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1 Introduction1

The trade in commodity derivatives is widespread and trading volumes often sur-2

pass that of the underlying commodities.1 Ideally derivatives markets improve3

market efficiency as they allow firms to manage risk and facilitate price discov-4

ery by aggregating information across market participants.2 However this paper5

demonstrates that when producers are strategic, the introduction of a derivatives6

market increases spot market volatility and harms competition.7

In Allaz and Vila’s (1993) seminal work on strategic contracting, producers8

first sell forward contracts and then compete in a Cournot spot market; the in-9

troduction of a financial market improves competition, lowers prices and increases10

total surplus.3We generalize this model by (1) considering a larger class of deriva-11

tives contracts, (2) by generalizing the form of spot market competition and (3)12

by introducing uncertainty: In our model producers first choose a portfolio of call13

option contracts with a range of strike prices and then compete in supply func-14

tions in a spot market with uncertain demand as in Klemperer and Meyer (1989),15

Green and Newbery (1992).4 The results of Allaz and Vila (1993) are reversed in16

this more general setting as a new channel is identified through which derivatives17

markets affects market outcomes.518

We show that each producer uses derivatives to commit to a downward sloping19

supply function, i.e. to produce more when prices are low and less when they20

1Commodity derivatives markets have seen a 60-fold increase in the value of trade between
1998 and 2008. In 2008 the outstanding value of commodity derivatives equaled $13 trillion.
This is twice the worldwide output of commodities, and about 21% of world GDP.

2The effect of derivatives trade is a point of debate in the finance literature. Some au-
thors claim that it reduces the variance and level of spot prices and improves price information
(Turnovsky, 1983; Cox , 1976; Korniotis, 2009), while other claim the opposite (Hart and Kreps,
1986; Stein, 1987; Figlewski, 1981).

3Brandts et al. (2008) confirm Allaz and Vila’s (1993) results in economic experiments. In
Willems (2005), the Allaz and Vila effect becomes stronger if producers sell a portfolio of financial
option contracts and then compete in quantities. Holmberg (2011) shows that contracting is
weakly pro-competitive when marginal costs are constant and firms compete in supply functions
in the spot market. In Newbery (1998) producers sell contracts to deter entry. Green (1999)
shows that forward contracting does not influence competition in markets with linear marginal
costs and linear demand if producers coordinate on linear supply function equilibria.

4Anderson and Xu (2005; 2006), Anderson and Hu (2012), Aromi (2007), Chao and Wilson
(2005) and Niu et al. (2005) have also analyzed how exogenously given forward or option con-
tracts influence supply function competition. But they do not analyze to what extent contracting
is strategically driven.

5Financial markets also have anti-competitive consequences in Ferreira (2003), who shows
that only the monopoly outcome is renegotiation-proof for an infinite number of contracting
rounds. In Mahenc and Salanié (2004), Allaz and Vila’s result is reversed if firms compete in
prices (instead of quantities) on the spot market.
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are high.6 As illustrated in Figure 1 this commitment makes the residual demand1

curve for each of its competitors steeper (less price-sensitive) and induces competi-2

tors to increase mark-ups and reduce total output. In the aggregate, producers3

commit to a downward sloping supply function, which increases the volatility4

of the spot price as even a small demand shock will cause large price fluctua-5

tions. This anti-competitive effect is partly mitigated when demand uncertainty6

increases. This suggests that option contracts should not be traded near deliv-7

ery because firms then have a good estimate of demand. Alternatively, the same8

option contract or supply function should be valid for several delivery periods in9

order to increase the range of demand levels that contracts need to cover.10

For a producer that has sold commodity derivatives, an increase in the spot11

price will not only increase its spot market revenue; but also its contracted liability,12

i.e. the value of derivatives contracts sold. Thus after selling derivatives contracts13

the producer becomes relatively more concerned about volume than mark-ups.714

In order to commit to a downward sloping supply function a firm sells (or hedges)15

a large fraction of its output with contracts when the spot price is low, which16

commits the firm to a high output, and a small fraction when the spot price is17

high, which commits the firm to a low output. More generally a strategic producer18

sells a portfolio, for which the liability’s sensitivity to the spot price is positive (the19

delta is positive), but decreasing (the gamma is negative).8 When the spot price20

is low it produces a lot, as a reduction of the production level would increase the21

price and its contracted liability would soar. On the other hand, when the spot22

price is high the liability is less sensitive to the spot price and the firm produces23

less.24

A producer can achieve a portfolio with this property by trading option con-25

tracts. A call option hedges the buyer against high spot prices; essentially it gives26

him the right to procure one unit of the good from the seller at a predetermined27

price, the option’s strike price. The contract is only exercised when the spot price28

6Vives (2011) show that supply function equilibria can be downward sloping, but he considers
a different setting with no contracts and private production costs. His mechanism is also different,
producers hold back supply at high prices in order to avoid a winner’s curse when production
costs are sufficiently correlated.

7This has been shown for alternative settings by Allaz and Vila (1993), von der Fehr and
Harbord (1992), Newbery (1998) and Green (1999). de Frutos and Fabra (2012) show that there
are sometimes exceptions to this rule in markets where offers are required to be stepwise. The
strategic effect of forward contracts has been shown empirically by Wolak (2000) and Bushnell
et al. (2008).

8In mathematical finance Greek letters are used to describe the sensitivity of a portfolio to
the underlying instrument’s price. Delta and Gamma are the first and second derivative of the
portfolio’s value with respect to the underlying price.
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Figure 1: The residual demand function and the production level of a firm’s
competitor, if the firm bids (A) an upward sloping or (B) a downward sloping
supply function.

is above the strike price. By selling a carefully designed portfolio of call-option1

contracts a producer can fully hedge its risk, that is, ensure that changes in op-2

erational profit are perfectly offset by changes in the liability of its contracting3

portfolio.9 But we show that a producer instead has incentives to commit to a4

supply function with a negative slope by selling a forward contract and by buying5

a portfolio of call options with a range of strike prices.10 The forward contract is6

a promise for future delivery, which creates a liability for the producer. As the7

spot price increases, the producer will also exercise an increasing amount of call8

options, and thus partially offset its forward position. So the producer will suc-9

cessively reduce its hedged output (net-sales with contracts) or equivalently the10

price sensitivity of its liability, as the spot price increases. This is a risky strategy,11

but the commitment increases the firm’s expected profit.12

The supply function model is obviously well-suited for spot markets where13

producers sell their output in a uniform-price auction, as in wholesale electricity14

markets (Green and Newbery, 1992; Holmberg and Newbery, 2010). This has also15

been empirically verified.11 Until recently a handful of electricity producers in the16

9A forward contract only hedges the price risk, while a portfolio of call options can in addition
be used to hedge volume risk (Bessembinder and Lemmon, 2002; Willems and Morbee, 2010).

10It follows from the put-call parity that this can also be achieved with a portfolio of forward
contracts and put options.

11Hortacsu and Puller, (2008), Sioshansi and Oren, (2007) and Wolak (2003) verify that large
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Nordic countries regularly made offers that were (partly) downward sloping,12 and1

contracting was the main reason for this.13 In this paper we identify a mechanism2

that might explain this contracting and bidding behavior. Perhaps producers use3

contracts to commit to a downward sloping supply in order to soften competition?4

Related results are found in an empirical study of the German electricity market5

by Willems et al. (2009). They find no evidence of producers selling call option6

contracts or equivalent contracts to hedge their output.14 This is in line with our7

results as we predict that firms have no incentive to sell call option contracts, but8

to buy them instead.9

Although most markets are not explicitly cleared by uniform-price auctions,10

Klemperer and Meyer (1989) argue that firms typically face a uniform market price11

and they need predetermined decision rules for its lower-level managers on how12

to deal with changing market conditions. Thus firms implicitly commit to supply13

functions also in the general case. Indeed, Vives (2011) notes that competition in14

supply functions has been used to model bidding for government procurement con-15

tracts, management consulting, airline pricing reservation systems, and provides16

a reduced form in strategic agency and trade policy models.17

The results of our paper have some parallels with delegation games. The main18

producers in the electricity market roughly bid as predicted by the SFE model.
12Downward sloping supply bids or illogical bids were allowed in the Nordic power exchange

(Nord Pool) until it introduced a new spot trading algorithm, SESAM, on October 10, 2007
(NPS Exchange Info 15/2007 and 49/2007). This change was motivated among other things by
the concern that illogical bids could facilitate market manipulation (NVEs decision dated August
31, 2007, which approved the change). Other concerns were operational difficulty of handling
illogical bids and planned market integration with Germany. Statkraft, a Norwegian producer,
claimed that illogical bids are sometimes necessary to optimize the operation of mutually owned
hydro power plants.
Note that total supply of a producer consists of its supply in the power exchange plus its supply

delivered directly to consumers with bilateral contracts. So even though the power exchange itself
does not allow for downward sloping supply bids, total supply could still be downward sloping,
as long as bilaterally contracted supply is sufficiently downward sloping.

13The meeting of Nord Pool Spot’s product group for the physical market (September 15,
2005) discusses partly downward sloping (illogical) bids. According to the minutes "... companies
must at times show the combination of production, consumption and contracts in hourly bids
in a seemingly illogical way" (emphasis added). Note that a vertically integrated firm which is
active both in production and retail has some flexibility in setting supply and demand bids, as
only its level of net supply (or net demand) will matter. Hence a firm might be able to submit
a slightly downward sloping supply bid and a very elastic demand bid, while still having a net
supply that increases with the spot price. However, an illogical net-supply can only be explained
by the firm’s contracts.

14Willems et al. (2009) compare two contracting scenarios for the German electricity market:
one with standard forward contracts and another with load following contracts. The latter
corresponds to firms selling forward contracts and several call option contracts such that the
same fraction of output is hedged for each price level in the spot market. They find that the
first scenario fits the data best.
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differences between our paper and the delegation literature is that we use financial1

contracts instead of delegation as the commitment device, and that we allow firms2

to commit to supply functions with any slope. Singh and Vives (1984) and Cheng3

(1985) analyze a game where the owner of each firm first decides the slope of4

its supply. The slope is either horizontal (Bertrand) or vertical (Cournot). The5

implementation of this decision is delegated to the firm’s manager, who sets either6

the firm’s price or its output depending on the owner’s choice. In equilibrium,7

each firm commits to play Cournot when demand is certain. As in our model,8

this makes the residual demand function of competitors less elastic, it softens9

competition and leads to higher mark-ups. Reisinger and Ressner (2009) show10

that if demand is sufficiently uncertain, firms commit to play Bertrand. Thus as11

in our model, uncertainty makes the market more competitive.12

The structure of the paper is as follows. The model of strategic option con-13

tracting is introduced in Section 2 and its main properties are derived in Section 3.14

Section 4 presents closed-form results when demand is linear and demand shocks15

are Pareto distributed of the second-order. Section 5 concludes.16

2 Model17

We model producers’ contracting and supply strategies as a two-stage game. In18

the first stage, N risk-neutral producers commit by strategically choosing a port-19

folio of call option contracts with a spectrum of strike prices. Firms’ contracting20

decisions are made simultaneously. Similar to Allaz and Vila (1993), Newbery21

(1998) and Green (1999), producers disclose their contracting decisions.15 Risk-22

neutral, non-strategic counterparties (e.g. consumers or investment banks) with23

rational expectations ensure that each option price corresponds to the expected24

value of the contract. This rules out any arbitrage opportunities in the market. In25

the second stage, firms compete in the spot market. It is a uniform-price auction26

in which sellers simultaneously submit supply functions. After these offers have27

been submitted, an additive demand shock is realized. The distribution of the28

15Contracting is strategic when firms are risk-averse or when contract positions are observable
(Hughes and Kao, 1997). Financial trading is anonymous in most markets, and a firm’s contract
positions are normally not revealed to competitors. Still competitors can get a rough estimate
of the firm’s forward position by analyzing the turnover in the forward market and the forward
price (Ferreira, 2006). Ferreira’s theoretical argument is also relevant in practice. Van Eijkel and
Moraga-González’s (2010) find that firms in the Dutch gas market are able to infer competitors’
contract positions and that contracts are used for strategic rather than hedging reasons. Finally,
it can be noted that vertical integration with a retailer that is selling the good at a fixed retail
price is equivalent to observable contracting.
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shock is common knowledge.1

A financial call option gives the buyer the right to receive the difference between2

the spot market price and a predetermined strike price r. The contract is exercised3

when the spot price is above the strike price. In stage 1, firm i ∈ {1, 2, ..., N}4

decides how many option contracts to sell (or buy) at each strike price. We5

assume that 0 and p are the lowest and highest realized prices in the market,6

respectively. The contracting decision is represented by the distribution function7

Xi (r) : [0, p] → R, the amount of option contracts sold with a strike price less8

than or equal to r. Firm i can decide to go short (Xi(r) > 0) or long (Xi(r) <9

0). A forward contract corresponds to a call option with strike price zero, as it10

is always exercised. Thus Xi(0) is the amount of sold forward contracts. We11

let X(r) = ∑N
i=1Xi(r) represent the contracting decision of the industry and12

X−i (r) = X (r)−Xi(r) those of firm i’s competitors.13

Let σ (r) be the price of an option with strike price r in the contracting market.14

Producer i’s revenue from selling call options in the contracting market is given15

by: 16
16

V i =
ˆ p

0
σ (r) · dXi (r) .17

All call options that are in the money, i.e. for which the strike price is below18

the spot price, will be exercised. Thus for a given spot price p, the total value19

Vi(p) of firm i’s sold contracts is given by: 17
20

Vi(p) =
ˆ p

0
(p− r) dXi (r) =

ˆ p

0
Xi(r)dr.21

Note that the sensitivity of this contract payment with respect to the spot price22

(the delta of the sold portfolio) is exactly equal to Xi(p)23

dVi(p)
dp

= Xi(p). (1)24

For a given spot price p and output q, firm i’s profit from trading in the25

contract and the spot markets is equal to the revenue from sold contracts V i26

and spot market sales p q, minus the cost of exercised contracts Vi(p) and the27

16We use the Lebesgue-Stieltjes integral, which is standard in probability theory, to integrate
over the contract positions.

17Note that P (ε)− r is continuous in r. The second equality follows from the integration by
parts formula for the Lebesgue-Stieltjes integral, where one of the factors is continuous at each
point (Hewitt and Stromberg, 1965).
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Figure 2: Profit of firm i as a function of p and q.

production cost Ci(q). (See Figure 2)1

πi(p, q) = V i + pq − Vi(p)− Ci(q). (2)2

Similar to Green and Newbery (1992), and Klemperer and Meyer (1989) we assume3

that the cost function Ci(q) is common knowledge, increasing, convex and twice4

differentiable.5

Each producer’s supply decision in stage 2, the spot market, is represented by6

a supply function denoted by Qi(p). We assume that Qi(p) and Xi(p) are twice7

differentiable on (0, p) and continuous at p. We let Q (p) = ∑N
i=1Qi(p) be the total8

output of the industry and Q−i (p) = Q (p)−Qi(p) that of firm i’s competitors.9

As in Klemperer and Meyer (1989), demand D(p, ε) is realized after offers to10

the spot market have been submitted. The demand function is twice differentiable11

with respect to the spot price p and is subject to an exogenous additive shock, ε.12

Hence,13

D(p, ε) = D(p) + ε. (3)14

The demand function is concave (D′′ (p) ≤ 0) and downward sloping (D′ (0) < 0).15

ε is the intercept of the demand function, so D (0) = 0. We define Di(p) :=16

D(p) − Q−i(p) as the residual demand of firm i when the demand shock is zero,17

ε = 0. When firms make their contracting decisions in the first stage, the shock18

density and its probability distribution are given by f(ε) and F (ε), respectively.19

8



The shock density has support on [0, ε] where ε ∈ (0,∞), and on this interval1

f(ε) is differentiable and positive, f(ε) > 0. The variance of the demand shock is2

bounded.3

For any given demand shock, ε, the spot price is implicitly defined by the4

market clearing condition: aggregate supply should be equal to total demand.5

The price function P (ε) maps the demand shock ε, to the spot price p.6

P (ε) : ε 7→ p : Q (p) = D(p) + ε.7

To guarantee existence of an equilibrium price, we assume as in Klemperer and8

Meyer (1989) and Vives (2011) that all agents’ profits will be zero if the market9

does not clear.10

Firm i’s expected profit from trading in the contract and the spot markets is:11

Πi =
´
πi (P (ε) , Qi (P (ε))) dF (ε) . (4)12

Risk-neutral, price-taking consumers or investment banks trade in the contract13

market and ensure that the following no-arbitrage condition is satisfied for each14

strike price r.15

∀r : σ (r) = Eε [max (P (ε)− r, 0)] . (5)16

Hence, the value of the call option is equal to the expected second stage payment17

from the contract.18

3 Analysis19

We solve the game by means of backward induction. The properties of Nash20

equilibria in the second stage spot market are analyzed in Section 3.1. In Section21

3.2, we rely on no-arbitrage conditions to derive the expected profit in stage 1 given22

the contracting position of firms. We derive conditions for optimal contracting in23

Section 3.3.24

3.1 The spot market25

In the second stage of the game, each firm i observes its competitors’ portfolio26

of option contracts and then chooses its supply function Qi(p) to maximize the27

firm’s expected profit given the competitors’ spot market bids Q−i(p). Our first28

proposition generalizes the first-order condition in Klemperer and Meyer (1989),29

so that it applies to a producer holding a portfolio with a range of option contracts:30

9



Proposition 1 (FOC Spot Market) The necessary first-order conditions (FOC)1

for a Nash equilibrium in the spot market are given by the following system of or-2

dinary differential equations:3

∀i, ∀p ∈ (0, p) : Qi(p)−Xi(p)− [p− C ′i (Qi(p))]
[
Q′−i (p)−D′ (p)

]
= 0. (6)4

Proof. Substituting the market clearing condition5

Qi(P (ε)) = Di(P (ε)) + ε6

in firm i’s objective function (4) we obtain7

Πi =
ˆ
πi(P (ε), Di(P (ε)) + ε) dF (ε).8

The first order condition can be found by pointwise differentiation of the integrand
with respect to p = P (ε). Using expression (2) for firm i’s profit, we derive the
marginal effect of a price increase for a given demand shock ε.

dπi(p,Di(p) + ε))
dp

= Di(p) + ε−Xi(p) + (p− C ′i(Di(p) + ε))D′i(p) (7)

= Qi(p)−Xi(p) + (p− C ′i(Qi(p)))D′i(p)

The generalized Klemperer and Meyer equations (6) follow from equating this9

expression to zero (dπi
dp

= 0) and observing that D′i(p) = D′ (p)−Q′−i (p).10

Intuitively, we can interpret the first-order condition as follows. A price increase11

gives a higher spot market revenue for existing quantities, Qi(p), but it increases12

the payment firm i needs to make for its contracted obligation, V ′i (p) = Xi(p).13

Moreover, a price increase will reduce sales volumes, which reduces profits by14

p|D′i(p)|, but the lower volume will also lead to production cost savings equal to15

C ′i(Di(p))|D′i(p)|.16

We can now derive a sufficient condition for the solution of the system of first17

order conditions (FOC) to be a Nash equilibrium.18
18

Proposition 2 (NE Spot Market) A tuple Q̌ =
{
Q̌i(p)

}N
i=1

which satisfies the19

first order conditions of the second stage game, i.e. the generalized Klemperer and20

Meyer equations (6) constitutes a Nash equilibrium (NE) in the second-stage if:21

18Proposition 2 generalizes previous results for spot markets without contracting by Klemperer
and Meyer (1989) and Holmberg et al. (2008). Note that our sufficient conditions are less
restrictive than theirs as we do not require monotonic supply functions.
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1. The slope of total supply is larger than the slope of the demand function1

Q̌′(p) > D′ (p) on the price interval (0, p).2

2. Each firm i faces a downward sloping residual demand function or has suf-3

ficiently flat marginal cost functions. That is Ď′i(p)C ′′i (q) ≤ 1 ∀q ≥ 0 and4

∀p ∈ (0, p), where Ďi(p) = D (p)− Q̌−i(p).5

Proof. Consider an arbitrary firm i. It takes contract positions {Xi (p)}Ni=1 as6

given and assumes that its competitors bid Q̌−i(p) as supply. Thus firm i is facing7

the residual demand Ďi(p) + ε. We prove that bidding Q̌i(p) is profit maximizing8

for firm i. When demand shock ε∗ occurs, the market price is p∗ if firm i makes9

the offer Q̌i(p∗), i.e. Q̌i(p∗) = Ďi (p∗) + ε∗. We will prove that firm i’s profit10

reaches a global maximum at p∗ along its residual demand Ďi(p) + ε∗ for every11

shock outcome ε∗. That is, producing Q̌i(p∗) is ex-post optimal for firm i.12

With the offer Q̌i(p), the first-order condition in (6) is satisfied for every price.13

Subtracting it from (7) yields:14

dπi(p,Ďi(p)+ε∗)
dp

=
[
Ďi (p) + ε∗ − Q̌i(p)

]
− Ďi (p)

[
C ′i(Ďi (p) + ε∗)− C ′i(Q̌i(p))

]
(8)15

According to the mean value theorem there must exist ξ between Ďi (p) + ε∗ and16

Q̌i(p) such that C ′i(Ďi (p) + ε∗) − C ′i(Q̌i(p)) = C ′′i (ξ)
[
Ďi (p) + ε∗ − Q̌i(p)

]
. So17

Equation 8 can be rewritten as:18

dπi
(
p, Ďi (p) + ε∗

)
dp

=
[
Ďi (p) + ε∗ − Q̌i(p)

] (
1− Ďi (p)C ′′i (ξ)

)
19

The second condition of the proposition implies that Ďi(p) · C ′′i (ξ) ≤ 1. So the20

second factor of the expression is always non-negative. The market clears at price21

p∗ when firm i offers Q̌i(p), so the first factor is zero when p = p∗. The first22

condition of the proposition implies that Q̌′i(p) > Ď′i (p), so the first factor is23

negative when prices p are above p∗ and positive for prices below p∗. Hence we24

have shown that:25

dπi
(
p, Ďi (p) + ε∗

)
dp


≤ 0 if p > p∗

= 0 if p = p∗

≥ 0 if p < p∗

26

which is sufficient for a global profit maximum at p∗. We can use the same ar-27

gument for all shocks ε and all firms i and we can conclude that the tuple Q̌ =28

11



{
Q̌i(p)

}N
i=1

constitutes a Nash equilibrium.1

Proposition 3 If firm i sold call options that trace its marginal cost, that is2

p = C ′i(Xi(p)) ∀p ∈ (0, p), then it bids competitively in the spot market and has3

constant profits, provided it faces a downward sloping residual demand function or4

has sufficiently flat marginal cost functions. That is D′i (p)C ′′i (q) < 1 ∀q ≥ 0 and5

∀p ∈ (0, p).6

Proof. The call options sold trace the firm’s marginal costs, so it is obvi-7

ous that bidding Qi (p) = Xi (p) satisfies the necessary first order conditions in8

Proposition 1. It is also a global optimum for firm i, if the two conditions in Propo-9

sition 2 are satisfied. By assumption we have p = C ′i(Xi(p)) and D′i (p)C ′′i (q) < 110

∀p ∈ (0, p), so it follows that Q′i(p) = X ′i(p) = 1
C′′i (Xi(p)) > D′i (p). Hence the first11

condition is satisfied. The second condition is satisfied by assumption. Given this12

bidding strategy, firm i’s profit is constant:13

πi(p,Q(p)) = V i + pQi(p)− Vi(p)− Ci(Qi(p)) = V i.14

This can shown by partial integration or by studying Figure 2.15

Thus a firm can sell a portfolio that hedges its profit perfectly, but as a result,16

it will end up selling at marginal cost. If a firm would like to use its market power,17

it should not hedge all of its capacity.18

3.2 The financial market: perfect arbitrage19

The no-arbitrage condition (5) is valid for any contracting choice made by the20

producers. By using this condition and reversing the order of integration, we can21

rewrite the contracting revenue of firm i:22

V i =
ˆ p

0
σ (r) · dXi (r) =

ˆ p

0
Eε [max (P (ε)− r, 0)] · dXi (r) (9)23

= Eε

[ˆ P (ε)

0
(P (ε)− r) · dXi (r)

]
= Eε [Vi(P (ε))] .24

Thus due to perfect arbitrage, the contracting revenue is equal to the expected25

realized value of the portfolio. We substitute the contract revenue (9) into the26

pay-off (2). Thus the expected payoff in (4) can be written:27

Πi = Eε [πi (ε)] = Eε [P (ε) ·Qi(P (ε))− Ci(Qi(P (ε)))] . (10)28

12



Similarly to Allaz and Vila (1993) and Newbery (1998), firm i’s expected pay-off1

does not depend on the contract position directly, but by selling contracts (Xi),2

it can strategically change the price in the spot market P (ε).3

3.3 The financial market: strategic contracting4

In this subsection we solve for equilibrium contracts. In order to simplify our5

notation we let6

H(x) := N(N − 1)1− F (x)
f(x) (11)7

be the inverse hazard rate of the probability distribution of the demand shock mul-8

tiplied by N(N − 1), which is a measure of the interaction effect between firms.9

For simplicity we set cost equal to zero in the remainder of the paper. Firm k’s ex-10

pected profit in the first stage in (10) can then be simplified to Eε [P (ε)Qk(P (ε))].11

We also make a weak assumption on H(x).19
12

Assumption 1 1. Production costs are zero, i.e. Ci(Qi) ≡ 0, ∀i13

2. The inverse hazard rate is decreasing or mildly increasing, H ′(ε) < 1 ∀ε ∈14

(0, ε), i.e. the hazard rate is increasing or mildly decreasing.15

Firm k maximizes profit by trading derivatives in stage 1, taking into ac-16

count that the spot market outcome should satisfy the generalized Klemperer and17

Meyer FOC conditions (6), and that clearing of the spot market requires that18

spot demand must equal spot supply. Hence, firm k’s optimal contracting level is19

determined by the optimal control problem below. We refer to it as firm k’s Math-20

ematical Program with Equilibrium Constraints (MPEC). This solution concept21

is further discussed in Appendix A.22

MPEC(k): max
ˆ p

0
p ·Qk(p) · dF (ε (p)) . (12)23

s.t.

 ∀i : Qi(p)−Xi(p) = pQ′−i(p)− pD′(p)
Q (p) = ε(p) +D (p)

24

In order to calculate the contracting levels in equilibrium, we solve all firms’25

MPEC problems simultaneously. This is sometimes referred to as an Equilibrium26

Problem with Equilibrium Constraints (EPEC), see Appendix A.27

19Most standard probability distributions, such as the normal and uniform distributions, have
increasing hazard rates. According to Bulow and Klemperer (2002) it is therefore a weak as-
sumption to only consider probability distributions with increasing hazard rates, i.e. decreasing
inverse hazard rates, H ′(ε) ≤ 0. Note that our assumption is even weaker, as we allow for
H ′(ε) < 1.
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Proposition 4 provides necessary first order conditions for symmetric equilibria1

and shows that any solution satisfying those equations is on the equilibrium path2

of a Subgame Perfect NE (SPNE). There can be multiple SPNE when subgames3

do not have unique equilibria. In such subgames, we use Pareto dominance to4

refine the set of Nash equilibria. We show that the EPEC solution can weakly5

be implemented as a Pareto Optimal Subgame Perfect Nash Equilibrium (formal6

definition in Appendix A). This implies that firms play a Pareto optimal NE in the7

subgame along the equilibrium path. In subgames off the equilibrium path firms8

play almost Pareto optimal NE; none of the firms can gain more than an arbitrary9

small amount ε by coordinating on any other equilibrium without making another10

firm worse off.11

Proposition 4 (WPO-SPNE) Under Assumption 1 any symmetric solution of12

the set of problems k = 1...N in Equation (12) has to satisfy the following first13

order conditions:14

H(ε (p)) = (pD (p))′ + ε (p) + (N − 1)2pε′ (p) (13)15

Q(p) = D (p) + ε (p) (14)16

X(p) = (pD (p))′ + ε (p)− (N − 1)pε′ (p) (15)17

for ε (p) ∈ [ε0, ε], where ε0 ∈ [0, ε] and P (ε0) = 0. Moreover, solutions to these18

equations are weakly implementable as a Pareto Optimal SPNE.19

Proof. This follows from Lemmas 1-3 in Appendix B.20

For a better understanding of the strategic interactions in our game, we take a21

brief look at firm 1’s residual demand function D1 + ε. It is equal to total demand22

(term I) minus output of competitors, which is the output that they sell in the23

contract market (Term II) and in the spot market (Term III).24

D1 + ε = D + ε︸ ︷︷ ︸
I

−X−1︸ ︷︷ ︸
II

− (Q−1 −X−1)︸ ︷︷ ︸
III

25

It follows from the generalized Klemperer and Meyer conditions (6) that competi-
tors’ net-sales in the spot market are proportional to the slope of their residual

14



demand function. Thus term III can be written as follows

Q−1 −X−1 =
∑
i 6=1

p · (Q′−i −D′)

=
∑
i 6=1

∑
j 6=i

Q′jp−
∑
i 6=1

D′p

= (N − 1)Q′1p+ (N − 2)Q′−1p− (N − 1)D′p,

which allows us to rewrite the residual demand function for firm 1:1

D1 + ε = D + ε︸ ︷︷ ︸
I

−X−1︸ ︷︷ ︸
II

− (N − 1) |D′| p︸ ︷︷ ︸
III.a

− (N − 1)Q′1 p︸ ︷︷ ︸
III.b

− (N − 2)Q′−1 p︸ ︷︷ ︸
III.c

(16)2

If demand is more elastic (|D′| larger in term III.a) then the output of its N − 13

competitors will be larger, and the residual demand that firm 1 faces decreases.4

Similarly, if firm 1’s output is flatter (Q′1 is large in Term III.b), the output of5

its competitors’ increases, and its residual demand decreases. Term (III.c) is an6

interaction effect between competitors of firm 1. If one competitor sets a flatter7

supply function, then the other (N−2) competitors will be more competitive, and8

the residual demand that firm 1 faces decreases.9

In the Allaz and Vila (1993) model firms’ production does not depend on prices,10

∀i, Q′i = 0, and firm 1’s residual demand function consist only of the terms I, II,11

and III.a. Term III.a corresponds to the Stackelberg effect of firm 1: By being12

a first mover in stage 1, firm 1 can affect its competitors production level in the13

second stage, as they will react to firm 1’s output level.20 Term II corresponds to14

the first mover effect of firm 1’s competitors. As its competitors sell forward, firm15

1 faces a smaller residual demand function. The two additional terms III.b and16

III.c in our model are a consequence of allowing output to depend on prices.17

We can now obtain some intuition on the incentives of firm 1 to make output18

inelastic or even downward sloping. This can be seen most easily in a duopoly19

setting (N = 2) in which case term (III.c) is zero. It follows from (16) that it is20

’costly’, either in terms of a reduced quantity or a reduced price, to set a positive21

slope Q′1 > 0, because it makes its competitor’s residual demand curve more22

elastic, which increases its competitor’s output (term III.b becomes larger). Thus23

we would expect that firm 1 would find it optimal to keep this slope relatively24

20This term can be understood better by looking at a standard Stackelberg game with one
leader and N − 1 followers. The leader sets output taking into account the subsequent reaction
of its followers. Each follower sets its output such that its marginal revenue equals marginal
costs, which is zero in our model. Hence, for each follower j, Qj + pD′ = 0. The output of one
follower is Qj = |D′| p, and total output of all followers is given by (N − 1) |D′| p.
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small or even negative. To achieve this and still sell a significant amount, it will1

be optimal to produce a relatively large quantity at p = 0 and then to keep output2

fairly inelastic or even backward bending over the whole price range. This is the3

result that we get in the next section.4

4 Closed-form solutions5

Relying on Proposition 4, this section derives closed-form solutions of our model,6

and discusses the welfare effect of derivatives trading.7

4.1 Market equilibrium8

We make the following simplifying assumptions in order to explicitly solve for an9

SPNE with the Pareto refinement.10

Assumption 2 Production costs are zero, the demand function D(p) = −γp is11

linear with γ > 0 and demand shocks are Pareto distributed of the second-order,12

so that f (ε) = β1/α (αε+ β)−1/α−1 for ε > 0, where β > 0 and α ∈ (−∞, 1
N(N−1)).13

The Pareto distribution of the second-order is a family of probability distribu-14

tions with a wide range of properties (Johnson et al., 1994). For example, for α = 015

it gives the exponential distribution and for α = −1, the uniform distribution.16

Proposition 5 (Closed-Form) Under Assumption 2 the unique symmetric EPEC
solution is given by:

ε(p) = ε0 + 2
1− α (N − 1)N + (N − 1)2γp (17)

Q(p) = ε0 + α (N − 1)N − (N − 2)N
1− α (N − 1)N + (N − 1)2γp (18)

X(p) = ε0 + 2α (N − 1)N − 2N2 + 2N
1− α (N − 1)N + (N − 1)2γp, (19)

where ε0 = βN(N−1)
1−α(N−1)N . This solution is weakly implementable as a PO-SPNE.17

Proof. Lemma 4 in Appendix C shows that under Assumption 2 the unique18

solution of the set of differential equations (22-24) is given by the linear equations19

(17-19). It follows from Johnson et al. (1994) that the Pareto distribution of the20

second-order has a finite variance when α < 1
N(N−1) . We also note that under21

16



Assumption 2 we have H ′ (ε) = N (N − 1)α < 1. It follows from Proposition 41

that the solution is weakly implementable as a PO SPNE.2

Figure 3 illustrates the results of Proposition 5 for the special case where N = 23

and the demand shock is uniformly distributed.4

We notice that with linear demand, the contracting and output functions are5

linear for a Pareto distribution of the second order. The contracting function6

X(p) is downward sloping; producers sell forward contracts and buy call options7

for strike prices above zero. The supply function Q(p) is also downward sloping8

for N > 2 or when α < 0. Hence firms produce less, although the demand shock9

increases. As a result prices increase steeply. Even in the alternative case where10

the supply function is upward sloping (duopoly N = 2 and α ≥ 0), the curve is11

still very steep. Indeed, the slope of the total output as a function of price is less12

than |D′|, the slope of monopoly output.13

As demand shocks become more uncertain (α increases),21 the anti-competitive14

consequences of contracts are mitigated: Q (0) increases and Q′ (p) becomes less15

negative (for N > 2), or eventually positive but small (for N = 2).16

It is also straightforward to verify that total forward sales, X (0), increase with17

the number of firms. This ensures that the market becomes more competitive for18

low shock outcomes. However, the total output function will bend backwards19

more, when the number of firms increases; Q′ (p) decreases with more firms in the20

market. If the support of the shock density is unbounded, (α ≥ 0) then the second21

effect will eventually outweigh the first effect for large shock outcomes. Hence in22

this case, increasing the numbers of firms makes the market less competitive for23

the highest shock. We attribute this to the interaction effect between competitors,24

term III.c in (16).25

4.2 Welfare effects26

Proposition 6 (Deadweight Loss) The expected deadweight loss Λ for the equi-27

librium in Proposition 5 is:28

Λ = β2 (1− α (N − 1)N + (N − 1)2)2

4γ (1− α) (1− 2α) (1− α (N − 1)N)2−1/α . (20)29

21For α ≤ 0, the support of the demand shock ε is
[
0, β|α|

]
, so a less negative α increases the

range of demand shocks. For α ≥ 0, a larger α increases the thickness of the tail of the demand
density (Holmberg, 2009).
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Proof. It follows from (17) that:1

P (ε) =

A (ε− ε0) if ε > ε0

0 if ε ≤ ε0

2

with A = 1−α(N−1)N+(N−1)2

2γ . As in Holmberg and Newbery (2010), the welfare loss3

for a given demand shock ε is the deadweight-loss:4

λ (ε) = P 2 (ε) γ
2 =

A
2 γ

2 (ε− ε0)2 if ε > ε0

0 otherwise
5

while the expected welfare loss is given by6

Λ = Eε [λ (ε)] =
ˆ ε

ε0

λ (ε) f (ε) dε.7

Define T (x) as the third-order integral of f(x), so that T (x) = −β2

(α−1)(2α−1)(
αx+β
β

)2− 1
α

and T ′′′(x) = f(x). We can now evaluate the expected loss by twice integrating

18



by parts.

Λ = [λ(ε)T ′′(ε)]εε0
− [λ′(ε)T ′(ε)]εε0︸ ︷︷ ︸
=0

+ λ′′(ε) [T (ε)]εε0

= −A2γT (ε0) = A2γβ2 (1− αN(N − 1))1/α−2

(1− α)(1− 2α) (21)

Note that the first two terms are zero as long as α < 1
2 , because ε = −β

α
if α < 0 and1

ε = ∞ otherwise. Welfare losses are quadratic in ε, therefore Λ′′2γ is a constant.2

We get (20) by substituting A = 1−α(N−1)N+(N−1)2

2γ into (21).3

We now discuss the effect of the number of firms on the market’s competitive-4

ness.5

Proposition 7 Under Assumption 2, the expected deadweight loss for the equilib-6

rium in Proposition 5 decreases with the number of symmetric firms.7

Proof. The expected welfare loss is given by (20). Lemma 5 in Appendix8

C shows that 1−α(N−1)N+(N−1)2

(1−α(N−1)N)1−(1/2α) is decreasing with respect to N which proves the9

result.10

It follows from (20) that the market becomes perfectly competitive (no welfare11

losses) if the number of firms N goes to infinity and α ≤ 0.22
12

Proposition 8 (Welfare Comparison) Expected welfare is lower for the equi-13

librium in Proposition 5 than for a standard Cournot model without contracting14

where demand shocks are realized before firms choose production, provided that15

N = 2 and Assumption 2 is satisfied.16

Proof. From the first-order condition of the Cournot market with certain17

demand it follows that the total duopoly output is: Q = 2γp. The market clears18

when Q = ε− γp, so19

PCournot (ε) = ε

3γ .20

As before the deadweight loss for a given ε is:21

λCournot (ε) = P 2
Cournot (ε) γ

2 = ε2

18γ .22

22Note that Assumption 2 does not allow for α > 0 when N →∞.
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We can calculate the expected welfare losses ΛCournot = Eε [λCournot (ε)] as in1

Proposition 6 by twice integrating by parts:2

ΛCournot = λ′′Cournot(ε) [T (ε)]ε0 = −T (0)
9γ = 1

9γ
β2

(1− α) (1− 2α) .3

Comparing the welfare losses in the Cournot game above and the welfare losses in4

Proposition 6 for N = 2, we find that:5

Λ
ΛCournot

= 9 (1− α)2

(1− 2α)2−1/α ,6

which is larger than 1 according to Lemma 6 in Appendix C.7

Prices for symmetric monotonic SFE without contracts are below the Cournot8

schedule (Klemperer and Meyer, 1989; Green and Newbery, 1992), i.e. prices in a9

Cournot equilibrium where demand shocks are realized before firms set production10

quantity. Thus Proposition 8 has the following implication:23
11

Corollary 1 The introduction of a derivatives market will lower welfare, provided12

that N = 2, Assumption 2 is satisfied, firms play symmetric monotonic SFE before13

the reform, and the SPNE in Proposition 5 after the reform.14

This result contrasts with Holmberg’s (2011) two-stage model with forward15

contracting and supply function competition, where the introduction of a forward16

market weakly improved competition for cases when marginal costs are constant17

up to a capacity constraint. Similarly, forward markets improved welfare in Allaz18

and Vila’s (1993).19

5 Conclusion20

Commodity derivatives such as forwards and call options are very useful hedging21

instruments. However, in an oligopoly market they will also be used strategically.22

In Allaz and Vila’s (1993) seminal study strategic contracting is pro-competitive.23

However, it is limited in that firms cannot use contracts to commit to a downward24

sloping supply. In our study, which has a less restrictive strategy space, strategic25

contracting has anti-competitive consequences.26

23The standard supply function model without contracts could also have symmetric SFE that
are partly downward sloping. Those cases were however not considered by Klemperer and Meyer
(1989) nor Green and Newbery (1992). Numerical simulations show that if we allow for those
equilibria, financial contracts will still decrease welfare when α ∈ (−6, 0).
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Solving for an equilibrium of a two-stage game with derivative trade followed1

by spot market competition, we show that risk-neutral producers sell forward2

contracts and buy call option contracts. This contracting strategy commits them3

to a fairly inelastic or even downward sloping supply function in the spot market.4

This is profitable as it will give competitors incentives to increase their mark-5

ups. The forward sales improve competition for low demand realizations, but6

the option contracts reduce competition for high demand realizations. Hence7

commodity derivatives are pro-competitive for low demand, but anti-competitive8

during high demand. In a duopoly market, the second effect outweighs the first9

and total surplus decreases when the financial market is introduced. Total forward10

sales increase in a less concentrated market (more firms), which improves the11

pro-competitive effect under low demand. In expectation having more firms in12

the market also reduces welfare losses, even if the anti-competitive effect at high13

demand becomes more pronounced.14

We show that the anti-competitive effects are reduced with more demand un-15

certainty. It is then optimal for firms to offer supply functions that have a less16

negative slope, as this allows them to benefit more from both high and low de-17

mand realizations. Thus to avoid the anti-competitive effect of speculation, our18

model suggests that option contracts should not be traded near delivery because19

firms then have a good estimate of demand. Alternatively, the same option con-20

tract or supply function should be valid for several delivery periods in order to21

increase demand variation.24 Moreover, market monitors should carefully scruti-22

nize incidents where producers use contracts in a speculative manner.23

In our model producers are risk neutral and arbitrage in the financial market24

is perfect. Therefore, commitment by financial derivatives is costless. As this is25

not the case in practice, our results should be seen as a limiting case. With risk26

aversion, firms are expected to reduce tail risk and to hold contracting portfolios27

that are closer to their actual output, and therefore to offer supply functions28

that are more upward sloping. Thus contracting should be pro-competitive with29

sufficient risk-aversion. Also transaction costs in the financial market are likely to30

reduce the profitability of speculative positions. Considering such imperfections31

in contracting is likely to reduce the anti-competitive effect for high demand and32

the pro-competitive effect for low demand realizations.33

In our study firms use call options and forward contracts to commit to down-34

24This is for example the case in the PJM market, where producers’ offers are fixed during the
whole day to meet a wide range of demand outcomes. PJM is the largest deregulated wholesale
electricity market, covering all or parts of 13 U.S. states and the District of Columbia.
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ward sloping supply curves. Unlike in spot markets with Cournot competition1

(Willems, 2005), our results do not depend on whether option contracts are finan-2

cial or physical. It follows from the call-put parity that firm’s could make the same3

commitment by put options and forward contracts. In practice firms could also4

use commitment tactics other than financial contracts, for instance by delegating5

decisions to managers, merging with downstream firms, and making irreversible6

investments. We believe that the main intuition of our paper, that firms would like7

to commit to downward sloping supply functions, remains valid in those settings.8

In this sense our result has some parallels in Zöttl (2010), who models the strate-9

gic (irreversible) investments of firms, where firms compete in quantities in a spot10

market with random demand. He shows that firms will over-invest in technology11

with low marginal costs (base-load), but choose total investment capacities that12

are too low from a welfare viewpoint.13
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Klemperer and Meyer (1989) show that multiple Nash Equilibria (NE) may exist34

in supply function games such as the one played in the second stage of our model.35
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This complicates the equilibrium analysis of our game. Below we discuss in detail1

how we refine the Sub-game Perfect Nash Equilibrium (SPNE) concept, and the2

solution method we use to find such an equilibrium.3

A.1 Equilibrium concept4

We start with some definitions. Each tuple of contracting actions X= {Xi (p)}Ni=15

defines a different subgame in the second stage spot market, which we denote as6

subgame X. The set of subgames will be denoted Ξ. Firm i’s strategy {Xi (p) , Qi(p,X)}7

specifies its action in the first stage (the contract market) and in each second stage8

subgame (the spot market). The strategy profile, the set of all firms’ strategies,9

is given by {X,Q(X)}, where Q(X) = {Qi(p,X)}Ni=1 specifies a tuple of supply10

functions for each subgame X. We let SFE(X) be the set of Supply Function11

Equilibria in subgame X. To rule out non-credible threats in the subgames, we12

solve for a Subgame Perfect Nash Equilibrium in the two-stage game.13

Definition 1 (SPNE) A strategy profile {X∗,Q∗(X)} constitutes a Subgame Per-14

fect Nash Equilibrium (SPNE) iff:15

(i) ∀i,∀Xi Πi(Q∗(X∗),X∗) ≥ Πi(Q∗({Xi,X∗−i}), {Xi,X∗−i})
(ii) ∀X ∈ Ξ Q∗(X) ∈ SFE(X).

16

The first equation specifies that firms do not have an incentive to change their17

contracting decisions in the first stage, given competitors’ contracting strategies18

X∗−i and the equilibria which will be played in the second stage, as described19

by Q∗(X). The second equation states that the function Q∗(X) has to be an20

equilibrium in each subgame.21

There can be multiple SPNE when subgames do not have unique equilibria. In22

this case, we use Pareto dominance to refine the set of Nash equilibria in subgames23

with multiple Nash Equilibria. A problem with this refinement is that it can24

only be applied to subgames where Pareto Optimal NE exists. Although the set25

SFE(X) is typically non-empty, it might not be closed, so a Pareto optimal SFE26

might not exist in some subgames X. In our application it is especially problematic27

to prove existence of a Pareto optimal SFE in subgames off the equilibrium path.28

To deal with this we allow firms to play SFE which are “almost” Pareto Optimal29

off the equilibrium path.30

Definition 2 (ε-Pareto Optimality) A Supply Function Equilibrium Q∗ ∈ SFE(X)31

in subgame X is ε−Pareto optimal if no alternative equilibrium Q ∈ SFE(X) ex-32

26



ists which is weakly preferred by all firms Πi(Q,X) − Πi(Q∗,X) ≥ 0, and where1

one firm j would gain at least ε, πj(Q,X)− πj(Q∗,X) > ε.2

Furthermore, the supply function equilibrium is said to be Pareto optimal if the3

above holds for ε = 0.4

For a given ε > 0, we define SFEε−PO(X) and SFEPO(X) as the set of ε-Pareto5

Optimal SFE and Pareto Optimal SFE in subgame X. Note that SFEPO(X) ⊆6

SFEε−PO(X) ⊆ SFE(X).7

Definition 3 (ε-PO-SPNE) For a given ε ≥ 0, a subgame perfect Nash Equilib-8

rium (SPNE) {X∗,Q∗(X)} is an ε-Pareto Optimal subgame perfect Nash Equilib-9

rium (ε-PO-SPNE) if:10

∀X ∈ Ξ Q∗(X) ∈ SFEε−PO(X)
Q∗(X∗) ∈ SFEPO(X∗)

11

Furthermore, if those expressions hold for ε = 0, the SPNE is a Pareto Optimal12

subgame perfect Nash Equilibrium (PO-SPNE).13

This definition requires that firms play a Pareto Optimal Nash equilibrium14

along the equilibrium path, while off the equilibrium path, they are allowed to15

play any Nash equilibrium which is not ε-dominated by other Nash equilibria in16

the subgame. So by coordinating on another Nash equilibrium in a subgame off17

the equilibrium path, no firm can gain more than ε without making some other18

firm worse off.25 Note that if each subgame has a unique Nash equilibrium, then19

any SPNE is also a PO-SPNE and an ε-PO-SPNE.20

A.2 Solution method21

In order to find subgame perfect Nash equilibria, the set of supply function equi-22

libria in each sub-game needs to be determined. However, the necessary first order23

and sufficient second order conditions in Propositions 1 and 2 do not describe all24

equilibria. In our paper we therefore first solve an Equilibrium Program with25

Equilibrium Constraints (EPEC). This solution method is often used to compute26

equilibria of dynamic games, including games with strategic contracting.26 It is27

25The Pareto Perfect Equilibrium (PPE) (Bernheim et al., 1987) is related to the PO-SPNE
concept, but is a stricter refinement as it imposes that only those PO-SPNE are played which
are Pareto Optimal in the first stage. Hence, the set of PPE is a subset of the set of PO-SPNE.
In case a PO-SPNE is unique, then it is also a Pareto Perfect Equilibrium (PPE).

26Su (2007) and Zhang et al. (2010) use an EPEC to calculate strategic forward contracting
in oligopoly markets.
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assumed that each firm maximizes its profit subject to the First Order Condi-1

tions (the “Equilibrium Constraints”). In the next step we then verify that the2

solutions of the program can “almost” be implemented as a PO-SPNE. A Pareto3

optimal SFE is played in the subgame on the equilibrium path. In subgames off4

the equilibrium path, none of the firms can gain more than an arbitrarily small5

amount ε by coordinating on any other equilibrium without making another firm6

worse off.7

We define an outcome as a set of actions that firms take along one particular8

path in the game. Hence we present an outcome as {X0,Q0}; the contract curves9

X0 = {Xi (p)}Ni=1 and supply functions Q0 = {Qi(p)}Ni=1 that firms offer in the10

first and second stage, respectively. Let FOC (X) be the set of tuples Q(X) in11

subgame X that satisfy the necessary first order conditions of an SFE as specified12

in Proposition 1. Thus SFE(X) ⊆ FOC (X).13

A Mathematical Program with Equilibrium Constraints (MPEC, Luo et al.,14

1996) is an optimization program where a firm maximizes its profit, subject to a15

set of first order conditions (the equilibrium constraints).16

Definition 4 (MPEC Outcome) An outcome {X∗,Q∗} is an MPEC outcome17

for firm i iff it is a solution of firm i’s Mathematical Program with Equilibrium18

constraints (MPEC)19

MPEC(i) ∀Xi,∀Q ∈ FOC({Xi,X∗−i}) Πi(Q∗,X∗) ≥ Πi(Q, {Xi,X∗−i}).20

An Equilibrium Program with Equilibrium Constraints (EPEC) is the system21

of MPECs, one for each firm i.22

Definition 5 (EPEC Equilibrium) An outcome {X∗,Q∗} is an EPEC out-23

come iff ∀i, {X∗,Q∗} is an MPEC outcome for firm i. We say that {X∗,Q∗}24

is an EPEC equilibrium if in addition Q∗ ∈ SFE(X∗).25

It is now verified that the EPEC outcome can be reached along the equilibrium26

path of an ε-PO-SPNE for and arbitrarily small ε. Formally:27

Definition 6 The outcome {X∗,Q∗} is weakly implementable as a Pareto Opti-28

mal subgame perfect Nash Equilibrium if for any ε > 0 there exist ε-PO-SPNE,29

for which {X∗,Q∗} is on the equilibrium path.30

Proposition 9 If there exists an SFE in every sub game, i.e. ∀X : SFE(X) 6= ∅,31

and the monopoly profit is bounded in every subgame, then an EPEC equilibrium32
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{X∗,Q∗} is weakly implementable as a Pareto Optimal subgame perfect Nash Equi-1

librium.2

Proof. Step 1: We first prove that the EPEC equilibrium implies that a3

Pareto Optimal SFE is played along the equilibrium path, i.e. Q∗(X∗) ∈SFEPO(X∗).4

We will use a proof by contradiction. Suppose that there is a Nash equilibrium5

Q̃ ∈ SFE(X∗) such that6

∀i, Πi(Q̃,X∗) ≥ Πi(Q∗,X∗)7

where the inequality is strict for one of the firms. Without loss of generality8

assume that for firm 1: Π1(Q̃,X∗) > Π1(Q∗,X∗). The definition of the EPEC9

outcome requires that:10

Π1(Q∗,X∗) ≥ Π1(Q,X∗) ∀Q ∈ FOC(X∗}.11

As the first order conditions are necessary conditions for an equilibrium, we must12

have that Q̃ ∈ FOC(X∗). Hence,13

Π1(Q∗,X∗) ≥ Π1(Q̃,X∗),14

which is a contradiction.15

Step 2: We will now prove that in every subgame X, and for each ε > 016

there exists an ε−PO-SFE, i.e. ∀X,∀ε > 0, SFEε−PO(X) 6= ∅. Define total17

industry profit as ΠI(Q,X) ≡ ∑
i Πi(Q,X). Total industry profit ΠI(Q,X) is18

bounded above by the monopoly profit ΠM , so that ΠI(Q,X) ≤ ΠM . It follows19

from Dedekind completeness that every non-empty set of real numbers having an20

upper bound must also have a least upper bound. Thus we let Πsup(X) denote21

the least-upper bound (or supremum) of equilibrium industry profits in subgame22

X. Hence, ΠI(Q,X) ≤ Πsup(X). By assumption there exists one equilibrium in23

every subgame. For any ε > 0 one can always find one Qε ∈ SFE(X), such that24

ΠI(Qε,X) ≥ Πsup(X)− ε, otherwise Πsup(X) would not be the least-upper bound25

of equilibrium industry profits in subgame X. We now prove by contradiction26

that the SFE Qε is ε-Pareto Optimal. Suppose it were not, then there exist an27

alternative SFE Q̃ ∈ SFE(X) such that some firm i improves its profit by at28

least ε, Πi(Q̃,X)−Πi(Qε,X) > ε while other firms j 6= i receive at least as much29

as before Πj(Q̃,X) − Πj(Qε,X) ≥ 0. This implies however that ΠI(Q̃,X) >30

ΠI(Qε,X) + ε ≥ Πsup(X), which is impossible given the definition of Πsup(X).31
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Step 3: It follows from step 2 that we can always find an ε-Pareto optimal1

supply function equilibrium Qε(X) ∈ SFEε−PO(X) in each subgame, while the2

equilibrium Q∗ is played along the equilibrium path X∗, i.e. Qε(X∗) = Q∗,3

according to step 1. In order to prove that {X∗,Qε(X)} is an ε-PO-SPNE, it4

remains to be shown that deviations from X∗ in the first stage are not profitable.5

As the first order conditions are necessary conditions for an equilibrium, we must6

have that Qε(X) ∈ FOC(X). Definition 5 implies that firm i has no profitable7

deviation Xi (p) 6= X∗i (p), such that Πi(Q∗,X∗) < Πi(Qε({Xi,X∗−i}), {Xi,X∗−i}).8

Thus we can conclude from Definitions 1 and 3 that {X∗,Qε(X)} is an ε-PO-9

SPNE. Such an ε-PO-SPNE can be found for any ε > 0, so the Proposition now10

follows from Definition 6.11

B Strategic contracting12

Lemma 1 Under Assumption 1 any symmetric solution of problems k = 1...N in13

Equation (12) has to satisfy the following first order conditions:14

H(ε (p)) = (pD (p))′ + ε (p) + (N − 1)2pε′ (p) (22)15

Q(p) = D (p) + ε (p) (23)16

X(p) = (pD (p))′ + ε (p)− (N − 1)pε′ (p) (24)17

for ε (p) ∈ [ε0, ε], where ε0 ∈ [0, ε] and P (ε0) = 0. Solutions to these equations are18

EPEC outcomes. That is, for each firm i, playing Xi globally solves its MPEC(i)19

problem.20

Proof. Step 1: Without loss of generality we solve for the optimal contract21

of firm k = 1. In the optimal control problem, X1(p) only appears in the first22

constraint for i = 1. Thus firm 1 is free to choose X1(p) to satisfy this equation23

without influencing other constraints or the objective function. Thus this equation24

just defines X1(p), and can thus be neglected for now. In the objective function25

and in the second and third constraints, competitors’ total output matters, but26

not how it is divided between these firms. We can therefore sum up the remaining27

(N−1) equations (for cases i 6= 1) of the first constraint into one single constraint.28

Using that F (ε (p)) = 1 and integration by parts we can now rewrite the dynamic29
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optimization problem as follows:1

max
ˆ p

0
(pQ1)′ [1− F (ε)] dp. (25)2

s.t. (N − 1)pQ′1 + (N − 2)pQ′−1 = (N − 1)pD′ +Q−1 −X−1 (26)3

Q−1 +Q1 = D + ε, (27)4

where, as before, the subscript −i refers to the sum of a variable over all firms,5

excluding firm i. Thus firm 1’s expected profit is given by the integral of its6

marginal profit ∂
∂p

(pQ1(p)) at price p, weighted by 1 − F (ε(p)), the probability7

that the realized price is larger than p, and this also makes sense intuitively.8

Step 2: We simplify the dynamic optimization problem by rewriting the con-9

straints and then substituting them into the objective function. By adding N − 110

times the market equilibrium (27) to the constraint (26) and we get:11

(N − 1)(pQ1)′ = (N − 1) (pD)′ −X−1 + (N − 1)ε− (N − 2)(pQ−1)′. (28)12

We use the market equilibrium identity in (27) to write (pQ−1)′ as a function of13

(pQ1)′.14

(pQ−1)′ = (pD)′ + (pε)′ − (pQ1)′,15

which we can substitute into (28), to give an expression for the marginal profit16

(pQ1)′17

(pQ1)′ = (pD)′ −X−1 + ε− (N − 2) · p · ε′.18

Substituting this marginal profit into the objective function in (25) gives the fol-19

lowing optimization problem:20

max
ˆ p

0
{(pD)′ −X−1︸ ︷︷ ︸

h1(p)

+ ε− (N − 2) · p · ε′} [1− F (ε)] dp. (29)21

Step 3: We now derive the first order conditions of the optimization program22

(29). First we write it as the sum of two integrals:23

max
ˆ p

0
{h1(p) + ε} [1− F (ε)] dp − (N − 2)

ˆ p

0
p · (G(ε)−G (ε))′dp,24

where G(ε) =
´ ε

0 (1− F (t))dt. Note that ε (p) = ε. Thus the second term can be25
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rewritten using integration by parts:1

max
ˆ p

0
{[h1(p) + ε] [1− F (ε)] + (N − 2) (G(ε)−G (ε))}︸ ︷︷ ︸

θ(p,ε)

dp.2

The integrand only depends on ε (p) and p, so we can maximize the integral by3

maximizing θ (p, ε) for each p. Thus for every p we want to find the ε (p) that4

maximizes θ (p, ε).5

∂θ (p, ε)
∂ε

= (N − 1) (1− F (ε (p)))− (h1(p) + ε (p)) f (ε (p)) (30)6

Setting ∂θ(p,ε)
∂ε

= 0 and multiplying the equation with N
f(ε(p)) , the first order condi-7

tion of this optimization problem can be written as:8

H(ε)−Nh1(p)−Nε = 0. (31)9

Step 4: We want to know under what circumstances solutions to this condition10

globally maximize profits. Let ε̃ (p) be a solution to this equation for a given11

contracting choice of the competitors, X−1 (p). We see from (30) that ∂θ(p,ε)
∂ε

has12

the same sign as H(ε(p))−Nh1 (p) +Nε (p). It follows from Assumption 1.2 that13

H ′ (ε) < 1. Thus we realize that for all price levels p:14

H(ε)−Nh1 (p)−Nε
≤ 0 if ε > ε̃ (p)
= 0 if ε = ε̃ (p)
≥ 0 if ε < ε̃ (p) .

15

Accordingly, ε̃ (p) globally maximizes θ at each price. We can repeat the argument16

for any firm and thus solutions to (31) are EPEC outcomes according to Definition17

5.18

Step 5: We now solve for symmetric equilibria. Multiplying equation (28)19

with N , and assuming symmetry we find20

X = N(pD)′ +Nε− (N − 1)(pQ)′21

Substituting the market clearing identity Q(p) = D(p) + ε for Q, we obtain equa-22

tion (24). Reinserting the definition of h1(p) in (29) into the first order condition23

(31) and assuming symmetry (NX−i = (N − 1)X) we find24

H(ε) = N(pD)′ +Nε− (N − 1)X25
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SubstitutingX with equation (24) gives the differential equation in (22). Equation1

(23) describes the market clearing condition.2

Lemma 2 The EPEC outcome in Lemma 1 is an EPEC equilibrium.3

Proof. It follows from Definition 5 that the EPEC outcome is an EPEC4

equilibrium if the two conditions in Proposition 2 are satisfied. Marginal costs are5

zero according to Assumption 1.1 so the second condition is satisfied. It remains6

to show that the first condition Q′ > D′ or equivalently ε′(p) > 0 is satisfied.7

First we want to verify that ε′(0) > 0. We rewrite the first order condition8

(22) and evaluate it at p = 0:9

(N − 1)2ε′(0) = lim
p→0

H(ε(p))− ε(p)−D(p)
p

−D′(0)10

The limit only exists when H(ε(0)) = ε(0). We use l’Hôpital’s rule and collect the11

terms with ε′(0) to find12

ε′(0)
(
(N − 1)2 + 1−H ′

)
= −2D′(0).13

The second factor on the left hand side is positive given Assumption 1.2. The right14

hand side is also positive, as D′(0) < 0, given our assumptions on the demand15

function in Section 2. Thus we must have that ε′(0) > 0.16

In the next step we show that whenever ε′(p) = 0 for a given strictly positive17

price p > 0, it must be that ε′′(p) > 0. Differentiating the first order condition18

(22) with respect to p, we find19

H ′(ε)ε′ = (N − 1)2(ε′ + pε′′) + ε′ + (pD)′′20

For price levels where ε′ = 0, this expression simplifies to:21

(N − 1)2pε′′ = −(pD)′′22

The right hand side is positive (we assumed downward and concave demand func-23

tions in Section 2), and we consider strictly positive prices, so it must be that24

ε′′(p) > 0 when ε′ = 0.25

In the last step we show that ε′(p) > 0 for all prices. Our proof is by contra-26

diction. Assume that the inequality ε′(p) > 0 is violated for some p > 0. Let p027

be the lowest price above 0 where ε′(p) = 0. Thus our assumptions would imply28

that ε′ (p) > 0 for p ∈ [0, p0) and that ε′ (p0) = 0, which requires that ε′′ (p0) ≤ 0.29

33



However, this is impossible as we have just shown that whenever ε′(p0) = 0 it1

must be that ε′′(p0) > 0. Hence, ε′ (p) > 0 for p ∈ [0, p].2

Lemma 3 The EPEC outcome in Lemma 1 is weakly implementable as a PO3

SPNE.4

Proof. It follows from Proposition 2 that the EPEC outcome in Lemma 1 is5

an EPEC equilibrium. We know from Proposition 9 that the EPEC equilibrium is6

weakly implementable as a PO SPNE if (1) the monopoly payoff is bounded and7

(2) there exist an SFE in every subgame. We prove that both conditions hold.8

Let γ = −D′ (0) > 0. Thus it follows from the assumed properties of the9

demand function in Section 2 that10

D (p) ≤ −γp.11

We realize that the monopoly profit for demand D (p) is bounded by the monopoly12

profit for demand −γp. In the latter case, the monopolist would set a monopoly13

price P (ε) = ε
2γ and receive a monopoly profit πM(ε) = ε2

4γ . In expectation this14

monopoly profit is:15

ΠM =
´ ε

0 π
M(ε)f(ε)dε = 1

4γ

´ ε
0 ε

2f(ε)dε.16

In Section 2 we make the assumption that ε has a bounded variance, so the17

expected monopoly profit must be bounded, also when ε is arbitrarily large.18

Finally we note that Bertrand offers at p = 0 constitute a Nash equilibrium19

in every subgame irrespective of contracting. If competitors’ total offers meet20

maximum demand at p = 0, then the profit of a firm is always zero irrespective21

of its offer, and it might as well choose its supply offer such that its total output22

meets maximum demand at p = 0. Thus the Bertrand outcome is always an23

equilibrium.24

C Closed form solutions25

Lemma 4 Under assumption 2 the unique solution of the set of differential equa-26

tions (22-24) is given by the linear equations (17-19).27

Proof. Under Assumption 2 we have 1−F (ε)
f(ε) = αε + β (Holmberg, 2009) and28

D(p) = −γp, which simplifies (22) to29

N(N − 1)β + 2γp = (N − 1)2pε′ + ε [1−N(N − 1)α] .30
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This is a first order differential equation in the form:1

aε+ pε′ = g(p) (32)2

with3

a = 1− α (N − 1)N
(N − 1)2 (33)4

and5

g(p) = N

N − 1β + 2
(N − 1)2γp. (34)6

Both sides of (32) can then be multiplied with the integrating factor pa−1 and7

integrated. As long as a > 0 or equivalently α < 1
(N−1)N , we have that paε (p) is8

zero at p = 0, so9

ε(p) = p−a
ˆ p

0
g(t)ta−1dt.10

Substituting a and g(t) by their definitions in (33) and (34) and solving for this11

integral gives us equation (17). The optimal supply and contracting functions in12

(18) and (19) then follows from substituting (17) into (23) and (24), respectively.13

14

Lemma 5 Under Assumption 2, it must be that ξ(N,α) = 1−α(N−1)N+(N−1)2

(1−α(N−1)N)1−(1/2α) is15

decreasing with respect to N .16

Proof. The partial derivative of this expression with respect to N is17

∂ξ(N,α)
∂N

= − $(N,α)
2 (1− α (N − 1)N)

4α−1
2α

18

with $(N,α) = (2N − 5N2 + 2N3 + 2) − α(N − 1)(2N2 − 3N + 2). As the19

denominator is always positive for α ∈
(
−∞, 1

(N−1)N

)
, we need to show that $ is20

positive as well. We have21

∂$(N,α)
∂α

= −(N − 1)(2N2 − 3N + 2) ≤ 022

for N ≥ 2. According to Assumption 2 we have α < 1
N(N−1) , so

1
2 is an upper23

boundary for α and $(N,α) is bounded from below by $
(
N, 1

2

)
24

$(N,α) > $(N, 1
2) = 1

2(N − 2)(N + 1)(2N − 3) ≥ 025

for N ≥ 2, which establishes the result.26
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Lemma 6 For α ∈
(
−∞, 1

2

)
it must be that 9 (1−α)2

(1−2α)2−1/α > 11

Proof. The left hand side of the inequality can be written as 9 exp(z(α)) with2

z (α) = [2 ln(1− α) + ( 1
α
− 2) ln(1− 2α)].3

We now prove that α = 0 is a minimum of the function z(α). By differentiation4

of z with respect to α we obtain that:5

α2(1− α) dz
dα

= −2α− (1− α) ln(1− 2α)6

Love (1980) shows that x
1+ 1

2x
< ln(1 + x) if x > 0 and x

1+ 1
2x
> ln(1 + x) if − 1 <7

x < 0. From this it directly follows that dz
dα
> 0 if .5 > α > 0 and dz

dα
< 0 if α < 0.8

The minimum of z is therefore achieved at α = 0. Using l’Hopital’s rule it can be9

shown that z (0) = −2. Thus the minimum of 9ez(α) is 9e−2, which is larger than10

1.11
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