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1. Introduction

Climate change is one of the biggest public policy problems currently facing the world. It is

a very difficult problem for a number of reasons, including the long time frames, the global

nature of the problem, and the deep uncertainty surroundingit. It is becoming clear that rapid

technological change will be necessary in order to limit climate change in a way that is con-

sistent with sustainable economic growth and current policies (Nordhaus 2011). One way of

supporting such rapid technological change is through government-supported research and

development (R&D) investment. While governments around the world have supported R&D

for a very long time, there has been recent interest in applying a scientific basis to their resource

allocation (National Research Council 2007).

In this paper, we develop a framework that uses empirical data for the assessment of possible

R&D policy choices for sustainability. More specifically, we address the following important

public policy questions: Given the uncertainty defined by currently available data in future

technological success and climate change, what energy technology investment policies will

maximize expected social welfare? And how do optimal investment policies differ under alter-

native strategies proposed for dealing with climate change, such as those suggested by Al Gore

(Gore 2007), the Stern report (Stern 2007), and the Kyoto Protocol?

In order to address these questions and provide policy insights, we develop a multi-step

multi-model approach involving a dynamic and stochastic R&D portfolio decision process.

While doing so, we combine methods from multiple strands of research in operations manage-

ment, including elicitation based decision analysis, stochastic programming, microeconomics,

and computational economic analysis. In the remainder of this section we present the general

framework for our problem, describe the research in the area, and discuss how our analysis and

findings contribute to the existing literature.
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1.1. General Decision Framework

There are two key near-term societal responses to climate change. The first and most direct

is abatement, that is to reduce emissions of the greenhouse gases that arecausing climate

change to a level below what they would otherwise be. Examples of questions related to this

response would be the determination of the optimal path of emissions in future years, emissions

allocations, or the level of a carbon tax. A second response to climate change is to invest in

energy technology R&Dso that emissions abatement will be less costly in the future. A given

emissions path influences the set of technologies society would like to have in the economy, and

the set of technologies actually available influences the optimal level of emissions reductions.

We explicitly recognize and model this interdependency as part of our analysis in this paper.

Specifically, we simultaneously determine the optimal investment in a portfolio of technology

R&D projects and the optimal emissions path so that the expected societal costs of climate

change are minimized. Our analysis is a global one in that climate change is a global problem,

with worldwide emissions affecting all parts of the globe. On the other hand, the R&D project

data is based on U.S. government investment options.

The decision process we consider for our R&D investment optimization framework consists

of two distinct but interlinked decision stages. These correspond tonear-term decisionsto be

made over the next fifty years under climate change and technological uncertainty, andlong-

term decisionsto be made after more information on uncertainties becomes available after the

fifty year period. The near-term decisions are how much to invest in which technologies and

the level of short term abatement. These decisions are made under the uncertainty of technical

success which is dependent on the projects that are funded ineach technology category, where

success for a project means that a particular goal has been met. Hence, the uncertainty over
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technological success is endogenous: it depends on the decisions that will be made. Each tech-

nological success realization has a specific implication for future abatement costs, meaning

that technological success will impact the costs of reducing emissions. The second stochastic

characterization in our framework is an exogenous one and corresponds to the damages due

to climate change. The uncertainty in these damages is represented through the parameters

of a damage function, where the damage function depends on the stock of emissions in the

atmosphere. The second stage decisions, which involve long-term abatement decisions, will be

determined after information about future abatement costsand the damages becomes available.

The objective for the overall decision problem is to maximize expected total social utility over

the entire planning horizon involving the next four centuries. Surrounding all these decisions

is the policy framework that defines the boundaries and limits for the decision making process.

1.2. Relevant Literature

Previous approaches to addressing climate change policy have included a great deal of theoret-

ical work looking at how the optimal near-term policy changes with different characterizations

of uncertainty (see Baker (2009) for a review). These studies, however, do not involve R&D

decisions and use purely illustrative probability distributions to represent uncertainty. While

Baker and Shittu (2008) review a set of papers that study R&D decisions in the face of climate

and/or technology uncertainty, these papers are again based on illustrative distributions, and

moreover, they consider only one technology at a time.

There are few papers that study the impact of uncertainty on aportfolio of energy technolo-

gies (see Baker and Solak (2011) for a review, including those that consider learning-by-doing

rather than R&D). The one study we know of, Blanford (2009), uses illustrative probability

distributions and simply assumes there are decreasing returns to scale in R&D investment.

Our study differs in that we use empirical probability distributions obtained through expert

elicitations within a comprehensive stochastic portfoliomodel we develop.
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While Baker and Solak (2011) also describe a stochastic R&D optimization model based on

elicited numerical data, it is a simplified model that represents the economy and the impacts of

climate change with a single equation and two planning periods. Due to this simple structure

it is unable to consider multiple policy frameworks. On the other hand, the insights from this

model serve as input to the comprehensive analysis performed in this paper.

On the other end of the spectrum from the theoretical analysis is a body of work based

on technologically detailed Integrated Assessment Models(IAMs)1, which integrate economic

models with climate models in order to provide policy relevant insights (Clarke et al. 2008,

2009). While these analyses provide important insights into the value of technology in soci-

ety’s response to climate change, they do not explicitly incorporate uncertainty or address

the question of the optimal R&D policy. One exception is a recent analysis by Anadon et al.

(2011), where the authors combine empirical data with an IAM-based analysis to perform port-

folio optimization. Unlike our study, however, their data do not differentiate between different

projects within technology categories, and the optimization itself is not stochastic – they con-

sider only the most likely outcome for any given R&D investment. Yet, a recent study by the

National Academy suggests that uncertainty be explicitly included in the U.S. Department of

Energy decisions about investments into R&D (National Research Council 2007). Thus, our

study is unique in explicitly incorporating uncertainty and stochastic R&D optimization within

a detailed IAM-based analysis, while maintaining tractability in the resulting model.

The remainder of this paper is structured as follows. In Section 2 we describe the general

structure for our modeling approach. The components of the model are developed in Section

3, and stochastic optimization procedures are described inSection 4. The experimental setup

for policy analysis is discussed in Section 5, while the numerical results and their implications

are described in Section 6. Finally, in Section 7 we provide asummary of our conclusions.

1 Acronyms used throughout the paper are summarized in Appendix S1 for reference purposes.
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2. Integrated R&D and Abatement Policy Optimization Model

The stochastic optimization problem representing the decision process described in Section 1.1

involves the determination of an optimal portfolio of technology investments and an abatement

policy such that the expected total social utility over the planning horizon is maximized. For

a general mathematical representation of this problem, we first let the investment decisions

be denoted by a vectorΥ, and the near-term and long-term emissions abatement decisions by

vectorsµN andµL, respectively2. Note that abatement is defined as the fraction of emissions

reduced below business-as-usual level. Similar to the notation used for abatement, the vectors

yN andyL represent the total output of goods and services in near-term and long-term, while

τN andτL are the atmospheric temperatures. In addition, the vectorsxN andxL are used to

denote the set of other decision variables in each stage thatdefine the relationships between

climate change, economy and social utility. We represent the two critical functions in our

framework, namely the abatement cost function and the damage function, asc(µs) andD(τs),

s=N,L, indicating their dependence on abatement decisions and atmospheric temperatures,

respectively. Moreover, we represent uncertainty about technology and climate change infor-

mation through the setΩ of all possible scenarios, withω ∈Ω representing a single scenario.

The probability of occurrence for each scenario is denoted by pω. Given this representation, the

integrated R&D and abatement policy optimization model is stated in general form as follows:

max
Υ,µN ,yN ,τN ,xN ,µΩ

L ,y
Ω

L ,τ
Ω

L ,x
Ω

L

UN (Υ,µN ,yN ,τN ,xN)+
∑

ω∈Ω

pωUL(µ
ω
L,y

ω
L,τ

ω
L ,x

ω
L, ω) (1)

s.t.yN = g(c(µN ),D(τN ),xN ) (2)

yωL = g(c(µωL),D(τωL ),xN ,x
ω
L, ω) ∀ω (3)

GN (Υ,µN ,yN ,τN ,xN )≤ bN (4)

2 The notation used throughout the paper is summarized in Appendix S2 for reference purposes.
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GL(Υ,µN ,yN ,τN ,xN ,µ
ω
L, ,y

ω
L,τ

ω
L ,x

ω
L, ω)≤ bωL ∀ω (5)

where the superscript inµωL,y
ω
L,τ

ω
L , andxωL denotes the dependence of these decision variables

on the realized values of the stochastic parameters for eachscenario, while the superscript in

µΩ

L,y
Ω

L ,τ
Ω

L , andxΩ

L implies that the optimization is performed over the corresponding vari-

ables in all scenarios, as we letµΩ

L = 〈µ1

L, . . . ,µ
|Ω|
L 〉, yΩ

L = 〈y1

L, . . . ,y
|Ω|
L 〉, τΩ

L = 〈τ 1

L, . . . ,τ
|Ω|
L 〉,

andxΩ

L = 〈x1

L, . . . ,x
|Ω|
L 〉. The functiong(·) in constraints (2) and (3) represents the relationship

between output, climate changes damages and abatement of emissions.

The functionsUs(·), s = N,L represent total social utility over the near and long-term

stages, each of which consists of multiple time periods. Hence, objective (1) involves maxi-

mization of the summation of the near-term and the expected long-term social utilities, where

the expectation is defined over all possible scenarios. Equations (2) and (3) represent the rela-

tionship between output of goods and services, climate change damages and abatement costs

for the near-term and long-term decision problems, respectively. Similarly, the constraint sets

(4) and (5) correspond to the relationships defining the interplay between climate change, econ-

omy and social utility. Note that the second stage constraints (3) and (5), and thus the optimal

long-term abatement policy, is dependent on the technologyinvestmentsΥ, near-term abate-

mentµN , the output levelsyN , the atmospheric temperaturesτN , and other related decisions

xN made in the initial decision stage.

There are several challenges, however, that need to be overcome to fully implement this

model as a valid energy technology R&D policy analysis. These involve the development of

functional representations and inputs for this general problem structure, as well as methodolog-

ical integration and implementation within a tractable stochastic optimization framework. We

address these challenges by seeking answers to the following questions through a multi-step
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multi-model process: (1) Step 1: Modeling of the investmentoptions for decision vectorΥ:

What technology projects should be considered? What are thereturn characteristics for these

technology projects?; (2) Step 2: Modeling of the social utility functionsUs(·), constraint sets

Gs(·), s=N,L, and the output functiong(·): How should the interplay between social utility,

climate change and the economy be modeled? How does R&D investment impact these rela-

tionships?; (3) Step 3: Modeling of uncertainty for scenario setΩ: How should the uncertainty

in climate change damages and the uncertainty in R&D-induced technical change be mod-

eled?; (4) Step 4: Implementation and solution of the stochastic optimization problem (1)-(5):

How should different modeling components be integrated andimplemented under a tractable

stochastic optimization framework?

In the next two sections we describe how we address these issues to identify policy results

for energy technology R&D under climate change. The first twosteps listed above correspond

to generalmodel component development, and are discussed in Section 3. The last two steps,

which involveuncertainty modeling and stochastic optimization, are described in Section 4.

3. Model Component Development

We discuss model component development separately for eachof the first two steps listed

in Section 2 above. For some parts of these steps we utilize results from relevant modeling

and analysis efforts that are described in detail in other studies. In the descriptions below, we

provide references to these studies and also discuss how we relate the results from these models

to our integrated R&D and abatement policy optimization framework.

3.1. Step 1: Modeling of the Investment Options

Identification of technologies and projects.Our analysis considers investment options in three key

technology areas: carbon capture and storage (CCS), nuclear fission, and solar photovoltaics.
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While this does not cover the full portfolio of energy technologies, or even electricity technolo-

gies, it provides a good representation of the problem. Lewis and Nocera (2006) have pointed

out in their analysis that these three technologies are the only ones with sufficient resources

to provide the carbon-neutral energy needed to address the climate change problem. Thus, our

work can provide specific insights into how to balance among three key technologies, as well

as a framework that can be expanded into more technologies inthe future as necessary. Each

of the three key technology categories contains multiple research areas, or ‘projects’, in which

R&D investments can be made. The research areas considered for each technology are listed in

Appendix S3. These projects were chosen jointly with experts, with the aim of considering the

projects in each technology that have the possibility of resulting in a breakthrough. Hence, they

represent the most relevant investment options in each technology from a policy perspective.

Characterization of success probabilities for individualtechnology projects.The probability of suc-

cess in each project is defined through expert elicitations.Expert elicitation is a formal process

for quantifying an expert’s judgement about uncertain quantities, and capturing those judg-

ments in terms of probabilities that can be used in further analyses (Hora 2004). While expert

elicitations are subject to a number of known biases (Tversky and Kahneman 1974), no other

method exists that can be used to gain information about potential future breakthroughs in

technologies. In fact, in a review of the climate change assessment of the Intergovernmental

Panel on Climate Change, InterAcademy Council (2010) specifically suggests that “ to inform

policy decisions properly, it is important for uncertainties to be characterized and communi-

cated clearly and coherently...[w]here practical, formalexpert elicitation procedures should be

used to obtain subjective probabilities for key results.”

We base our model on the expert elicitations summarized in Appendix S3, and described in

detail by Baker et al. (2008), Baker et al. (2009a) and Baker et al. (2009b). The elicitations
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assume that each project can be invested in at one of multiplepotential levels, where invest-

ments include only U.S. government funding are measured based on net present value. Each

project is also associated with specific endpoints or targets to be assessed, such as a given cost

and efficiency level, which define ‘success’ for that project. The specific probabilities of suc-

cess defined through the elicitations for different investment levels of each project reflect an

aggregation of the individual experts’ judgments. Expert input was also used to define both the

funding levels and the endpoints to be assessed.3

3.2. Step 2: Modeling of the Social Utility Functions and the Constraint Sets

The modeling of the social utility functionsUs(·), the constraint setsGs(·) for s=N,L, and

the output functiong(·) involves multiple phases. First, the complex relationships between cli-

mate change, emissions abatement, economy and social utility are represented in basic form

through a well-known IAM, namely the Dynamic Integrated Model of Climate and the Econ-

omy (DICE) (Nordhaus 1993). Then, these relationships are expanded to include R&D invest-

ments and the impact of resulting technical change. This requires the quantification of the

impact of R&D on abatement cost functions, and the integration of this quantitative measure

into the modeling framework as part of the constraint sets.

3.2.1. Basic Representation through the DICE Model DICE is a deterministic global optimal

growth model that includes interactions between economic activities and the climate. The

model covers a long planning horizon, typically around 400-600 years, in ten-year periods.

In each period, economic output (measured as the gross domestic product (GDP)) is divided

between consumption and investment in new capital, consistent with the standard optimal

growth framework in economic analysis. DICE adds to this framework by modeling the emis-

sions of greenhouse gases into the atmosphere as part of the production process. The general

3 We note here that while other elicitation data exists on the three technologies, they are not applicable to the type of R&Dportfolio

analysis studied in this paper. See Appendix S4 for more details.
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Parameters Variables
Rt : utility discount factor for periodt ot : consumption of goods/services in periodt
At : level of total factor productivity in periodt yt : net output of goods/services in periodt
St : ratio of uncontrolled emissions to output in periodt ygt : unadjusted output in periodt
Et : emissions from deforestation in periodt kt : capital stock in periodt
Lt : population and labor input in periodt lt : investment in periodt
β : elasticity of marginal utility of consumption et : total carbon emissions in periodt
γ : elasticity of output with respect to capital µt : emissions abatement in periodt
σ : rate of depreciation of capital τt : atmospheric temperature in periodt

Functions ut : social utility in periodt
H(·) : function linking emissions to atmospheric temperature
cD(·) : abatement cost function in the DICE model
DD(·) : climate change damage function in the DICE model

Table 1 List of parameters, variables, and functions used in the summary formulation of the DICE model

formulation of the DICE model is given in Nordhaus (2008), and is also summarized through

equations (6)-(13) below. We will later extend constraints(8) and (11) in this formulation

through inclusion of uncertainty and investment decisions. The summary formulation utilizes

the parameters and variables shown in Table 1.

max
µ,y,τ ,x

∑

t

Rtut (6)

s.t. ut =Lt
( otLt

)1−β − 1

1−β
∀t (7)

yt= ot+ lt ∀t (8)

kt= lt−1+(1−σ)kt−1 ∀t (9)

τt =H (τt−1, et) ∀t (10)

yt=
1− cD (µt)

DD (τt)
ygt ∀t (11)

ygt =AtL
1−γ
t kγt ∀t (12)

et = St(1−µt)y
g
t +Et ∀t (13)

Similar to the notation used in the general description in Section 2, the vectorx =

〈o,yg,k, l,e,u〉 in objective (6) is used to refer to all other variables in theformulation, except
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for the abatement vectorµ, output vectory, and temperature vectorτ . Key independent deci-

sion variables in the formulation areµ ando, while the others are dependent variables deter-

mined by the values ofµ ando. Note that elements ofµ, y, τ andx consist of both near-term

and long-term decision variables as they include all periods, so no such distinction is made in

the notation used. Moreover, the formulation does not involve R&D investment, which we later

include through extensions of the given relationships.

In the formulation above, objective (6) ensures that policies are chosen to maximize the dis-

counted sum of social utilityut over time. Utility is based on per capita consumptionot, as

defined through the relationship in (7). This constraint defines utility in each period as an isoe-

lastic function of consumption, whereβ is the calibrated elasticity parameter. Consumption

is defined by equation (8) as the difference between output ofgoods/servicesyt and the capi-

tal investmentlt. Capital balance relationship is represented through constraint (9). Constraint

(10) represents a set of constraints that link greenhouse gas emissionset to the global temper-

aturesτt. Note that the accumulation of greenhouse gases, especially carbon dioxide, affects

welfare by increasing global temperatures. Thus, the representative functionH (τt−1, et) is

increasing inet. A key equation in the model is (11), which represents the relationship between

output of goods/servicesyt and the impacts of climate change. This representation involves

the unadjusted outputygt in each period, which is determined by inputs of laborLt and capital

kt as defined by (12). Note that the climate change damage function in DICE, i.e.DD(τt) in

the denominator of the right hand side of equation (11), is anincreasing function ofτt. This

implies that a higher temperature negatively impacts the output yt. In order to mitigate this

effect, an abatement levelµt can be chosen each period, which reduces emissionset below

what would otherwise occur for a given production level. This relationship between abatement

µt and emissionset is represented through constraint (13). While abatement has benefits, it
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is costly as the abatement cost functioncD(µt) in the numerator of (11) is increasing inµt.

Hence, higher abatement reduces the output available for consumption or investment in every

period. In other words, lower abatement positively impactsthe outputyt. This tradeoff needs to

be managed by choosing the best abatement effortµt in each period, as the optimal abatement

path reflects a balance between benefits and costs.

Here we highlight two equations which we will use to incorporate R&D investments and

stochasticity into our modeling framework. The first is equation (8), which shows how eco-

nomic outputyt in each period is used. We will include R&D investments into the model

through the modification of this constraint, which we describe in Section 3.2.3. The second

equation we highlight is (11), which shows how the cost of abatement and the damages from

climate change impact economic outputyt in each periodt. The abatement cost function

cD(µt), for which a detailed description is provided in Appendix S5, will be revised to include

the impact of technical change due to R&D investments. This procedure is also described in

Section 3.2.3. On the other hand,DD (τt) = 1+ πτ 2t in equation (11) represents the damages

from climate change resulting from atmospheric temperatureτt, whereπ is the damage param-

eter. We will takeπ to be a stochastic parameter in our model, representing the uncertainty in

climate change damages, which we describe further in Section 4.1.1.

The DICE model formulation links to our general model (1)-(5) as follows: the utility func-

tion in (1) is represented by objective (6) and equation (7);equations (2)-(3) correspond to

(11); and the general constraints (4)-(5) involve equations (8)-(10) and (12)-(13).

3.2.2. Quantifying the Impact of R&D on Abatement Costs The basic relationships represented

through the DICE model need to be expanded to include R&D investment decisions and

their impacts on other problem components. To achieve this,we first need to define measures
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that model how technical change resulting from R&D impacts abatement costs. We will then

develop a procedure to integrate these quantified impacts into the modeling framework.

Recall that the second stage decision of ‘long-term abatement’, involves choosing an emis-

sions abatement level for each period such that expected total social utility is maximized. Social

utility is related to the cost of abatement, as higher costs would imply lower net economic

output. On the other hand, the cost of abatement is dependenton the realized technological

success in the invested R&D projects. Hence, we need to derive abatement cost functions under

different technological success outcomes to implement in the model. We achieve this through

the two phase process described below, which is also discussed by Baker and Solak (2011):

Deriving marginal abatement cost curves.Rather than deriving abatement cost functions directly

for each technological success outcome, we first derive Marginal Abatement Cost Curves

(MACs), which reflect the cost of reducing emissions by an additional tonne. We then use these

curves to parameterize the impact of technical change on abatement cost functions.

We utilize the definitions of success described in Section 3.1 to derive MACs using a techno-

logically detailed integrated assessment model, namely the Global Change Assessment Model

(GCAM) (Brenkert et al. 2003, Edmonds et al. 2004). We use MACs rather than abatement

cost curves for two reasons. First, the MAC is a key unit of analysis in our decision problem:

as long as there is an interior solution to the second stage decision for a given realization of

uncertain parameters, abatement will be optimized where the marginal cost of abatement is just

equal to the marginal damages avoided by abatement. Second,the MAC is easy to generate

from IAMs and is more likely to be consistent across IAMs thanthe abatement cost curve.

To derive the MACs, curves were generated in GCAM that relatelevels of emissions reduc-

tion to carbon prices, thus approximating the marginal costof abatement. This was done for

each possible combination of projects assuming success in each project. A selection of the
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MACs that were derived using GCAM are shown in Appendix S6, where the baseline MAC

used to measure the impact of technical change refers to the case with no R&D-induced tech-

nical change as defined by Clarke et al. (2008). We demonstrate in Appendix S6 the impact of

three projects (one from each technology, i.e. CCS, nuclear, and solar), if each of them were

successful independently; as well as the MAC that is generated by GCAM if all three of the

projects were successful simultaneously. The changes withrespect to the baseline MAC are a

combination of pivoting the curve clockwise around zero andshifting the entire curve down.

CCS has more of a pivot, as it results in a nearly proportionalreduction in the MAC. Nuclear,

on the other hand, has more of a constant downward shift, witha much smaller pivot effect.

Solar has a very similar qualitative impact as nuclear, although its overall impact is small.

Parameterizing the impact of R&D-induced technical changeon abatement cost functions.The pro-

cess described above resulted in numerical MAC curves for each combination of successful

technology projects. In order to make this tractable and portable to our framework, the next

step was to estimate parameters that quantify how each technology combination impacts the

baseline MAC. To this end, for each combination of successful projects, we used equation (14)

below to estimate a pivot vectorα= 〈αCCS,αnuclear,αsolar〉, with each component represent-

ing the pivoting effect of the corresponding technology based on the successful projects in that

technology, as well as a shift parameterh (α). The shift parameter was represented as a func-

tion of α, because a unique shift effect was observed for every combination of values ofαi,

i=CCS,nuclear, solar:

M̃AC (µ,α) =
∏

i

(1−αi)MAC (µ)−h (α)MAC (0.5) (14)

whereMAC (µ) is the numerical baseline MAC from GCAM, withµ ∈ [0,1] denoting the

level of abatement, and̃MAC (µ,α) is the estimated MAC after technical change, where tech-
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nical change is represented through the vectorα. The product term
∏
i

(1−αi) models the piv-

oting of the functionMAC(µ) due to technical success, whileh (α) models the corresponding

shift. Notice that the shifth (α) is anchored on50% abatement to make this representation

portable from GCAM, in which the parameters were derived, toother modeling frameworks.

Let S = ∪iSi refer to some given combination of successful technology projects, whereSi

denotes the set of successful projects in technologyi, i= CCS,nuclear, solar. The process

for deriving the values ofαi andh (α) for any given setS was as follows. First, a project pivot

parameter, denoted byαij was estimated using the generated MACs for each individual project

j ∈ Si in technologyi. The values of these parameters, which vary depending on thelevel of

success in a project, are listed in Appendix S7. Second, we make the assumption that, within

any technologyi, only the best project (the one with the greatest impact on the MAC) will

impact the economy. Therefore, we defineαi asαi = maxj {αij : j ∈ Si}. Finally, for every

combination of possible technological outcomes represented by the threeαi’s for the three

technologies, a shift parameterh (α) was estimated numerically.

The relationship in (14), which is defined over the MACs, needs to be transformed into a

relationship over abatement costs for implementation in our model. We do this by integration

and define a functionalΦ(c (µ) ,α) that translates any generic baseline cost function (without

technical change), denoted byc (µ), to a new abatement cost function with technical change.

Specifically we define a functionalΦ :F ×Rn→F , whereF is a set of functions andRn is a

set of real vectors, as follows:

Φ(c (µ) ,α) =
∏

i

(1−αi) c (µ)−h (α) c (0.5)µ (15)

This can be used to model the impact of technical change on anyabatement cost function.
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3.2.3. Integrating R&D Investment and R&D-induced Technical Change into the Model The

investment decisions for each technology and the parametric representation of the resulting

impacts need to be integrated into the modeling framework through the introduction of new

variables and constraints. We discuss this procedure here.

We noted in Section 3.2.2 that nuclear and solar have similarimpacts, in that they both have

strong shifts as well as pivots, as opposed to CCS which mainly has pivoting effects. Given

this structure, we combine nuclear and solar into one category, calculating the resulting pivot

values asα2 = 1− (1−αnuclear) (1−αsolar). Thus, we represent R&D investments by using

only two technology categories in the model (i=1 for CCS andi=2 for solar/nuclear).

Integrating R&D investment decisions into the model: Modification of constraint(8). We assume that

R&D investment will take place over the next 50 years at a constant rate. In the basic represen-

tation in Section 3.2.1, output in each period is divided between consumption and investment in

traditional capital as noted in equation (8). We extend thisrelationship to include R&D invest-

ment for periodst≤ 5 as follows. Note that each planning period corresponds to 10years, i.e.

t=5 implies 50 years:

yt = ot+ lt+κ (Υ1+Υ2)/5 ∀t≤ 5 (16)

whereκ is an opportunity cost multiplier, andΥi is the investment in each technology area

i, with the indexi corresponding to CCS and solar-nuclear as defined above. Hence, the total

output in each period is either consumed, as represented by the variableot, or invested in

traditional capital, as represented by the variablelt, or invested in R&D, as represented by

κ (Υ1+Υ2)/5. WhileΥi is a decision variable, the opportunity costκ is a parameter for which

we perform sensitivity analysis as part of the numerical experiments described in Section 5.1.
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Integrating R&D-induced technical change into the model: Modification of constraint(11). Following

the cost function structure described by equation (15) in Section 3.2.2, we model the impact of

technical change by altering constraint (11) as follows:

yt=
1−Φ(cD (µt) ,α)

DD (τt)
ygt =

1−
∏
i(1−αi) [cD (µt)−h (α) cD (0.5)µ]

DD (τt)
ygt ∀t (17)

The model of technical change in equation (17), however, results in a non-convex model,

involving multilinear-terms due to multiplication ofαi, which depend on the investment deci-

sion variablesΥi. To deal with this, we estimate tight linear approximationsto the actual func-

tions. More specifically, we use our data on theαi andh (α) to estimate the two quantities of

(1−α1) (1−α2)≈ 1−0.8α1−0.92α2 and(1−α1) (1−α2)h (α)≈ 0.02−0.06α1+0.14α2.

Thus, we express the revised production function in our model for t > 5 as follows.

yt=
[1− ((1− 0.8α1− 0.92α2)cD (µt)− (0.02− 0.06α1+0.14α2)cD (0.5)µt)]

DD (τt)
ygt (18)

We show in Appendix S8 that modeling the pivot and shift effects through these linear approxi-

mations ensure that convexity of the optimization model is maintained in the extended stochas-

tic model for the given practical bounds for variables.

4. Uncertainty Modeling and Stochastic Optimization

In this section, we describe how we model the stochastic structure in the energy technology

R&D portfolio problem through a scenario set, and how we solve the resulting optimization

model using stochastic programming.

4.1. Step 3: Modeling of Uncertainty

As noted in Section 1.1, our model involves two types of uncertainty: the exogenous uncer-

tainty in climate change damages, and the endogenous uncertainty in technical change which

is a function of the R&D investment decisions.
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4.1.1. Modeling the Uncertainty in Climate Change Damages We model the uncertainty in cli-

mate change damages through a probabilistic characterization of the parameterπ in the damage

equationDD (τt) = 1 + πτt2. This is done by defining a three-point discrete probabilitydis-

tribution for π based on previous elicitations (Nordhaus 1994). As part of our analysis, we

consider several risk cases for climate change, which are represented by different distributions

of the parameterπ. These risk cases and distributions are discussed in Section 5.3.

4.1.2. Modeling the Uncertainty in Technical Change In Section 3.1 we identified individual

success probabilities for technology projects, and in Section 3.2.2 we modeled how differ-

ent technological success outcomes, defined through the pivot parametersα, impact emission

abatement costs. For a given portfolio of projects, it is possible to calculate the probability of

each success outcome from the elicitation data in Appendix S3 through multiplication of indi-

vidual project success probabilities. These probabilities, however, are dependent on technology

investment decisions, as they will change based on the project portfolio selected. This is the

endogenous uncertainty described in Section 1.1, where theprobability of a specific outcome

is not fixed but rather changes with different decisions. However, such decision dependent

probability distributions are typically not amenable for direct use in stochastic optimization,

specifically in stochastic programming. To overcome this, we develop a procedure to derive

returns functions with fixed probabilities, where each function represents how the values ofα,

i.e. returns from technology investments, change as a function of the investment amountsΥ.

A reduced-form portfolio model.The procedure we develop to derive returns functions with

fixed probabilities is built upon some insights obtained from the reduced form portfolio model

in Baker and Solak (2011), summarized in Appendix S9. Two keyconclusions from this work

are directly related to our analysis in this paper. First, the authors note that for a given budget

level the composition of the optimal portfolio of projects is robust to risk in climate damages.
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This conclusion implies that we do not have to explicitly model the individual technology

projects in our analysis. Instead, we consider a discrete set of potential R&D investment levels

and identify the optimal set of technology projects for eachof these investment levels. Recall

that for a given portfolio of projects, it is possible to calculate the probability of each possible

α value using the elicitation data in Appendix S3. Hence, thisprocess results in a probability

distribution for the pivot (and shift) parameters for each investment level. As described later in

this section, we use these distributions to derive ‘returnsfunctions’, in which probabilities are

fixed, and pivot and shift parameters change as a function of R&D investment.

Additionally, Baker and Solak (2011) conclude that the optimal amount of R&D fund-

ing does change with increases in the riskiness of climate damages in a non-monotonic way.

Specifically, when an increase in risk is modeled as a mean-preserving-spread that stretches out

the tail, it is found that the optimal amount of R&D funding first increases, and then decreases

in risk. The reason has to do with the complex interplay between technology investment and

long-term emissions abatement. This result supports the motivation for our current model, in

which we use a stochastic dynamic optimization model in order to capture the interactions

between climate change damages, abatement, and the impact of R&D under multiple policy

frameworks. Through inclusion of several factors such as capital accumulation in the economy,

carbon concentration in the atmosphere, and the warming of the deep oceans, our current work

is able to represent these complex dynamics in order to provide a convincing policy analysis.

Derivation of stochastic characterizations of returns to R&D. For stochastic characterizations of

returns to R&D, we develop a probabilistic mapping from investment decisionsΥi to the

technical change variablesαi, which represent the returns to R&D in technology categoryi,

i = 1,2. As discussed above, this is done by initially considering adiscrete set of possible

investment levels or budgets. Given a budget level, the reduced-form R&D model identifies an
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Budget($mil) 52 108 319 729 961 α1 52 108 319 729 961 α1

Estimates Actual Data

Probabilities 0.41 0.24 0.17 0.11 0.11 0 0.41 0.24 0.17 0.11 0.10 0

0.59 0.34 0.40 0.41 0.35 0.319 0.59 0.34 0.40 0.41 0.35 0.319

0 0 0.01 0.06 0.12 0.346 0 0 0.02 0.06 0.13 0.346

0 0.42 0.42 0.42 0.42 0.38 0 0.42 0.42 0.42 0.42 0.38

Table 2 Comparison of the estimated and actual probability distribution data over each possible outcome of α1

for different levels of investment in CCS.

optimal portfolio of projects for that budget level. Each portfolio is associated with a probabil-

ity distribution over the possible outcomes ofαi for each technology categoryi. Since there is

only one optimal portfolio per budget level, this allows us to associate a probability distribution

over theαi values to each given budget level.

In the right half of Table 2 we show these values for CCS, with aprobability distribution

in each budget column and theα1 values in the last column. An important issue is the selec-

tion of the budget levels for this discrete representation of R&D investment. We considered a

wide range of possible R&D budgets, and chose those that wereoptimal investments in some

instance of the reduced-form model, or resulted in a significant welfare improvement over other

R&D budgets that we considered.

As noted previously, however, endogenous probabilities given in the lower half of Table 2

are not amenable to stochastic optimization, rather we needa mapping where the probabilities

are fixed and theαi values change with the investment decisions. We achieve this by deriving a

set of random piecewise linear returns functions, which we denote byAi, for the two technol-

ogy categoriesi= 1,2. Each realization ofAi maps R&D investment levelsΥi to technology

parametersαi, i.e. Ai : Υi → αi. The functionsAi are piecewise linear as they are defined

based on a discrete set of investment levels.

To derive the functionsAi, we started by enumerating all possible functions. As an exam-

ple, one possible combination for CCS corresponds to the case whenα1 is realized as 0 at
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Budget($mil) 52 108 319 729 961 Probability

0 0 0 0 0 0.11

0 0 0 0.319 0.319 0.06

0 0 0.319 0.319 0.319 0.07

0 0.319 0.319 0.319 0.319 0.17

α1 0.319 0.319 0.319 0.319 0.319 0.05

0.319 0.319 0.319 0.319 0.346 0.06

0.319 0.319 0.319 0.346 0.346 0.04

0.319 0.319 0.346 0.346 0.346 0.01

0.319 0.38 0.38 0.38 0.38 0.42

Table 3 Piecewise linear returns functions for CCS, where the central columns show values of α1 for discrete

levels of investment. Each row, which corresponds to a realization of the function A1, is associated with a

probability given in the far right column.

all budget levels. This enumeration, however, results in a large number of functions, which

is intractable for optimization purposes. Thus, we performa scenario reduction process and

identify a subset of the possible returns functions that provide a good approximation of the

actual data-based distributions. First, we eliminated allreturns functions that did not exhibit a

dependence between funding levels - that is we assume that ifa project is successful at a lower

budget level, it will be successful at a higher budget level.Then, we followed a process based

on the minimization of the standard deviation of the differences between the actual probability

distributions and the probability distributions derived from the subset of the functions. Finally,

in order to improve the overall match for solar nuclear, we added in two returns functions that

did not exhibit dependence.

Table 3 shows the estimated returns functions for CCS, whilethe corresponding functions

for the solar-nuclear technology category are included in Appendix S10. For example, in Table

3 the third row represents a returns function that hasα1 =A1 (Υ1) = 0 if Υ1 < $319 million,

andα1 =A1 (Υ1) = 0.319 if Υ1 ≥ $319 million. The probability that this particular function

is realized is0.07. As noted above, these functions together with their probabilities provide a

very good estimate of the actual probability distributions, with an average standard deviation of

the errors of 0.02. Table 2 compares the estimated data with the actual data for CCS, showing
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the estimated probabilities and the actual probabilities of possibleα1 values at each investment

level. They are very close, with the differences being less than 1 percentage point in each case.

Similar results hold for the approximations of the solar-nuclear returns functions as well, with

differences being less than 4 percentage points in each case. Note that the set ofαi values

shown in Table 3 and Appendix S10 are based on the values of theparametersαij for each

projectj, which are listed in Appendix S7, and are derived as described in Section 3.2.2. While

α1 is directly based on CCS projects, the combined solar/nuclear parameterα2 is calculated by

first identifyingαnuclear andαsolar, and then settingα2 =1− (1−αnuclear) (1−αsolar).

The resulting stochastic returns functionsAi are used in conjunction with equation (18).

The integration of these piecewise linear functions into the model requires the addition of new

variables and constraints. The details of this implementation are described in Appendix S11.

4.1.3. Characterization of a Scenario Set The probabilistic characterizations for the two types

of model inputs, i.e. the climate change damages and technical change due to R&D, result

in three distinct stochastic entities, which we denote through the random vector(π,A1,A2).

Given that possible values for the three parameters are discrete and finite, this random vector

can take on a finite number of values. Each of these distinct realizations correspond to a sce-

narioω ∈ Ω as described in Section 2. The probability of occurrence foreach scenariopω is

calculated based on the probabilities of individual parameter value realizations. For example,

a sample scenarioω′ could correspond to realizations involving the first rows inTable 3 and

Appendix S10, and aπ value of 1. Assuming that the latter can occur with probability of 1 and

using the probabilities shown in Tables 3 and Appendix S10, probability of scenarioω′ can be

calculated aspω
′

= (1)(0.11)(0.087) = 0.00957.

4.2. Step 4: Stochastic Programming Implementation

Stochastic programming is a natural approach for our problem as the interactions represented

through the DICE model form a complex structure that prevents the problem from being
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amenable to other methods such as dynamic programming. Thisis especially the case as the

formulation has many decision variables but relatively fewstages.

The optimization problem (1)-(5) can be expressed as one single nonlinear programming

problem. However, in order to utilize special algorithmic solution procedures, we further rep-

resent this formulation by replacing the first stage decision vectorsΥ,µN ,yN ,τN ,xN by

possibly different vectorsΥω,µωN ,y
ω
N ,τ

ω
N ,x

ω
N , similar to the notation used for second stage

decisions. Using this, we can define a problem formulation for each scenario, but at the same

time, require that the values of these first stage variables do not depend on the realization of

random data. This can be achieved by linking the individual scenario problems through a set

of constraints, which are referred to as the nonanticipativity constraints. The nonanticipativity

constraints ensure that the decisions in all scenarios are the same for the first 50 years, and

are defined explicitly by setting the variables to be equal for each scenario for the first 50

years. In our model, these constraints involve the R&D investment, capital stock and period

utility decisions for the first 50 years, i.e.Υi, kt, andut, respectively. It must be noted here

that the set of decision variables at each period in the modelinvolves a large number of other

variables as depicted in the base formulation (6)-(13). However, we show in Appendix S8 that

nonanticipativity in the three decisions above is sufficient for the overall model. As fewer num-

ber of constraints needs to be used, this result allows for a less complex representation of the

stochastic programming model. Moreover, this also enablesa tractable implementation of the

Lagrangian decomposition procedure which we use as our solution methodology.

Given this structure, the overall stochastic programming model can be defined as follows:
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max
ΥΩ,µΩ,yΩ,τΩ,xΩ

∑

ω∈Ω

pω
∑

t

Rtu
ω
t (19)

s.t.Jωψ (Υ
ω,µω,yω,τω,xω)≤ bωψ ∀ψ,ω (20)

Υω
i −

∑

ω′∈Ω

pω
′

Υω′

i =0 ∀i,ω (21)

kωt −
∑

ω′∈Ω

pω
′

kω
′

t =0 uωt −
∑

ω′∈Ω

pω
′

uω
′

t =0 ∀t≤ 5, ω (22)

where the superscripts inΥΩ,µΩ,yΩ,τΩ, andxΩ denote that the optimization is performed

over all scenarios in the scenario setΩ. As in the DICE model description in Section 3.2.1,

xω refers to all other variables in each scenario, and the independent decision variables are

Υω,µω andoω. In this formulation, objective (19) corresponds to the objective function (1) in

the general formulation and represents the maximization ofexpected total social utility over

all scenarios. Constraints (20) define the corresponding set of constraints for any given sce-

narioω. These constraints, each of which is indicated byψ = 1, . . . ,Ψ, involve the standard

economic relationships as given by (7), (9), (10), (12), (13), as well as the extended relation-

ships modeled by equations (16), (18) and the required constraints for the piecewise linear

mappings described in Appendix S11. The variables in each ofthese constraints are indexed

by a superscriptω, and the constraints are defined separately for eachω ∈Ω. Constraints (21)-

(22) are the nonanticipativity constraints ensuring that decisions in the first 50 years are the

same for all scenarios. The structure used in the formulation of the nonanticipativity constraints

accounts for the scenario probabilities, and prevent the ill-conditioning in the Lagrangian dual

as discussed by Louveaux and Schultz (2003). Note that constraints (20)-(22) together define

a reformulation of constraints (2)-(5) in the general formulation described in Section 2.

Model (19)-(22) is a stochastic nonlinear programming problem that can be solved through

decomposition methods, as the size of the scenario set does not allow for a direct solution. As
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a solution approach, we use a Lagrangian decomposition based procedure, which is similar to

the method described by Caroe and Schultz (1999). The details of this implementation, as well

as some additional computational improvement procedures are described in Appendix S12.

5. Experimental Setup for R&D Policy Analysis

In this section we discuss the policy experiments we ran withour framework. We start

by briefly discussing some assumptions about the opportunity cost of investment. We then

describe a number of alternative policy environments and the different risk cases we consider.

5.1. Opportunity Cost

The R&D funding levels used in the elicitations and reportedin the tables in Appendix S3

represent the amount of money going into the hands of high quality researchers in the appro-

priate areas; this does not account for additional costs to society. In order to address this issue,

our baseline assumption is that the opportunity cost of investing in R&D is 4 times the out-

of-pocket cost (i.e.κ = 4 in equation (16) for the base case). This assumption reflectsthe

current state of the literature (Nordhaus 2002, Pizer and Popp 2008), but in fact there is very

little research directed at determining what this opportunity cost actually is. Thus, we perform

sensitivity analysis over the parameterκ, and discuss it in our analysis in Section 6.

5.2. Alternative Policy Environments

Following Nordhaus (2008), we consider a number of different policy environments which

prescribe different alternative strategies in dealing with climate change. Specifically, we con-

sider six policy environments which we refer to as DICE Optimal, Stern, Stern Fixed, Gore,

Kyoto Strong, and Lim 2, as well as a baseline no-controls case. We choose these policies

because they are representative of the range of policy recommendations being debated around

the world. Here we describe these policies, which are also summarized in Table 4. For each
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Policy Abatement Key Characteristics

Baseline no controls -

DICE Optimal optimal -

Stern optimal abatement chosen under low interest rate

Stern Fixed optimal abatement and R&D chosen under low interest rate

Gore lower bound btwn 0.25-0.95limited participation

Kyoto Strong fixed for 150 yrs limited participation

Lim 2 optimal upper bound on temperature

Table 4 Attributes of policies considered.

policy environment we assume there is no knowledge of technological success and damages

until year 2055, and we run the model out for 400 years.

In the “DICE Optimal” policy the model chooses the optimal R&D investment and abate-

ment path. The “Baseline” case models the levels of major economic and environmental vari-

ables as they would occur without any climate-change policies, i.e. abatement is forced to be0

in all periods after the first. The “Stern” policy is intendedto reflect the policy suggestions laid

out in the Stern Report (Stern 2007). Nordhaus (2008) identified the key difference between

Stern and DICE as being the very low discount rate in the former. Thus, this policy is imple-

mented by first running the DICE model at a very low discount rate. We then take the resulting

abatement levels and fix those in the model with the default discount rate. This is so the results

of all the policies can be evaluated at one common interest rate. For our implementation, we

have run two versions of this policy. In one case (referred toas “Stern Fixed”), R&D investment

is fixed as calculated from the run with the very low discount rate. In the other case (referred

to as “Stern”), R&D investment is chosen in the second run based on the DICE discount rate4.

The “Gore” policy is intended to reflect the policy suggestions laid out by Al Gore (Gore

2007). This policy fixes a lower bound for abatement of0.25,0.45,0.65,0.85 for the periods

beginning 2015, 2025, 2035, and 2045 respectively. Thereafter the lower bound for abatement

is fixed at 0.95. However, for our model, we assumed that when climate change uncertainty

4 The reader can refer to Nordhaus (2008) for more informationon how the interest rates are modeled.
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No risk Medium risk High risk Very high risk Intermediate

(1) (2) (3) (4) (5)

GDP Loss 1.1% 0.0% 3.3% 0.0% 20.0% 0.0% 40.0% 0.0% 1.1% 20.0%

Probability 1.000 0.667 0.333 0.945 0.055 0.973 0.028 0.309 0.673 0.018

π 0.003 0.000 0.009 0.000 0.063 0.000 0.167 0.000 0.003 0.063

Table 5 Probability distributions defining climate change damage uncertainty.

is realized with a no damage outcome, abatement is chosen optimally. The Gore policy also

reflects limited participation in the early periods, in which not all countries and regions will

participate in the abatement. Specifically, it is assumed that the participation rate will increase

gradually from 0.6 to 1 over the next 50 years.

“Kyoto Strong” represents a very aggressive, but potentially achievable, international agree-

ment on climate change. This is intended to follow the spiritof the Kyoto Protocol, but to

continue on indefinitely and have more and more nations join on through time. In this pol-

icy, abatement is fixed for the first 150 years. To be able to model the learning about climate

damages and R&D, we altered this aspect, as in the Gore policy, by allowing abatement to be

chosen optimally in the case where damages are zero. Thus, abatement does not respond to the

outcome of R&D for the first 150 years, nor to higher than expected damages. Also, similar to

Gore, the cost of abatement is increased at earlier stages when fewer countries have joined in.

After 150 years, future abatement is chosen optimally and responds to the particular scenario.

Finally, the “Lim 2” policy adds a single constraint that limits the average global temperature

increase to 2◦C. In our modeling framework this constraint is only minimally binding.

5.3. Risk Cases

One of our central questions is how uncertainty about climate change damages impacts near-

term investments. In order to address this question, we consider multiple cases for uncertainty

over climate damages. Table 5 shows the five cases we consider. Each probability distribution

is given a name in the top row. The second row shows the percentGDP loss given a 2◦C



28

increase in global mean temperature as calculated using equation (11). We choose this value

as our anchor because it is used to calibrate the DICE model, and is the value used in the

elicitations in Nordhaus (1994). We use mean-preserving spreads around this value. That is,

each probability distribution has a mean GDP loss of1.1% given a 2◦C warming. The second

row shows the probabilities of each outcome in that distribution. The last row shows the value

of the parameterπ for each respective outcome. While previous work uses mean-preserving

spreads aroundπ, the damages in the DICE model are concave inπ, therefore we hold the

mean of the expected GDP loss constant in the mean-preserving spreads used in this paper.

6. Results and R&D Policy Analysis

In this section, we discuss the results from the optimization model, focusing on the impact

of R&D on societal costs and on the range of scenarios considered in the analysis. While we

describe several conclusions derived from our model and data, we emphasize that the analysis

boundaries are tight, and therefore the results may not be generalizable.

6.1. Optimal Investment in R&D

We find thatthe optimal investment in the R&D projects considered is quite robust, both across

different policy environments and across different risk cases.Figure 1 illustrates the optimal

investment across risk and policy environments. The horizontal axis represents risk cases 1 – 3

from Table 5. Since the optimal investment is the same in eachcase for DICE Optimal, Gore,

and Kyoto Strong, we have graphed these together; the same goes for Stern and Lim 2. We see

that in 12 out of the 15 cases we are showing, the total optimalinvestment is equal to$5,303

million5. In the three other cases, the optimal investments drop by less than $300 million, a

relatively small amount. This robustness can be partly explained by referring to the reduced-

form R&D model where the portfolio of technology projects was also observed to be robust to

5 We show the allocation of the total investment in research areas for the optimal levels of investment in Appendix S13.
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Figure 1 Optimal investment across risk and policy scenarios, where the horizontal axis values correspond to the

GDP loss for the high damage outcome of risk cases 1 – 3 from Table 5.

climate damages for any given R&D budget. This is because theelicitation data revealed the

technologies to be quite diverse, with some projects clearly superior to others. Here, however,

our robustness result is even stronger. We find that the same level of funding is optimal over a

wide range of very different abatement paths and different risk levels.

Not shown in Figure 1 is the DICE Optimal investment under very high risk, which falls to

$2,696 million. In general, we see a somewhat monotonic response torisk in our results, with

the optimal investment in R&D decreasing in risk under at least some of the policies. This is

because when damages are very high, abatement is at 100% withor without technical change.

A mean-preserving spread that increases the magnitude of the damages will simultaneously

reduce the probability of those damages. Thus, an increase in risk of this kind leads to a lower

probability of full abatement, and therefore a lower expected value for technical change.

The optimal investment is also fairly robust to assumptionsabout the opportunity cost of

R&D investments. If the opportunity cost multiplierκ is between1−4, then the optimal invest-

ment is stable as above at $5,303 million. If it is between5− 6, then the optimal investment is

slightly lower at $5,071 million. If the opportunity cost isbetween7− 10 , the optimal invest-

ment drops to $2,696 million. Thus, the investment in the R&Dprojects considered is not very

sensitive to assumptions about opportunity cost until the opportunity cost gets very high.
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Figure 2 Expected costs and utilities of policy interventions

The optimal investment is much higher in Stern Fixed, in which the investment is cho-

sen with a very low discount rate. The optimal action in this policy environment is to invest

$21,132 million, the maximum amount we have available in our model. This is not surprising,

and underlines the importance of coming to an agreement on discount rates.

6.2. Impact of R&D on Expected Policy Costs

In Figure 2, we illustrate the impact of R&D on the different policy environments. Figure 2(a)

shows the expected total cost of each policy with and withoutR&D, while Figure 2(b) shows

the expected relative utility of each policy intervention with respect to the Baseline.

The vertical axis in Figure 2(a) represents the expected netpresent value of the cost of

abatement plus the cost of climate damages in trillions of 2005 dollars. The vertical axis in

Figure 2(b) represents expected utility in the same units. Each bar represents the extra utility

gained (or lost) from the Baseline by implementing the policy intervention. The darker bars are

in the absence of R&D and are very similar to the results in Nordhaus (2008). The lighter bars

are when R&D is available and chosen optimally. Note that some of the policy environments

are improvements over doing nothing, whereas some are worsethan doing nothing, at least as

evaluated within our framework. The Stern Fixed policy is too stringent in the DICE model, as

it is chosen in response to a very low interest rate, but evaluated under a higher interest rate.



31

The first result here is thatthe availability of R&D is more valuable in the second best policy

environments. The value of having R&D is greater in the non-optimal environments and is

greatest in the Gore environment. Of particular interest are the Kyoto Strong and Lim 2 results.

Kyoto Strong is a possibly implementable policy. In the absence of R&D, it is barely better

than doing nothing. However, with R&D it becomes clearly positive, almost equivalent to the

optimal without R&D. The Lim 2 goes from being a net loss to a net benefit with R&D.

Figure 3(a) shows the expected utility of policy intervention for the DICE Optimal policy,

comparing no R&D, optimal R&D (of between5.0 - 5.3 billion), and full R&D investment

in all of the technologies (of$21 billion), for three risk cases. What is striking here is the

asymmetrical effect of over-investment relative to under-investment: over-investment has a

smaller downside. To further analyze this, we look at the expected utility of policy intervention

for the DICE-optimal policy for R&D investments that are marginally higher and lower than the

optimal. Specifically, we considered the four following budgets (in millions): $5,689, $5,303,

$5,071, and $4,743. The middle two values are the two budgetsthat are optimal in Figure

1. The higher and lower numbers increase and decrease these central values by $386 million

and $328 million, respectively. Figure 3(b) shows that while the two central budget levels lead

to very similar expected utility,there is an asymmetric effect of increasing or decreasing the

budget further, with under-investment being more costly than over-investment.

6.3. Impact of R&D on the Range of Scenarios

Figure 4(a) shows the range of abatement paths over time in the Risk 1 case for DICE Optimal

when R&D is invested optimally. There are a total of 36 scenarios, each depending on the

success outcomes of the technologies. On the right edge of the graph we show the probability

of being in a group of scenarios. The first cluster, with probability of 45%, is associated with

scenarios in which there is success in both nuclear and CCS. The next cluster, with probability
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Figure 4 Ranges of abatement paths for different realizations of technical uncertainties.

of 52%, includes scenarios in which either nuclear or CCS fails. The lowest line is the case

where all technology fails. In Figures 4(b) and 5 we just showthe range of paths without

associated probabilities, since they follow a similar pattern. Figure 4(b) compares the range

of emissions paths from the DICE Optimal, Stern, and Kyoto Strong policies. Note that in the

absence of technical change the Kyoto Strong path is higher than the optimal abatement path.

With technology, however, it falls about in the middle of theoptimal paths. Thus,the presence

of R&D greatly enhances the value of the fixed emissions path prescribed by Kyoto Strong.
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Figure 5(a) shows the range of temperature paths, i.e. the change in the average global tem-

perature over time, in the Risk 1 case for DICE Optimal and forStern. From this figure we

can make three observations. First, all the DICE Optimal paths are above 2◦C between 2075

and 2200, while all Stern paths are always below. What we can conclude is thatStern with

no advances in technology will lead to lower temperatures than DICE Optimal with great

advances in technology. Second, the impact of R&D on the temperature is much stronger in

the DICE Optimal policy than in the Stern policy. As the thirdobservation, we note that all

Stern paths and the DICE Optimal paths with the most successful R&D peak in temperature

between 2100 and 2200. Temperature will peak in any scenarioafter abatement hits 100%. All

paths hit full abatement eventually, but R&D can significantly affect the timing.

Figure 5(b) shows the abatement costs for all scenarios for the Risk 1 case of DICE Optimal

and Stern. We see that until 2105 R&D has a much larger impact on Stern than on DICE

Optimal. In fact, Figure 5(b) is almost the opposite of Figure 5(a) showing the temperature

paths.If we are in a policy environment in which abatement is relatively high, then R&D will

have a large effect on abatement costs and a smaller effect onemissions, temperature and other

physical variables. If, on the other hand, we are in a policy environment that leans toward lower
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abatement, then R&D will have a large effect on emissions andtemperatures, and a smaller

effect on costs. The robustness of R&D investment to different policy environments and risk

cases can be partially explained by this phenomenon. Even though the policy environments are

radically different in their abatement paths, technological change has a role to play in both:

cost reduction when abatement is high, and improved environmental impacts resulting from

higher abatement when abatement is generally lower.

As an additional analysis, we also present in Appendix S14 how investment into R&D

impacts the riskiness of the policy outcomes, where we conclude that in general R&D provides

risk reduction.

7. Conclusions and Further Policy Insights

Finding an optimal R&D portfolio in the face of climate change is a challenging problem, and

the available data is sparse and not as airtight as we would like. It is, however, a real and press-

ing problem faced by the U.S. and other governments around the world. Thus, our approach is

to use the best data available and explicitly include uncertainty in our analysis, in order to arrive

at robust insightsconditional on the current state of knowledge. With this aim in mind, we have

developed multiple models and implemented data-based uncertainty on the returns from R&D

into a newly developed stochastic version of an IAM in order to get insights about the opti-

mal technology R&D portfolio in the face of climate change. Overall, we developed a general

framework to determine optimal R&D portfolios through a dynamic stochastic model. Thus,

this work provides a framework which can be updated as new information becomes available,

such as more detailed elicitations about these technologies or data on other technologies.

First, we have found that, given our data based on expert elicitations, focused investments in

Nuclear LWR and HTR, as well as in CCS and solar technologies are very robust. The optimal

investment in these projects was robust to the policy environment, to the riskiness of climate
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damages, and to opportunity cost. Conversely, not investing in the Nuclear FR and Solar 3rd G

projects was also robust. We do see a lower investment when there is a very small probability

of very high damages; and a larger investment when the interest rate is very low; but otherwise

the optimal investment falls within a very small range. Thisrobustness is interesting, as for

example the Gore and the DICE Optimal policies are differentin most other ways. It is also a

very useful result, implying that near-term decisions to invest in the projects considered in this

analysis may not depend heavily on the outcomes of long-termclimate policy decisions.

This robustness is driven by two effects. The first is a resultof usingdata (rather than the-

oretical explorations): we found that individual projectswere quite differentiated, with some

projects having relatively lower costs, large impacts if successful, and high probabilities of

success, while other projects did not perform well on all or some of these aspects. Clearly, our

conclusions are conditional on the boundaries of the elicitation data, as robust results can not

be guaranteed for any set of data. However, we believe that robustness is more likely than not

when using real data, since there will always be a relativelynarrow band of benefits-to-costs

that will put a project on the knife’s edge.

The second driver relates to therole of R&D in the different scenarios. This role varies con-

siderably, both with the policy environment and with the uncertainty over damages. In policy

environments in which abatement is fixed or tends to be very high (near 1), R&D primarily has

a ‘cost-side benefit’: the environmental variables are lessaffected while the cost of abatement is

significantly affected. This group of policies and risk cases include the Stern and Gore policies

and also high risk cases. On the other hand, in instances in which abatement is relatively low

in the absence of R&D, R&D primarily has an ‘environmental-side benefit’: the environmental

variables are significantly affected, while the cost of abatement has only small effects, and in

fact sometimes is higher given a much higher level of abatement. These two very different roles
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mean that technological change ends up having an important role to play whether abatement is

high or low. This insight would be unlikely to arise outside of our framework that combines a

dynamic optimization model with data-based probability distributions.

Second, we have shown that a larger-than-optimal investment in technology is less costly

than a smaller-than-optimal investment. Thus, it appears that policy makers should prefer to

err on the high side rather than the low side of R&D investment. Given this result, the level

of robustness, and the deep uncertainty about climate damages, our observations support a

conclusion that investing roughly $5 billion in these technologies probably makes sense.

Our research is plagued by the same difficulties that plague all climate change research –

the optimal investment depends on the interest rate used to value the far future. We see that

the optimal investment in R&D is considerably higher – in fact full funding in all the projects

we considered – when evaluated at the low Stern interest rate. If policy makers believe that the

‘appropriate’ interest rate is no higher than that in Nordhaus (2008) (since very few economists

are making that argument), this again suggests that policy makers err on the side of higher

investments rather than lower. Assumptions about the opportunity cost of R&D investments

have little impact on the results in this study.

There are some important caveats to these conclusions that need to be considered in a final

investment decision. First, this is a ‘lumpy’ problem, withthe projects defined by discrete

investment levels, some of which are much higher than others. Moreover, the analysis is based

on a specific set of projects deemed relevant for R&D portfolio optimization by a set of experts.

Hence, biases inherent in any expert elicitation process may exist in the set of projects con-

sidered. This is not atypical of R&D portfolio problems, andis driven by the difficulty of

assessing potential R&D projects. Nevertheless, some of the robustness may be driven by this

characteristic. Future work may be aimed at minimizing thisproblem. More generally, data
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gathered from expert elicitations are typically subject toa number of biases and may vary

greatly depending on the structure of the elicitation process. Certainly, given the scale of the

climate change problem, more and better information on the potential of energy technology

R&D is likely of great value (Baker and Peng 2012).

In addition, the models we worked with (and we believe this istrue for all models) could not

account for the socio-political aspects of nuclear energy.In particular, concerns about prolif-

eration are not adequately reflected in this analysis. Thus,nuclear may be a riskier investment

than we show. Also, there is only a weak understanding of how intermittent renewables, such

as solar photovoltaics, will be able to be integrated into the grid on a large scale. Thus, while

the models we used consider this problem in a reasonable way,it is quite possible that the

impact of improvements in solar photovoltaics will be larger than the current models show,

especially if simultaneous investments are made in the gridand grid integration. Thus, these

two technology-specific aspects should be considered in a final portfolio allocation. More gen-

erally, we made a number of assumptions along the way in orderto integrate the data and

the many components of the framework. Hence, as is typical inapproaches to such complex

problems, the results should be interpreted with caution and may not be generalizable.

Beyond the specific contributions to climate change energy R&D policy, this paper provides

an example of a framework for combining elicitation-based probabilistic data on future uncer-

tain systems and multiple economic models into a tractable stochastic decision framework. We

introduced the idea of random return-to-R&D functions, which were then effectively integrated

into a novel representation of a highly nonlinear stochastic problem. Overall, we were able to

integrate probabilistic data into a fully dynamic model in order to derive robust policy insights.

This framework may be applied not only to the broad and important field of energy technology

portfolio selection, but also to other public policy areas such as R&D into space exploration,
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health, and military, as well as agencies such as the Environmental Protection Agency who

face choices of a portfolio of policies that have uncertain uptake and response on firm side, and

uncertain benefits (in the sense of poorly understood pollutants).
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