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Abstract

This paper suggests that the evolutionarily optimal belief of an agent’s intrinsic reproductive
ability is systematically different from the posterior belief obtained by the perfect Bayesian up-
dating. In particular, the optimal belief depends on how risk-averse the agent is. Although
the perfect Bayesian updating remains evolutionarily optimal for a risk-neutral agent, it is not
for any other. Specifically, the belief is always positively biased for a risk-averse agent, and
the more risk-averse an agent is, the more positively biased the optimally updated belief is.
Such biased beliefs align with experimental findings and also offer an alternative explanation
to the empirical puzzle that people across the population appear overconfident by consistently
overestimating their personal hereditary traits.
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1 Introduction

Daily observations, empirical evidence, and experimental findings suggest that under many cir-
cumstances human beings are not perfect Bayesian updaters, especially when they learn about
their personal traits such as beauty and intelligence. One particular systematic deviation from the
perfect Bayesian updating is positive bias: people tend to over-react to positive signals indicat-
ing their possibility of high ability and under-react to negative ones indicating otherwise. As a
consequence, people are unrealistically overconfident about their personal characteristics.

The fact that the asymmetric updating results in population-wide overestimation of personal
ability and persistently hyped beliefs even with overwhelming contrary indications is reflected
in studies self-reporting many personal traits. 88% of American drivers believe that they drive
more safely than the median driver does (Svenson, 1981) and 75% of Harvard undergraduate stu-
dents think they have above median IQ among their peers, even with repeated informative signals
indicating their true tested results (Möbius et al., 2012). Although many attribute the result to cog-
nitive limitations like selective recall and selective information acquisition, while maintaining the
perfect Bayes’ Rule evidence is too overwhelming and magnitude is too colossal to refuse en-
tertaining the possibility of an updating system other than the perfect Bayesian and a resulting
non-Bayesian posterior. This is especially true for beliefs about own traits - it is after all the same
group of Harvard undergraduates who show perfect Bayesian updating behavior about other peo-
ple’s abilities in the same study. An increasing number of papers assume people have direct belief
utilities because they care about self-esteem (Benabou and Tirole, 2002; Kőszegi, 2006; Eil and Rao,
2011), but this assumption almost directly implies positively biased beliefs.

This paper attempts to justify the seemingly imperfect human behavior - positively biased up-
dates and beliefs - from an evolutionary standpoint, without assuming a belief utility or cognitive
deficiencies. If such seemingly imperfect updating behavior is so perverse, maybe it is key to
our survival, or those who have adopted such updating behavior are the fittest and have adapted
and survived to this date. The personal traits are esteemed because they affect the reproductive
efficiencies, so the belief should be formed in a way that achieves maximal reproductive success.
Although an agent cares about the survival of her offspring, she wants to maximize her utility
about the survival of offspring. When the agent is not risk-neutral, utility maximization is not
the same goal as the primary evolutionary goal of maximizing the expected survival rates of off-
spring. When a principal has an unaligned goal with an agent, the literature in contract theory
and mechanism design considers possible compensation schemes by a principal to an agent to
align the two goals so that the agent takes the effort level the principal desires. In this paper, the
possible financial scheme is impossible, but the principal, in this case Nature, can choose to ma-
nipulate the agent’s belief about her own ability. Nature achieves his goal of maximized growth
while the agent still maximizes her utility. The agents who have the evolutionarily optimal be-
liefs would have the highest overall expected growth and survival rate. We will show concretely
that risk-averse agents exhibit positively biased beliefs, as the way that evolution corrects risk
deficiency.

Non-Bayesian updating has been widely studied by psychologists, evolutionary biologists,
philosophers, and behavioral economists. This paper, in a broad sense, attempts to explain phe-
nomena observed from psychological and behavioral experiments, by abiding by philosophical
rules and utilizing techniques developed by evolutionary economists. Although there are many
experiments confirming the non-Bayesian behaviors of human in various settings, the theoret-
ical literature explaining such behaviors is relatively scant and they do not provide or suggest
an evolutionary link (Epstein, 2006; Epstein et al., 2008, 2010). There are only a few papers pro-
viding evolutionary justifications to risk aversion and Bayesian updating. Okasha (2012) shows
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that Bayesian updating is evolutionarily optimal when the agents are “rational” in a philosophi-
cal sense - essentially having von Neumann-Morgenstern utility. Levy (2010) shows that constant
relative risk-averse (CRRA) utility function is evolutionarily optimal if the agent’s objective is to
have descendants forever.

The result that non-Bayesian updaters and believers dominate the competition sharply con-
trasts with some rational expectations results in the financial market. In the financial market, those
investors who make inaccurate predictions about the market partly due to imperfect Bayesian
updating are driven out in the competitive equilibrium (Sandroni, 2000). However, in the repro-
duction market, the ones who make reproductive decisions from perfectly updated beliefs are the
ones who are driven out and will be extinct in the long run.

Section 2 defines and characterizes the evolutionarily optimal posterior. Section 3 shows that
belief is consistently higher than true population proportion of high abilities. Section 4 concludes
by pointing out limitations of the current model and possible future directions.

2 Evolutionarily Optimal Posterior

Let us introduce the setup and demonstrate the key results in a simple model with the imperfectly
observable reproductive trait taking two possible values. In particular, we show that the evolu-
tionarily optimal posterior is always higher than the perfect Bayesian posterior, for all signals.

An agent chooses a reproductive action based on her belief about her reproductive trait to
maximize her expected utility about the survival of the offspring. The agent’s action a and trait
x determine the survival rate or the number of her offspring, which we call the reproduction
function. The trait can be either high (H) or low (L) but the agent does not directly observe it.
The reproduction function F (a, x) is assumed to be continuously differentiable, increasing, and
concave in a, with the boundary condition F (0, x) = 0. Furthermore, assume that F (a, H) >

F (a, L), i.e., exerting the same effort, an agent with high ability produces more than an agent with
low ability. It is increasingly costly to exert effort in mating activities, so the cost function c (·) is
assumed to be increasing and weakly convex, c′ (a) > 0, c′′ (a) ≥ 0. The agent derives utility u (·)
from the net benefit F (a, x)− c (a) she gets, with u′ (·) > 0.

Since the agent does not perfectly observe the trait x she has, she forms a posterior belief µ
from a signal s coupled with a prior µ0 inherited possibly from her parent. The signal can be H or
L, and the signal generating process is publicly known,

Pr (s = H|x = H) = p1,

Pr (s = H|x = L) = p2.

In particular, the perfect Bayesian posterior µB can be expressed as

logit
(

µB
)

= logit (µ0) + 1s=HλH + 1s=LλL,

where µB, µ0 are shorthands for µB (H) , µ0 (H) as a slight abuse of notation, and logit (µ) =

log
(

µ
1−µ

)

. λs = log
(

Pr(s|x=H)
Pr(s|x=L)

)

represents the log-likelihood of being high type given signal

s. In particular, λH = log
(

p1
p2

)

and λL = log
(

1−p1
1−p2

)

.

Agent’s Problem

Given the posterior belief µ, she chooses the effort level a to maximize expected utility,

uA (a|µ) = µu (F (a, H)− c (a)) + (1 − µ) u (F (a, L)− c (a))

2



So the FOC is

0 = µu′ (F (a, H)− c (a))
(

Fa (a, H)− c′ (a)
)

+ (1 − µ) u′ (F (a, L)− c (a))
(

Fa (a, L)− c′ (a)
)

Or rearrange, a is chosen so that the following equation is satisfied,

µ

1 − µ
=

∣

∣

∣

∣

Fa (a, L)− c′ (a)
Fa (a, H)− c′ (a)

∣

∣

∣

∣

·
u′ (F (a, L)− c (a))
u′ (F (a, H)− c (a))

(1)

Nature’s Problem

Consider the agent’s problem regarding a reproductive decision. Consider that x is an imperfectly
observable reproductive trait (IQ, EQ, psychological fitness, for example), and a is the agent’s
effort spent in searching and mating with the convex cost of the effort that represents a reduction in
one’s own survival and fitness (frequenting dating sites such as bars and websites takes nontrivial
effort and opportunity cost), with F (a, x) guiding the number (and quality) of offspring an agent
produces. The objective of Nature, a perfect Bayesian updater, is then to maximize the overall
expected growth of the population,

uN (a) = µB (F (a, H)− c (a)) +
(

1 − µB
)

(F (a, L)− c (a))

Its FOC is
µB

1 − µB
=

∣

∣

∣

∣

Fa (a∗, L)− c′ (a∗)
Fa (a∗, H)− c′ (a∗)

∣

∣

∣

∣

(2)

where a∗ is the evolutionarily optimal action Nature wants the agent to take, given prior µ0 and
signal s.

If Nature can manipulate the agent’s belief to induce her to choose the evolutionarily optimal
action, then (1) becomes

µ∗

1 − µ∗ =

∣

∣

∣

∣

Fa (a∗, L)− c′ (a∗)
Fa (a∗, H)− c′ (a∗)

∣

∣

∣

∣

·
u′ (F (a∗, L)− c (a∗))
u′ (F (a∗, H)− c (a∗))

.

Plugging in (2),

logit (µ∗) = logit
(

µB
)

+ log

[

u′ (F (a∗, L)− c (a∗))
u′ (F (a∗, H)− c (a∗))

]

. (3)

Because F (·, L) < F (·, H), when u (·) is concave, the second term on RHS of (3) is positive, which
we refer to as the risk-averse bias B (a∗). The evolutionarily optimal posterior belief of a risk
neutral agent is the perfect Bayesian posterior, there is no bias; so it is a bias stemmed from risk
aversion of the agent. When the utility function is CRRA or CARA, the bias perfectly correlates
with the risk aversion factor, since a∗ does not depend on the risk aversion factor but only on
Bayesian posterior.

Example 1. If the utility is CRRA, u (C) = C1−ρ/ (1 − ρ), ρ ≥ 1, u′ (C) = C−ρ,

B (a∗) = ρ log

∣

∣

∣

∣

F (a∗, H)− c (a∗)
F (a∗, L)− c (a∗)

∣

∣

∣

∣

.

Example 2. If the utility is CARA, u (C) = K − exp (−αC), α ≥ 0, u′ (C) = α exp (−αC),

B (a∗) = α [F (a∗, H)− F (a∗, L)] .
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The bias is positive for any risk-averse agent and negative for any risk-loving agent.

Proposition 1. When the agent is risk-averse (risk-loving), the evolutionarily optimal posterior is a non-
Bayesian posterior, positively (negatively) biased towards the high type compared to the perfect Bayesian
posterior.

Proof to Proposition 1. Because F (·, L) < F (·, H) and u (·) is concave (convex),

u′ (F (a∗, L)− c (a∗)) > (<)u′ (F (a∗, H)− c (a∗)) .

By (3),

B (a∗) = log

[

u′ (F (a∗, L)− c (a∗))
u′ (F (a∗, H)− c (a∗))

]

> (<) log 1 = 0.

A few comments are in order. The evolutionarily optimal posterior is invariant to the order
of arrival of a stream of i.i.d. signals. The perfect Bayesian posterior is invariant to the order of
arrival of a stream of i.i.d. signals, given {st} and prior µ0, the posterior µB is

logit
(

µB
)

= logit (µ0) + # {t : st = H} λH + # {t : st = L} λL,

Since a∗ only depends on µB, it is invariant to the order of arrival, then by (3), µ∗ is invariant
to the order of arrival of {st}. Therefore, whether the agent makes the reproductive decision
after appearance of one or more signals does not affect the reproductive outcome or the personal
posterior belief.

As a result of the evolutionary correction, the long run survival of an agent does not depend
on her risk aversion factor but only on her true trait. A non-Bayesian belief corrects the possible
evolutionary sub-optimal reproductive decision a risk-averse agent can make, and the level of
correction depends on the degree of risk aversion so that agents with the same Bayesian posterior
make the same reproductive decision. Without sexual production or mutation, only the agents of
high type will survive, and the evolutionarily optimal updating makes an agent realize that she is
of high type faster, and of low type slower.

3 Population Posterior

Investigation of the population evolutionarily optimal posterior belief shows that regardless of the
population composition, as long as they are risk-averse, more people believe that they are of high
type than there really are. Since we are survivors and winners of millions of years of evolutionary
struggles, this result possibly explains the aforementioned findings that people are overconfident
about their intrinsic skills.

The result can be directly understood from the asymmetric belief. Every agent believes she is
more likely to be a high type than a perfect Bayesian would believe. Regardless of the evidence
(stream of signals) a person receives, her belief about herself being a high type is always higher
than the Bayesian posterior belief.

Suppose the population is composed of proportion q realized high type and proportion 1 − q
realized low type agents after the previous action. Suppose that after each time an agent takes an
action, she observes the outcome of her action and infers her true type (since F (a, x) is bijective,
knowing what effort a she exerted and observing F is enough to uncover her true trait x). After
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each action, there is a probability ε that she mutates: her true type switches from one to another.
Therefore, an agent’s prior µ0 after an action is 1 − ε if she is high or ε if low.

We construct a population posterior and use it as a criterion to evaluate the percentage of
people believing they are of high type. For any posterior µ = {µA}A, the expected population
posterior is defined as the total population belief that they are a high type.

q (µ) =
ˆ

A
µAdA

If every agent is a perfect Bayesian, given the signal generating process, their population posterior
should be the same as the population prior, which is the same as the population composition, q,
qB ≡ q

(

µB
)

= q. On the other hand, any agent risk-averse A has µ∗
A > µB

A, so in population,
q (µ∗) > q

(

µB
)

, a relatively small portion of risk-seeking agents will not alter the population
belief.

Proposition 2. If most agents are risk-averse in the population, the evolutionarily optimal population
posterior belief about high type is strictly greater than the population composition of high type.

Even though every agent knows that in the population, there is only a proportion q of high
type agents, the aggregate of individual beliefs is higher than it. This finding explains the perverse
scenario mentioned in Introduction that objective aggregates of desirable personal characteristics
are always lower than their subjective individual reports. The key to the result is the imperfect
observability of personal characteristics and possibility of mutation.

4 Conclusion

The paper shows that in order to maximize the expected number of offspring, an agent with non-
linear preference has a belief different from the belief obtained by perfect Bayesian updating. In
particular, for any risk-averse agent, she thinks more highly of herself than she does if she is a
perfect Bayesian. Therefore, the results suggest that evolution and survival play a role in the
widespread existence of non-Bayesian belief, especially about a person’s own trait that influences
reproductive decisions.

Although the paper provides a possible evolutionary channel to persistent overconfidence
across the population, it fails to characterize the exact way how this optimal overconfidence is
sustained. In terms of terminology of the model, the paper is able to rationalize the misalign-
ment of the optimal posterior and the perfect Bayesian posterior, but it fails to characterize the
updating rule1 that can consistently achieve and sustain the optimal posterior. The problem is
especially conspicuous when the agent updates after each of many sequentially observed noisy
signals. Characterizing or approximating such evolutionarily optimal updating rule would be
interesting and useful.

It is also interesting to explore why and how risk aversion and non-Bayesian belief/updating
rule could be evolutionarily optimal at the same time. If we treat the objective of having descen-
dants forever to be the goal for each individual as in Levy (2010) and the objective of maximiz-
ing expected population growth to be the goal for the entire group, an evolutionarily optimal
non-Bayesian updating is justified. While each individual agent needs to be risk-averse to have
descendants forever, the ones who dominate the population are those following a non-Bayesian
updating rule that, coupled with risk-averse utility, maximizes the expected number of descen-
dants in each generation.

1I thank a referee for emphasizing the difference between an updating rule and an updated posterior.

5



Finally, a model with multiple signals and/or attributes may be more realistic and possibly
help to generate more insights including but not limited to conservative updating.
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