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1. Introduction

Climate change is one of the biggest public policy problemsently facing the world. It is

a very difficult problem for a number of reasons, including tbng time frames, the global
nature of the problem, and the deep uncertainty surrountitigs becoming clear that rapid
technological change will be necessary in order to liminetie change in a way that is con-
sistent with sustainable economic growth and current ai¢Nordhaus 2011). One way of
supporting such rapid technological change is through morent-supported research and
development (R&D) investment. While governments arouraworld have supported R&D
for a very long time, there has been recent interest in applgiscientific basis to their resource
allocation (National Research Council 2007).

In this paper, we develop a framework that uses empirical fitaithe assessment of possible
R&D policy choices for sustainability. More specificallyevaddress the following important
public policy questions: Given the uncertainty defined byrently available data in future
technological success and climate change, what energndbdy investment policies will
maximize expected social welfare? And how do optimal inwestt policies differ under alter-
native strategies proposed for dealing with climate chasgeh as those suggested by Al Gore
(Gore 2007), the Stern report (Stern 2007), and the KyottoRod?

In order to address these questions and provide policyhisigve develop a multi-step
multi-model approach involving a dynamic and stochasticCRgortfolio decision process.
While doing so, we combine methods from multiple strandseégarch in operations manage-
ment, including elicitation based decision analysis, ls@tic programming, microeconomics,
and computational economic analysis. In the remainderisfséction we present the general
framework for our problem, describe the research in the, argdiscuss how our analysis and

findings contribute to the existing literature.
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1.1. General Decision Framework

There are two key near-term societal responses to climategeh The first and most direct
is abatementthat is to reduce emissions of the greenhouse gases thataseg climate
change to a level below what they would otherwise be. Exasnpli@uestions related to this
response would be the determination of the optimal path e§®aons in future years, emissions
allocations, or the level of a carbon tax. A second respomsdirnate change is to invest in
energy technology R&Bo that emissions abatement will be less costly in the fuligiven
emissions path influences the set of technologies sociatjdi&e to have in the economy, and
the set of technologies actually available influences thena level of emissions reductions.
We explicitly recognize and model this interdependencyaas @f our analysis in this paper.
Specifically, we simultaneously determine the optimal stweent in a portfolio of technology
R&D projects and the optimal emissions path so that the eégpesocietal costs of climate
change are minimized. Our analysis is a global one in thatatk change is a global problem,
with worldwide emissions affecting all parts of the globe tBe other hand, the R&D project
data is based on U.S. government investment options.

The decision process we consider for our R&D investmennapttion framework consists
of two distinct but interlinked decision stages. These egpond tanear-term decisiont be
made over the next fifty years under climate change and téafjical uncertainty, antbng-
term decisionso be made after more information on uncertainties becoweatable after the
fifty year period. The near-term decisions are how much teshin which technologies and
the level of short term abatement. These decisions are nraté the uncertainty of technical
success which is dependent on the projects that are funadetimtechnology category, where

success for a project means that a particular goal has beerHarce, the uncertainty over



3

technological success is endogenous: it depends on theatecthat will be made. Each tech-
nological success realization has a specific implicatianfdture abatement costs, meaning
that technological success will impact the costs of redpeimissions. The second stochastic
characterization in our framework is an exogenous one armgsmonds to the damages due
to climate change. The uncertainty in these damages issemied through the parameters
of a damage function, where the damage function dependseosttick of emissions in the
atmosphere. The second stage decisions, which involvetemgabatement decisions, will be
determined after information about future abatement asithe damages becomes available.
The objective for the overall decision problem is to maxienexpected total social utility over
the entire planning horizon involving the next four cengsriSurrounding all these decisions

is the policy framework that defines the boundaries anddifoit the decision making process.

1.2. Relevant Literature

Previous approaches to addressing climate change poleyiheluded a great deal of theoret-
ical work looking at how the optimal near-term policy chasgeth different characterizations
of uncertainty (see Baker (2009) for a review). These stjdiewever, do not involve R&D
decisions and use purely illustrative probability disstibns to represent uncertainty. While
Baker and Shittu (2008) review a set of papers that study R&€sibns in the face of climate
and/or technology uncertainty, these papers are agairl lwasélustrative distributions, and
moreover, they consider only one technology at a time.

There are few papers that study the impact of uncertaintymortfolio of energy technolo-
gies (see Baker and Solak (2011) for a review, includingetibat consider learning-by-doing
rather than R&D). The one study we know of, Blanford (200%gsuillustrative probability
distributions and simply assumes there are decreasingnseta scale in R&D investment.
Our study differs in that we use empirical probability distitions obtained through expert

elicitations within a comprehensive stochastic portfotiodel we develop.



While Baker and Solak (2011) also describe a stochastic Rgiidrozation model based on
elicited numerical data, it is a simplified model that repras the economy and the impacts of
climate change with a single equation and two planning peri®ue to this simple structure
it is unable to consider multiple policy frameworks. On thikey hand, the insights from this
model serve as input to the comprehensive analysis pertbmmtdis paper.

On the other end of the spectrum from the theoretical arslgsa body of work based
on technologically detailed Integrated Assessment Modahs)?!, which integrate economic
models with climate models in order to provide policy relgvansights (Clarke et al. 2008,
2009). While these analyses provide important insights ihé value of technology in soci-
ety’s response to climate change, they do not explicithorporate uncertainty or address
the question of the optimal R&D policy. One exception is eergcanalysis by Anadon et al.
(2011), where the authors combine empirical data with an{#dded analysis to perform port-
folio optimization. Unlike our study, however, their data ot differentiate between different
projects within technology categories, and the optimaratiself is not stochastic — they con-
sider only the most likely outcome for any given R&D investihéret, a recent study by the
National Academy suggests that uncertainty be explicittiuded in the U.S. Department of
Energy decisions about investments into R&D (National Besge Council 2007). Thus, our
study is unique in explicitly incorporating uncertaintydestochastic R&D optimization within
a detailed IAM-based analysis, while maintaining tradtghin the resulting model.

The remainder of this paper is structured as follows. Ini8e@ we describe the general
structure for our modeling approach. The components of tbeéemnare developed in Section
3, and stochastic optimization procedures are describ&ation 4. The experimental setup
for policy analysis is discussed in Section 5, while the nuca¢results and their implications

are described in Section 6. Finally, in Section 7 we providaramary of our conclusions.

! Acronyms used throughout the paper are summarized in Afp&idfor reference purposes.



2. Integrated R& D and Abatement Policy Optimization M odel

The stochastic optimization problem representing thesii@tiprocess described in Section 1.1
involves the determination of an optimal portfolio of teclogy investments and an abatement
policy such that the expected total social utility over thenping horizon is maximized. For
a general mathematical representation of this problem, iselét the investment decisions
be denoted by a vectdf, and the near-term and long-term emissions abatemeniaecisy
vectorspy and ey, respectively. Note that abatement is defined as the fraction of emissions
reduced below business-as-usual level. Similar to thetioatased for abatement, the vectors
yn andyy, represent the total output of goods and services in nearded long-term, while
T andT;, are the atmospheric temperatures. In addition, the veaetgrandx;, are used to
denote the set of other decision variables in each stageldfiaie the relationships between
climate change, economy and social utility. We represeattivo critical functions in our
framework, namely the abatement cost function and the daruagtion, as:(us) andD(7s),

s = N, L, indicating their dependence on abatement decisions amolsaheric temperatures,
respectively. Moreover, we represent uncertainty abatrielogy and climate change infor-
mation through the sé? of all possible scenarios, with € 2 representing a single scenario.
The probability of occurrence for each scenario is denoyed’bGiven this representation, the

integrated R&D and abatement policy optimization modetasexl in general form as follows:

e B o UNOO iy T ) Z;ZPWUL(M%, yi, i xfw) (1)
s.t.yy =g(c(pn), D(Tn), zN) (2)

y; =g(c(pi), D(1r), N, 27, w) Yw (3)
GN(Y,pun,yn, TN, ZN) < by (4)

2 The notation used throughout the paper is summarized in gipeS2 for reference purposes.



GL(T,[J,N,yN,TN,ZBN,H%,,y%j,Tf,iB(z,W)Sbf Vw (5)

where the superscript i, y7, 77, andz denotes the dependence of these decision variables
on the realized values of the stochastic parameters for &zaario, while the superscript in
p$ y, 75k, andz$ implies that the optimization is performed over the corcesfing vari-
ables in all scenarios, as we jef = (u! ..., u|LQ|>, Y= (yl, ... ,y'LQ|>, = (7},... ,7-|LQ|),
andz$ = (z} ... ,a:'Lm). The functiory(+) in constraints (2) and (3) represents the relationship
between output, climate changes damages and abatemenissiaers.

The functionsUs(-), s = N, L represent total social utility over the near and long-term
stages, each of which consists of multiple time periods.ddenbjective (1) involves maxi-
mization of the summation of the near-term and the expecteg-term social utilities, where
the expectation is defined over all possible scenarios. titqsa(2) and (3) represent the rela-
tionship between output of goods and services, climateggdamages and abatement costs
for the near-term and long-term decision problems, regmygt Similarly, the constraint sets
(4) and (5) correspond to the relationships defining themhdg between climate change, econ-
omy and social utility. Note that the second stage congg¢8) and (5), and thus the optimal
long-term abatement policy, is dependent on the techndloggstmentsY', near-term abate-
mentuy, the output levelgyy, the atmospheric temperatureg, and other related decisions
ay made in the initial decision stage.

There are several challenges, however, that need to beomnerto fully implement this
model as a valid energy technology R&D policy analysis. Ehi@solve the development of
functional representations and inputs for this generdllera structure, as well as methodolog-
ical integration and implementation within a tractablecktastic optimization framework. We

address these challenges by seeking answers to the fajjawiestions through a multi-step
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multi-model process: (1) Step 1: Modeling of the investmaptions for decision vectolr:
What technology projects should be considered? What areetbhen characteristics for these
technology projects?; (2) Step 2: Modeling of the sociditytiunctionsUs(-), constraint sets
G.(-), s= N, L, and the output function(-): How should the interplay between social utility,
climate change and the economy be modeled? How does R&Dtimgasimpact these rela-
tionships?; (3) Step 3: Modeling of uncertainty for scemagt(2: How should the uncertainty
in climate change damages and the uncertainty in R&D-indldeehnical change be mod-
eled?; (4) Step 4: Implementation and solution of the stsixhaptimization problem (1)-(5):
How should different modeling components be integratediampdemented under a tractable
stochastic optimization framework?

In the next two sections we describe how we address thesesissudentify policy results
for energy technology R&D under climate change. The first $teps listed above correspond
to generaimodel component developmeand are discussed in Section 3. The last two steps,

which involveuncertainty modeling and stochastic optimizatiare described in Section 4.

3. Mode Component Development
We discuss model component development separately for &attte first two steps listed
in Section 2 above. For some parts of these steps we utilmétsefrom relevant modeling
and analysis efforts that are described in detail in othetiss. In the descriptions below, we
provide references to these studies and also discuss hoelate the results from these models
to our integrated R&D and abatement policy optimizatiomfesvork.
3.1. Step 1: Modeling of the I nvestment Options

Identification of technologies and project©ur analysis considers investment options in three key

technology areas: carbon capture and storage (CCS), nidiggian, and solar photovoltaics.
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While this does not cover the full portfolio of energy teclomes, or even electricity technolo-
gies, it provides a good representation of the problem. s@nd Nocera (2006) have pointed
out in their analysis that these three technologies are theanes with sufficient resources
to provide the carbon-neutral energy needed to addressitiate change problem. Thus, our
work can provide specific insights into how to balance amdmege key technologies, as well
as a framework that can be expanded into more technologibe ifuture as necessary. Each
of the three key technology categories contains multieaech areas, or ‘projects’, in which
R&D investments can be made. The research areas considersth technology are listed in
Appendix S3. These projects were chosen jointly with expevith the aim of considering the
projects in each technology that have the possibility afitesy in a breakthrough. Hence, they
represent the most relevant investment options in eacimodagly from a policy perspective.

Characterization of success probabilities for individt@thnology projectsThe probability of suc-
cess in each project is defined through expert elicitatiBrpert elicitation is a formal process
for quantifying an expert’s judgement about uncertain gitias, and capturing those judg-
ments in terms of probabilities that can be used in furthatyaes (Hora 2004). While expert
elicitations are subject to a number of known biases (Tweasikd Kahneman 1974), no other
method exists that can be used to gain information abounpatduture breakthroughs in
technologies. In fact, in a review of the climate change sssent of the Intergovernmental
Panel on Climate Change, InterAcademy Council (2010) $ipalty suggests that “ to inform
policy decisions properly, it is important for uncertag#ito be characterized and communi-
cated clearly and coherently...[w]here practical, formadert elicitation procedures should be
used to obtain subjective probabilities for key results.”

We base our model on the expert elicitations summarized peAgdix S3, and described in

detail by Baker et al. (2008), Baker et al. (2009a) and Baked.g2009b). The elicitations
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assume that each project can be invested in at one of mytgtential levels, where invest-
ments include only U.S. government funding are measureedbas net present value. Each
project is also associated with specific endpoints or tangebe assessed, such as a given cost
and efficiency level, which define ‘success’ for that prajddte specific probabilities of suc-
cess defined through the elicitations for different invesitrievels of each project reflect an
aggregation of the individual experts’ judgments. Expeptit was also used to define both the

funding levels and the endpoints to be assessed.

3.2. Step 2: Modeling of the Social Utility Functionsand the Constraint Sets

The modeling of the social utility functions,(-), the constraint set&(-) for s = N, L, and
the output functiory(-) involves multiple phases. First, the complex relationshigtween cli-
mate change, emissions abatement, economy and socib/ atii represented in basic form
through a well-known 1AM, namely the Dynamic Integrated Modf Climate and the Econ-
omy (DICE) (Nordhaus 1993). Then, these relationshipsgparmded to include R&D invest-
ments and the impact of resulting technical change. Thisireg the quantification of the
impact of R&D on abatement cost functions, and the integnatif this quantitative measure

into the modeling framework as part of the constraint sets.

3.2.1. Basic Representation through the DICE Model DICE is a deterministic global optimal
growth model that includes interactions between econormiiviies and the climate. The
model covers a long planning horizon, typically around 400- years, in ten-year periods.
In each period, economic output (measured as the gross tomesduct (GDP)) is divided
between consumption and investment in new capital, camistith the standard optimal
growth framework in economic analysis. DICE adds to thigieaork by modeling the emis-

sions of greenhouse gases into the atmosphere as part afoithécpion process. The general

3 We note here that while other elicitation data exists onlihee technologies, they are not applicable to the type of R&fifolio
analysis studied in this paper. See Appendix S4 for morélsgeta
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Parameters
R, : utility discount factor for period
A, : level of total factor productivity in period
S, : ratio of uncontrolled emissions to output in period
E, : emissions from deforestation in period
L,: population and labor input in periad
elasticity of marginal utility of consumption
~: elasticity of output with respect to capital
o : rate of depreciation of capital
Functions

0
Ye
(e
k,
ly:
e :
M
Tyt
Uy

H(-): function linking emissions to atmospheric temperature

¢p(+): abatement cost function in the DICE model

Dp(+): climate change damage function in the DICE model

Variables

consumption of goods/services in period
net output of goods/services in peribd
unadjusted output in periad

capital stock in period

investment in period

total carbon emissions in periad
emissions abatement in period
atmospheric temperature in peribd
social utility in periodt

Table 1 List of parameters, variables, and functions used in the summary formulation of the DICE model

formulation of the DICE model is given in Nordhaus (2008)d amalso summarized through

equations (6)-(13) below. We will later extend constraif@s and (11) in this formulation

through inclusion of uncertainty and investment decisidiee summary formulation utilizes

the parameters and variables shown in Table 1.

max E Rtut
“7y7T7m t

(3 -1
S.t. Ut = Ltﬁ
yr=ot+ 1l

kr=lL1+(1—0)ki

Tt = H(Tt—h@t)

_1—-c¢p () g

yl = ALy k]

er = Si(1—p)yi + By

(6)
vt 7)
vt 8)
vt 9)
vt (10)
vt (11)
vt (12)
vt (13)

Similar to the notation used in the general description irctie 2, the vectorxz =

(o,y9,k,l, e, u) in objective (6) is used to refer to all other variables infitvenulation, except
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for the abatement vectqt, output vectory, and temperature vectet. Key independent deci-
sion variables in the formulation age ando, while the others are dependent variables deter-
mined by the values gk ando. Note that elements qi, y, 7 andx consist of both near-term
and long-term decision variables as they include all parisd no such distinction is made in
the notation used. Moreover, the formulation does not ve/&&D investment, which we later
include through extensions of the given relationships.

In the formulation above, objective (6) ensures that pedicre chosen to maximize the dis-
counted sum of social utility;; over time. Utility is based on per capita consumptignas
defined through the relationship in (7). This constraintroefiutility in each period as an isoe-
lastic function of consumption, where is the calibrated elasticity parameter. Consumption
is defined by equation (8) as the difference between outpgbofis/serviceg; and the capi-
tal investment,. Capital balance relationship is represented throughting (9). Constraint
(10) represents a set of constraints that link greenhousemésiong; to the global temper-
aturesr;. Note that the accumulation of greenhouse gases, esgecalon dioxide, affects
welfare by increasing global temperatures. Thus, the segmtative functionH (;_1,e¢) is
increasing ire;. A key equation in the model is (11), which represents thegiaiship between
output of goods/serviceg and the impacts of climate change. This representationvieso
the unadjusted outpwf in each period, which is determined by inputs of laBgand capital
k, as defined by (12). Note that the climate change damage @mictiDICE, i.e.Dp(7;) in
the denominator of the right hand side of equation (11), ifnareasing function of;. This
implies that a higher temperature negatively impacts thpuiuy,. In order to mitigate this
effect, an abatement level can be chosen each period, which reduces emissiobslow
what would otherwise occur for a given production level.sTtalationship between abatement

1 and emissions; is represented through constraint (13). While abatemesntoleaefits, it
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is costly as the abatement cost functigf(x,) in the numerator of (11) is increasing jn.
Hence, higher abatement reduces the output available fmucoption or investment in every
period. In other words, lower abatement positively imp#wesoutputy;. This tradeoff needs to
be managed by choosing the best abatement effart each period, as the optimal abatement
path reflects a balance between benefits and costs.

Here we highlight two equations which we will use to incomuer R&D investments and
stochasticity into our modeling framework. The first is et (8), which shows how eco-
nomic outputy; in each period is used. We will include R&D investments irtte model
through the modification of this constraint, which we ddserin Section 3.2.3. The second
equation we highlight is (11), which shows how the cost oftalment and the damages from
climate change impact economic outpytin each periodt. The abatement cost function
cp (), for which a detailed description is provided in Appendix §48I be revised to include
the impact of technical change due to R&D investments. Thoggxure is also described in
Section 3.2.3. On the other handy, (7;) = 1 + 777 in equation (11) represents the damages
from climate change resulting from atmospheric tempeeatymwherer is the damage param-
eter. We will taker to be a stochastic parameter in our model, representingrteriainty in
climate change damages, which we describe further in Sedtinl.

The DICE model formulation links to our general model (1)-45 follows: the utility func-
tion in (1) is represented by objective (6) and equation éguations (2)-(3) correspond to

(11); and the general constraints (4)-(5) involve equati@&)-(10) and (12)-(13).

3.2.2. Quantifyingthelmpact of R& D on Abatement Costs The basic relationships represented
through the DICE model need to be expanded to include R&Dstment decisions and

their impacts on other problem components. To achieve wedjrst need to define measures
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that model how technical change resulting from R&D impatigtament costs. We will then
develop a procedure to integrate these quantified impacishie modeling framework.

Recall that the second stage decision of ‘long-term abatémevolves choosing an emis-
sions abatement level for each period such that expectadtatial utility is maximized. Social
utility is related to the cost of abatement, as higher cosialdvimply lower net economic
output. On the other hand, the cost of abatement is depeodetite realized technological
success in the invested R&D projects. Hence, we need toedaip@tement cost functions under
different technological success outcomes to implemerttemtodel. We achieve this through
the two phase process described below, which is also dedussBaker and Solak (2011):

Deriving marginal abatement cost curveRather than deriving abatement cost functions directly
for each technological success outcome, we first derive MalrgAbatement Cost Curves
(MACs), which reflect the cost of reducing emissions by antamithl tonne. We then use these
curves to parameterize the impact of technical change aemeat cost functions.

We utilize the definitions of success described in SectidridBderive MACs using a techno-
logically detailed integrated assessment model, namelgibbal Change Assessment Model
(GCAM) (Brenkert et al. 2003, Edmonds et al. 2004). We use MA&ther than abatement
cost curves for two reasons. First, the MAC is a key unit oflysis in our decision problem:
as long as there is an interior solution to the second stagside for a given realization of
uncertain parameters, abatement will be optimized wherewrginal cost of abatement is just
equal to the marginal damages avoided by abatement. Sett@nAC is easy to generate
from IAMs and is more likely to be consistent across IAMs tiiag abatement cost curve.

To derive the MACs, curves were generated in GCAM that rééatels of emissions reduc-
tion to carbon prices, thus approximating the marginal obstbatement. This was done for

each possible combination of projects assuming succesacim groject. A selection of the
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MACs that were derived using GCAM are shown in Appendix S6emelthe baseline MAC
used to measure the impact of technical change refers taeewith no R&D-induced tech-
nical change as defined by Clarke et al. (2008). We demoastr&ppendix S6 the impact of
three projects (one from each technology, i.e. CCS, nuckeat solar), if each of them were
successful independently; as well as the MAC that is geedray GCAM if all three of the
projects were successful simultaneously. The changesresthect to the baseline MAC are a
combination of pivoting the curve clockwise around zero ahiiting the entire curve down.
CCS has more of a pivot, as it results in a nearly proportiogdliction in the MAC. Nuclear,
on the other hand, has more of a constant downward shift, avittuch smaller pivot effect.
Solar has a very similar qualitative impact as nucleargaigjn its overall impact is small.

Parameterizing the impact of R&D-induced technical changeabatement cost functiond.he pro-
cess described above resulted in numerical MAC curves fdn eambination of successful
technology projects. In order to make this tractable andapde to our framework, the next
step was to estimate parameters that quantify how eachdkayhcombination impacts the
baseline MAC. To this end, for each combination of succégshjects, we used equation (14)
below to estimate a pivot vecter = (accs, nuclear, Osolar)» With @ach component represent-
ing the pivoting effect of the corresponding technologydabasn the successful projects in that
technology, as well as a shift paramekdix). The shift parameter was represented as a func-
tion of a,, because a unique shift effect was observed for every catibmof values oty;,
1= CCS,nuclear, solar:

MAC () =[] (1 — i) MAC () — h () MAC (0.5) (14)

i

where M AC (p) is the numerical baseline MAC from GCAM, with € [0, 1] denoting the

level of abatement, antl AC (i, ) is the estimated MAC after technical change, where tech-
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nical change is represented through the veatofhe product terrrH (1 — «;) models the piv-
oting of the functiomV/ AC (1) due to technical success, whil¢a) models the corresponding
shift. Notice that the shift () is anchored or50% abatement to make this representation
portable from GCAM, in which the parameters were deriveath®r modeling frameworks.

Let S = u;S, refer to some given combination of successful technologyepts, wheres;
denotes the set of successful projects in technology- CC'S, nuclear, solar. The process
for deriving the values of; andh («) for any given seS was as follows. First, a project pivot
parameter, denoted ly; was estimated using the generated MACs for each indivicopd ot
j € S; in technologyi. The values of these parameters, which vary depending olebEof
success in a project, are listed in Appendix S7. Second, we Iittee assumption that, within
any technologyi, only the best project (the one with the greatest impact enMAC) will
impact the economy. Therefore, we defineas a; = max; {«;;: j € S;}. Finally, for every
combination of possible technological outcomes represehy the threey;’s for the three
technologies, a shift parametefa) was estimated numerically.

The relationship in (14), which is defined over the MACs, retalbe transformed into a
relationship over abatement costs for implementation mnoodel. We do this by integration
and define a functionab (¢ (1) , ) that translates any generic baseline cost function (withou
technical change), denoted by ), to a new abatement cost function with technical change.
Specifically we define a functiondl : 7 x R™ — F, whereF is a set of functions an®” is a
set of real vectors, as follows:

®(c(p),a) =] (1—a)e(u)—h(a)c(05)p (15)

This can be used to model the impact of technical change oalsatgment cost function.
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3.2.3. Integrating R&D Investment and R& D-induced Technical Change into the Model The
investment decisions for each technology and the parammefpresentation of the resulting
impacts need to be integrated into the modeling framewarduiih the introduction of new
variables and constraints. We discuss this procedure here.

We noted in Section 3.2.2 that nuclear and solar have similpacts, in that they both have
strong shifts as well as pivots, as opposed to CCS which snaed pivoting effects. Given
this structure, we combine nuclear and solar into one cagegalculating the resulting pivot
values asvy =1 — (1 — apuciear) (1 — Qsorar)- Thus, we represent R&D investments by using
only two technology categories in the modeH1 for CCS and = 2 for solar/nuclear).

Integrating R&D investment decisions into the model: Medition of constrain{8). We assume that
R&D investment will take place over the next 50 years at a tongate. In the basic represen-
tation in Section 3.2.1, output in each period is dividedussin consumption and investment in
traditional capital as noted in equation (8). We extendrligtionship to include R&D invest-
ment for periods <5 as follows. Note that each planning period corresponds tgeds, i.e.

t =5 implies 50 years:

yr=0r+li+r(T1+T2) /5 Vi <5 (16)

wherex is an opportunity cost multiplier, antf; is the investment in each technology area
i, with the index: corresponding to CCS and solar-nuclear as defined aboveeHtdre total
output in each period is either consumed, as representetiebyariableo;, or invested in
traditional capital, as represented by the varidhler invested in R&D, as represented by
k(Y14 Y2) /5. While Y, is a decision variable, the opportunity ceds a parameter for which

we perform sensitivity analysis as part of the numericakexpents described in Section 5.1.
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Integrating R&D-induced technical change into the modetidvication of constrainf11). Following
the cost function structure described by equation (15) ciiGe 3.2.2, we model the impact of

technical change by altering constraint (11) as follows:

_1-®(ep(), ) 4 1-TL(1—ai)lep (pe) —h(a)ep(0.5)p] ,
Dp(r) Y Dp (1) v

vt (17)

Yt

The model of technical change in equation (17), howevenyli®sn a non-convex model,
involving multilinear-terms due to multiplication af;, which depend on the investment deci-
sion variablesl’;. To deal with this, we estimate tight linear approximatitmthe actual func-
tions. More specifically, we use our data on theandh () to estimate the two quantities of
(I1—a1)(1—a2)~1-0.80; —0.92c0 @and(1 — o) (1 — ag) h (ex) = 0.02 —0.061 +0.14xo.

Thus, we express the revised production function in our rimde > 5 as follows.

~ [1=((1-0.8a1 —0.92a2)cp (p) — (0.02 = 0.06cx; 4 0.14a2)cp (0.5) ut)]yg

Yt = Dy (Tt) t (18)

We show in Appendix S8 that modeling the pivot and shift @ffelsrough these linear approxi-
mations ensure that convexity of the optimization modelasntained in the extended stochas-

tic model for the given practical bounds for variables.

4. Uncertainty Modeling and Stochastic Optimization
In this section, we describe how we model the stochastictsire in the energy technology
R&D portfolio problem through a scenario set, and how we esahe resulting optimization

model using stochastic programming.

4.1. Step 3: Modeling of Uncertainty
As noted in Section 1.1, our model involves two types of utaiety: the exogenous uncer-
tainty in climate change damages, and the endogenous amtgiin technical change which

is a function of the R&D investment decisions.
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4.1.1. Modeling the Uncertainty in Climate Change Damages We model the uncertainty in cli-
mate change damages through a probabilistic characienzztthe parameter in the damage
equationDp, (1) = 1 + m72. This is done by defining a three-point discrete probabditt
tribution for = based on previous elicitations (Nordhaus 1994). As partuofamalysis, we
consider several risk cases for climate change, which aresented by different distributions

of the parameter. These risk cases and distributions are discussed in 8&cB0o

4.1.2. Modeling the Uncertainty in Technical Change In Section 3.1 we identified individual
success probabilities for technology projects, and ini8e@.2.2 we modeled how differ-
ent technological success outcomes, defined through tbeavametersy, impact emission
abatement costs. For a given portfolio of projects, it issgue to calculate the probability of
each success outcome from the elicitation data in Apper@lith®ugh multiplication of indi-
vidual project success probabilities. These probakslitiewever, are dependent on technology
investment decisions, as they will change based on thegirpgetfolio selected. This is the
endogenous uncertainty described in Section 1.1, wherprtmbility of a specific outcome
is not fixed but rather changes with different decisions. E\mv, such decision dependent
probability distributions are typically not amenable faredt use in stochastic optimization,
specifically in stochastic programming. To overcome this,develop a procedure to derive
returns functions with fixed probabilities, where each tiorcrepresents how the values®f
i.e. returns from technology investments, change as aitumof the investment amounis.

A reduced-form portfolio modelThe procedure we develop to derive returns functions with
fixed probabilities is built upon some insights obtainedrfrine reduced form portfolio model
in Baker and Solak (2011), summarized in Appendix S9. Twodaclusions from this work
are directly related to our analysis in this paper. First, dlaithors note that for a given budget

level the composition of the optimal portfolio of projecssrobust to risk in climate damages.
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This conclusion implies that we do not have to explicitly rabthe individual technology
projects in our analysis. Instead, we consider a discretef gotential R&D investment levels
and identify the optimal set of technology projects for eatthese investment levels. Recall
that for a given portfolio of projects, it is possible to askte the probability of each possible
« value using the elicitation data in Appendix S3. Hence, phecess results in a probability
distribution for the pivot (and shift) parameters for eanveistment level. As described later in
this section, we use these distributions to derive ‘ret@unstions’, in which probabilities are
fixed, and pivot and shift parameters change as a functior&ff Rvestment.

Additionally, Baker and Solak (2011) conclude that the myaii amount of R&D fund-
ing does change with increases in the riskiness of climateadas in a non-monotonic way.
Specifically, when an increase in risk is modeled as a measepving-spread that stretches out
the tail, it is found that the optimal amount of R&D fundingstilncreases, and then decreases
in risk. The reason has to do with the complex interplay betwechnology investment and
long-term emissions abatement. This result supports thevation for our current model, in
which we use a stochastic dynamic optimization model in otdecapture the interactions
between climate change damages, abatement, and the infgd&Dounder multiple policy
frameworks. Through inclusion of several factors such agaleaccumulation in the economy,
carbon concentration in the atmosphere, and the warmirtgealéep oceans, our current work
is able to represent these complex dynamics in order to geeaviconvincing policy analysis.

Derivation of stochastic characterizations of returns t&IR For stochastic characterizations of
returns to R&D, we develop a probabilistic mapping from stweent decisions; to the
technical change variables, which represent the returns to R&D in technology category
i = 1,2. As discussed above, this is done by initially considerindjszrete set of possible

investment levels or budgets. Given a budget level, thecedifiorm R&D model identifies an



20

Budget($mil)|| 52[ 108] 319| 729] 961]] i [[| 52| 108] 319] 729] 961]
Estimates Actual Data
Probabilities|| 0.41| 0.24| 0.17| 0.11| 0.11 0| 0.41]0.24|0.17| 0.11| 0.10 0
0.59| 0.34| 0.40| 0.41| 0.35|| 0.319||| 0.59| 0.34| 0.40| 0.41| 0.35|| 0.319

0 0|0.01|0.06|0.12|| 0.346 0 0] 0.02| 0.06| 0.13|| 0.346

0]0.42]|0.42|0.42| 0.42|| 0.38 0]0.42]|0.42|0.42| 0.42|| 0.38
Table 2 Comparison of the estimated and actual probability distribution data over each possible outcome of «;
for different levels of investment in CCS.

optimal portfolio of projects for that budget level. Eachpalio is associated with a probabil-
ity distribution over the possible outcomesmffor each technology categofySince there is
only one optimal portfolio per budget level, this allows asssociate a probability distribution
over thea; values to each given budget level.

In the right half of Table 2 we show these values for CCS, wittr@bability distribution
in each budget column and the values in the last column. An important issue is the selec-
tion of the budget levels for this discrete representatioR&D investment. We considered a
wide range of possible R&D budgets, and chose those that oygmmal investments in some
instance of the reduced-form model, or resulted in a sigamfigvelfare improvement over other
R&D budgets that we considered.

As noted previously, however, endogenous probabilitigsrgin the lower half of Table 2
are not amenable to stochastic optimization, rather we aeedpping where the probabilities
are fixed and the; values change with the investment decisions. We achiesdyhileriving a
set of random piecewise linear returns functions, which wmote by.A;, for the two technol-
ogy categories = 1, 2. Each realization ofd; maps R&D investment level¥; to technology
parametersy;, i.e. A; : T; — «a;. The functionsA; are piecewise linear as they are defined
based on a discrete set of investment levels.

To derive the functionsd;, we started by enumerating all possible functions. As amexa

ple, one possible combination for CCS corresponds to the wh&nq is realized as 0 at
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| Budget($mil)]| 52| 108 319 729 961]| Probability

0 0 0 0 0 0.11

0 0 00.319| 0.319 0.06

0 0 0.319| 0.319| 0.319 0.07

0 0.319| 0.319| 0.319| 0.319 0.17

a1 0.319| 0.319| 0.319| 0.319| 0.319 0.05

0.319| 0.319| 0.319| 0.319| 0.346 0.06

0.319| 0.319| 0.319| 0.346| 0.346 0.04

0.319| 0.319| 0.346| 0.346| 0.346 0.01

0.319| 0.38| 0.38| 0.38| 0.38 0.42

Table 3 Piecewise linear returns functions for CCS, where the central columns show values of a; for discrete
levels of investment. Each row, which corresponds to a realization of the function A;, is associated with a

probability given in the far right column.

all budget levels. This enumeration, however, results iargd number of functions, which
is intractable for optimization purposes. Thus, we perf@rscenario reduction process and
identify a subset of the possible returns functions thavidea good approximation of the
actual data-based distributions. First, we eliminatededlirns functions that did not exhibit a
dependence between funding levels - that is we assume thatdject is successful at a lower
budget level, it will be successful at a higher budget leVaen, we followed a process based
on the minimization of the standard deviation of the diffexes between the actual probability
distributions and the probability distributions derivedrh the subset of the functions. Finally,
in order to improve the overall match for solar nuclear, weeatlin two returns functions that
did not exhibit dependence.

Table 3 shows the estimated returns functions for CCS, whéecorresponding functions
for the solar-nuclear technology category are includedppéidix S10. For example, in Table
3 the third row represents a returns function thatdas- A; (Y1) =0 if T < $319 million,
andag = A; (T1) =0.319 if T; > $319 million. The probability that this particular function
is realized i9).07. As noted above, these functions together with their priihab provide a
very good estimate of the actual probability distributiomgh an average standard deviation of

the errors of 0.02. Table 2 compares the estimated data kéthdtual data for CCS, showing
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the estimated probabilities and the actual probabilitigggsibleq; values at each investment
level. They are very close, with the differences being Ieastl percentage point in each case.
Similar results hold for the approximations of the solaclear returns functions as well, with
differences being less than 4 percentage points in each Nase that the set ofy; values
shown in Table 3 and Appendix S10 are based on the values qfaifzenetersy;; for each
projectj, which are listed in Appendix S7, and are derived as destiib8ection 3.2.2. While
a1 is directly based on CCS projects, the combined solar/augiarametety, is calculated by
first identifying a,,ycieqr @Ndasorqr, and then settings = 1 — (1 — apuciear) (1 — Qsotar)-

The resulting stochastic returns functiods are used in conjunction with equation (18).
The integration of these piecewise linear functions intrtfodel requires the addition of new

variables and constraints. The details of this impleméentatre described in Appendix S11.

4.1.3. Characterization of a Scenario Set The probabilistic characterizations for the two types
of model inputs, i.e. the climate change damages and temhecliange due to R&D, result
in three distinct stochastic entities, which we denoteufgfothe random vectdrr, 4, .A5).
Given that possible values for the three parameters areetissand finite, this random vector
can take on a finite number of values. Each of these distiadizegions correspond to a sce-
nariow € 2 as described in Section 2. The probability of occurrenceefmh scenarip® is
calculated based on the probabilities of individual part@mealue realizations. For example,
a sample scenario’ could correspond to realizations involving the first rowsTable 3 and
Appendix S10, and a value of 1. Assuming that the latter can occur with probabdf 1 and
using the probabilities shown in Tables 3 and Appendix Sid@hability of scenarias’ can be

calculated ag® = (1)(0.11)(0.087) = 0.00957.

4.2. Step 4: Stochastic Programming I mplementation
Stochastic programming is a natural approach for our prolale the interactions represented

through the DICE model form a complex structure that preveghe problem from being
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amenable to other methods such as dynamic programmingisTespecially the case as the
formulation has many decision variables but relatively &#ages.

The optimization problem (1)-(5) can be expressed as orgdesimonlinear programming
problem. However, in order to utilize special algorithmadigion procedures, we further rep-
resent this formulation by replacing the first stage denisiectorsY, puy,yn, Ty, TN DY
possibly different vector&™, u%,, y%, 7%, %, Similar to the notation used for second stage
decisions. Using this, we can define a problem formulatioreéch scenario, but at the same
time, require that the values of these first stage varialesod depend on the realization of
random data. This can be achieved by linking the individaahsario problems through a set
of constraints, which are referred to as the nonanticigggtoonstraints. The nonanticipativity
constraints ensure that the decisions in all scenarioshareame for the first 50 years, and
are defined explicitly by setting the variables to be equalefach scenario for the first 50
years. In our model, these constraints involve the R&D itmesit, capital stock and period
utility decisions for the first 50 years, i.&.,;, k;, andu;, respectively. It must be noted here
that the set of decision variables at each period in the madelves a large number of other
variables as depicted in the base formulation (6)-(13). éle@r, we show in Appendix S8 that
nonanticipativity in the three decisions above is suffitfenthe overall model. As fewer num-
ber of constraints needs to be used, this result allows fesga¢omplex representation of the
stochastic programming model. Moreover, this also enableactable implementation of the
Lagrangian decomposition procedure which we use as outi@olonethodology.

Given this structure, the overall stochastic programmiiglehcan be defined as follows:
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o BB D YD R (19)
we t
S.LTE (X, ¥,y 7, ) < B Y, w (20)
Y= p 1y =0 Viw  (21)
w'eN
E=-> pk =0 uf = Y pu =0 vt<hw o (22)
w'eN w'eN

where the superscripts ‘2, u, ¢y, 7, andz*® denote that the optimization is performed
over all scenarios in the scenario $etAs in the DICE model description in Section 3.2.1,
x* refers to all other variables in each scenario, and the ieniggnt decision variables are
Y« p* ando®. In this formulation, objective (19) corresponds to theeahiye function (1) in
the general formulation and represents the maximizatioexpécted total social utility over
all scenarios. Constraints (20) define the correspondihgfssonstraints for any given sce-
nariow. These constraints, each of which is indicatedyby 1,..., ¥, involve the standard
economic relationships as given by (7), (9), (10), (12),)(&3 well as the extended relation-
ships modeled by equations (16), (18) and the required @nts for the piecewise linear
mappings described in Appendix S11. The variables in eathesie constraints are indexed
by a superscript, and the constraints are defined separately for eaek). Constraints (21)-
(22) are the nonanticipativity constraints ensuring thatisions in the first 50 years are the
same for all scenarios. The structure used in the formulatithe nonanticipativity constraints
accounts for the scenario probabilities, and prevent theilditioning in the Lagrangian dual
as discussed by Louveaux and Schultz (2003). Note thatreamist (20)-(22) together define
a reformulation of constraints (2)-(5) in the general folation described in Section 2.

Model (19)-(22) is a stochastic nonlinear programming pobthat can be solved through

decomposition methods, as the size of the scenario set dbaliow for a direct solution. As
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a solution approach, we use a Lagrangian decompositior pmeeedure, which is similar to
the method described by Caroe and Schultz (1999). The slefdliis implementation, as well

as some additional computational improvement procedueedescribed in Appendix S12.

5. Experimental Setup for R& D Policy Analysis

In this section we discuss the policy experiments we ran with framework. We start
by briefly discussing some assumptions about the oppoytaoit of investment. We then
describe a number of alternative policy environments aadiltfierent risk cases we consider.
5.1. Opportunity Cost

The R&D funding levels used in the elicitations and reporitedhe tables in Appendix S3
represent the amount of money going into the hands of hightguesearchers in the appro-
priate areas; this does not account for additional costsdety. In order to address this issue,
our baseline assumption is that the opportunity cost ofsiirg in R&D is 4 times the out-
of-pocket cost (i.ex = 4 in equation (16) for the base case). This assumption refthets
current state of the literature (Nordhaus 2002, Pizer ampR808), but in fact there is very
little research directed at determining what this oppatyjucost actually is. Thus, we perform
sensitivity analysis over the parameterand discuss it in our analysis in Section 6.

5.2. Alternative Policy Environments

Following Nordhaus (2008), we consider a number of diffeqgwlicy environments which
prescribe different alternative strategies in dealindhwitmate change. Specifically, we con-
sider six policy environments which we refer to as DICE Opilinstern, Stern Fixed, Gore,
Kyoto Strong, and Lim 2, as well as a baseline no-controle.cé¢e choose these policies
because they are representative of the range of policy neemdations being debated around

the world. Here we describe these policies, which are alsmsarized in Table 4. For each
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Policy || Abatement Key Characteristics

Baseline no controls

DICE Optimal optimal

Stern optimal abatement chosen under low interest rate

Stern Fixed optimal abatement and R&D chosen under low interest rate
Gore lower bound btwn 0.25-0.95limited participation

Kyoto Strong fixed for 150 yrs limited participation

Lim 2 optimal upper bound on temperature

Table 4 Attributes of policies considered.

policy environment we assume there is no knowledge of tdolgintal success and damages
until year 2055, and we run the model out for 400 years.

In the “DICE Optimal” policy the model chooses the optimal B&nhvestment and abate-
ment path. The “Baseline” case models the levels of majon@tic and environmental vari-
ables as they would occur without any climate-change pdidie. abatement is forced to be
in all periods after the first. The “Stern” policy is intendedeflect the policy suggestions laid
out in the Stern Report (Stern 2007). Nordhaus (2008) itledtthe key difference between
Stern and DICE as being the very low discount rate in the farifteus, this policy is imple-
mented by first running the DICE model at a very low discoutd.rd/e then take the resulting
abatement levels and fix those in the model with the defasittadint rate. This is so the results
of all the policies can be evaluated at one common interést Far our implementation, we
have run two versions of this policy. In one case (referreastStern Fixed”), R&D investment
is fixed as calculated from the run with the very low discowtér In the other case (referred
to as “Stern”), R&D investment is chosen in the second ruedas the DICE discount rdte

The “Gore” policy is intended to reflect the policy suggesstidaid out by Al Gore (Gore
2007). This policy fixes a lower bound for abatement @, 0.45,0.65,0.85 for the periods
beginning 2015, 2025, 2035, and 2045 respectively. Thinethfe lower bound for abatement

is fixed at 0.95. However, for our model, we assumed that whierate change uncertainty

4 The reader can refer to Nordhaus (2008) for more informaiiohow the interest rates are modeled.
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No risk || Medium risk High risk Very high risk Intermediate
@) @) (©) (4) ®)
GDP Loss|| 1.1% || 0.0% | 3.3% || 0.0% | 20.0%/|| 0.0% | 40.0%|| 0.0% | 1.1% | 20.0%
Probability|| 1.000 || 0.667| 0.333]|| 0.945| 0.055 || 0.973| 0.028 || 0.309| 0.673| 0.018
T 0.003 || 0.000| 0.009|| 0.000| 0.063 || 0.000| 0.167 || 0.000| 0.003| 0.063
Table 5 Probability distributions defining climate change damage uncertainty.

is realized with a no damage outcome, abatement is chosénadigt The Gore policy also

reflects limited participation in the early periods, in whigot all countries and regions will
participate in the abatement. Specifically, it is assumatlttie participation rate will increase
gradually from 0.6 to 1 over the next 50 years.

“Kyoto Strong” represents a very aggressive, but potdgtédhievable, international agree-
ment on climate change. This is intended to follow the spifithe Kyoto Protocol, but to
continue on indefinitely and have more and more nations jaithoough time. In this pol-
icy, abatement is fixed for the first 150 years. To be able toghtiek learning about climate
damages and R&D, we altered this aspect, as in the Gore pbliagllowing abatement to be
chosen optimally in the case where damages are zero. Thatenaént does not respond to the
outcome of R&D for the first 150 years, nor to higher than expeédamages. Also, similar to
Gore, the cost of abatement is increased at earlier stagers fetver countries have joined in.
After 150 years, future abatement is chosen optimally aspareds to the particular scenario.

Finally, the “Lim 2" policy adds a single constraint that lisithe average global temperature

increase to ZC. In our modeling framework this constraint is only minitgddinding.

5.3. Risk Cases

One of our central questions is how uncertainty about ckncatange damages impacts near-
term investments. In order to address this question, weid@nsultiple cases for uncertainty
over climate damages. Table 5 shows the five cases we carisaidr probability distribution

is given a name in the top row. The second row shows the pef@Bift loss given a
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increase in global mean temperature as calculated usirggiegy11). We choose this value
as our anchor because it is used to calibrate the DICE modeéljsathe value used in the
elicitations in Nordhaus (1994). We use mean-preservimgagfs around this value. That is,
each probability distribution has a mean GDP los$.af4 given a 2C warming. The second
row shows the probabilities of each outcome in that distrdou The last row shows the value
of the parameter for each respective outcome. While previous work uses npeaserving
spreads around, the damages in the DICE model are concave irtherefore we hold the
mean of the expected GDP loss constant in the mean-pregeamiaads used in this paper.

6. Resultsand R& D Policy Analysis

In this section, we discuss the results from the optimiratiiodel, focusing on the impact
of R&D on societal costs and on the range of scenarios corexzlda the analysis. While we
describe several conclusions derived from our model aral dat emphasize that the analysis

boundaries are tight, and therefore the results may not hergkzable.

6.1. Optimal Investment in R&D

We find thatthe optimal investment in the R&D projects considered isabust, both across
different policy environments and across different riskesaFigure 1 illustrates the optimal
investment across risk and policy environments. The hata@xis represents risk cases 1 — 3
from Table 5. Since the optimal investment is the same in eash for DICE Optimal, Gore,
and Kyoto Strong, we have graphed these together; the saesd@dStern and Lim 2. We see
that in 12 out of the 15 cases we are showing, the total opiimabktment is equal t®5, 303
million®. In the three other cases, the optimal investments dropdsytlean $300 million, a
relatively small amount. This robustness can be partlyarpt by referring to the reduced-

form R&D model where the portfolio of technology projectssadso observed to be robust to

5 We show the allocation of the total investment in researelsfor the optimal levels of investment in Appendix S13.
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Risk 1  Risk 2 Risk 3
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R&D Investment ($mil)

s DICE bptimal, Gore, Kyoto Strong

5100 = =« Stern, Lim 2

p
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%o Loss in GDP given 2 degrees increase in temperature

Figure 1 Optimal investment across risk and policy scenarios, where the horizontal axis values correspond to the
GDP loss for the high damage outcome of risk cases 1 — 3 from Table 5.

climate damages for any given R&D budget. This is becauseltbigation data revealed the
technologies to be quite diverse, with some projects cfesanperior to others. Here, however,
our robustness result is even stronger. We find that the sarakdf funding is optimal over a

wide range of very different abatement paths and differsktlevels.

Not shown in Figure 1 is the DICE Optimal investment undeg\ggh risk, which falls to
$2,696 million. In general, we see a somewhat monotonic respongskan our results, with
the optimal investment in R&D decreasing in risk under asiemme of the policies. This is
because when damages are very high, abatement is at 100%rwitthout technical change.
A mean-preserving spread that increases the magnitudes afaimages will simultaneously
reduce the probability of those damages. Thus, an increasskiof this kind leads to a lower
probability of full abatement, and therefore a lower expdatalue for technical change.

The optimal investment is also fairly robust to assumptiabsut the opportunity cost of
R&D investments. If the opportunity cost multiplietis between — 4, then the optimal invest-
ment is stable as above at $5,303 million. If it is betw8en6, then the optimal investment is
slightly lower at $5,071 million. If the opportunity costlietweeri7 — 10, the optimal invest-
ment drops to $2,696 million. Thus, the investment in the R&Djects considered is not very

sensitive to assumptions about opportunity cost until fhgootunity cost gets very high.
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(a) Effect of R&D on total costs (b) Expected relative utility of policy interventions

Figure 2 Expected costs and utilities of policy interventions

The optimal investment is much higher in Stern Fixed, in Whilce investment is cho-
sen with a very low discount rate. The optimal action in thadigy environment is to invest
$21, 132 million, the maximum amount we have available in our modaisTs not surprising,

and underlines the importance of coming to an agreementszouint rates.

6.2. Impact of R& D on Expected Policy Costs

In Figure 2, we illustrate the impact of R&D on the differemtipy environments. Figure 2(a)
shows the expected total cost of each policy with and witlia&iD, while Figure 2(b) shows
the expected relative utility of each policy interventioithwespect to the Baseline.

The vertical axis in Figure 2(a) represents the expectedoregent value of the cost of
abatement plus the cost of climate damages in trillions @52@ollars. The vertical axis in
Figure 2(b) represents expected utility in the same unaéshbbar represents the extra utility
gained (or lost) from the Baseline by implementing the paointervention. The darker bars are
in the absence of R&D and are very similar to the results inddaus (2008). The lighter bars
are when R&D is available and chosen optimally. Note thatesoffrthe policy environments
are improvements over doing nothing, whereas some are wuwasaloing nothing, at least as
evaluated within our framework. The Stern Fixed policy is stringent in the DICE model, as

it is chosen in response to a very low interest rate, but e#@tbunder a higher interest rate.
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The first result here is th#tte availability of R&D is more valuable in the second bediqyo
environmentsThe value of having R&D is greater in the non-optimal enwireents and is
greatest in the Gore environment. Of particular interestlae Kyoto Strong and Lim 2 results.
Kyoto Strong is a possibly implementable policy. In the alogeof R&D, it is barely better
than doing nothing. However, with R&D it becomes clearlyipies, almost equivalent to the
optimal without R&D. The Lim 2 goes from being a net loss to almnefit with R&D.

Figure 3(a) shows the expected utility of policy interventfor the DICE Optimal policy,
comparing no R&D, optimal R&D (of betweeh0 - 5.3 billion), and full R&D investment
in all of the technologies (0$21 billion), for three risk cases. What is striking here is the
asymmetrical effect of over-investment relative to uni@estment: over-investment has a
smaller downside. To further analyze this, we look at thesetgd utility of policy intervention
for the DICE-optimal policy for R&D investments that are mianally higher and lower than the
optimal. Specifically, we considered the four following lpeds (in millions): $5,689, $5,303,
$5,071, and $4,743. The middle two values are the two budbatsare optimal in Figure
1. The higher and lower numbers increase and decrease theisal values by $386 million
and $328 million, respectively. Figure 3(b) shows that wliile two central budget levels lead
to very similar expected utilitythere is an asymmetric effect of increasing or decreasimeg th

budget further, with under-investment being more costy thver-investment

6.3. Impact of R& D on the Range of Scenarios

Figure 4(a) shows the range of abatement paths over time iRi$k 1 case for DICE Optimal

when R&D is invested optimally. There are a total of 36 sciExsareach depending on the
success outcomes of the technologies. On the right edge giréiph we show the probability
of being in a group of scenarios. The first cluster, with ptolig of 45%, is associated with

scenarios in which there is success in both nuclear and CigSndxt cluster, with probability
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Figure 4  Ranges of abatement paths for different realizations of technical uncertainties.

of 52%, includes scenarios in which either nuclear or CCK.fahe lowest line is the case
where all technology fails. In Figures 4(b) and 5 we just shibe range of paths without
associated probabilities, since they follow a similar @it Figure 4(b) compares the range
of emissions paths from the DICE Optimal, Stern, and Kyotor8j policies. Note that in the
absence of technical change the Kyoto Strong path is hitfaerthe optimal abatement path.
With technology, however, it falls about in the middle of t@imal paths. Thughe presence

of R&D greatly enhances the value of the fixed emissions patitpbed by Kyoto Strong.
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Figure 5(a) shows the range of temperature paths, i.e. dregehin the average global tem-
perature over time, in the Risk 1 case for DICE Optimal andStarn. From this figure we
can make three observations. First, all the DICE Optimahpare above “Z between 2075
and 2200, while all Stern paths are always below. What we caclade is thaStern with
no advances in technology will lead to lower temperaturemtBICE Optimal with great
advances in technologyecond, the impact of R&D on the temperature is much stmimge
the DICE Optimal policy than in the Stern policy. As the tholservation, we note that all
Stern paths and the DICE Optimal paths with the most suadeRgfD peak in temperature
between 2100 and 2200. Temperature will peak in any sceatiepabatement hits 100%. All
paths hit full abatement eventually, but R&D can signifitaaffect the timing.

Figure 5(b) shows the abatement costs for all scenariobédRisk 1 case of DICE Optimal
and Stern. We see that until 2105 R&D has a much larger impatern than on DICE
Optimal. In fact, Figure 5(b) is almost the opposite of Fg&(a) showing the temperature
paths.If we are in a policy environment in which abatement is refally high, then R&D wiill
have a large effect on abatement costs and a smaller effennissions, temperature and other

physical variableslf, on the other hand, we are in a policy environment thaisgaward lower
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abatement, then R&D will have a large effect on emissionstantperatures, and a smaller
effect on costs. The robustness of R&D investment to diffepolicy environments and risk

cases can be partially explained by this phenomenon. Eergththe policy environments are
radically different in their abatement paths, technolabchange has a role to play in both:
cost reduction when abatement is high, and improved enviesnal impacts resulting from

higher abatement when abatement is generally lower.

As an additional analysis, we also present in Appendix S myestment into R&D
impacts the riskiness of the policy outcomes, where we cmtgcthat in general R&D provides
risk reduction.

7. Conclusionsand Further Policy Insights

Finding an optimal R&D portfolio in the face of climate chanig a challenging problem, and
the available data is sparse and not as airtight as we wdadltiis, however, a real and press-
ing problem faced by the U.S. and other governments arownddinld. Thus, our approach is
to use the best data available and explicitly include uagast in our analysis, in order to arrive
at robust insightsonditional on the current state of knowledyéth this aim in mind, we have
developed multiple models and implemented data-basedtantdy on the returns from R&D
into a newly developed stochastic version of an IAM in ordegét insights about the opti-
mal technology R&D portfolio in the face of climate changee@ll, we developed a general
framework to determine optimal R&D portfolios through a dymc stochastic model. Thus,
this work provides a framework which can be updated as nesvnmdition becomes available,
such as more detailed elicitations about these techn@agidata on other technologies.

First, we have found that, given our data based on expeitations, focused investments in
Nuclear LWR and HTR, as well as in CCS and solar technologesery robust. The optimal

investment in these projects was robust to the policy enumirent, to the riskiness of climate
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damages, and to opportunity cost. Conversely, not invgsgtithe Nuclear FR and Solar 3rd G
projects was also robust. We do see a lower investment wieea it a very small probability
of very high damages; and a larger investment when the stteate is very low; but otherwise
the optimal investment falls within a very small range. Trobustness is interesting, as for
example the Gore and the DICE Optimal policies are diffenembost other ways. It is also a
very useful result, implying that near-term decisions @Bt in the projects considered in this
analysis may not depend heavily on the outcomes of long-témate policy decisions.

This robustness is driven by two effects. The first is a resiulisingdata (rather than the-
oretical explorations): we found that individual projeatsre quite differentiated, with some
projects having relatively lower costs, large impacts i€@ssful, and high probabilities of
success, while other projects did not perform well on allane of these aspects. Clearly, our
conclusions are conditional on the boundaries of the etioih data, as robust results can not
be guaranteed for any set of data. However, we believe thastoess is more likely than not
when using real data, since there will always be a relatimalyow band of benefits-to-costs
that will put a project on the knife’s edge.

The second driver relates to thie of R&D in the different scenarios. This role varies con-
siderably, both with the policy environment and with the enainty over damages. In policy
environments in which abatement is fixed or tends to be veayly mear 1), R&D primarily has
a ‘cost-side benefit’: the environmental variables areadéfiested while the cost of abatement is
significantly affected. This group of policies and risk caselude the Stern and Gore policies
and also high risk cases. On the other hand, in instancesiochwbatement is relatively low
in the absence of R&D, R&D primarily has an ‘environmentalesenefit’: the environmental
variables are significantly affected, while the cost of abant has only small effects, and in

fact sometimes is higher given a much higher level of abat¢nidéese two very different roles



36

mean that technological change ends up having an impodbmtiar play whether abatement is
high or low. This insight would be unlikely to arise outsideoor framework that combines a
dynamic optimization model with data-based probabilistidlbutions.

Second, we have shown that a larger-than-optimal invedtmearechnology is less costly
than a smaller-than-optimal investment. Thus, it appdaaspolicy makers should prefer to
err on the high side rather than the low side of R&D investm&ien this result, the level
of robustness, and the deep uncertainty about climate dssnagr observations support a
conclusion that investing roughly $5 billion in these teclogies probably makes sense.

Our research is plagued by the same difficulties that plafuimate change research —
the optimal investment depends on the interest rate usedlte ¥he far future. We see that
the optimal investment in R&D is considerably higher — intfad| funding in all the projects
we considered — when evaluated at the low Stern interestifgialicy makers believe that the
‘appropriate’ interest rate is no higher than that in Notdh@008) (since very few economists
are making that argument), this again suggests that polayens err on the side of higher
investments rather than lower. Assumptions about the appiby cost of R&D investments
have little impact on the results in this study.

There are some important caveats to these conclusionsdbdtta be considered in a final
investment decision. First, this is a ‘lumpy’ problem, withe projects defined by discrete
investment levels, some of which are much higher than otiMwseover, the analysis is based
on a specific set of projects deemed relevant for R&D podfofitimization by a set of experts.
Hence, biases inherent in any expert elicitation processewrsst in the set of projects con-
sidered. This is not atypical of R&D portfolio problems, aisddriven by the difficulty of
assessing potential R&D projects. Nevertheless, someeafdiustness may be driven by this

characteristic. Future work may be aimed at minimizing fiigblem. More generally, data
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gathered from expert elicitations are typically subjecatoumber of biases and may vary
greatly depending on the structure of the elicitation pssc€ertainly, given the scale of the
climate change problem, more and better information on titerpial of energy technology
R&D is likely of great value (Baker and Peng 2012).

In addition, the models we worked with (and we believe thisus for all models) could not
account for the socio-political aspects of nuclear endrgparticular, concerns about prolif-
eration are not adequately reflected in this analysis. Tinudear may be a riskier investment
than we show. Also, there is only a weak understanding of mb@rmittent renewables, such
as solar photovoltaics, will be able to be integrated ineoghd on a large scale. Thus, while
the models we used consider this problem in a reasonableitnayguite possible that the
impact of improvements in solar photovoltaics will be lar¢fean the current models show,
especially if simultaneous investments are made in thearalgrid integration. Thus, these
two technology-specific aspects should be considered irabdortfolio allocation. More gen-
erally, we made a number of assumptions along the way in dodartegrate the data and
the many components of the framework. Hence, as is typicapproaches to such complex
problems, the results should be interpreted with cauti@hraay not be generalizable.

Beyond the specific contributions to climate change ene&y Bolicy, this paper provides
an example of a framework for combining elicitation-baseabgbilistic data on future uncer-
tain systems and multiple economic models into a tractdbtehastic decision framework. We
introduced the idea of random return-to-R&D functions, ethivere then effectively integrated
into a novel representation of a highly nonlinear stoclkgstoblem. Overall, we were able to
integrate probabilistic data into a fully dynamic model nder to derive robust policy insights.
This framework may be applied not only to the broad and ingrdrfield of energy technology

portfolio selection, but also to other public policy areastsas R&D into space exploration,
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health, and military, as well as agencies such as the Enwieotal Protection Agency who
face choices of a portfolio of policies that have uncertgitalse and response on firm side, and

uncertain benefits (in the sense of poorly understood @wits).
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