman equation now reads

V (kt,Mt, t, Tt, μs,t, σs,t) = max
ct,μt

c1−ηt

1− η
+

βt
1− η

×
{∫

Θ

(
(1− η) Eψ(s)

[
V (kt+1,Mt+1, t+ 1, T̃t+1, μs,t+1, σs,t+1)

]) 1−RAA
1−η

dΠ(s)

} 1−η
1−RAA

.

For a particular realization of climate sensitivity, temperature is stochastic and
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Figure 7: Abatement rate, social cost of carbon, investment rate and emissions for the
current century with stochastic temperature (σ2

T = .042), uncertain climate sensitivity
with initial prior variance σ2

s,0 = 3 and three levels of ambiguity aversion: none, RAA =
10 and RAA = 100.
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normally distributed, N (μT,t(s), σ
2
T ). The expectation operator in the inner

bracket takes expected future welfare with respect to this well-known stochas-

ticity. In addition, the decision maker is subjectively uncertain about climate

sensitivity over which she has the prior Π(s) ∼ N (μs,t, σ
2
s,t). The integral with

respect to the prior Π expresses this second uncertainty integration. The ambi-

guity aversion function f(z) = [(1−η)z]
1−RAA

1−η curves the argument of this second

uncertainty aggregation additionally, expressing additional aversion because of

the low confidence over the prior. Observe that for RAA = η the additional

aversion vanishes and the Bellman equation collapses to its standard form.

Figure 8: Difference in balanced growth equivalent c̄RAA10−c̄learn
c̄RAA10 between expected

utility maximizer and ambiguity averse decision maker with RAA = 10. Plotted over
climate sensitivity prior variance and temperature for the year 2020, a carbon stock
of 896 GtC (421 ppm CO2), a capital stock of 171 US trillion dollars and a climate
sensitivity prior mean of μs,0 = 3.

In the case of subjectively uncertain climate sensitivity the decision-maker’s

ability to change or avoid subjective uncertainty is limited. She can increase her

emissions in order to learn faster. However, the learning comes at the cost of

being even worse-off in the situation where climate sensitivity turns out to be

high. We find that overall ambiguity aversion has virtually no effect on optimal

policies (Figure 7, Table 1). The ambiguity averse social planner acts identically

to one who evaluates risk and subjective uncertainty equally. Also, no loss in

welfare is experienced even with strong aversion to subjectivity. Figure 8 com-

pares the balanced growth equivalent for an ambiguity averse decision maker to

a standard expected utility maximizer. The percentage difference in per capita
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consumption that makes them equally well off is in the order of magnitude of

10−5, or numerically zero.

5 Conclusions

The relation between greenhouse gas emissions and global equilibrium tempera-

ture is governed by major scientific uncertainty. We derive the optimal mitigation

policy in the face of climatic uncertainty, and compare it to the deterministic pol-

icy assuming the expected climate response. We thereby disentangle effects of

Bayesian uncertainty, learning, and stochasticity. Uncertainty about climate sen-

sitivity increases the optimal abatement rate in the present by 15%, and the

optimal carbon tax by approximately 25%. The optimal investments in physical

capital remain constant. Over time, learning reduces the uncertainty, but the

present day policy is not affected by anticipating this learning process or by the

speed of learning, a major focus of earlier analyses.

In particular, passive learning does not imply a wait and see policy, and also

active learning has no notable effect on policies: the decision maker should not

optimally raise current emissions to learn faster about the climate response. If the

true climate sensitivity parameter happens to coincide with the expected value

of the climate sensitivity prior, then optimal abatement slowly converges back to

the deterministic scenario.

The stochasticity of temperature not only determines the speed of learning,

but also directly affects the expected damages. We find that the implied damage

stochasticity has no effect on optimal abatement, but induces precautionary sav-

ings: the decision maker should slightly increase the wealth level to reduce her

vulnerability to the stochastic temperature shocks. If global risk sharing occurs,

the precautionary savings effect is minimal. If such risk sharing is absent, then

precautionary savings can play a slightly larger role. Higher temperature stochas-

ticity also reduces the speed of learning. Keeping expectations fixed, this second

effect of temperature stochasticity increases optimal mitigation over the com-

ing decades. The joint impact of uncertainty, stochasticity, and learning always

increases the abatement rate and decreases absolute emission levels.

The scientific literature disagrees on the climate sensitivity prior and its ex-
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pected value. We choose a normal distribution, which is particularly convenient

for the dynamic analysis. While other forms likely resemble current estimates

more closely, any given prior and expectation lacks confidence by a major part

of the scientific community. We therefore acknowledge the low confidence of the

Bayesian prior by making it ambiguous. We show that ambiguity about the

Bayesian prior in combination with ambiguity aversion, i.e., aversion to the lack

of confidence, has virtually no effect on the optimal climate policy.

The currently prevailing uncertainty with respect to the climate’s response to

emission increases the optimal carbon tax about 25%. Neither the anticipation of

learning, nor the lack of confidence into the climate sensitivity prior change this

result. Temperature stochasticity has no effect on the present abatement policy,

but implies that a small amount of precautionary savings can increase welfare.
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A Details on the climate enriched economymodel

The following model emulates DICE-2007. The three most notable differences are

the annual time step (DICE-2007 features ten year time periods), the infinite time

horizon, and the replacement of the ocean feedbacks by exogenous processes. This

simplification is neccessary because the ocean carbon sink and ocean temperature

would each require an own state variable in a recursive framework, which is

computationally too costly. Instead we calibrate a decay rate for atmospheric

carbon and a temperature difference between atmosphere and ocean which closely

match the behavior of DICE’s original carbon cycle. For a detailed description

of the procedure, see Traeger (2012a), who also shows how to reformulate the

decision problem when expressing capital stock and consumption in efficient labor

units. All parameters are characterized and quantified in Table B on page 31.

Global average temperatures respond with a delay to the forcing from at-

mospheric carbon stocks Mt (above preindustrial level Mpre) and other non-CO2

forcing. Restating Equation (1) with climate sensitivity as a uncertain parameter

T̃t+1 = (1− σ)Tt + σs̃

[
ln Mt

Mpre

ln 2
+

EFt+1

λ

]
− σoceanΔTt + ε̃t .

The ocean temperature difference ΔTt replicates the relation between oceanic

and atmospheric temperatures in DICE. It follows the simple quadratic equation

ΔTt = max{0.7 + 0.02. ∗ t− 0.00007. ∗ t.2 , 0} .

Exogenous forcing EFt from non-CO2 greenhouse gases, aerosols and other pro-

cesses is assumed to follow the process

EFt = EF0 + 0.01(EF100 −EF0)×max{t, 100} .

Note that it starts out slightly negatively. Carbon in the atmosphere accumulates

according to

Mt+1 = Mpre + (Mt −Mpre) (1− δM(t)) + Et with

δM,t = δM,∞ + (δM,0 − δM,∞) exp[−δ∗M t] .
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The stock of CO2 (Mt) exceeding preindustrial levels (Mpre) decays exponentially

at the rate δM(M, t). This decay rate falls exogenously over time to replicate the

carbon cycle in DICE-2007, mimicking that the ocean reservoirs reduce their

uptake rate as they fill up (see Traeger, 2012a). The variable Et characterizes

yearly CO2 emissions, consisting of industrial emissions and emissions from land

use change an forestry Bt

Et = (1− μt) σtAtLtk
κ
t +Bt .

Emissions from land use change and forestry fall exponentially over time

Bt = B0 exp[gB t] .

Industrial emissions are proportional to gross production AtLtk
κ
t . They can be

reduced by abatement μt. As in the DICE model, the carbon intensity of pro-

duction falls at an exogenous rate of decarbonization σt

σt = σt−1 exp[gσ,t] with gσ,t = gσ,0 exp[−δσ t] .

The economy accumulates capital according to

kt+1 = [(1− δk) kt + yt − ct] exp[−(gA,t + gL,t)] ,

where δK denotes the depreciation rate, yt denotes production net of abatement

costs and climate damage, and ct denotes aggregate global consumption of pro-

duced commodities (both in per effective labor units, i.e. yy =
Yt
AtLt

). Population

grows exogenously

Lt+1 = exp[gL,t]Lt with gL,t =
g∗L

L∞
L∞−L0

exp[g∗L t]− 1
.

Here L0 denotes the initial and L∞ the asymptotic population. The parameter g∗L
characterizes the convergence from initial to asymptotic population. Technology

grows exogenously

At+1 = At exp [gA,t] with gA,t = gA,0 ∗ exp [−δAt] .
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Net global GDP is obtained from the gross product as follows

yt =
1− Λ(μt)

1 +D(Tt)
kκt

where production is expressed in per effective labor units and

Λ(μt) = Ψtμ
a2
t

characterizes abatement costs as percent of GDP depending on the emission con-

trol rate μt ∈ [0, 1]. The coefficient of the abatement cost function Ψt follows

Ψt =
σt
a2

a0

(
1− (1− exp[gΨ t])

a1

)

with a0 denoting the initial cost of the backstop, a1 denoting the ratio of initial

over final backstop, and a2 denoting the cost exponent. The rate gΨ describes

the convergence from the initial to the final cost of the backstop.

Climate damage as percent of world GDP depends on the temperature differ-

ence Tt of current to preindustrial temperatures and is characterized by

D(Tt) = b1T
b2
t .

Nordhaus (2008) estimates b1 = 0.0028 and b2 = 2, implying a quadratic damage

function with a loss of 0.28% of global GDP at a 1 degree Celsius warming.

B Updating rules for climate sensitivity prior

and predictive distribution

This appendix derives the updating rules for the climate sensitivity prior and the

predictive distribution for temperature. Let lt(xt+1|s) = N (μx,t+1, σ
2
T |s, xt, ht)

denote the likelihood function in period t. Then13

Π(s|T̂1, ..., T̂t+1) =
lt(xt+1|s)Π(s|T̂1, ..., T̂t)∫∞

−∞ lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds
.

13This simplified updating equation only using the latest prior and the latest observation is
a consequence of our convenient choice of the conjugate prior.
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We the sign ∝ to denote proportionality and suppress the normalization constants

of the distributions, finding

lt(x|s) Π(s|T̂1, ..., T̂t) ∝ exp

(
−(x− μx,t+1(s))

2

2σ2
T

)
exp

(
−(s− μs,t)

2

2σ2
s,t

)

∝ exp

(
−(x− (sχt + ξt))

2

2σ2
T

− (s− μs,t)
2

2σ2
s,t

)

∝ exp

(
−x2 − 2x(sχt + ξt) + (sχt + ξt)

2

2σ2
T

− s2 − 2sμs,t + μ2
s,t

2σ2
s,t

)

∝ exp

(
−x2 − 2xsχt − 2xξt + s2χ2

t + 2sχtξt + ξ2t
2σ2

T

− s2 − 2sμs,t + μ2
s,t

2σ2
s,t

)

∝ exp

(
−1

2

[
s2

(
χ2
t

σ2
T

+
1

σ2
s,t

)
− 2s

(
(x− ξt)χt

σ2
T

+
μs,t
σ2
s,t

)
+

x2 − 2xξt + ξ2t
σ2
T

+
μ2
s,t

σ2
s,t

])

∝ exp

(
−1

2

[
s2

(
χ2
t

σ2
T

+
1

σ2
s,t

)
− 2s

(
(x− ξt)χt

σ2
T

+
μs,t
σ2
s,t
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+

(x− ξt)
2

σ2
T
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1
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σ2T
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The following predictive distribution Pt+1 governs the temperature realization in

period t + 1 incorporating stochasticity and parameter uncertainty

Pt+1(x) =

∫ ∞

−∞
lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds ∝ exp

(
−1

2

(x− ξt − χtμs,t)
2

χ2
tσ

2
s,t + σ2

T

)
.

It is the normal distribution N (χtμs,t, χ
2
tσ

2
s,t + σ2

T ). We find the posterior

Π(s|T̂1, ..., T̂t+1) =
lt(xt+1|s)Π(s|T̂1, ..., T̂t)∫∞

−∞ lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds

∝ exp

⎛
⎜⎝−1

2

(
χ2
t

σ2
T

+
1

σ2
s,t

)⎛
⎝s−

(T̂t+1−ξt)χt

σ2T
+ μs,t

σ2s,t

χ2
t

σ2T
+ 1

σ2s,t

⎞
⎠

2
⎞
⎟⎠ .

Thus, if Π(s|T̂1, ..., T̂t) is distributed normally with expected value μs,t and vari-

ance σs,t, then the posterior in the subsequent period Π(s|T̂1, ..., T̂t+1) is also

distributed normally with expected value

μs,t+1 =

χ2
t

σ2T
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+ 1
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and variance
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(
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+
1

σ2
s,t
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2
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T

.
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Table 2: Parameters of the model
Economic Parameters

η 2 intertemporal consumption smoothing and risk aversion
RAA 10, 100 coefficient of relative ambiguity aversion
b1 0.00284 damage coefficient
b2 2 damage exponent
δu 1.5% pure rate of time preference
L0 6514 in millions, population in 2005
L∞ 8600 in millions, asymptotic population
g∗L 0.035 rate of convergence to asymptotic population
K0 137 in trillion 2005-USD, initial global capital stock
δK 10% depreciation rate of capital
κ 0.3 capital elasticity in production
A0 0.0058 initial labor productivity; corresponds to total factor

productivity of 0.02722 used in DICE
gA,0 1.31% initial growth rate of labor productivity; corresponds to

total factor productivity of 0.92% used in DICE
δA 0.1% rate of decline of productivity growth rate
σ0 0.1342 CO2 emission per unit of GDP in 2005
gσ,0 −0.73% initial rate of decarbonization
δσ 0.3% rate of decline of the rate of decarbonization
a0 1.17 cost of backstop 2005
a1 2 ratio of initial over final backstop cost
a2 2.8 cost exponent
gΨ −0.5% rate of convergence from initial to final backstop cost

Climatic Parameters
T0 0.76 in ◦C, temperature increase of preindustrial in 2005
σ2
T 0.042, 0.2, 0.7 temperature stochasticity

Mpre 596.4 in GtC, preindustiral stock of CO2 in the atmosphere
M0 808.9 in GtC, stock of atmospheric CO2 in 2005
δM,0 1.7% initial rate of decay of CO2 in atmosphere
δM,∞ 0.25% asymptotic rate of decay of CO2 in atmosphere
δ∗M 3% rate of convergence to asymptotic decay rate of CO2
B0 1.1 in GtC, initial CO2 emissions from LUCF
gB −1% growth rate of CO2 emisison from LUCF
μs,0 3 climate sensitivity prior mean in t = 0
σ2
s,0 3 climate sensitivity prior variance in t = 0

EF0 −0.06 external forcing in year 2000
EF100 .3 external forcing in year 2100 and beyond
σforc 3.2% warming delay, heat capacity atmosphere
σocean 0.7% warming delay, ocean related
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