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ABSTRACT

This paper documents temporary abnormal returns in mutual fund perfor-
mance due to peer e�ects among mutual funds associated by similar asset
holdings. With a network specification of instrumental variables to con-
trol for correlated shocks to associated funds, I find that flows to and from
peer mutual funds funds account for 1.6% of mutual fund quarterly excess
return which reverses 1.1% in the following year. Temporary abnormal re-
turns may explain mutual fund performance persistence in the absence of
frictions inhibiting reallocation of investor funds across mutual funds.
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Mutual funds remain the dominant form of investing by retail investors with

assets under management recently eclipsing $13 trillion for the first time (ICI

2013). Mutual fund investments represent 23% of individual household assets

and approximately 50% of retirement assets (ICI 2013). Thus, understanding the

e�ects of capital flows on subsequent mutual fund performance and pricing remains

a question of first order importance.

While the primary consensus of research on mutual fund managers indicates

an inability to outperform after expenses (e.g. Carhart, 1997, Fama and French,

2010), there are studies which show persistence in performance, particularly in

the short term (e.g. Bollen and Busse, 2004, Cremers and Petajisto, 2009, Amihud

and Goyenko, 2013). Work that attempts to explain this persistence assumes,

implicitly or explicitly, that the source of persistence is frictions which inhibit the

allocation of funds by rational agents among competing mutual funds (Berk and

Green, 2004, Franzoni and Schmalz, 2013). Regulators follow this theory, pushing

for greater transparency among mutual funds in order to overcome these frictions.1

This paper provides empirical evidence that persistence in performance can be

generated by temporary price e�ects from capital flows directed by rational, return-

chasing mutual fund investors (Berk and Green, 2004). To illustrate, suppose

investors move cash into a mutual fund which has recently performed well and that

portfolio manager subsequently invests primarily in his existing portfolio (Lou,

2012), creating buying pressure that generates short-term abnormal returns. These

price e�ects may spillover to mutual funds with similar holdings (or ‘peers’). While

it is unlikely that this e�ect could be caused by a single mutual fund, multiple

funds with overlapping holdings could provide enough flow-based buying pressure
1For instance, in 2009, the SEC released rule 33-8998 requiring summary information to be

prominently displayed and disclosures to be immediately available on websites to speed trans-
mission of relevant information.
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to a�ect prices. Aggregate flows have already been shown to a�ect stock prices

(Lou, 2012, Jotikasthira, Lundblad, and Ramadorai, 2012, Coval and Sta�ord,

2007), and return chasing is a well-known phenomena (e.g. Edelen and Warner,

2001).

This paper makes three contributions. First, I show that localized mutual

fund flows predict short-term mutual fund performance which subsequently re-

verses. Second, I show that this e�ect is due to peer e�ects among mutual funds

with overlapping holdings rather than groupings of otherwise unrelated mutual

funds based on some characteristic. To disentangle the ‘peer’ e�ect from the

‘group’ e�ect, I rely on the recent but growing econometrics of peer e�ects liter-

ature for identification which I further confirm with a network permutation test

of randomized neighbors. My third contribution is methodological: this network

methodology allows a level of analysis between the whole market and the individ-

ual mutual fund by focusing on peer groups – the market mesostructure. I analyze

a distribution of economic significance across mutual funds rather than just an

average e�ect on all funds, and show that this exponential distribution can have

very large, localized e�ects even if the average e�ect is modest.

Peer flows, which are the combined e�ect of fund flows into and out of mutual

funds with similar holdings are associated with a 1.6% quarterly abnormal return

as defined by Daniel, Grinblatt, Titman, and Wermers (1997), hereafter called

DGTW return. Approximately two-thirds of the e�ect reverses in the subsequent

year. While these results use peers defined by raw portfolio weights, I obtain

similar results with peer measures defined by benchmark adjusted weights and

weights based on changes in portfolio holdings.

I show that this temporary abnormal return is due to spillover e�ects from peer

funds by analyzing the coe�cient estimates from a spatial autoregression (SAR)

3



of peer flows on contemporaneous mutual fund flows.2 In this specification, the

amplification e�ect of peer funds is revealed with the coe�cient for spillover e�ects

always exceeding that of the direct e�ect. This pattern holds for all explanatory

variables such as past flows and changes in market share (Spiegel and Zhang, 2013)

and across the three di�erent peer measures. The economic significance of spillover

e�ects is 85% of the direct e�ect on average. This average e�ect, however, masks

an underlying exponential distribution of outcomes in which direct e�ects at the

75th percentile are larger than the initial shock, and at the 90th percentile several

multiples of the initial shock. This e�ect is only slightly reduced for spillover

e�ects – managers who do not receive a shock feel e�ects that are almost as large

as those who do.

The primary challenge for this study is identification of a causal peer e�ect

distinct from a correlated shock to both the fund and its peers, which I address in

three ways.

First, I apply a two-step GMM estimation (Kelejian and Prucha, 1998, Lee,

2003, Bramoullé, Djebbari, and Fortin, 2009). In the first step, I employ network-

based instruments to identify the endogenous peer mutual fund flows in a spec-

ification to predict mutual fund flows. In the second step, I compute predicted

peer flow as the predicted flow from the first step with the same peer similarity

measure, and use it as the sole instrument for peer flows to infer e�ects on returns

and spillover e�ects among fund flows.

Second, I run a network permutation test with randomized peers. Since ran-

domized peers show no e�ect, I conclude that network structure factors in the

result over latent market-wide forces.

Third, I control for style investing (e.g. Teo and Woo, 2004, Barberis and
2Spatial auto-regressions are typically used to measure spillover e�ects of tra�c and pollution

in geographic contexts.
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Shleifer, 2003) by computing a specification using only peer funds between groups

(i.e. omitting peers within the same style or category) and obtain the same out-

come as the full sample. Isolating my analysis to peers only within the same

Morningstar category further validates that my peer e�ect is distinct from a cat-

egory e�ect: the sign of the e�ect reverses in line with the competitive result of

Wahal and Wang (2011).

The notion of peers among mutual funds is not new. Cohen, Coval, and Pastor

(2005) propose a performance measurement based on a peers, which we extend

to investigate an influence process rather than benchmarking performance. In-

tuitively, this study can also be thought of as measuring the e�ects of Kiyotaki

and Moore (1997) but with financial assets rather than durable assets and across

security space rather than physical geography. The peer flow e�ect also explains

how mutual fund performance can be explained by momentum even when mutual

fund managers do not seem to be implementing a momentum strategy (Carhart,

1997). Performance persistence induced by slow price adjustment seems at odds

with Wermers (1999) who finds that mutual fund herding speeds price adjustment.

I reconcile this by suggesting that temporary abnormal returns generate perfor-

mance persistence. I also show how money can be both smart and dumb (Zheng,

1999, Frazzini and Lamont, 2008): peer flows are positively correlated with fund

performance in the short run and negatively correlated in the longer term.

This paper proceeds as follows. First I provide a brief review of related litera-

ture in Section I. Section II describes my measurement of peer e�ects in detail and

gives some preliminary, motivating results. Section III describes my identification

strategy including the two-step GMM/IV procedure and permutation test. Sec-

tion IV discusses results, including the interpretation of network coe�cients and

their economic significance as well as distributional implications and robustness

5



to style-based e�ects. Section V concludes.

I. Literature Review

Cohen, Coval, and Pastor (2005) propose measuring mutual fund performance

based on peer performance. We extend this idea by noting that while peer asso-

ciations can be categorizations, peers also influence each other. For example, a

professor at a prestigious university may be well regarded due to her a�liation,

but her performance is likely to depend on relationships with peers at that uni-

versity – their skills, experience, and knowledge spill over onto her and vice versa

in a mutually reinforcing cycle. This study can be thought of as measuring these

types of spillover e�ects among mutual funds.

In Kiyotaki and Moore (1997), agents financing durable assets (e.g. land)

with secured debt drives geographic spillover. While mutual funds do not use

leverage, the fact that they provide daily, on-demand withdrawals at the NAV of

the fund makes them comparable to overnight repo financed investment vehicles

and thus susceptible to withdrawals forcing the sale of assets (Coval and Sta�ord,

2007). Similar to Kiyotaki and Moore, mutual fund holdings are both what drive

mutual fund performance and are the collateral for investor funds. These analogies

motivate my work as an empirical test of Kiyotaki and Moore (1997) among mutual

funds connected in security space.

The dynamic described here also helps explain the evidence of mutual fund

herd behavior (e.g. Wermers, 1999, Sias, 2004) without an information cascade

(Bikhchandani, Hirshleifer, and Welch, 1992) since experimental evidence indicates

that information cascades do not exist in the presence of a flexible market price

(Drehmann, Oechssler, and Roider, 2005).3 Instead, I show that mutual funds pur-
3Çelen and Kariv (2004) disentangle herding behavior from information cascades.
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chasing their own portfolio with inflows leads to common trades by similar mutual

funds which is measured herd-like behavior without requiring an information-based

mechanism.

Dasgupta, Prat, and Verardo (2011) model a similar temporary abnormal re-

turn process where managers receive enough reputational payo� to purchase neg-

ative expected return securities, thus inducing them to overshoot fundamentals.

My innovation is to show that returns can be positive in expectation for two rea-

sons. First, informed agents cannot contemporaneously observe the source of price

pressure (mutual fund flows) due to delays in disclosure and thus cannot predict

the reversal. Second, fundamental value for a long-only equity investment is not

clearly observable, so reinforcing revisions in relative valuation during a run up in

prices leads investors crowding into a common position to push prices away from

fundamentals while still maintaining a positive expected return (Stein, 2009).4

That these returns are abnormal can only be seen ex post when prices reverse, as

I show.5

The existence of temporary abnormal returns does not preclude manager skill

(as evidenced in Coval and Moskowitz (2001), Kacperczyk, Sialm, and Zheng

(2005), and Cohen, Frazzini, and Malloy (2008), among others). Indeed, its exis-

tence may explain why identifying skill is challenging, the results are mixed, and

there are strong opinions on both sides of the argument - di�erent groupings may

find positive performance, negative performance, or no net result depending both

on time horizon and categories chosen for grouping.
4Stein (2009) calls these ‘un-anchored’ strategies in which increased arbitrage capital flows

do not by definition reduce mispricing as they would in a spread trade, for instance. Drehmann,
Oechssler, and Roider (2005) provide experimental evidence that even in a simple, controlled
environment, convergence to a fundamental value is slow and non-monotonic.

5The only countervailing force to this price appreciation is short sellers subject to limits to
arbitrage (Shleifer and Vishny, 1997) and synchronization risk (Abreu and Brunnermeier, 2002,
2003)
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II. Measuring Peer E�ects

In this section, I introduce my peer measure and provide simple portfolio sorts

showing that Peer Flow (defined as flows to and from peer mutual funds funds) af-

fects mutual fund flows and returns independent of past mutual fund performance

and past fund flows. First, I describe my data.

A. Data

My primary dataset is from Morningstar and contains the flows, returns, and

full portfolio holdings of U.S. Open Ended funds from 1998 to 2009.6 Flows of funds

are a simple dollar value per fund, quarterly, and are net flows summarizing all

subscriptions and redemptions across the relevant time period. This data includes

reported values for both fund flows and portfolio returns in contrast to other

studies which must compute fund flows from returns and changes in total net

assets. Also included are equity style computed by Morningstar which places a

fund on the three by three grid of Large, Mid, and Small cap and Value, Growth,

and Blend as well as the Morningstar category which includes styles in addition

to other categorization like industry segment, dividend funds, international funds,

lifecycle funds, etc. Also included is information on fund inception date used to

compute fund age and expense ratio for the fund as reported in the annual report.

To focus on equity funds as is common in the literature, I only keep funds

with at least 75% of their holdings in equities. To alleviate incubation bias I only

keep funds greater than $5 million in assets, hold at least 10 securities, and are at

least one year old. I combine this data with CRSP by CUSIP when necessary to

obtain stock characteristics. DGTW returns are computed as in Daniel, Grinblatt,
6Elton, Gruber, Blake, Krasny, and Ozelge (2010) perform a thorough comparison of the

Morningstar holdings data with the more commonly used data from Thomson Reuters and find
it to be very similar and without survivorship bias.
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Titman, and Wermers (1997) and Wermers (2003), downloaded from Russ Werm-

ers’ website. Flow is defined as fund flow divided by total net assets as is typical

(e.g. Coval and Sta�ord, 2007) and di�erenced to remove common group e�ects,

discussed in detail in Appendix A. Cash % is defined as currency, treasuries, and

other cash-like holdings, also divided by total net assets. Change in market share

is total net assets divided by all mutual fund assets less the lagged value of the

same ratio (Spiegel and Zhang, 2013), and Turnover is the minimum of positive

and negative share changes divided by the average of this and the prior period’s

total net assets (Carhart, 1997). Stock variables (such as portfolio weights, assets,

and cash) are measured at time t-1 and flow variables (such as fund flows and

returns) are measured at time t, thus accumulating from t-1 to t. This is to avoid

any mechanical correlations between things like cash holdings and fund flows since

total assets or cash at time t may be highly related to fund flows accumulated from

t-1 to t. Summary statistics are in Table I.

To compute fund benchmarks, I obtain Vanguard Exchange Traded Fund

(ETF) holdings, also from Morningstar. These contain stock holding identifying

information, shares, market value, and portfolio weights at a monthly frequency.

ETFs are an excellent proxy for index weights because they are index-tracking

products with data available at relatively high frequency. Vanguard is a par-

ticularly good company to choose as the family of ETFs since they have a long

standing reputation for delivering low cost exposure to popular benchmark in-

dexes.7 In addition, ETFs provide a very broad set of possible index benchmarks

including things like sector indices, dividend-based indices, and various small, mid,

and large cap value, blend and growth indices which allows a higher probability
7Berk and Van Binsbergen (2012) in recent work use Vanguard Index Mutual Funds as

benchmarks; the choice here of ETFs over index mutual funds is trivial in comparison because
Vanguard’s ETFs are technically a share class of their popular index mutual funds and so holdings
information is identical.
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of assigning the appropriate benchmark. The list of ETFs is in Table II.

B. Peer Measures

While there may be agreement that peers influence each other, the correct

measure for peers is not obvious. In order to provide as general and robust a

result as possible, I compute results for three di�erent measures of peers showing

the same outcome. While all three measures are based on holdings, they capture

di�erent aspects of a peer relationship and identify somewhat di�erent groups of

peers.

The first measure of similarity is based on raw portfolio weights, designated

as Raw or Raw Peer throughout. This measure uses the simple market value

weighted portfolio of security holdings, which sums to 1 by definition for each

mutual fund portfolio.

The second similarity measure, called Bench or Bench Peer, takes those raw

weights and subtracts o� the fund’s assigned benchmark. I assign the Vanguard

ETF with maximal similarity as the benchmark for each fund, where benchmark

similarity is computed the same way as peer similarity, discussed below. I then sub-

tract the ETF holdings weights from the associated mutual fund holdings weights

to obtain a benchmark deviation, which for each holding can theoretically vary

from -1 to 1, but will not sum to 1 for each mutual fund portfolio.8

The third peer measure uses change in holdings, which I call Delta or Delta

Peer. I start with the change in shares from period t ≠ 1 to t (one quarter in my

sample) and multiply it by the average stock price for the quarter, which is the
8I computed this two ways, first using only those securities held by the mutual fund, and

second using the entire set of stocks held by either the mutual fund or matched ETF. The two
di�erent calculations were correlated greater than 0.9 so I keep the former since it is less likely
to produce erroneous similarity in the case of a poorly matched benchmark ETF. The downside
is that it omits stocks held by the ETF but not the MF which may be an intentional benchmark
deviation. These are likely very small errors.
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same across all funds. This allows stocks to be price weighted without inducing

similarity based on quarterly stock returns. I then compute a set of weights by

dividing each price weighted share change by the sum of all price weighted share

changes to get a vector that sums to 1.

For each of the three peer measures, I construct the similarity between two

portfolios i and j, denoted sij, as the dot product between the security weight

vectors of each portfolio manager i and j, divided by the product of the Euclidean

norm of each vector.9 Then, for each similarity measure, I construct Peer Flow for

each manager i by computing a weight vector such that the similarity measure sij

for each other manager j is divided by the sum over all of that fund’s similarities,

setting self-similarity sii to 0. For example, consider a portfolio manager with three

neighbors having similarities of 0.1, 0.2, and 0.1, such that the weights are .25, .50,

and .25, respectively. If those neighbor’s flows (divided by total net assets) are 0.01,

0.05, and 0.10, respectively, then Peer Flow is (.25ú .01)+(.50ú .05)+(.25ú .10) =

0.0525.10

I compute other peer variables such as peer size (total net assets) in the same

way.11 The primary advantage of using this peer weighting procedure is that peer
9Note that this similarity measure is the same as the cosine of the angle between the two

vectors in security space, and for centered data is identical to the computed correlation between
the two vectors. See more discussion of cosine similarity vs correlation computations in Reca,
Sias, and Turtle (2011). Detailed definitions of the norm and a full derivation is available in
Appendix B. This notion of portfolio distance is intuitively and mathematically similar to that
of social distance as in Conley and Topa (2002).

10While not identical, this formulation of similarity is correlated 0.98 with the similarity mea-
sure by Cohen, Coval, and Pastor (2005) which uses peer mutual funds to identify skilled mutual
fund managers. They compute what I would identify in my framework as “Peer Alpha” which
uses a similar weighting system with Jensen’s alpha to identify closely related high performing
funds as a measure of fund manager skill.

11All of the Peer variables are the same as structural equivalence variables in sociology origi-
nally defined by Burt (1987) and used more recently by Bothner (2003). The primary di�erence
is that in sociology, these variables are typically lagged to provide identification, whereas herein
I use an IV/GMM specification for better identification with my data. Lagged variables are
poorly identified here because two out of three similarity measures (Raw and Bench) have tem-
poral auto-regression coe�cients of .80 and .76, respectively. For lagged peer variables to provide
identification in this context, we would require close to 100% portfolio turnover each period which
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statistics are very similarly distributed to the corresponding ‘own’ statistics, as

seen in Table I.

These three peer measures (Raw, Bench, and Delta) combine to measure the

dynamic I propose, which has a passive part and an active part. The passive part of

the dynamic is when a fund’s peers buying and/or selling activity a�ects common

holdings. In this case, no action is required on the part of the fund manager to

impact his fund return. The Raw and Bench peer measures both capture this

passive e�ect, Delta Peer does not.

The active part occurs when a manager receives inflows or redemptions and

must act. Funds acting in concert buying and selling securities is a key driver

of price pressure, which is captured by Delta but less so by Bench or Raw. Raw

peers capture some of this e�ect because previous research has indicated that fund

managers sell in a 1:1 ratio with their holdings and buy in a 0.6:1 ratio (Lou, 2012).

Bench Peers capture the essence of active management: deviations from the

benchmark are the choices made by a manager. Raw and Delta peer measures do

not and thus may pick up similarities in underlying benchmarks.

For reference, Raw and Bench similarities are correlated 0.39, while Raw and

Delta are correlated 0.11. Bench and Delta are correlated 0.16. I provide additional

correlations of the di�erent Peer Flow measures in Table III

C. Preliminary Intuitive Results

The primary identification challenge is disentangling peer influence from a cor-

related group e�ect – i.e. does fund A a�ect fund B or are both fund A and B

impacted by an unobserved shock? I address this econometrically in Section III

but here I perform portfolio sorts to show how peer flows, measured in di�erent

does not happen in mutual funds (Ethan Cohen-Cole, personal communication). Instead, I used
peer’s lagged flows in my instrumentation strategy, discussed in detail later.
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ways, are independent e�ects from other common predictors of mutual funds.

An important phenomena in this context is flow-based price pressure (Lou,

2012): prices move in response to institutional flows. Thus, it could be that

groups of funds which simultaneously receive fund inflows subsequently outperform

regardless of any common holdings. A second phenomena is return chasing (Edelen

and Warner, 2001): fund flows follow performance. It could be that my measured

peer e�ect is simply the result of groups of funds with good past performance all

obtaining correlated flows, again regardless of any common holdings. I address

these two phenomena by sorting lagged flows and lagged performance each with

Peer Flow to show its independent e�ect on both fund flows and performance.

First, I address flow-based price pressure by analyzing mutual fund returns.

Table IV shows results for Raw, Bench, and Delta peer variables in panels A, B,

and C respectively, sorted by Peer Flow vertically and then either by lagged fund

flow or lagged DGTW return horizontally. Reported is equal-weighted DGTW

return for each quintile, in basis points.12 At the bottom of each column (either

lagged flow or lagged performance), we see the isolated, di�erential peer e�ect

by subtracting quintile 1 from quintile 5. This di�erence is large, positive and

statistically significant at the 1% level in each lagged flow or lagged performance

quintiles across all peer specifications, showing a strong e�ect of Peer Flow holding

lagged performance or flows constant. In contrast, the same is not always true

within peer flow quintiles, when investigating the 1-5 di�erence column. In many

cases, that di�erence is small and/or statistically insignificant and sometimes even

negative and significant. This indicates that there is less predictive power in past

flows or past performance once Peer Flows are taken into account and clearly

indicates that Peer Flow is not simply a proxy for past flows or past performance
12Unreported analysis give the same result for Carhart alpha both as lagged performance

measure and fund return measure instead of DGTW return.
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when investigating mutual fund returns.

Second, I address the return-chasing phenomena by analyzing fund flows in

the same framework. The results are in Table V, with Raw, Bench, and Delta

peers in panels A, B, and C, respectively. As before, lagged fund flows and lagged

performance (DGTW return) are sorted horizontally and Peer Flow vertically.

This time, the variable reported is abnormal fund flow in basis points.13 We

see the same significant positive di�erence across Peer Flow within lagged fund

flow and lagged performance quintile, indicating an important role for Peer Flow

in predicting mutual fund flows. We also see strong evidence of return chasing

independent of Peer Flow with the 5-1 column positive and significant within Peer

Flow quintiles in all cases as well. This indicates that lagged flows and lagged

returns play a role of equal importance as Peer Flow impacting fund flows.

The results so far indicate that the linkages among mutual funds provide ad-

ditional information about mutual fund returns and flows, but are the common

holdings the right link? To provide evidence of this, I briefly change the analysis

to look at stocks rather than mutual funds. Table VI shows returns for groups of

stocks held in common by mutual funds in di�erent terciles of Peer Flows.14 The

top tercile is a group of top 50 stocks held by funds with large peer inflows and

the bottom tercile is top 50 stocks held by funds with large peer outflows, with the

middle being top 50 stocks of funds having close to net zero peer flow. We see that

the top 50 stocks held in common by funds with large peer flows see a significantly

positive return. Similarly, those top 50 stocks held by bottom tercile peer flow
13Fund flow is di�erenced globally as discussed in Appendix A, though the results are robust

to this choice of di�erencing.
14Results presented for top 50 holdings, but I find the same outcome using the top 10 and

top 25 holdings in unreported results, so this choice of threshold is not material. Each bin is
defined as a group of stocks all of which are in the top 50 holdings of a fund by weight (Raw,
Bench, Peer), and then held exclusively by funds in one of the three Peer Flow terciles. Thus,
funds in the top 50 holdings of mutual funds in di�erent terciles are omitted.
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funds show large negative raw and abnormal returns, with statistically significant

di�erences between the two. This indicates that they are a likely conduit for peer

e�ects.15

Returning to our analysis of mutual funds, I present graphical evidence of

reversals consistent with the temporary nature of the above measured abnormal

returns. Figure 1 plots DGTW excess returns through time across two groups

of mutual funds sorted by Peer Inflows (defined as top 40%) and Peer Outflows

(defined as bottom 40%) with the middle 20% omitted. In the figure, we see the

strong initial e�ect at time 0 already shown in Table IV. The figure then tracks

these groups of funds through time, showing significant cumulative reversal over

the following 3-4 quarters. This is true regardless of which peer measure chosen,

though the size of the e�ect is smallest with the Delta peer specification, which is

perhaps unsurprising given the more transient nature of that measure.

While these results provide some measure of confidence that Peer Flow is an

e�ect independent of past flows or performance which subsequently reverse, they

are not conclusive because they do not control for other factors (size of the fund,

fund fees, etc.) nor do they provide econometric rigor to show causality. To do

that, we need a more thorough identification approach.

III. Identification and Methodology

The primary challenge of this study is identification of peer e�ects. This is

because Peer Flow is an endogenous e�ect – if the average flow of my peers a�ects

me, then my fund flow a�ects them. This endogenous e�ect is hard to distinguish

from exogenous e�ects where a fund and its peers have common exogenous charac-
15This result is consistent with Antón and Polk (2010) who find that overlapping mutual fund

holdings increase comovement of the stocks held in common.
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teristics, for instance fund age. It is also hard to distinguish from correlated e�ects,

for instance fund size, style or category, since funds in these groups may experi-

ence inflows or outflows in correlated patterns. Starting with Manski (1993) who

identified the problem, there has been a long literature focusing on econometric

specifications and network conditions necessary to identify endogenous e�ects.

The first step toward identification is spatial di�erencing to remove group

means, which is necessary but not su�cient (see Appendix A). To achieve full

identification of causal peer e�ects, I draw on a two-step GMM/IV specification

(Kelejian and Prucha, 1998, Lee, 2003). Among multiple instrument specifications,

I also employ two-step peer (my neighbor’s neighbor) variables as instruments as

in Bramoullé, Djebbari, and Fortin (2009) within the above two-step GMM/IV

specification. Finally, I discuss a network permutation test designed to establish

a baseline for the analysis and remove the possibility of market-wide e�ects which

may be driving peer e�ects as an omitted variable.

A. Two-Step GMM Methodology

Kelejian and Prucha (1998) document a novel two-step GMM/IV procedure

for identifying peer e�ects. In the first step, you specify instruments predicting

the endogenous variable as the dependent variable, which is fund flow in this

study. Then, with that specification you generate a set of predicted values for

the endogenous variable, which you then use as the instrument in the second step

GMM/IV specification.16 The first step GMM specification is as follows:
16To minimize confusion, I will refer to each of these specification as Step 1 and Step 2, and

within each we have the typical GMM Stage 1 and Stage 2 regressions. So listed are Step 1
Stage 1 and 2, then Step 2 Stage 1 and 2.
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PeerF low = Instruments (1)

Flow = \PeerF low + OtherV ariables (2)

I then compute Peer
1
[Flow

2
with the predicted value [Flow as the instrument in

the second step, exactly identified GMM specification:

PeerF low = Peer
1
[Flow

2
(3)

Flow = \PeerF low + OtherV ariables (4)

A proper GMM/IV specification uses instruments which are correlated with en-

dogenous regressors but orthogonal to the error term. For each GMM specification,

I include four key statistics which validate the instrument specification. The KP

LM Stat is the Kleinbergen-Paap Wald Statistic which tests for weak instruments.

Weak instruments are not correlated ‘enough’ with the endogenous regressors and

can lead to biased results. This test should reject the null hypothesis so strong

instruments should show a large test statistic and low p-value (less than 0.05).

The Hansen J statistic, also known as the test of overidentifying restrictions, tests

the validity of the overidentification of the model, which is correctly specified when

we cannot reject the null hypothesis. This is a test of whether the instruments are

correlated with the error term of the second stage regression, which should not be

so. Thus, a very small J statistics and correspondingly large p-value which fail to

reject the null indicate a properly overidentified GMM specification.17 Note that
17For more information on the derivations of these test statistics, see Hayashi (2000) or some

other comparable statistics text. Also consult the help files with Stata’s xtivreg2 procedure,
which I used for all of my GMM estimations (Scha�er and Stillman, 2007).
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the Hansen J test is not available in the Step 2 GMM specifications because they

are exactly identified with a single instrument, which is as intended.

B. Two-Step Peers and other Instrument Specifications

I have estimated a total of nine instrument specifications which all give similar

results. Each are properly specified in that they give valid results from tests of

weak instruments and overidentification.18 They are as follows:

1. Peer Lagged Flow. (contemporaneous peers, lagged flows)
2. Lagged Peer Flow. (lagged peer relationships and lagged flows)
3. Two Step Peer Flow. (contemporaneous fund flow of two-step peers)
4. Two Step Peer Flow and Peer Lagged Flow. (1 and 3 combined)
5. Two Step Peer Flow, Two Step Size. (average size of two step peers)
6. Two Step Peer Flow, Two Step Size, Peer Lagged Flow. (1 and 5 combined)
7. Peer Lagged Flow, Two Step Peer Lagged Flow, Two Step Size.
8. Peer Lagged Flow, Two Step Peer Lagged Flow.
9. Peer Lagged Flow, Two Step Size.

In specifications 1 through 6, the square of each term is also included for better

overidentification. In the interest of brevity, I only report results for Specification

1 and 7, but results for the others are available upon request. Specification 1

has the advantage of being the most parsimonious, intuitive specification, as well

as using a lagged variable which is a very common instrument in the literature.

Specification 7 uses two-step peers as instruments without any squared terms, and

is closest to the specification in Bramoullé, Djebbari, and Fortin (2009) which is

the most rigorous way to identify causal peer e�ects econometrically.19

18This is true in most cases. I ran all nine specifications across three peer measures and
three di�erencing methods with both flows and returns as dependent variables. I also checked
the between-within specifications discussed later. This is over 50 regressions for each instrument
specification, and most gave valid results, with the weakest being the ‘within’ set of specifications.

19In unreported results, I attempt to directly follow Bramoullé, Djebbari, and Fortin (2009)
who include all two step peer variables as instruments but could never pass the Hansen J test of
overidentifying restrictions (i.e. instruments were correlated with second stage residuals indicat-
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Bramoullé, Djebbari, and Fortin (2009) prove that using two-step peers as

instruments solves the peer e�ects identification problem, based on the fact that

there exist “intransitive triads” in most networks which allows separation of A’s

influence on B from B’s influence on A. An intransitive triad is present if A connects

to B and B to C, but A is not connected to C. Thus, A can instrument for B’s

influence on C since any influence A has on C must be through the common relation

with B. In network terminology, A and C are Two-Step neighbors. For instance,

a U.S. technology fund may be connected to a mid-cap fund through common

mid-cap technology holdings, and that mid-cap fund may also be connected to a

Latin American fund through mid-cap Latin American holdings. Thus, the lagged

flows of the Latin American fund can instrument for the mid-cap fund’s influence

on the U.S. technology fund since they are only connected through their common

mid-cap neighbor.

Not all two-step neighbors form intransitive triads, however. Two-step neigh-

bors can only serve as an instrument if they satisfy the exclusion restriction – that

the instrument is only correlated with the dependent variable through the en-

dogenous regressor. To address these concerns, Bramoullé, Djebbari, and Fortin

(2009) specify a rank test which establishes that peer influence e�ects are identified

through two-step neighbors, which my network satisfies in all time periods.20

ing that they did not satisfy the exclusion restriction). Bramoullé, Djebbari, and Fortin (2009)
do not show results for this test on their data. As such, I pare down the list of instruments to
maximize explanatory power while attempting to use variables which are as exogenous as pos-
sible. This had the benefit of balancing overidentification with weak instruments.The provided
list was my first and only try so this is not the result of a specification search (Leamer 1978).

20Proposition 5. This is simply a rank test of the matrix of network connections. I take the
identity matrix, my Peer Weight matrix, and my Two-Step Peer Weight matrix (see the appendix
for details), reorder them to be in column vectors, and show that the resulting matrix has at
least rank 3. I repeat this for all three peer measures. More details of this computation available
on request.

19



C. Permutation Test

I provide a network permutation test as a baseline. Because we are analyzing

equity mutual funds who are all subject to market-wide movements (i.e. they have

a ‘beta’ in some sense) it may be that there are unobserved e�ects which drive

peer relations and cannot be otherwise controlled. Another way of thinking about

this is ensuring that my null hypothesis is zero.

To that end, I run a network permutation test with each set of peer measures.

In each case, I randomly reassign peers in the network, but hold all else constant.

I then create Peer Flow from the new randomized peers and run a simple OLS

regression since peer-based instruments no longer work with random peer assign-

ment. This test is su�cient to show an insignificant baseline result because with

the real data network, the relationship in an OLS regression is strongly positive

and statistically significant.

Table VII summarizes the results of 1,000 permutations, and shows no signif-

icant e�ect. There are fewer than 1% statistically significant results at the 99th

percentile level and less than 5% statistically significant results at the 95th per-

centile level. The average coe�cient found is less than 0.01 and the average T

statistic is less than 0.1 (both in absolute value). This non-result sets a clean slate

with a clear null hypothesis of zero e�ect of peer flows on mutual funds.

IV. Results

I now discuss my identified, rigorous results consistent with peer fund flow

e�ects inducing temporary abnormal mutual fund returns. First, we look at ab-

normal fund returns and subsequent reversals, then investigate the spillover e�ect

of peer flows in a regression with fund flows as the dependent variable. The nature
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of this regression is such that, similar to an autoregression with lagged dependent

variables, the coe�cients require interpretation to fully capture the economic sig-

nificance. Finally, I discuss robustness checks which focus on peers only between

styles or within styles to show that my peer e�ect is independent of documented

style-based comovement. First, a brief discussion of the econometrics of my base

specification.

A. Econometrics and Controls

Recent papers by Petersen (2009) and Gormley and Matsa (2013) have demon-

strated the importance of paying careful attention to econometric specifications

and not simply “following the literature” when computing standard errors and

including fixed e�ects, respectively. In light of these, I find it necessary to in-

clude both time and fund fixed e�ects and further cluster my standard errors in

both time and fund dimensions, though most of the literature has used Fama-

MacBeth or an OLS specification with fewer standard error corrections without

fixed e�ects.21

To capture group e�ects and following Sirri and Tufano (1998), I include a

Style Flow Di� control variable which is the average flow into that fund’s style,

di�erenced with the average global fund flow (ex that style’s flow) similar to the
21A Breusch-Pagan test and an F test on RSS of regressions with and without time and fund

fixed e�ects show that it is necessary to include some type of fixed or random e�ects. A Hausman
test verifies that fixed e�ects are necessary over random e�ects (Kennedy, 2003). Clustering
standard errors in both time and manager dimensions produces large changes in standard errors
indicating that this is a necessary step (Petersen, 2009). With the same pooled OLS and Fama-
MacBeth framework as Coval and Sta�ord (2007), I get results qualitatively similar to them and
others who have investigated this relation such as Lou (2012) and Ferreira, Keswani, Miguel,
and Ramos (2011). Results from these tests as well as a table comparing the varying di�erences
in specification are available upon request. Recall that my dataset is di�erent from the other
studies cited and as such these test results may or may not extend to their specifications so I am
making no claims about their results. The inclusion of group fixed e�ects is strongly encouraged
by Gormley and Matsa (2013) over simple group means as a method of controlling for group
e�ects. I do this in unreported results with no material change in result.
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fund-level di�erencing (Appendix A). In unreported results, I include a control

using Morningstar Category-based groups with similar results. Since I am using

fund flows as a percentage of fund total net assets, I follow Spiegel and Zhang

(2013) and include change in market share (Mkt Shr Chg), which accounts for total

fund flows. Also included are typical controls for both flow and return regression

such as Fund Size, computed as the logarithm of total net assets, Fund Age which

is the log of the age of the fund in years, expense ratio in basis points, and turnover

as defined in Carhart (1997). I also include Volatility which is the trailing annual

rolling volatility of raw mutual fund returns as well as controls for cash holdings

(Simutin, 2009) and a portfolio-based liquidity measure aggregated across stocks

held as computed in Amihud (2002).22

B. Temporary Abnormal Returns

Table VIII shows the results for abnormal returns which subsequently reverse.

Models 1 and 2 are for Raw peers, 3 and 4 for Bench peers, and 5 and 6 for Delta

peers. All show the same basic result, which is a positive and significant relation-

ship between excess DGTW return and Peer Flow contemporaneously in the first

model, and a negative and significant relationship between the subsequent annual

DGTW return and the same Peer Flow variable in the second model. Excess

DGTW return is defined as the mutual fund gross return less mutual fund DGTW

return, which is the portfolio weighted individual equity DGTW returns. In the

contemporaneous return regressions Peer Flow is instrumented by Peer( [Flow)

with the predicted values from from the step 1 GMM regression. In the rever-

sal regressions (2, 4, and 6), simple OLS su�ces since there is little endogeneity
22In unreported results, I substitute Amihud liquidity for other liquidity measures such as

spreads (bid minus ask over midpoint) and stock turnover (average daily volume divided by
shares outstanding) with similar results, available on request.

22



between a quarterly lagged peer flow variable and subsequent annual return.

Economically, the e�ect in Models 1, 3, and 5 is 1.6%, 1.4%, and 0.5% in

quarterly excess return. The economic significance of the reversal in models 2, 4,

and 6 is -1.1%, -0.75% and -0.37% respectively, which corresponds with reversals

of 69%, 54% and 75%. In unreported results with four factor alpha (Carhart,

1997) as the performance measure, I get similar results.

In Table IX we see the same result, this time with the two-step instrument

specification. Note that Models 2, 4, and 6 are identical to those in the previous

table and only reproduced for easy comparison.

C. Flows and Spillover

Flow results are in Table X for both the Step 1 and Step 2 GMM/IV regressions.

Models 1 and 2 are the Step 1 and Step 2 for Raw peers, 3 and 4 the same for

Bench peers and 5 and 6 for Delta peers.23 The result of interest is Peer Flow

in the first row – in all cases it is positive and significant. We obtain the same

result with the two-step peer instrumentation specification in Table XI, which give

further evidence that the causal e�ect is fully identified.

Interpreting this result is not trivial, however, because this is a spatial auto-

regression (SAR) specification such that Flow appears on both sides of the equals

sign, requiring transformation similar to an temporal auto-regression with a lagged

dependent variable.24 The primary e�ect of the SAR specification is that the

coe�cient on every explanatory variable is not a scalar but an N ◊ N matrix

(given N mutual funds). Thus, there are separate estimated coe�cients for the
23Coval and Sta�ord (2007) employ both lagged flows and lagged returns as predictors, but I

instead follow (Lou, 2012) who uses lagged Carhart four-factor alpha. Alpha is computed using
a 12 month rolling average regression, accounting for alpha over the past 12 months, so only a
single lag is necessary. Lagged excess DGTW provide similar results but require four lags since
it is quarterly.

24I discuss some details around estimating an SAR model with GMM/IV in Appendix C
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e�ect of each mutual fund on each other mutual fund. It is these matrix coe�cients

which allow the direct measurement of spillover e�ects as well as the analysis of

the distribution of economic e�ects across the population of mutual funds.

To compute these matrix coe�cients, I begin by rewriting the general specifi-

cation in Equation 4 in matrix form, without the instrumentation:

F = flWF + X— + ‘ (5)

in which F is the N ◊ 1 vector of fund flows at time t. W is a row-stochastic

transformation of the N ◊ N portfolio similarity matrix S at time t, such that

PeerF low = W · F and fl is the estimated coe�cient on PeerF low. X represents

all other explanatory variables for simplicity. The result is

(IN ≠ flW ) F = X— + ‘ (6)

F = X1—̃1 + X2—̃2 + . . . + XL—̃L + ‘ (7)

for each l = 1 . . . L explanatory variables. Each actual estimated coe�cient is

—̃l,N◊N = (IN ≠ flW )≠1 —l (8)

which is an N ◊ N matrix.25

To interpret the network coe�cients, I divide each matrix coe�cient into di-

rect e�ects, represented by the diagonal, and spillover e�ects which reside on the

o�-diagonal. The results are in Table XII, with Panels (a), (b), and (c) showing

results for Raw Peer, Bench Peer, and Delta Peer, respectively. The first column

is the scalar coe�cient estimate, —, without the network transformation. Next are
25Since there is a W for each time t, I compute —̃l,N◊N at each time t then report the average

results for each manager across time.
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the direct e�ects, computed as the average of the diagonal of the matrix coe�-

cient, —̃. These are the e�ects that each mutual fund has on itself (the traditional

analysis) including feedback e�ects from spillover to others which is propagated

back to the originator. Next, spillover e�ects are computed as the average of all

o�-diagonal entries in the matrix coe�cient, —̃, capturing the average e�ect that

a shock to a mutual fund has on other mutual funds. The final column repro-

duces the standard error of the coe�cient estimate for reference as an indicator of

statistical significance.26 While the direct e�ects only slightly exceed the simple

coe�cient estimate, the spillover e�ects are very large. For the Lagged Flow vari-

ables, spillover e�ects are double the direct e�ects, and for the rest of the variables

like lagged alpha and fund size, they are an order of magnitude or more greater

than direct e�ects. This pattern holds across the three peer measures.

Next we turn to economic significance in Table XIII. In this table, I have

simulated a one standard deviation shock in each explanatory variable on one

third of the population of managers. In the first column, I show the average e�ect

on those who do not experience this shock, which is a measure of the economic

significance of spillover. The second column is the average direct e�ect on those

managers who directly receive the shock. The third column is the ratio of the

spillover to direct e�ect, and the final two columns divide the e�ect by the standard

deviation of Flow, the dependent variable in the regression, to standardize the size

of the e�ect and more easily allow for comparison. As above, Panels (a), (b), and

(c) show results for Raw, Bench and Delta peers, respectively.

The results are striking – the economic significance of spillover e�ects are, on

average, 85% of the direct e�ect across the board. We see this uniformity within a

single panel because each coe�cient is divided by the same matrix as seen in the
26This entire exposition follows LeSage and Pace (2009) and is standard for an SAR model.
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above exposition. There is no mechanical reason why we should see such similar

results across panels, however, so the fact that spillover e�ects are remarkably

similar regardless of peer specification provides strong evidence that peer e�ects

are quite important regardless of precisely how they are measured.

Most explanatory variables give economic significance between 20%-50% of a

standard deviation, which is a moderate to large e�ect. The largest e�ect is that

of fund size, which we discount since a one standard deviation shock to fund size

is unlikely in a single quarter. Liquidity, expense ratio, and fund age have small

e�ects and turnover has a large (negative) e�ect, almost a full standard deviation.

The average e�ects in Table XIII only tell part of the story, however, because

the distribution of e�ects is exponential, not normal. Table XIV presents a range of

percentiles across the distribution of outcomes, both on the directly shocked man-

agers and those who experience the resulting spillover. Displayed are percentiles

of fund flow divided by its standard deviation, but only for lagged flow, lagged

performance, changes in market share, and trailing annual volatility since these

are important variables which may be subject to unexpected shocks.27 Panels (a),

(b), and (c) show results for Raw Peer, Bench Peer, and Delta Peer, respectively.

The distribution of direct e�ects and spillover e�ects are essentially the same

regardless of peer measures. Greater di�erences exist instead across the four vari-

ables summarized. Lagged flow e�ects at or above the 75th percentile give an e�ect

greater than a standard deviation which increases to 2 or 3 times a standard devia-

tion at the 95th percentile. The e�ect of changes in market share are almost as big

as flow, followed by lagged performance as captured by alpha. Each of these shows

a greater than one standard deviation e�ect at the 90th percentile with multiple

standard deviations at the 99th percentile. The e�ect of trailing annual volatility
27Results for the remaining variables available on request.
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is less, but the upper tail of the distribution still exceeds a full standard deviation.

D. Robustness to Style Investing e�ects

It could be that my peer measures are identifying funds in the same style which

may receive correlated flows to generate my result (e.g. Boyer, 2011, Teo and Woo,

2004, Barberis and Shleifer, 2003). Because the existing Style Flow Di� control

may not be fully convincing, I conduct the following test. I partition my sample

in to within and between groups, where within only includes peers who share the

same style and between only includes peers which span across styles. You can

visualize this partition as a block diagonal N ◊ N mutual fund similarity matrix

(with N fund managers) sorted by style where the within specification includes

only the 9 style blocks on the diagonal and the between specification only includes

the remaining blocks o� the main diagonal. All other computations remain the

same.

The results in Tables XV and XVI show positive and significant results for Peer

Flow in all specifications for the two di�erent instrument specifications. Each table

has nine models in groups of three by peer measure. The first is the full sample,

reproduced from earlier results for reference, the second is the between partition,

the third is within. Models 1-3 are for Raw peers, 4-6 for Bench peers, and 7-9 for

Delta peers in both tables. In each case, we see one of two patterns: either the

between regression coe�cient on Peer Flow is very close to the reference coe�cient

including all peers or the within coe�cient is significantly less than the reference

coe�cient including all peers. Either of these patterns is evidence that peers with

common styles are not driving the result either because I can remove them with

little e�ect or because by themselves they have a much smaller e�ect than in the

larger sample.
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Further, Table XVII shows evidence consistent with Wahal and Wang (2011)

who investigate competition among mutual funds. Competitive flows should have

a negative coe�cient on Peer Flow because flows into a competitive peer are

associated with outflows for me. To investigate this apparent paradox, I isolate

my analysis to a situation which is most likely to reflect a competitive environment,

similar to Wahal and Wang (2011). I focus on Morningstar category, since it A.

is an easy categorization device for investors and B. includes the same categories

of funds as Wahal and Wang (2011). Instead of the global di�erencing used thus

far, I use category-based di�erencing such that each fund’s flow is measured as

the di�erence between its flow and the average flow into or out of the category to

which it belongs. This way I capture shifts in flows among funds within the same

category even with minimal net flows.

The within result in Model 3 of Table XVII captures the e�ect – a negative and

significant result for the flow coe�cient. The entire sample and between subset

remain positive and significant, even with the category-based di�erencing. I obtain

insignificant results predicting fund returns, which follows because rebalancing

flows should cancel out any flow-based price e�ects on the common holdings since

one fund is buying and the other selling.

This results shows the consistency of my overall result: in general, I find feed-

back e�ects associated with positive-reinforcing spillover e�ects, but when I isolate

my analysis to a scenario where competitive e�ects are likely to be strongest, I

find that the sign of the result reverses, showing that competitive e�ect, consistent

with the existing literature.
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V. Conclusion

In the wake of the recent financial crisis, the peer e�ects among market partici-

pants has become an important new area of research. Employing a network-based

specification, I show that interconnected mutual funds induce fund flow spillover

e�ects inducing an abnormal return of 1.6% per quarter, substantially reversed

in the subsequent year. I identify the influence of portfolio manager’s fund flows

on each other by exploiting the network structure as an instrument. I show that

spillover e�ects are almost as large as the direct e�ects on average but can be

much larger since the distribution of e�ects is exponential.

An interesting implication of this work is the idea of ‘optimal frictions’ in

financial markets. While the literature has focused on removing frictions to speed

adjustments, it may be that too little friction leads to abnormal returns which

subsequently reverse to the detriment of price e�ciency.

Network methods are becoming more popular in corporate finance (e.g. Cohen,

Frazzini, and Malloy, 2008, Ahern and Harford, 2010, Lewellen, 2012) and mar-

ket microstructure (e.g. Cohen-Cole, Kirilenko, and Patacchini, 2010), although

little has been done to apply network methods to securities markets. My network

approach allows an analysis of peer influence processes, bringing structure to cross-

sectional analysis previously only available in the time-series. While I have applied

it to portfolio interconnections, it may also have broad applicability to other areas

such as interbank lending (Cohen-Cole, Patacchini, and Zenou, 2011) and stock

market volatility (Greenwood and Thesmar, 2011). In a time when bailouts are

motivated not because of too-big-to-fail but because of too-interconnected-to-fail,

understanding and quantifying the interconnections among market participants is

a vital pursuit.
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VI. Appendix

A. Spatial Di�erencing

An introductory time series analysis class will introduce early on the necessity of
using first di�erences in any time series analysis with lagged dependent variables as
regressors (Hamilton, 1994). This matters because most financial and economic time
series are not stationary – i.e. they have a time trend – and this trend will induce a false
correlation across time if it is not di�erenced out. We have the same issue with ‘spatial
lags’, another term for the peer measures employed herein. A spatial lag is intuitively
similar to a temporal lag: a one step spatial lag is a measured value of a peer or neighbor
who is directly connected to the initial agent of interest. Similarly, there could be a two
step neighbor who is my neighbor’s neighbor, all in the same time, t. So, to measure
the e�ect that each fund manager’s flows have on each other, I need to di�erence out
any common flow and only consider the abnormal flow to or from each manager.This
removes the possibility of an induced spatial lag due to common groupings or other
market-wide events or trends.

However, spatial lags are more complicated than temporal lags because space is two
dimensional and so the level to be di�erenced out is not as obvious. Thus, to remove
these e�ects, we need to identify spatial groups which denote the ‘common’ part of the
flow to be di�erenced out. I do this in three ways: globally (G), by style (S) and by
Morningstar Category (C). I follow the practice common in the literature and compute
the di�erenced flow as the observed own flow minus the group flow less the own flow:

K_Flow_Diffi = Flowi ≠
ÿ

’j ”=i
’jœk

Flowj , i œ k (9)

Where k is the group definition, either all funds for global di�erencing (G), or all
funds in a given style (S) or Morningstar Category (C). Flow is already transformed
prior to this di�erencing by dividing through by total net assets in order to normalize
it across funds and minimize the disruption caused by large funds. 28 Note that I only
report results for global di�erencing because it is the most commonly used in the peer
e�ects literature and all give similar results. The others are available on request. The
exception is in the final robustness check of competitive mutual fund e�ects where I
report Category di�erences.

B. Details on how to compute Similarity Measure

As noted in the text, similarity between two portfolios i and j, denoted sij , as the
dot product between the security holding weight vectors of each portfolio manager i and
j, divided by the product of the Euclidean norm of each vector. sij is computed at each

28I perform the di�erencing after normalizing flow because the di�erencing creates strange
results with dollar levels due to the tremendous di�erence in fund size which conflates the dif-
ferenced measure with a size e�ect since all small funds have large negative spatial di�erences in
fund flows anytime they are grouped with other large funds, who have corresponding very small
di�erences.
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time t, but I suppress the time subscript for expositional ease. Specifically, where hi is
a vector of portfolio weights for manager i, the similarity between managers i and j is
defined as

sij = hi · hj

|hi| |hj | (10)

For each manager i, the Euclidean norm is defined across M securities as

|hi| =
ı̂ıÙ

Mÿ

m=1
h2

im (11)

Deriving this same measure in matrix form, let H be the M ◊ N holdings matrix,
with portfolio managers as each column, and each row consisting of the weight between
0 and 1 each manager places on that security. My portfolio similarity matrix is then

S = HT H

|H| · |H| (12)

in which each sij already defined above is an element of symmetric similarity matrix
SN◊N and hi are the columns of H. The norm of the matrix H is a Euclidean column
norm, such that for each column j, the norm of Hj is defined as

|Hj | =
ı̂ıÙ

Mÿ

m=1
h2

jm (13)

I then compute Peer Flow as the dot product of the weight vector and the corre-
sponding vector of fund flows for each manager. Formally, peer weights are computed
as

PeerWeightij = sijq

k
sik

, k ”= i (14)

and Peer Flow is thus

PeerF lowi =
ÿ

k

PeerWeightikFlowk (15)

In matrix form, if W is a row-stochastic transformation of S, such that each row
sums to 1, then PeerF low = W · Flow in which both PeerFlow and Flow are N ◊ 1
vectors and W is an N ◊ N matrix at time t.29

Two-step neighbors are computed as B = S2, with matrix multiplication (as opposed
to element-by-element) where the diagonal of S has already been set to 0 to avoid
duplicating one-step and two-step neighbors.30 In summation notation, the equivalent

29As noted in the paper, my measure is very similar to Cohen, Coval, and Pastor (2005). The
di�erence is that they use a doubly-stochastic matrix which is both row and column normalized
such that each row and each column sums to one. Mine is only row stochastic.

30A nonzero diagonal indicates a ‘self-loop.’ If S has a nonzero diagonal, a ‘two-step’ neighbor
could be i connecting to i (a self loop) and then i connecting to j, which therefore duplicates a
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product is

bij =
Nÿ

q=1
siqsqj , q ”= i, j (16)

with the diagonal of B also set to zero such that a manager cannot be his own two-step
neighbor.31 If ÊW is the row-stochastic, N ◊ N , two-step weighting matrix derived from
B, then TwoStepPeerF low = ÊW · Flow or as a summation:

Âwji = bjiq

k
bjk

(17)

TwoStepPeerF lowj =
ÿ

k

ÂwjkFlowk (18)

C. Estimating an SAR Model

I produce estimates using Generalized Method of Moments, whereas most specifica-
tions of this type in the spatial econometrics literature estimate models via Maximum
Likelihood. Conley (1999) notes that maximum likelihood specifications in which spa-
tial dependence is measured with error are misspecified. While measurement error is
unlikely to be a problem with geographical measures of distance typical of the spatial
econometrics literature, my measure of distance in security space may be much less pre-
cise. Fortunately, Kelejian and Prucha (2002) show that with panel data, both OLS
and GMM estimators are consistent, and thus represent the appropriate estimation ap-
proach. Elhorst (2010) includes a short discussion on MLE vs IV/GMM estimators,
noting that while the use of IV/GMM is promising, it is still new to the spatial econo-
metrics literature and needs further research.32

The primary issue in using a GMM specification to estimate a SAR model is that the
auto-regression coe�cient should be bounded between -1 and 1. In an MLE framework,
this can be explicitly incorporated as a constraint on the optimization process. In GMM
it is technically possible but computationally and mathematically di�cult with no good
solution. Elhorst (2010) suggests simply trying di�erent specifications within the limits
of what theoretically should be included in order to obtain an outcome which provides a
coe�cient within those bounds. I have attempted to do that here and presented the best
results I have. In cases where the coe�cient of the Step 2 GMM specification exceed 1
(Model 4 in Tables X and XI, I simply set it to 0.99 for interpretation in the subsequent
section. This is only a problem if there is a di�erent local optima for the estimation with
a coe�cient on the interval (≠1, 1) which is radically di�erent that 0.99, for instance
less than 0. I tried multiple specifications with varying controls (and transforms of those
controls) and rarely got coe�cient estimates much di�erent from those reported, so this
seems unlikely.

one-step neighbor. This is a common adjustment in network analysis.
31The diagonal of B must now be set to 0 because for every one-step neighbor, a manager

is his own two-step neighbor. For instance, i connects to j, but then j also connects back to i,
such that for every connection like this i is his own two-step neighbor.

32Spatial Econometrics primarily uses MLE because they have only one network – geography
– and thus no panel data. In these cases, only MLE is appropriate (Elhorst, 2010).
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Figure 1: Performance of Peer Flow portfolios through time. Portfolios based
on Peer Flow are formed at time 0. Outflow is defined as the lower two quintiles, Inflow
the upper two quintiles. Portfolios held for the subsequent 12 quarters. Return is Excess
DGTW return in basis points. Data is quarterly from 1998 to 2009, each panel variable
is any open ended fund holding a nonzero equity position. Results for Raw Peers are in
blue, Bench Peers in green, and Delta Peers in red.



Table I: Mutual Fund Summary Statistics
Total Net Assets are fund assets in $millions, as are fund flows. Cash % is cash like instruments
in dollars over total net assets. Carhart Alpha is a four-factor alpha computed annually, rolling.
Turnover is the minimum of positive and negative turnover, divided by the average of total net
assets between this and the prior period as defined in Carhart (1997). Change in Mkt Share
equals the di�erence between this period and last period’s total net assets over market-wide
total net assets, as defined in Spiegel and Zhang (2013). Volatility is rolling annual trailing fund
return volatility. Number of holdings is a count of holdings, expense ratio is as reported in the
fund’s annual report. Flow % is dollar fund flow divided by total net assets. G Di� is globally
di�erenced flow. Style Flow Di� is the average mutual fund style flow less the global average
flow ex that fund’s flow, where style is defined on a three by three matrix based on market
cap and growth-blend-value. Category Flow Di� is the same except defined by Morningstar
category rather than fund style, which is a more granular definition using styles as well as
sectors, countries, regions, etc. Raw Pr is a peer measure based on raw portfolio weights, Bench
Pr is a peer measure based on portfolio weights di�erenced from a benchmark, and Delta Pr is
a peer measure based on dollar-weighted changes in holdings.

Count Mean Std Dev Min Median Max

Total Net Assets ($M) 51,376 1,435 5,694 5.003 293.8 19,3453
Fund Flow ($M) 51,376 -0.074 206.4 -4417 -1.89 8,170
Cash % 51,376 0.033 0.034 -0.003 0.023 0.276
Fund Return 51,376 0.014 0.113 -0.756 0.021 0.832
Carhart Alpha 51,376 -0.001 0.009 -0.082 -0.001 0.106
Fund Age (yr) 51,376 8.232 6.391 1.000 6.800 77.000
Turnover 51,376 0.027 0.024 0.000 0.021 0.443
Change in Mkt Share 51,376 -0.028 1.044 -47.06 -0.007 26.93
Volatility (Annual) 51,376 0.050 0.028 0.003 0.043 0.275
Number of Holdings 51,376 126.5 140.4 10 86 3,622
Expense Ratio (bps) 51,376 138 49 -51 138 749

Flow % 51,376 -0.014 0.128 -1.000 -0.014 0.735
G Di� Flow % 51,376 -0.017 0.128 -1.029 -0.017 0.776
Style Flow % 51,376 0.002 0.023 -0.175 0.002 0.213
Style Flow Di� 51,376 -0.000 0.018 -0.176 -0.002 0.236
Category Flow % 51,376 0.001 0.033 -0.501 -0.000 0.356
Category Flow Di� 51,376 -0.001 0.030 -0.516 -0.002 0.362
Raw Pr G Di� 51,376 -0.002 0.011 -0.099 -0.003 0.101
Bench Pr G Di� 51,240 -0.005 0.012 -0.107 -0.005 0.298
Delta Pr G Di� 51,374 0.000 0.023 -0.306 -0.001 0.281
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Table II: Table of Vanguard ETFs
This is a list of Vanguard ETFs used as benchmarks to determine each Mutual Fund’s
benchmark peer weights by subtracting o� the matched ETF weights from the raw
mutual fund portfolio weights.

ETF Name Ticker

Vanguard Consumer Discretionary ETF VCR
Vanguard Consumer Staples ETF VDC
Vanguard Energy ETF VDE
Vanguard Financials ETF VFH
Vanguard Health Care ETF VHT
Vanguard Industrials ETF VIS
Vanguard Information Technology ETF VGT
Vanguard Materials ETF VAW
Vanguard Telecom Services ETF VOX
Vanguard Utilities ETF VPU

Vanguard S&P 500 ETF VOO
Vanguard Growth ETF VUG
Vanguard Value ETF VTV
Vanguard Mid-Cap ETF VO
Vanguard Mid-Cap Growth ETF VOT
Vanguard Mid-Cap Value ETF VOE
Vanguard Small Cap ETF VB
Vanguard Small Cap Growth ETF VBK
Vanguard Small Cap Value ETF VBR

Vanguard Dividend Appreciation ETF VIG
Vanguard High Dividend Yield Indx ETF VYM
Vanguard Large Cap ETF VV
Vanguard Extended Market Index ETF VXF
Vanguard Total Stock Market ETF VTI
Vanguard REIT Index ETF VNQ

Vanguard Total Intl Stock Idx ETF VXUS
Vanguard Total World Stock Index ETF VT
Vanguard MSCI EAFE ETF VEA
Vanguard MSCI Europe ETF VGK
Vanguard MSCI Pacific ETF VPL
Vanguard FTSE All-Wld ex-US SmCp Idx ETF VSS
Vanguard FTSE All-World ex-US ETF VEU
Vanguard FTSE Emerging Markets ETF VWO



Table III: Flow Correlations
Flow % is dollar fund flow divided by total net assets. G Di� is globally di�erenced flow as
discussed in Appendix A. Style Flow Di� is the average mutual fund style flow less the global
average flow ex that fund’s flow. Category Flow Di� is the same except defined by Morningstar
category rather than fund style. Raw Pr is a peer measure based on raw portfolio weights, Bench
Pr is a peer measure based on portfolio weights di�erenced from a benchmark, and Delta Pr is
a peer measure based on dollar-weighted changes in holdings.

Total Style Cat G Di� Raw Bench Delta
Avg Flow Flow Flow % Pr G Di� Pr G Di� Pr G Di�

Flow % Di� Flow % Flow % Flow %

Total Avg Flow % 1.000
Style Flow Di� -0.003 1.000
Cat Flow Di� -0.028 0.408 1.000
G Di� Flow % -0.023 0.117 0.183 1.000
Raw Pr G Di� Flow % -0.238 0.452 0.526 0.158 1.000
Bench Pr G Di� Flow % -0.156 0.440 0.522 0.175 0.873 1.000
Delta Pr G Di� Flow % 0.025 0.246 0.295 0.259 0.457 0.438 1.000
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Table IV: DGTW Return Portfolios
Excess DGTW Return in basis points sorted in quintiles by Peer Flow and Lag Flow (di�erenced) or Lag DGTW Return, by Peer Measure
(Top is raw peers, middle is benchmark peers, bottom is delta peers. Significance is denoted at the 1, 5, and 10% level.

Lag Flow Lag DGTW Return

Outflow Inflow Negative Positive
Pr Flow 1 2 3 4 5 Di� 5-1 1 2 3 4 5 Di� 5-1

(Out) 1 -136 -119 -109 -169 -160 -24 -106 -135 -125 -131 -176 -69***
2 -68 -81 -72 -82 -105 -37*** -106 -74 -53 -67 -74 32*

A. Raw 3 4 -11 -7 -17 -24 -29** -25 -41 -19 5 44 69***
4 85 46 39 31 32 -54*** 43 22 6 40 104 61***

(In) 5 215 199 176 183 205 -10 110 120 73 94 299 189***

Average -15 -15 -3 -3 7 21*** -47 -43 -28 -2 92 139***

Di� 5-1 351*** 318*** 285*** 352*** 365*** 216*** 256*** 198*** 225*** 475***

(Out) 1 -140 -117 -110 -157 -134 6 -113 -131 -104 -124 -156 -43*
2 -41 -65 -54 -72 -94 -53*** -57 -62 -49 -50 -71 -15

B. Bench 3 2 -10 -21 -21 -23 -25* -14 -41 -34 -5 36 50***
4 63 29 28 19 24 -40** 18 5 -4 32 94 76***

(In) 5 221 189 177 166 177 -43* 81 96 68 106 311 231***

Average -15 -14 -3 -4 6 22*** -43 -42 -28 -1 91 134***

Di� 5-1 361*** 305*** 287*** 323*** 312*** 193*** 227*** 172*** 230*** 467***

(Out) 1 -66 -40 -59 -129 -126 -60*** -84 -83 -70 -59 -2 83***
2 -47 -46 -47 -79 -104 -57*** -73 -82 -64 -31 -2 71***

C. Delta 3 0 -35 -35 -29 -36 -36** -62 -41 -35 -17 33 95***
4 -14 18 10 19 9 23 -8 -19 -15 17 73 81***

(In) 5 211 164 137 117 119 -92*** 66 32 62 89 274 208***

Average -15 -12 -6 -5 6 21** -46 -45 -27 0 90 136***

Di� 5-1 277*** 204*** 195*** 246*** 245*** 150*** 115*** 132*** 149*** 276***



Table V: Fund Flow Portfolios
Abnormal Fund Flow (normalized by net assets, di�erenced) in basis points sorted in quintiles by Peer Flow and Lag Flow (di�erenced) or Lag
DGTW Return, by Peer Measure (Top is raw peers, middle is benchmark peers, bottom is delta peers. Significance is denoted at the 1, 5, and
10% level.

Lag Flow Lag DGTW Return

Negative Positive Negative Positive
Pr Flow 1 2 3 4 5 Di� 5-1 1 2 3 4 5 Di� 5-1

(Out) 1 -9.30 -4.99 -2.92 -0.41 3.02 12.32*** -5.12 -3.32 -3.18 -2.49 -2.55 2.57***
2 -7.78 -4.29 -2.13 0.24 4.70 12.48*** -4.57 -2.78 -1.73 -1.45 -0.29 4.28***

A. Raw 3 -6.76 -3.70 -1.92 1.13 6.50 13.26*** -3.12 -1.63 -1.30 -0.35 1.29 4.40***
4 -6.40 -3.12 -1.14 1.44 7.38 13.79*** -2.36 -0.78 0.11 0.43 1.79 4.15***

(In) 5 -5.09 -2.36 -0.50 2.19 9.60 14.70*** -0.30 0.36 0.99 2.08 4.24 4.55***

Average -7.44 -3.81 -1.72 1.05 6.74 14.18*** -3.73 -1.97 -1.12 -0.23 1.61 5.34***

Di� 5-1 4.20*** 2.62*** 2.42*** 2.60*** 6.58*** 4.82*** 3.67*** 4.17*** 4.57*** 6.79***

(Out) 1 -9.48 -5.25 -3.06 -0.88 1.64 11.12*** -5.71 -3.60 -3.55 -3.68 -2.83 2.88***
2 -7.76 -4.25 -2.08 0.39 5.09 12.84*** -4.07 -2.78 -2.25 -1.19 0.04 4.11***

B. Bench 3 -6.99 -3.54 -1.95 1.07 6.11 13.10*** -3.28 -1.96 -0.82 -0.61 1.14 4.41***
4 -5.94 -3.25 -1.16 1.48 8.00 13.94*** -1.90 -0.60 -0.01 0.79 2.05 3.95***

(In) 5 -4.45 -2.20 -0.43 2.29 9.94 14.38*** 0.37 0.78 1.22 2.53 4.46 4.09***

Average -7.41 -3.82 -1.73 1.04 6.78 14.19*** -3.72 -1.98 -1.13 -0.24 1.69 5.41***

Di� 5-1 5.04*** 3.05*** 2.63*** 3.17*** 8.30*** 6.08*** 4.38*** 4.77*** 6.21*** 7.29***

(Out) 1 -9.15 -4.90 -3.18 -2.31 -3.78 5.37*** -6.63 -5.00 -4.60 -4.55 -3.99 2.63***
2 -9.07 -4.64 -3.11 -1.22 0.48 9.55*** -5.95 -4.58 -4.11 -3.39 -2.68 3.27***

C. Delta 3 -7.26 -4.07 -2.02 0.70 5.39 12.65*** -3.63 -1.92 -1.53 -1.11 0.64 4.28***
4 -4.88 -2.26 -0.35 2.13 8.94 13.82*** 0.14 0.74 1.68 2.59 3.42 3.28***

(In) 5 -1.11 -0.43 0.62 3.40 10.70 11.80*** 1.70 3.18 4.14 5.01 6.22 4.52***

Average -7.31 -3.76 -1.70 1.01 6.55 13.86*** -3.69 -1.96 -1.02 -0.20 1.39 5.09***

Di� 5-1 8.04*** 4.47*** 3.80*** 5.72*** 14.47*** 8.33*** 8.18*** 8.74*** 9.57*** 10.21***



Table VI: Top 50 stock holdings by peer flow tercile
Each group is a set of stocks who are in the top 50 holdings of a fund by weight, where weight
could be Raw, Bench or Peer as designated. Once the top 50 are identified, they are sorted in
to high, medium and low Peer Flow bins only when they are exclusively held by funds in that
tercile. This means funds in the top 50 but held by funds in di�ering terciles are omitted. Excess
is excess DGTW Return, Raw is raw return, both in percent. Tercile 1 is outflows, Tercile 3 is
inflows, Tercile 2 is close to zero net flow. Di�erences in bold are significant at 1% level.

Raw Peer Weights Bench Peer Weights Delta Peer Weights

PrFlw Excess Raw PrFlw Excess Raw PrFlw Excess Raw

(Out) 1 -1.0% -1.3% (Out) 1 -1.3% -1.2% (Out) 1 0.2% 1.8%
2 0.6% 2.9% 2 0.4% 2.3% 2 0.2% 2.3%

(Inf) 3 1.9% 8.1% (In) 3 2.2% 8.6% (In) 3 0.5% 6.2%

Di� 3-1 2.9% 9.5% Di� 3-1 3.5% 9.8% Di� 3-1 0.3% 4.4%

Table VII: Simulation results
Data is the same as in Table VIII and X, except peer flow variable generated by randomizing
peer assignments, run 1,000 times. Avg Peer Coe� is the average of the coe�cient on Peer Flow,
defined by the di�erent peer measures noted at the top of each column. Avg Peer T Stat is
the average T statistic of that coe�cient. Results at the 99th and 95th percentile are simple
counts of how many of the 1,000 runs showed a coe�cient significantly di�erent from zero with
a one-tailed t test at the given level of significance. For instance, at the 99th percentile, if less
than 1% of results are significant than the result is no di�erent than random noise.

Raw Weight Peer Benchmark Peer Delta Peer

Flow DGTW Flow DGTW Flow DGTW
Avg Peer Coe� ≠0.006 0.004 ≠0.001 ≠0.006 ≠0.004 ≠0.004
Avg Peer T Stat ≠0.026 0.001 ≠0.003 ≠0.022 ≠0.054 ≠0.043

99th Pctl: Right Tail
% Sig 0.4% 0.6% 1.1% 0.5% 0.7% 0.7%
99th Pctl: Left Tail
% Sig 0.8% 1.3% 0.4% 0.8% 0.8% 0.7%

95th Pctl: Right Tail
% Sig 3.8% 4.0% 2.8% 3.3% 2.9% 3.3%
95th Pctl: Left Tail
% Sig 3.8% 3.9% 4.0% 3.6% 3.5% 3.6%
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Table VIII: Return Overshoot Result with Reversal
Models 1 and 2 are Raw Peers, Models 3 and 4 Benchmark, Models 5 and 6 Delta. Odd
numbered models have quarterly Excess DGTW return estimated by GMM, even numbered
models have the holding period return for the subsequent four quarters estimated by OLS. Peer
flow is defined with the given peer measure. Instrument is predicted peer flow from the Step
1 GMM/IV regression with the main peer lagged flow instrument. Flow % is dollar fund flow
divided by total net assets, globally di�erenced. Flow and Return lags 2-4 are included but
omitted, as is Cash %. A portfolio-weighted Amihud measure is also included but omitted. L
Fund Size is the log of Total Net Assets in $millions. Turnover is as defined in Carhart (1997).
Mkt Share Change is as defined in Spiegel and Zhang (2013). Volatility is rolling annual trailing
fund return volatility. Number of holdings is a count of holdings, expense ratio is as reported
in the fund’s annual report. Time and Fund Fixed E�ects included, standard errors clustered
by both time and fund. KP LM stat tests the null of weak instruments. T statistics are in
parentheses and significance is denoted at the 1, 5, and 10% level.

Raw Peer Bench Peer Delta Peer

(1) (2) (3) (4) (5) (6)
DGTW Lead DGTW Lead DGTW Lead

Peer Flow 1.6707úúú -1.0030úúú 1.2307úúú -0.6108úúú 0.1728úúú -0.1514úúú

(4.16) (-2.65) (5.47) (-2.60) (4.61) (-2.82)

Lag1 Flow -0.0036 0.0044 -0.0046 0.0049 -0.0039 0.0046
(-0.82) (0.73) (-1.02) (0.83) (-0.90) (0.77)

Lag1 Return 0.0167 -0.1546 0.0258 -0.1895 0.0569 -0.1767
(0.23) (-1.26) (0.34) (-1.56) (0.74) (-1.39)

L Fund Size -0.0112úúú -0.0428úúú -0.0105úúú -0.0436úúú -0.0105úúú -0.0431úúú

(-7.16) (-15.94) (-6.81) (-14.87) (-6.67) (-15.74)

Log Fund Age (yrs) 0.0020 0.0111ú 0.0020 0.0124ú 0.0016 0.0112ú

(0.97) (1.74) (1.01) (1.81) (0.74) (1.77)

Mkt Shr Chg (bps) 0.0073úúú -0.0017ú 0.0072úúú -0.0019ú 0.0076úúú -0.0018ú

(5.79) (-1.72) (5.49) (-1.81) (5.68) (-1.81)

Group Flow -0.0440 0.0562 0.0306 -0.0172 0.2996úúú -0.1398
(-0.40) (0.32) (0.40) (-0.12) (4.90) (-1.06)

Volatility -0.0793 0.0380 -0.0759 0.0647 -0.0697 0.0221
(-0.27) (0.10) (-0.25) (0.16) (-0.23) (0.05)

Exp Ratio -0.0088ú -0.0268 -0.0098ú -0.0160 -0.0099úú -0.0264
(-1.84) (-1.31) (-1.83) (-0.80) (-2.23) (-1.28)

Turnover 0.0003 0.0012úú 0.0003 0.0015úú 0.0004 0.0009
(0.93) (2.04) (0.86) (2.54) (1.32) (1.63)

Observations 46723 36028 43343 33094 46722 36027
R Squared 0.15 0.08 0.15 0.09 0.11 0.08
Fund clusters 3,432 2,897 3,289 2,699 3,432 2,897
Time clusters 44 40 44 40 44 40
KP LM Stat 29.85 29.45 27.69
KP LM p value 0.0000 0.0000 0.0000
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Table IX: Return Overshoot Result with Reversal - robust instrument specification.
All is the same as Table VIII except the instrument specification used includes two peer lagged
flow and two peer size, following Bramoullé, Djebbari, and Fortin (2009).

Raw Peer Bench Peer Delta Peer

(1) (2) (3) (4) (5) (6)
DGTW Lead DGTW Lead DGTW Lead

Peer Flow 1.6755úúú -1.0030úúú 1.2318úúú -0.6108úúú 0.1705úúú -0.1514úúú

(4.16) (-2.65) (5.47) (-2.60) (4.61) (-2.82)

Lag1 Flow -0.0036 0.0044 -0.0046 0.0049 -0.0038 0.0046
(-0.82) (0.73) (-1.02) (0.83) (-0.89) (0.77)

Lag1 Return 0.0166 -0.1546 0.0258 -0.1895 0.0570 -0.1767
(0.23) (-1.26) (0.33) (-1.56) (0.74) (-1.39)

L Fund Size -0.0112úúú -0.0428úúú -0.0105úúú -0.0436úúú -0.0105úúú -0.0431úúú

(-7.16) (-15.94) (-6.81) (-14.87) (-6.67) (-15.74)

Log Fund Age (yrs) 0.0020 0.0111ú 0.0020 0.0124ú 0.0016 0.0112ú

(0.97) (1.74) (1.01) (1.81) (0.74) (1.77)

Mkt Shr Chg (bps) 0.0073úúú -0.0017ú 0.0072úúú -0.0019ú 0.0076úúú -0.0018ú

(5.79) (-1.72) (5.49) (-1.81) (5.68) (-1.81)

Group Flow -0.0451 0.0562 0.0304 -0.0172 0.3002úúú -0.1398
(-0.41) (0.32) (0.39) (-0.12) (4.91) (-1.06)

Volatility -0.0793 0.0380 -0.0759 0.0647 -0.0697 0.0221
(-0.27) (0.10) (-0.25) (0.16) (-0.23) (0.05)

Exp Ratio -0.0088ú -0.0268 -0.0098ú -0.0160 -0.0099úú -0.0264
(-1.84) (-1.31) (-1.83) (-0.80) (-2.23) (-1.28)

Turnover 0.0003 0.0012úú 0.0003 0.0015úú 0.0004 0.0009
(0.93) (2.04) (0.86) (2.54) (1.31) (1.63)

Observations 46723 36028 43343 33094 46722 36027
R Squared 0.15 0.08 0.15 0.09 0.11 0.08
Fund clusters 3,432 2,897 3,289 2,699 3,432 2,897
Time clusters 44 40 44 40 44 40
KP LM Stat 29.85 29.45 27.72
KP LM p value 0.0000 0.0000 0.0000
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Table X: Flow GMM/IV Regression: Steps 1 and 2
Models 1 and 2 are Raw Peers, Models 3 and 4 Benchmark, Models 5 and 6 Delta. Odd
numbered models are Step 1 regressions with multiple instruments, even numbered models are
Step 2 regressions with a single Peer(Predicted Flow) instrument. Peer flow is defined with the
given peer measure. Instrument in Step 1 regression the main peer lagged flow instrument, Step
2 uses the predicted output from Step 1 to form the Peer(Predicted Flow) instrument. Flow % is
dollar fund flow divided by total net assets, globally di�erenced. Flow lags 2-4 are included but
omitted, as is Cash % and expense ratio. A portfolio-weighted Amihud measure is also included
but omitted. L Fund Size is the log of Total Net Assets in $millions. Turnover is as defined in
Carhart (1997). Mkt Share Change is as defined in Spiegel and Zhang (2013). Volatility is rolling
annual trailing fund return volatility. Style Flow Di� is di�erenced style average flow. Time and
Fund Fixed E�ects included, standard errors clustered by both time and fund. Hansen J stat is a
test of overidentification for which the null hypothesis is that instruments are uncorrelated with
stage 2 regression, KP LM stat tests the null of weak instruments. T statistics are in parentheses
and significance is denoted at the 1, 5, and 10% level.

Raw Peer Bench Peer Delta Peer

(1) (2) (3) (4) (5) (6)
Flow Flow Flow Flow Flow Flow

Peer Flow 1.3629úúú 0.9057úúú 1.1678úúú 1.1220úúú 0.8910úúú 0.8637úúú

(6.51) (10.22) (5.58) (12.58) (16.54) (23.32)

Lag1 Flow 0.0746úúú 0.0759úúú 0.0706úúú 0.0690úúú 0.0688úúú 0.0682úúú

(4.96) (5.04) (4.51) (4.38) (4.59) (4.56)

Lag1 Alpha 0.6892úúú 0.7343úúú 0.6968úúú 0.6863úúú 0.7010úúú 0.6928úúú

(6.50) (6.25) (6.40) (6.26) (6.20) (6.07)

Log Fund Size -0.0303úúú -0.0300úúú -0.0300úúú -0.0305úúú -0.0301úúú -0.0298úúú

(-10.46) (-10.21) (-10.29) (-10.43) (-10.84) (-10.69)

Log Fund Age (yrs) -0.0106úú -0.0106úú -0.0116úú -0.0112úú -0.0085ú -0.0094ú

(-2.11) (-2.08) (-2.23) (-2.15) (-1.74) (-1.90)

Mkt Shr Chg (bps) 0.0111úúú 0.0113úúú 0.0113úúú 0.0112úúú 0.0103úúú 0.0106úúú

(4.99) (4.95) (4.70) (4.65) (4.80) (4.91)

Style Flow Di� 0.2569úúú 0.3716úúú 0.2654úúú 0.2806úúú 0.3589úúú 0.3622úúú

(4.18) (8.41) (3.96) (6.27) (9.67) (10.42)

Volatility 0.0985 0.0904 0.1074 0.0997 0.0965 0.0937
(1.41) (1.34) (1.45) (1.36) (1.46) (1.42)

Turnover -0.0147úúú -0.0148úúú -0.0154úúú -0.0153úúú -0.0130úúú -0.0131úúú

(-15.30) (-15.15) (-15.31) (-15.05) (-13.86) (-13.78)

Observations 52281 52281 48454 48454 52278 52278
R Squared 0.09 0.09 0.09 0.09 0.10 0.10
Fund clusters 3,832 3,832 3,684 3,684 3,831 3,831
Time clusters 44 44 44 44 44 44
Hansen J stat 0.04 0.00 2.50 0.00 1.54 0.00
J p value 0.8476 0.1138 0.2146
KP LM Stat 19.58 22.99 22.34 26.81 30.24 27.83
KP LM p value 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
IV Step Step 1 Step 2 Step 1 Step 2 Step 1 Step 2
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Table XI: Flow GMM/IV Regression: Steps 1 and 2 with robust instruments.
All is the same as Table X except the instrument specification used includes two peer lagged
flow and two peer size, following Bramoullé, Djebbari, and Fortin (2009).

Raw Peer Bench Peer Delta Peer

(1) (2) (3) (4) (5) (6)
Flow Flow Flow Flow Flow Flow

Peer Flow 1.4426úúú 0.9115úúú 1.0864úúú 1.1222úúú 0.7898úúú 0.8588úúú

(6.92) (10.28) (5.44) (12.57) (17.45) (23.20)

Lag1 Flow 0.0714úúú 0.0759úúú 0.0669úúú 0.0690úúú 0.0791úúú 0.0682úúú

(1.99) (2.22) (2.05) (2.17) (2.00) (2.05)

Lag1 Alpha 0.6788úúú 0.7337úúú 0.6464úúú 0.6863úúú 0.7351úúú 0.6935úúú

(6.43) (6.25) (6.09) (6.26) (6.44) (6.07)

Log Fund Size -0.0299úúú -0.0300úúú -0.0294úúú -0.0305úúú -0.0277úúú -0.0298úúú

(-10.39) (-10.21) (-10.54) (-10.43) (-10.06) (-10.69)

Log Fund Age (yrs) -0.0113úú -0.0106úú -0.0103úú -0.0112úú -0.0106úú -0.0094ú

(-2.24) (-2.08) (-2.00) (-2.15) (-2.15) (-1.90)

Mkt Shr Chg (bps) 0.0107úúú 0.0113úúú 0.0112úúú 0.0112úúú 0.0088úúú 0.0106úúú

(4.84) (4.95) (4.69) (4.65) (4.16) (4.91)

Style Flow Di� 0.2339úúú 0.3701úúú 0.2889úúú 0.2806úúú 0.3882úúú 0.3635úúú

(3.83) (8.39) (4.38) (6.27) (11.10) (10.45)

Volatility 0.1141ú 0.0905 0.1070 0.0997 0.1399úú 0.0935
(1.65) (1.34) (1.44) (1.36) (2.27) (1.42)

Turnover -0.0146úúú -0.0148úúú -0.0156úúú -0.0153úúú -0.0132úúú -0.0131úúú

(-15.03) (-15.15) (-15.56) (-15.05) (-14.09) (-13.79)

Observations 52281 52281 48454 48454 52278 52278
R Squared 0.09 0.09 0.09 0.09 0.10 0.10
Fund clusters 3,832 3,832 3,684 3,684 3,831 3,831
Time clusters 44 44 44 44 44 44
Hansen J stat 2.71 0.00 3.89 0.00 18.19 0.00
J p value 0.2573 0.1429 0.0001
KP LM Stat 20.75 22.94 25.91 26.82 32.43 27.87
KP LM p value 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
IV Step Step 1 Step 2 Step 1 Step 2 Step 1 Step 2
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Table XII: Coe�cient Analysis of Flow Regression
Transformed coe�cients from Models 2, 4, and 6 from Table X for Raw Peer measure, Bench
Peer measure, and Delta Peer measure, respectively in Panels a, b, and c. Column 1 is coe�cient
estimate copied from Models 2, 4, and 6 in Table X, and column 4 is the corresponding standard
error of that coe�cient estimate. Column 2 is the average of the diagonal of the transformed
matrix coe�cient, and so summarized the average direct e�ect each fund has on itself. Column 3
is the average of the o�-diagonal of the same matrix coe�cient, and so summarized the average
spillover e�ect each fund has on each other.

(a) Raw Peer

Coe� Direct Spillover Std Err
Estimate E�ect E�ect of Coe�

Lag1 Flow 0.0792 0.0801 1.5343 0.0151
Lag1 Alpha 0.7390 0.7482 14.3237 0.1234
Fund Size -0.0309 -0.0313 -0.5998 0.0029
Fund Age 0.0005 0.0005 0.0101 0.0032
Mkt Shr Chg 0.0100 0.0101 0.1937 0.0021
Style Flow Di� 0.3930 0.3979 7.6172 0.0418
Volatility 0.1212 0.1227 2.3499 0.0721
Turnover -0.0158 -0.0160 -0.3055 0.0011

(b) Bench Peer

Coe� Direct Spillover Std Err
Estimate E�ect E�ect of Coe�

Lag1 Flow 0.0775 0.0800 1.4087 0.0151
Lag 1Alpha 0.6755 0.7464 13.1505 0.1198
Fund Size -0.0309 -0.0313 -0.5506 0.0028
Fund Age 0.0003 0.0005 0.0092 0.0032
Mkt Shr Chg 0.0097 0.0101 0.1778 0.0021
Style Flow Di� 0.3099 0.3969 6.9933 0.0389
Volatility 0.1197 0.1225 2.1574 0.0708
Turnover -0.0158 -0.0159 -0.2805 0.0011

(c) Delta Peer

Coe� Direct Spillover Std Err
Estimate E�ect E�ect of Coe�

Lag1 Flow 0.0712 0.0827 1.7054 0.0148
Lag1 Alpha 0.6991 0.7723 15.9207 0.1195
Fund Size -0.0307 -0.0323 -0.6666 0.0027
Fund Age 0.0008 0.0005 0.0112 0.0032
Mkt Shr Chg 0.0094 0.0104 0.2153 0.0020
Style Flow Di� 0.3832 0.4107 8.4665 0.0319
Volatility 0.1270 0.1267 2.6119 0.0693
Turnover -0.0140 -0.0165 -0.3395 0.0010



Table XIII: Economic Significance of Flow Coe�cients (Average E�ects)
Economic significance of coe�cients Table XII for Raw Peer measure, Bench Peer measure, and
Delta Peer measure, respectively in Panels a, b, and c. Each row represents a shock to the
explanatory variable listed to one third of the funds in the network. The e�ect of the shock
is measured in incremental flow %, di�erenced globally, which is the dependent variable in the
main regression in Table X . The first column is the mean e�ect on the other two-thirds not
experiencing the shock. Column 2 is the mean e�ect on those who do. The third is the ratio
of the two and the last two columns display the e�ect divided by the standard deviation of the
dependent variable to provide a frame of reference.

(a) Raw Peer

Mean Mean Direct Spillover/ Direct/ Spillover/
Spillover E�ect Direct Std Flow % Std Flow %

Lag1 Flow 0.0553 0.0657 0.8404 0.5200 0.4370
Lag1 Alpha 0.0275 0.0336 0.8199 0.2656 0.2178
Fund Size -0.1270 -0.1485 0.8555 -1.1742 -1.0045
Fund Age 0.0018 0.0021 0.8676 0.0164 0.0142
Mkt Shr Chg 0.0507 0.0562 0.9016 0.4446 0.4008
Style Flow 0.0427 0.0503 0.8480 0.3982 0.3376
Volatility 0.0157 0.0184 0.8524 0.1452 0.1238
Turnover -0.1069 -0.1240 0.8618 -0.9809 -0.8453

(b) Bench Peer

Mean Mean Direct Spillover/ Direct/ Spillover/
Spillover E�ect Direct Std Flow Std Flow

Lag1 Flow 0.0568 0.0671 0.8467 0.5285 0.4475
Lag1 Alpha 0.0313 0.0374 0.8377 0.2948 0.2470
Fund Size -0.1318 -0.1526 0.8642 -1.2020 -1.0387
Fund Age 0.0018 0.0020 0.8700 0.0161 0.0140
Mkt Shr Chg 0.0477 0.0529 0.9021 0.4164 0.3756
Style Flow 0.0441 0.0515 0.8575 0.4056 0.3478
Volatility 0.0158 0.0184 0.8587 0.1451 0.1246
Turnover -0.0954 -0.1113 0.8573 -0.8768 -0.7517

(c) Delta Peer

Mean Mean Direct Spillover/ Direct/ Spillover/
Spillover E�ect Direct Std Flow Std Flow

Lag1 Flow 0.0631 0.0734 0.8607 0.5802 0.4994
Lag1 Alpha 0.0323 0.0383 0.8434 0.3027 0.2553
Fund Size -0.1426 -0.1634 0.8728 -1.2921 -1.1277
Fund Age 0.0019 0.0022 0.8778 0.0175 0.0153
Mkt Shr Chg 0.0534 0.0591 0.9040 0.4676 0.4227
Style Flow 0.0468 0.0542 0.8639 0.4287 0.3703
Volatility 0.0169 0.0195 0.8661 0.1543 0.1337
Turnover -0.1127 -0.1291 0.8726 -1.0212 -0.8911



Table XIV: Economic Significance of Flow Coe�cients (Distribution)
More detail on the last two columns of Table XIII. For select explanatory variables, percentiles
of the underlying distribution of each fund manager’s e�ect are listed, divided through by the
standard deviation of globally di�erenced flow %.

(a) Raw Peer
Direct E�ect Distribution Percentiles

1 5 10 25 50 75 90 95 99

Lag1 Flow 0.1203 0.1677 0.2121 0.3479 0.6319 1.1170 1.9159 2.6250 4.4064
Lag1 Alpha 0.0306 0.0598 0.0899 0.1749 0.3388 0.6188 1.1017 1.4485 2.3993
Mkt Shr Chg 0.0409 0.0825 0.1262 0.2581 0.5297 1.0359 1.8812 2.6335 5.4071
Volatility 0.0164 0.0338 0.0492 0.0964 0.1817 0.3372 0.5859 0.8089 1.3404

Spillover E�ect Distribution Percentiles

1 5 10 25 50 75 90 95 99

Lag1 Flow 0.0437 0.0857 0.1312 0.2492 0.5175 1.0078 1.8126 2.4756 4.2134
Lag1 Alpha 0.0223 0.0422 0.0636 0.1220 0.2597 0.5093 0.8929 1.2592 2.0957
Mkt Shr Chg 0.0409 0.0784 0.1168 0.2252 0.4740 0.9368 1.6707 2.3300 3.9633
Volatility 0.0125 0.0248 0.0372 0.0703 0.1460 0.2859 0.5146 0.7022 1.1893

(b) Bench Peer
Direct E�ect Distribution Percentiles

1 5 10 25 50 75 90 95 99

Lag1 Flow 0.1160 0.1610 0.1988 0.3145 0.5993 1.0991 1.9093 2.5934 4.2579
Lag1 Alpha 0.0300 0.0668 0.0926 0.1743 0.3455 0.6881 1.1949 1.6263 2.6170
Mkt Shr Chg 0.0334 0.0686 0.1021 0.2129 0.4625 0.9833 1.7592 2.5615 5.0508
Volatility 0.0145 0.0317 0.0449 0.0858 0.1698 0.3337 0.5827 0.8097 1.2807

Spillover E�ect Distribution Percentiles

1 5 10 25 50 75 90 95 99

Lag1 Flow 0.0362 0.0814 0.1284 0.2540 0.5456 1.0369 1.8442 2.6031 4.5085
Lag1 Alpha 0.0200 0.0434 0.0710 0.1430 0.3061 0.5919 1.0441 1.4747 2.4961
Mkt Shr Chg 0.0294 0.0642 0.1051 0.2123 0.4588 0.8942 1.6044 2.3006 3.9368
Volatility 0.0102 0.0229 0.0365 0.0708 0.1523 0.2899 0.5149 0.7320 1.2526

(c) Delta Peer
Direct E�ect Distribution Percentiles

1 5 10 25 50 75 90 95 99

Lag1 Flow 0.1406 0.1846 0.2307 0.3837 0.6853 1.2928 2.2340 2.9819 5.3073
Lag1 Alpha 0.0398 0.0728 0.1010 0.1885 0.3676 0.7337 1.2247 1.6817 2.8311
Mkt Shr Chg 0.0463 0.0779 0.1178 0.2354 0.4969 1.0437 1.8772 2.8026 5.2537
Volatility 0.0207 0.0389 0.0542 0.0992 0.1920 0.3695 0.6520 0.8796 1.5447

Spillover E�ect Distribution Percentiles

1 5 10 25 50 75 90 95 99

Lag1 Flow 0.0523 0.1025 0.1584 0.3095 0.6490 1.2267 2.1992 3.0205 4.9990
Lag1 Alpha 0.0257 0.0506 0.0777 0.1542 0.3280 0.6200 1.1027 1.5148 2.4825
Mkt Shr Chg 0.0380 0.0750 0.1160 0.2311 0.4935 0.9548 1.6920 2.3504 3.9256
Volatility 0.0142 0.0285 0.0438 0.0834 0.1751 0.3308 0.5933 0.8194 1.3500



Table XV: DGTW Bench Peer Flow Between-Within
All variables as defined in Table VIII, as are the econometrics of the specification. Volatility and Style Flow Di� are also included but not
displayed due to space considerations. Models 1, 4, and 7 are reproduced from Table X for reference. The subsequent two models are subset
to Between style peers and Within style peers to isolate the any e�ect from style investing. T statistics are in parentheses and significance is
denoted at the 1, 5, and 10% level.

Raw Peer Bench Peer Delta Peer
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DGTW DGTW DGTW DGTW DGTW DGTW DGTW DGTW DGTW

All Between Within All Between Within All Between Within

Peer Flow 1.6707úúú 0.7649úúú 4.6075úúú 1.2307úúú 1.0771úúú 0.4794úúú 0.1728úúú 1.3465úúú 0.0800úúú

(4.16) (3.78) (2.63) (5.47) (4.45) (4.72) (4.61) (3.69) (2.82)

Lag1 Flow -0.0036 -0.0051 -0.0124úú -0.0046 -0.0034 -0.0044 -0.0039 -0.0118úú -0.0030
(-0.82) (-1.31) (-2.27) (-1.02) (-0.86) (-1.11) (-0.90) (-2.31) (-0.77)

Lag1 Return 0.0167 0.0410 -0.0801 0.0258 0.0351 0.0470 0.0569 0.0212 0.0520
(0.23) (0.55) (-0.97) (0.34) (0.46) (0.59) (0.74) (0.28) (0.67)

Log Fund Size -0.0112úúú -0.0090úúú -0.0101úúú -0.0105úúú -0.0098úúú -0.0098úúú -0.0105úúú -0.0102úúú -0.0101úúú

(-7.16) (-6.67) (-5.41) (-6.81) (-6.85) (-6.64) (-6.67) (-7.27) (-7.00)

Log Fund Age (yrs) 0.0020 0.0033úúú 0.0048úúú 0.0020 0.0035úúú 0.0037úúú 0.0016 0.0035úúú 0.0034úúú

(0.97) (2.79) (2.99) (1.01) (2.98) (3.27) (0.74) (2.70) (2.71)

Mkt Shr Chg (bps) 0.0073úúú 0.0214úúú 0.0175úúú 0.0072úúú 0.0069úúú 0.0072úúú 0.0076úúú 0.0063úúú 0.0072úúú

(5.79) (8.06) (5.94) (5.49) (4.78) (4.82) (5.68) (5.19) (4.98)

Turnover 0.0003 0.0007úú 0.0013úú 0.0003 0.0002 0.0001 0.0004 0.0026úúú 0.0003
(0.93) (2.43) (2.45) (0.86) (0.58) (0.21) (1.32) (3.26) (0.90)

Observations 46723 51189 51070 43343 46916 46361 46722 51187 51047
R Squared 0.15 0.15 -0.87 0.15 0.13 0.11 0.11 -0.09 0.10
Fund clusters 3,432 3,688 3,679 3,289 3,489 3,463 3,432 3,688 3,677
Time clusters 44 44 44 44 44 44 44 44 44
KP LM Stat 29.85 28.86 6.21 29.45 31.33 31.00 27.69 23.79 29.46
KP LM p value 0.0000 0.0000 0.0127 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

51



Table XVI: Flow Regression divided into All-Between-Within
All variables as defined in Table X, as are the econometrics of the specification. Volatility and Style Flow Di� are also included but not displayed
due to space considerations. Models 1, 4, and 7 are reproduced from Table X for reference. The subsequent two models are subset to Between
style peers and Within style peers to isolate the any e�ect from style investing. T statistics are in parentheses and significance is denoted at the
1, 5, and 10% level.

Raw Peer Bench Peer Delta Peer
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Flow Flow Flow Flow Flow Flow Flow Flow Flow

All Between Within All Between Within All Between Within

Peer Flow 0.9057úúú 0.9438úúú 2.6636úúú 1.1220úúú 1.1349úúú 0.9612úúú 0.8637úúú 1.8290úúú 0.8572úúú

(10.22) (8.46) (4.00) (12.58) (13.74) (9.32) (23.32) (8.83) (19.80)

Lag1 Flow 0.0759úúú 0.0754úúú 0.0676úúú 0.0690úúú 0.0762úúú 0.0713úúú 0.0682úúú 0.0650úúú 0.0670úúú

(5.04) (5.02) (4.50) (4.38) (4.79) (4.41) (4.56) (4.39) (4.52)

Lag1 Alpha 0.7343úúú 0.7884úúú 0.6462úúú 0.6863úúú 0.7278úúú 0.6665úúú 0.6928úúú 0.6084úúú 0.6731úúú

(6.25) (6.04) (5.16) (6.26) (6.07) (5.49) (6.07) (5.39) (5.52)

Log Fund Size -0.0300úúú -0.0286úúú -0.0299úúú -0.0305úúú -0.0314úúú -0.0323úúú -0.0298úúú -0.0314úúú -0.0306úúú

(-10.21) (-10.72) (-12.87) (-10.43) (-11.50) (-12.15) (-10.69) (-12.58) (-12.27)

Log Fund Age (yrs) -0.0106úú 0.0003 0.0022 -0.0112úú 0.0009 0.0019 -0.0094ú 0.0013 0.0008
(-2.08) (0.09) (0.72) (-2.15) (0.26) (0.52) (-1.90) (0.39) (0.27)

Mkt Shr Chg (bps) 0.0113úúú 0.0325úúú 0.0295úúú 0.0112úúú 0.0100úúú 0.0102úúú 0.0106úúú 0.0087úúú 0.0091úúú

(4.95) (5.85) (5.23) (4.65) (4.39) (4.41) (4.91) (4.60) (4.64)

Turnover -0.0148úúú -0.0150úúú -0.0147úúú -0.0153úúú -0.0165úúú -0.0167úúú -0.0131úúú -0.0125úúú -0.0134úúú

(-15.15) (-14.53) (-13.79) (-15.05) (-15.39) (-15.48) (-13.78) (-10.63) (-12.94)

Observations 52281 57306 57141 48454 52477 51736 52278 57302 57084
R Squared 0.09 0.11 0.05 0.09 0.09 0.08 0.10 0.07 0.09
Fund clusters 3,832 4,103 4,101 3,684 3,893 3,867 3,831 4,102 4,096
Time clusters 44 44 44 44 44 44 44 44 44
KP LM Stat 22.99 27.76 8.88 26.81 27.14 28.92 27.83 20.43 29.61
KP LM p value 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table XVII: Competitive E�ects
Di�erent from all previous specifications, this table uses category-di�erenced flows, meaning each
fund flow % has subtracted from it the Morningstar category average flow less that fund’s flow.
In keeping with category-based di�erencing, group flow control is also based on Morningstar
categories rather than styles: Category Flow Di� is used in place of Style Flow Di�, computed in
a similar manner. Peer measure is based on raw weights. Models 1-3 are flow regressions (Step 2
of the two step GMM/IV sequence) and models 4-6 are DGTW return specifications, also using
Peer predicted flow as a single instrument. Model 3 and 6 are the Within subset showing the
competitive e�ects as in Wahal and Wang (2011). All other variables are as defined in Tables X
and VIII, and econometrics are also the same.

(1) (2) (3) (4) (5) (6)
Flow Flow Flow DGTW DGTW DGTW

Peer Subset All Between Within All Between Within

Peer Flow 1.4427úúú 0.9691úúú -2.4379úú 2.2966úúú 1.0299úúú -0.1695
(4.95) (4.14) (-2.33) (4.36) (4.47) (-0.23)

Lag1 Flow 0.0722úúú 0.0745úúú 0.0771úúú 0.0017 -0.0004 0.0005
(4.90) (4.98) (5.12) (0.53) (-0.16) (0.20)

Lag1 Alpha 0.7559úúú 0.7725úúú 0.8660úúú

(6.77) (6.43) (6.14)

Lag1 Return 0.0224 0.0340 0.0436
(0.31) (0.46) (0.55)

Log Fund Size -0.0292úúú -0.0283úúú -0.0283úúú -0.0113úúú -0.0094úúú -0.0091úúú

(-10.26) (-10.86) (-10.41) (-7.09) (-7.05) (-7.12)

Log Fund Age -0.0107úú 0.0001 -0.0007 0.0028 0.0036úúú 0.0033úúú

(-2.16) (0.03) (-0.22) (1.39) (3.22) (2.96)

Mkt Shr Chg (bps) 0.0109úúú 0.0314úúú 0.0327úúú 0.0072úúú 0.0206úúú 0.0210úúú

(4.87) (5.77) (5.86) (5.73) (8.08) (8.28)

Category Flow Di� -0.3493úúú -0.3300úúú -0.4215úúú 0.3254úúú 0.3259úúú 0.3321úúú

(-4.85) (-4.32) (-7.30) (6.73) (7.38) (4.71)

Volatility 0.1038 0.1742úú 0.1707ú -0.0931 0.0271 0.0298
(1.53) (2.05) (1.85) (-0.31) (0.09) (0.10)

Exp Ratio -0.0160 -0.0114 -0.0166 -0.0095úú -0.0089ú -0.0106úú

(-1.13) (-0.88) (-1.23) (-2.01) (-1.92) (-2.29)

Turnover -0.0148úúú -0.0152úúú -0.0158úúú 0.0003 0.0008úú 0.0006
(-14.73) (-14.10) (-13.64) (1.14) (2.54) (1.44)

Observations 52244 57254 57245 46698 51149 51137
R Squared 0.07 0.09 0.03 0.14 0.16 0.15
Fund clusters 3,828 4,098 4,097 3,429 3,684 3,682
Time clusters 44 44 44 44 44 44
KP LM Stat 29.00 24.43 8.97 28.65 25.61 12.65
KP LM p value 0.0000 0.0000 0.0027 0.0000 0.0000 0.0004
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