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Abstract

This paper derives an optimal Pigouvian tax framework for goods whose consumption is

habit-forming and socially costly, and whose true costs are only intermittently salient. Habit

formation is an empirical feature of several prominent goods that have external costs, such

as gasoline, electricity, and unhealthy foods. Habits are exacerbated when payment for

consumption of these goods occurs intermittently and therefore prices are usually not salient;

electricity use is typically billed monthly, and driving and food consumption decisions are

often made at higher frequency than payment - particularly if consumers pay with credit

cards that are billed monthly. The intermittency of payment creates time periods in which

prices of individual decisions are more and less salient. Optimization errors when prices are

not salient lead to inefficiently large habit stocks. When bills arrive, households minimize the

consequences of future errors by making new habits in the present. An optimal Pigouvian

tax must match the timing and degree of price inattention and is therefore not practical to

implement. We characterize a second-best constant tax and the deadweight loss associated

with it. Using a household-level panel of daily electricity use and monthly bills, we provide

evidence that residential electricity consumption is consistent with habit formation and we

show how the habit parameters change when prices are more and less salient.
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1. Introduction

Pigouvian taxes are designed to align marginal benefits with marginal social costs. Con-

sumers who make optimization errors when prices are not fully salient, however, may not

use their true marginal benefit as part of their decision criteria. Furthermore if agents form

habits over the consumption of certain goods then marginal benefits are not independent of

past and (expected) future consumption. In this case optimization errors that occur period-

ically will cause intertemporal externalities. Both of these behaviors - habit formation and

price inattention - are relevant features of several classes of goods that also have external

costs associated with their consumption. Previous literature suggests these features may also

be prevalent in gasoline and unhealthy food consumption, which impose external pollution

damage and health costs on society. In this paper we show empirically that these features

are prevalent in daily household electricity consumption.

Further, we derive a Pigouvian tax framework for market settings that exhibit these

features. A key issue is that markets for these types of goods often fail to temporally align

the actions of payment and consumption. This alignment may be necessary to improve

price attention given cognitive limitations. Limited empirical studies on situations with

temporally-aligned price visibility and consumption decisions have shown that consumption

is significantly lower if true costs are visible at the moment the decision is made. Examples

include pay-as-you-go electricity systems in the United Kingdom, an increasing number of

real-time electricity information trials in U.S. households, and automobile dashboard displays

of fuel consumption rates.

How will corrective taxes fare in this context? This paper derives a framework for Pigou-

vian taxes in an environment of intermittent price salience and habit formation. We show

that the optimal Pigouvian tax varies over time with the level of price salience, and is there-

fore unlikely to be feasible. We provide formulas for the second-best constant tax and the

associated deadweight loss from being second-best. These formulas are based on parameters

of salience, habit formation, price elasticity, and time preference that are either estimable or

available in the literature.

Lastly, we provide estimates of the habit formation parameters for the case of house-

hold electricity consumption, on which there are not preexisting empirical estimates to our

knowledge. We use a data set of hourly smart meter readings from 10,000 households in

the suburbs of San Diego, CA, to calculate daily use and to construct additional household

covariates that proxy for preferences, behavior, and durable goods stock. Consistent with

our model, our results suggest a strong persistence in the force of habit - in other words,
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a habits-as-durables model over a short memory habit model - implying potentially large

long-run impacts that take time to take effect following permanent price changes, but small

effects from transitory price changes. Our evidence also suggests that information alone can

change habits if it is sustained; in the days after households receive a new monthly bill their

accumulation of habit stock accelerates - they are able to make new habits more quickly - but

the acceleration disappears as the billing cycle continues and the impact of the information

in the bill fades.

2. Literature

Gaps in the literature occur at the intersection between dynamic implications of hysteretic

consumption (e.g., rational habits) on the one hand, and cognitive and information prob-

lems like price salience, inattention, and awareness on the other hand. As we discuss below,

the price salience literature has a dearth of work on dynamic consequences, and the habit

formation problem has not been thoroughly analyzed in the context of cognitive/behavioral

limitations. Both of these have important implications for electricity markets and conser-

vation. Two exceptions are Allcott, Mullainathan, and Taubinsky (2014) and Taubinsky

(2013). Taubinsky (2013) proposes a model in which habits arise endogenously as the result

of inattention; in our model these two features are exogenous and separate but coexist within

the same agent. Dynamic consequences of inefficient durable goods stock accumulation from

inattention to future prices has been studied by Allcott, Mullainathan, and Taubinsky (2014),

who show that Pigouvian taxes can have both external and internal corrective benefits in

this case.

2.1. Price Salience and Information

Consumer inattention in contexts of limited price salience has been the subject of a

swiftly growing literature in economics. Overconsumption because of opaque prices has

been demonstrated in the contexts of beer, groceries, bank overdrafts, cell phone overages,

automatic bill payments, lumpy future costs like car and home repairs (Sexton, 2012; Grubb,

2012; Stango and Zinman, 2011; Karlan, et., al., 2010; Finkelstein, 2007; Chetty, et., al.,

2007). Della Vigna (2009) describes attention as a scarce resource; when this resource is

not fully allocated to cognitively processing a complicated or unclear price, the price seems

lower than it really is to the consumer. There is even recent evidence that the availability of

other (economic) resources can influence how the attention resource is allocated (Shah, et.,

al., 2012).
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A large and related literature has investigated the potential for energy conservation to

achieve pollution abatement goals. Assessments of this potential vary widely (McKinsey,

2007; Jaffe & Stavins, 1994) and more recently studies have evaluated the prospect of be-

havioral “nudges”, such as goal-setting, social norms, and personalized feedback, to change

energy use patterns (Hsiaw and Harding, 2013; Allcott, 2011; Allcott & Mullainathan, 2010).

Consumption reductions of between 2% and 5% have been documented.

The lack of salient price and quantity information has also been discussed as a cause of

inefficient electricity use (Jessoe and Rapson, 2014; Gilbert and Graff Zivin, 2013). Jessoe

& Rapson (2014), for example, show that households whose consumption information is

updated in real-time and displayed prominently by in-home devices are much more responsive

to price signals than control households. Gilbert and Graff Zivin (2013) find that households

reduce electricity consumption by about 1% for several days after receiving a routine monthly

bill. Allcott & Rogers (2012) find that household electricity consumption is also responsive

to personalized reminder messages but that the effects of these interventions can erode over

time.

2.2. Habits in Consumption

The causes of persistence in the time series of consumption at the macroeconomic level

have been debated at least since Hall (1978), who showed that the permanent income hy-

pothesis implies an AR(1) process in aggregate consumption. Another explanation has been

attributed to habits, which imply further lags of consumption the stronger is the force of

habit. Habits in a myopic setting were addressed by Pollak (1970), and a model of rational

habit formation with forward-looking agents was introduced by Spinnewyn (1981). A key

feature of habits is that they make utility time-inseparable, as the marginal utility of today’s

consumption is affected by past consumption (or a stock of habits accumulated from past

consumption).

Solving explicitly for demand functions has proven unwieldy because of the forward- and

backward-recursions introduced by time-inseparability and forward-looking agents. Demand

becomes a function of all past consumption (or state variables capturing this series) as well

as expectations of all future realizations of prices, incomes, and other demand shifters. This

is demonstrated in Spinnewyn (1981) and Browning (1991). As noted by Scott (2012), this

feature of solved demands makes empirical work difficult. The length of these recursions,

however, depends on the duration of the habits. If habits are captured by only one lag

of consumption (short memory), then demand depends on one lag of consumption and the

entire future series of expected prices. If habits are “durable”, so that all past consumption
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describes a single habit stock or state variable at any given time, then the demand function

depends on all lags of consumption and only one future lead of price. For an excellent

discussion of this literature and the empirical implications, see Scott (2012).

A feasible approach to dealing with functions of an infinite series of variables suggested

by Browning (1991), Becker, et., al., (1994) and Scott (2012) is to truncate the lags or

leads. We follow this approach in our empirical section. Using this approach, Scott (2012)

finds evidence of habit formation and sensitivity to expected future price changes in gasoline

demand, concluding that carbon taxes on gasoline consumption may be more effective in

the long run than has been previously assumed using standard demand elasticity estimates.

Weak evidence of habit persistence in household electricity use has been found by Leth-

Petersen (2007), Heien and Durham (1991), and Sexauer (1977), all of which use either

monthly bills or consumer expenditure surveys. Our study is the first to find strong evidence

at the daily level, which is the relevant frequency to study the relationship between habit

formation and time-varying price salience.

3. Model

Utility in each period depends on consumption of a clean numeraire good yt, a dirty

habit-forming good xt, and a reference or habit stock of past consumption of the dirty good

zt. The habit stock is a moving average of past consumption as in

zt = ρxt−1 + (1− ρ)zt−1 (1)

Consumption of the dirty good produces social damages that are proportional to the level

of consumption and last for only the current period:

Dt = φxt. (2)

For simplicity we analyze the case in which period utility is quasilinear:

Ut = ut(xt − αzt) + yt (3)

where subscripts on Ut and ut are only used to keep track of the time period (the functional

forms are assumed to be the same in all periods). In this formulation, consumption of xt

across time periods are “adjacent complements” in the sense that as zt increases from past

consumption, the marginal utility of xt rises in period t and consumption of xt increases
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ceteris paribus. This provides the agent a lever with which to mitigate potential future

overconsumption by reducing consumption in the present in order to impose better habits

on the future1. We ignore saving and borrowing so that the household faces a budget

constraint in each period:

m = pxt + yt (4)

This simplification allows us to focus on the dynamic relationship from habit formation

rather than savings and borrowing. It also allows us to avoid cases where the household

would be so concerned about future overconsumption that it would “raid” its savings in the

present and leave nothing to be wasted in by suboptimal decisions in the future. We do not

think this case is empirically relevant for household energy consumption.

3.1. The Social Optimum

A three-period analysis is sufficient to gain insight from the model. Assuming a rate of

time preference equal to the interest rate, the social planner chooses a path {xt, yt}3t=1 to

maximize the intertemporal social welfare function

W =
3∑
t=1

βt−1 [Ut(xt, yt, zt)− φxt − λt(pxt + yt −m)] (5)

subject to equation (1) and z1 given. The optimal path is defined by the first order conditions:

u′1 − αρβu′2 − αρ(1− ρ)β2u′3 = p+ φ

u′2 − αρβu′3 = p+ φ

u′3 = p+ φ

(6)

One implication of (6) is that absent problems of salience and inattention, a standard Pigou-

vian tax of τ = φ would induce households to consume at the social optimum.

3.2. The Private Optimum

Consistent with empirical evidence in the literature, we assume that during periods in

which the price of x is not salient, households overconsume and are less responsive to prices

than when they are fully salient. We represent this by having households undervalue the

1Habits are not required to introduce a dynamic element to the problem; introducing borrowing and
savings or a single permanent income constraint will provide a similar lever. We focus on habits because
they are an empirical feature of the polluting goods we are interested in, and because intermittent price
salience has important implications for habit formation.
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true price by a salience factor θ ∈ (0, 1) and optimize as if their period budget constraint

was:

m = θpxt + yt (7)

We will assume that prices are salient in period 1, but not in periods 2 or 3. The household’s

period 2 problem becomes:

maxx2,y2,x3,y3,z3
∑3

t=2 β
t−2 [Ut(xt, yt, zt)− λt(θpxt + yt −m)]

s.t. z3 = ρx2 + (1− ρ)z2

z2 given

(8)

The consumption path chosen subject to optimization errors induced by θ is defined by the

first order conditions:
u′2 − αρβu′3 = θp

u′3 = θp
(9)

Note that if households maintained the same θ in all periods, in principle the optimal

consumption path defined in (6) could be induced by an extra large tax τ2(θ) = τ3(θ) =
1−θ
θ
p+ φ

θ
> φ.

Let the consumption path defined by (9) be

x̃2 = x̃2(z2, p; θ)

x̃3 = x̃3(z2, p; θ)

ỹ2 = ỹ2(z2, p; θ)

ỹ3 = ỹ3(z2, p; θ)

(10)

Notice that x̃t is larger than the privately optimal demand without salience effects, whereas

ỹt is smaller.

In period 1 the household receives a price signal. We assume the household is sophisti-

cated enough to know its demands in periods 2 and 3 are those given in (10). When the

household chooses x1, it will take account of how that choice will influence these future

demands through z2. The houshold’s period 1 problem is then

maxx1,y1,z2U1(x1, y1, z1)− λ1(px1 + y1 −m) +
3∑
t=2

βt−1 [Ut(x̃t, ỹt, zt)] (11)

subject to equation 1 and z1 given. The first order conditions for this problem can be reduced
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to

[
u′1 − αρβu′2 − αρ(1− ρ)β2u′3

]
+ ρβ

∂x̃2
∂z2

[u′2 − αρβu′3 − p] + ρβ2∂x̃3
∂z2

[u′3 − p] = p (12)

The first term in brackets is the marginal utility across time taking habits into account

and would be equal to the price if salience effects did not exist. The second two terms are

negative, and measure the extent of the deviation from a private optimum in periods 2 and 3

due to salience effects. Denote the period 1 demand that solves equation (12) as x̃1(z1, p; θ).

This is lower than the privately optimal demand would be in the absence of salience effects.

By substituting the conditions in (9) into (12) and simplifying, we obtain

u′1 − αρβu′2 − αρ(1− ρ)β2u′3 = p (1 + δ) (13)

where δ = ρβ(1− θ)
(
∂x̃2
∂z2

+ β ∂x̃3
∂z2

)
= ρβ(1− θ) (α + α(1− ρ)β). With quasilinear utility and

linear demand functions, terms ∂x̃t
∂z2

are constant demand shifters, so δ is a constant.

3.3. Pigouvian Taxation

By comparing the first order conditions in (9) and (13) to the conditions at the optimum

in (6), we can derive a set of optimal taxes that will direct the household to consume optimally

in every period. These are stated as a proposition:

Proposition 1. The optimal Pigouvian tax is time-varying, with

τ2(θ) = τ3(θ) =
1− θ
θ

p+
φ

θ
> φ

τ1(θ) =
φ

1 + δ
− δ

1 + δ
p < φ (14)

Notice that τ1(θ) is less than the marginal social damage and can even be a subsidy.

The household is already underconsuming relative to the optimum in period 1 in order to

preempt overconsumption in future periods, so taxes can be lower than marginal external

costs. It is also important to note the only behavioral parameter affecting τ2(θ) and τ3(θ) is

the inattention parameter θ, while the habit parameters ρ and ∂x̃t
∂z2

(or α) both affect τ1(θ)

through δ. This is because in period 1, the household is using it’s habit formation process to

manipulate future consumption and the regulator must optimally address that manipulation

process. In later periods, however, the household makes a boundedly rational choice about

habit formation; the regulator simply needs to correct the “boundedness” of that rational
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choice in addition to the social damage. So the later taxes need not directly address the

habit process except through adjustments for the lack of salience.

These taxes are displayed in Figure 1. The lines labeled D1 and D2 are the privately

optimal demand functions if no salience effects exist. Because prices are insalient in period

2, the demand curve rotates up to D2(θ) - more is consumed at every price, and demand

is less responsive to prices. However, in anticipation of this the household consumes less in

period 1. This is captured by the downward rotation to demand curve D1(θ, z2) in period

1. This reduction in consumption also reduces the habit stock inherited in period 2, z2,

which shifts the period 2 demand curve inward to D2(θ, z2). These final demands in blue

are used by the household in deciding the consumption bundle. The optimal taxes defined

in Proposition 1 lead the household to consume where there true marginal benefits given by

D1 and D2 intersect the social marginal cost.

Figure 1: Optimal Time-varying Pigouvian Taxes

This set of taxes is not feasible to implement in practice however because the regulator

needs to know the degree of time-varying inattention to true prices at all time periods and

have the administrative capacity to implement such a variable tax. With these limitations

in mind we derive a second-best constant tax, discuss its properties, and show how much

surplus is given up by moving from the optimal time-varying tax. The size of that loss can

help inform regulators about how much to invest in systems to improve price salience.

Let W̃ (x̃, ỹ, z) = W̃ (z1, p; θ) be the social welfare function from (5) evaluated at the

consumption path given in (10) and the solution to (12) (e.g., the privately optimal time path
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with periodic salience and habit formation). Suppose a small tax τ is added to a previously

untaxed environment so that we evaluate W̃ (z1, p+ τ ; θ). The second-best optimal constant

tax solves ∂W̃
∂τ

= 0. The slope of the demand curves are constant in our case, so let’s define

∂x̃1
∂τ

= a
∂x̃2
∂τ

= b
∂x̃3
∂τ

= c

(15)

Proposition 2. The second-best constant tax rate is given by

τ ? =
a
θ
(1 + δ)

a
θ
(1 + δ) + β(b+ βc)

τ1(θ) +
β(b+ βc)

a
θ
(1 + δ) + β(b+ βc)

τ2(θ) (16)

where τ1(θ) and τ2(θ) were defined inProposition 1.

Proof. By plugging the consumption path given in (10) and the solution to (12) into the

social welfare function and differentiating with respect to τ , we obtain

∂W̃

∂τ
= 0 = a

[
u′1 − αρβu′2 − αρ(1− ρ)β2u′3 − p− φ

]
+βb [u′2 − αρβu′3 − p− φ]+β2c [u′3 − p− φ]

From the first order conditions in (9) and (13) (modified to include the introduction of a

small tax) we can simplify this to

0 = a [(p+ τ)(1 + δ)− p− φ] + βb [θ(p+ τ)− p− φ] + β2c [θ(p+ τ)− p− φ]

Solving for τ and plugging in the formulas for τ1(θ) and τ2(θ) gives the result.

Proposition 2 says that the best we can do with a constant tax is a weighted average of

the optimal variable taxes, where the weights depend on parameters of the habit process,

the slopes of the demand curves, the degree of price salience, and the discount rate. Notice

that as θ approaches 1, τ ? approaches φ because τ1 and τ2 also approach φ.

The size of this tax depends crucially on the behavioral parameters of the habit process.

If new habits are easier to form (if ρ is large), and/or if future demand is more responsive to

that new habit (if the ∂x̃t
∂z2

are large), then the household makes larger corrections in period 1

on its own. In this case, the constant tax must be balanced more towards correcting under-

consumption in period 1. Larger values of these parameters cause δ to also be large. With a

large δ, τ1 becomes more heavily weighted and τ1 itself becomes smaller, so the constant tax

τ ? also becomes smaller. This does not necessarily mean that stronger habit persistence is
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better for welfare - in fact we will show the opposite is true in the next section. Intuitively,

with larger habit persistence there is more imbalance in consumption across price salient and

insalient time periods. Part of the pollution control and overconsumption purpose of the tax

is sacrificed to prevent the household from consuming too little when prices are salient. A

large δ will also occur if the discount rate is low (so that the household adjusts its habits out

of concern for the future and needs less of a tax incentive). A large ρ indicates that new habits

are easier to form because the habit stock is more responsive to more recent consumption.

A large ∂x̃t
∂z2

indicates that future consumption is more responsive to changes in the habit

stock, so the household can have a larger impact on future (suboptimal) consumption by

changing its habits in the present. Likewise if δ is small because habits are stagnant (low

ρ) or consumption is not very responsive to the habit stock (low ∂x̃t
∂z2

), the emphasis in the

constant tax can be shifted back towards reducing pollution and overconsumption in later

periods, and the tax is larger.

3.4. Efficiency Cost

We now turn to deriving the efficiency cost of the second-best constant tax. Although τ ?

is chosen to minimize the deadweight loss from over- and under-consumption by definition,

the remaining losses have policy relevance. The size of the deadweight loss (and of τ ?)

depends on behavioral parameters for both salience and habit formation. To the extent

that alternative policy tools (such as information technology investments) can affect these

parameters, they can influence the size of the deadweight loss. For example, smart electricity

grid technologies that provide real-time price information to households require large fixed

costs, but the new information that households receive may alter their inattention and habit

formation behavior. Therefore an estimable expression for this loss and how it depends on

these parameters may be important for these investment decisions.

We will use the concept of equivalent variation to derive an expression for the excess bur-

den on consumers when the regulator imposes a tax that cannot correct all market failures.

The loss will be calculated as the net present value of the wealth society would be willing

to forgoe in order to avoid the imperfect tax instrument (relative to the optimum), net of

any changes in tax revenue between the two policies. Because the reference (optimal) tax

level is different in different time periods, we will represent society’s expenditure function

and indirect welfare function as depending on a vector sequence of tax-inclusive prices (even

though the tax-inclusive price will be constant for a constant tax). The expression for excess

burden is
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EB(τ ?) = m(1 + β + β2)

− e
(
p+ τ1(θ), p+ τ2(θ), p+ τ3(θ), W̃ (p+ τ ?1 , p+ τ ?2 , p+ τ ?3 ,m, z1; θ)

)
− (R(τ ?)−R(τ(θ))) (17)

where τ ?1 = τ ?2 = τ ?3 = τ ? and τ is a vector of taxes. The function e (·) is society’s

expenditure function. It is the amount of wealth at the optimal set of taxes that would be

required to achieve the level of welfare obtained under the second-best constant tax. The

difference between e (·) and the net present value of income is the amount of wealth society

would be willing to forgoe to retain the optimal tax structure. The last term in parantheses

measures the tax revenue difference between the two policies. For example,

R(τ ?) = τ ?1 x̃1(p+ τ ?1 , z1) + βτ ?2 x̃2(p+ τ ?2 , z2(x1)) + β2τ ?3 x̃3(p+ τ ?3 , z2(x1)).

Following Auerbach (1985), we derive a more convenient expression for EB(τ ?) using a

second-order Taylor expansion. We calculate the expansion around the optimal tax vector

τ(θ).

EB(τ ?) ≈ ∂EB

∂τ ′
(τ(θ)) · (τ ? − τ(θ)) +

1

2
(τ ? − τ(θ))′ · ∂

2EB

∂τ∂τ ′
(τ(θ)) · (τ ? − τ(θ)) (18)

With quasilinear utility and linear demand curves, EB(τ ?) will simply be the net present

value of a sequence of deadweight loss triangles. Because of the habit process, however,

deviations from the optimal tax sequence in a given period may cause the demand curves

in other periods to rotate as they adjust to the new habit stocks. So the heights of these

deadweight loss triangles need to adjust for the rotations that occur because of the habit

stock.

The envelope theorem guarantees that the first-order terms in the Taylor expansion will

be zero when evaluated at the optimal tax sequence τ(θ). The second order terms require

taking derivatives of marginal utilities in each period with respect to tax changes in the same

and all other periods. In our context, a change in the marginal utility in the current period

because of a tax change in a later period results in a rotation in the current period demand

curve, or a change in the willingness to pay for present consumption. After extensive algebra,
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we can show that

EB(τ ?) ≈ 1

2
(τ ? − τ(θ))′


∂x1
∂τ1

−αρβ ∂x1
∂τ1

−(αρβ)2 ∂x1
∂τ1

0 β ∂x2
∂τ2

0

0 0 β2 ∂x3
∂τ3

 (τ ? − τ(θ)) (19)

The deadweight loss described in (19) is pictured in Figure 2 (for the first two periods).

Figure 2: Excess Burden of the Second-best Constant Tax

As drawn, the excess burden in period 1 is larger than in period 2, but the period 2 losses

are repeated for as many periods as the prices remain insalient. The total excess burden in

(19) is increasing in the habit formation parameters ρ and α, holding taxes constant. When

the taxes in periods 2 and 3 are lowered from their optimal values to meet the second-best

constant rate, overconsumption becomes a problem again and the household makes larger

adjustments in period 1, rotating the period 1 demand curve further downward. Households

with larger habit parameters will make larger period 1 adjustments. The more the demand

curve rotates downward, the greater the underconsumption problem in period 1, and the

greater the period 1 deadweight loss, which increases total losses.

A useful feature of (19) is that all the parameters in the expression are in principle

estimable or recoverable from recent studies in the literature. For the residential electricity

consumption example, the slopes of salient and insalient demand curves can be inferred from

results by Jessoe and Rapson (2014), salience parameters can be inferred from Gilbert and

Graff Zivin (2013) or Allcott & Rogers (2012), marginal social damages of various pollutants
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are available from, among others, Graff Zivin, Kotchen, and Mansur (2012). We provide

estimates of the habit formation parameters in the remainder of this paper.

4. Habits in Daily Electricity Use

Our model has significant implications for the electricity industry and the multi-billion-

dollar “smart grid” investments that are being implemented by many utilities with the

goal of gaining control of demand. In the status quo electricity consumption environment,

information is limited, consumers are inattentive to electricity prices, the costs of individual

end-uses are not salient, and aggregate costs are only revealed intermittently. Consequently

there is very little demand elasticity. Yet many utilities and policy makers would like to

shift demand to periods of time when it is less privately or socially costly. Some utilities

would like to meet energy efficiency and conservation goals by providing better information

to their customers about their true costs. Furthermore economists argue that if greenhouse

gases and other pollutants are to be efficiently controlled, buyers must know and pay the

true marginal social cost of their energy uses. These hopes place a great onus on the ability

of smart meter infrastructure to communicate prices in ways that will move demand.

The presence of habit persistence in consumption alters the amount and duration of

demand response to price changes and new information. A large macroeconomic habit for-

mation literature has shown that price changes that are perceived as permanent will have

larger long-run impacts when consumption is governed by habits, but these effects will take

time to accumulate as new steady state habit stocks are formed. On the other hand, house-

holds will be less sensitive to perceived transitory price changes than they otherwise would

be. The impacts of new information, as opposed to price changes, on short and long run

consumption with habits has not been thoroughly studied and we provide some preliminary

empirical results. When designing new pricing and information programs enabled by the

smart grid, utilities will need to consider how the effect on habits of their demand-shifting

information and pricing programs.

5. Empirical Approach

Following Scott (2012), we estimate a habit persistence model using lags of consumption

and leads of “prices”. The first order conditions for an optimal consumption path with habit

formation include the habit stock, which summarizes consumption lags, as well as the impact

on all future consumption through future realizations of the habit stock. The current habit

stock is captured using lags of consumption, and expected future consumption is captured
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using a set of price expectations at the current time period. We note that even in a durable

habits model the importance of consumption and price lags and leads diminishes as the

distance from the current period grows. We therefore truncate the number of lags and leads

despite the possibility of habit persistence of long duration.

The approach of using price expectations is complicated by the fact that the rate structure

(price) of electricity does not change frequently in California because of the regulatory process

required to approve changes, and prices were fairly stable during the nine-month time frame

we study2. However, the primary household service provided by electricity consumption in

California is indoor temperature stabilization through heating and cooling. Therefore, the

“effective price” of comfort achieved by maintaining a fixed indoor temperature varies closely

with the outdoor temperature. We use hourly temperature observations to construct daily

measures of “effective prices” of the heating and cooling services provided by electricity. A

set of weather forecasts can therefore play the same role in the regression analysis as a set

of price expectations.

We estimate models of the form

xit = β0+
s′∑
s=1

γsxi,t−s+
τ ′∑
τ=1

T′t+τβT,τ +
τ ′∑
τ=1

Th,t+τW
′
iβh,τ +

τ ′∑
τ=1

Tc,t+τW
′
iβc,τ +uiwm+εit (20)

where x is the daily household-level consumption. Th,t+τ and Tc,t+τ measure the number

of hours on day t+ τ that the outdoor temperature deviated from 65 degrees so that heating

and cooling would be required; these are the “effective prices” described above and are

referred to as “Heating and Cooling Degree Hours”3. T is a vector of quadratic polynomial

terms on Th,t+τ and Tc,t+τ . Wi is a vector of household-specific covariates described in the

next section, while the u’s capture fixed effects at household-weekday-month level to capture

unobserved household-specific effects that may vary by weekday and season. We estimate

specifications with s′ = 7 and τ ′ = 1 to capture the potential for long memory, durable

habits, as well as specifications with s′ = 1 and τ ′ = 7 to capture short memory habits.

We are aware of dynamic panel concerns with this estimation strategy - that the inclusion

of lagged dependent variables with ui introduces a bias in the coefficients by construction.

2The actual prices are listed in the appendix.
3Empirical electricity studies typically use monthly household data rather than daily, and transform raw

temperature data into “Heating Degree Days” and “Cooling Degree Days”. Our measure is exactly the same
at a higher frequency.
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Because of computational constraints, our dataset is too large to directly correct for this

problem using system GMM. However, the dynamic panel bias is shrinking in the time

dimension of the panels and our panels are fairly long - the average time dimension is 189

days. In other work (Gilbert and Graff Zivin (2013)) we estimate models that provide

upper and lower bounds for the bias and show that the bias is small for this data, and

coefficients are fairly stable whether we use one-way fixed effects at the household level or

the household-weekday-month level, or two-way fixed effects at the household-weekday and

household-month level.

6. Data

We use a sample of hourly electricity consumption observations and monthly billing

information for approximately 10,000 households in Escondido, California, an inland suburb

of San Diego. The data was provided by San Diego Gas & Electric (SDG&E) and was

combined by the authors with hourly outdoor temperature data from weather stations in

the area. The hourly observations span April, 2009 through January, 2010 while the monthly

billing information covers the same time window and three additional years of historical bills.

We use the billing data to discern the timing of the billing cycle and bill arrivals for each

household. We included only households that had the same account-holder for the entire

three-year billing history period in order to focus on households that are as close as possible

to a steady state habit stock. We also included only households with at least seven months

of daily or hourly data. The resulting data set consists of 10,943 households.

We use daily consumption as our dependent variable, and we use relationships between

hourly consumption and hourly weather to construct household covariates for Wi that were

unavailable from SDG&E. In order to do so we ran the following regression on each household:

xih =
24∑
h=1

φihΨh +
10∑
m=1

βimMonth+
7∑
d=1

βidWeekday + βiC1{Temph > 65} · (Temph − 65)

+βiH1{Temph < 65} · (65− Temph) + νih ∀i (21)

with hourly dummies captured by Ψh. 1 takes a value of 1 if the temperature was above

or below a 65-degree threshold. The household-specific coefficients and goodness of fit from

these regressions capture household building and behavioral characteristics.

The variable “fit” is the R-squared from each regression; it summarizes the sensitivity of

consumption to hourly and seasonal patterns, and weather variation. A tight relationship
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over hours within a given day implies larger air-conditioning and heating units. “Pattern” is

the percentage difference between the maximum and minimum φih for each household and

captures daytime occupancy. The air-conditioning and heating capacity of the household

are captured by βiC and βiH , which we rename “hotco” and “coldco”, respectively, in the

summary statistics table. Household-specific daily consumption volatility was also calculated

in a variable called “dayonday”. We also use the percentile rank in the sample of average

monthly electricity consumption as a proxy for income. Summary statistics for variables

used in the analysis are presented in Table 1. For more details, see Gilbert and Graff Zivin

(2013).

Table 1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
daily kWh 20.724 18.354 0 628.810 2065072
monthly kWh 623.412 511.473 0 14310 2944589
bill ($) 114.897 127.405 5.07 2955.21 2944589
cdh65 106.822 112.644 0 503 2944589
hdh65 118.499 117.663 0 444 2944589
AC proxy 0.025 0.032 -0.103 0.276 2955529
heat proxy -0.008 0.017 -0.173 0.191 2955529
fit 0.097 2.448 -27.625 30.705 2955529
pattern -0.634 0.759 -16.871 39.947 2955529
dayonday 5.097 3.496 0.013 51.558 2955529

Unit roots in electricity usage have been found in many studies dating back to Engle,

Granger and Hallman (1989). All studies that we know of that have found unit roots use

regional aggregates over multiple years. Unit roots are to be expected over a longer time hori-

zon because of permanent changes associated with population growth or migration, changes

in energy-using durables and housing stock across the population, and policy changes that

affect demand. Over a nine month period, it is less likely that we will see enough permanent

innovations to the process to find unit roots in the daily series. We implement a Fisher-

type panel augmented Dickey-Fuller test on the data and find that unit roots are strongly

rejected in this data, as shown in table 2. The data was deseasonlized by household before

implementing this test by regressing raw daily consumption separately for each household

on monthly and weekday dummy variables and capturing the residuals from that regression.

The panel of residual series was used in the ADF test.

This test conducts an ADF test on each panel separately and averages the p-values from

each test using four methods: an inverse chi-squared, an inverse normal, an inverse logit, and
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Table 2: Fisher-type ADF tests for unit roots in a panel

Statistic p-value
Inverse chi-squared(21886) 2.94e+05 0.0000
Inverse normal -459.0191 0.0000
Inverse logit t(54719) -774.2238 0.0000
Modified inv. chi-squared 1301.4227 0.0000
Panels 10943
Avg. Periods 188.71
Ho: All panels contain unit roots

Ha: At least one panel is stationary

a modified inverse chi-squared. A drawback to this test is that only one panel needs to be

stationary in order to reject the null, at least for the inverse chi-squared version of the test.

The other three methods of calculating the average p-value allow the number of stationary

panels sufficient to reject the null to grow at the same rate that the number of panels tends

toward infinity. The advantages of this test are that it allows unbalanced panels and missing

data, which are two features that our data exhibit. We are unaware of other tests that allow

both of these features but have the null hypothesis as all panels stationary which would be

preferred to demonstrate that stationarity is the predominant feature of the data. As such,

there may be some or even many individual households with unit roots, but we do not think

this is the case.

7. Results

Results of the short-memory habit model are presented in table 3. Each column reports

results from specifications including more covariates. Based on the Akaike Information Crite-

rion (AIC) and Bayesian Information Criterion (BIC), the fourth column with all covariates

is the preferred specification. All models show strong evidence of habit formation based on

the statistically significant estimates of γ1. A γ1 of 0.42 (and far from 1) is consistent with

panels being stationary on average but still exhibiting habit persistence in consumption.

Table 4 presents results that are similarly organized from the habits-as-durables model.

Based on the AIC, BIC, and the long sequence of statistically signifcant and mostly positive

coefficients on up to seven lags of consumption, we conclude that the long memory, durable

habits model is more appropriate for the sample as a whole, and column 4 of table 4 is our

preferred specification. This would suggest that household routines accumulate over time

and elements of these routines strongly determine present consumption.

18



Table 3: Lag coefficients from short memory model

(1) (2) (3) (4)

γ1 0.48∗∗∗ 0.48∗∗∗ 0.43∗∗∗ 0.42∗∗∗

(0.00318) (0.00318) (0.00343) (0.00352)

Leads of Th and Tc YES YES YES YES

Household covariates Wi NO YES YES YES

Leads of Th and Tc NO NO YES YES

interacted with Wi

Leads of Th and Tc NO NO NO YES

polynomial terms

N 1570888 1570888 1570888 1570888

R2 0.295 0.295 0.336 0.344

aic 9833243.9 9833216.4 9739203.2 9720828.4

bic 9833440.2 9833523.1 9741055.5 9722938.4

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients on leads of temperature and household covariates not shown
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Table 4: Lag coefficients from habits-as-durables model

(1) (2) (3) (4)

γ1 0.46∗∗∗ 0.46∗∗∗ 0.44∗∗∗ 0.43∗∗∗

(0.00338) (0.00338) (0.00333) (0.00335)

γ2 0.089∗∗∗ 0.089∗∗∗ 0.086∗∗∗ 0.082∗∗∗

(0.00318) (0.00318) (0.00309) (0.00308)

γ3 0.016∗∗∗ 0.016∗∗∗ 0.014∗∗∗ 0.010∗∗∗

(0.00308) (0.00308) (0.00300) (0.00299)

γ4 -0.0039 -0.0038 -0.0097∗∗∗ -0.011∗∗∗

(0.00301) (0.00301) (0.00294) (0.00293)

γ5 0.012∗∗∗ 0.012∗∗∗ 0.0044 0.0051∗

(0.00300) (0.00299) (0.00292) (0.00291)

γ6 0.026∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.023∗∗∗

(0.00310) (0.00310) (0.00302) (0.00301)

γ7 -0.030∗∗∗ -0.030∗∗∗ -0.019∗∗∗ -0.017∗∗∗

(0.00282) (0.00282) (0.00278) (0.00278)

1 Lead of Th and Tc YES YES YES YES

Household covariates Wi NO YES YES YES

Lead of Th and Tc NO NO YES YES

interacted with Wi

Lead of Th and Tc NO NO NO YES

polynomial terms

N 709532 709532 709532 709532

R2 0.321 0.321 0.345 0.351

aic 4478831.7 4478644.2 4453140.3 4446241.0

bic 4478946.4 4478862.2 4453564.8 4446699.9

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Coefficients on lead of temperature and household covariates not shown
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7.1. Habits and Salience

Having verified that habit persistence exists in electricity consumption and that the habit

process likely has a long memory, we now explore the implications of this finding for the

issue of intermittent price salience that our theoretical model addresses. We use the arrival

of bills to investigate how households behave when they are reminded of an expenditure

that is usually not salient. We argue that the response to bill arrivals will provide intuition

about how households will respond to usage alerts and information campaigns promoted by

utilities through the smart grid infrastucture.

In order to investigate this question we modify our estimating equations by adding in-

teractions of lags of consumption with a dummy variable representing a window of time

following the new billing cycle. We call this variable “post” in the following results tables.

We do not observe exactly when households open the letter or email containing their bill,

but we do know the dates that bills are sent. We define the window of time for the price

reminder (“post”) as the three-day period after the bill was sent, but we explore sensitivity

to a seven-day window, a 10-day window, and a two-week window.

Table 5 gives the results of this exercise for the short-memory habits model. Although

we believe that the long-memory process is better supported by the data, the results of the

short memory model help provide intuition for interpreting the results. Recall from the model

that ρ is the parameter governing how quickly the habit stock accumulates from more recent

consumption. A larger ρ means that an agent forms new habits more quickly. A positive

coefficient on the interaction term in the regression implies an increase in ρ during the period

following the price reminder. In other words, table 5 indicates that receiving a price reminder

causes households to show more urgency in trying to form new habits. The significance of

this effect is eliminated when the price reminder window is defined over a broader time span,

suggesting that ρ is returning to its typical value and households eventually put less effort

into forming new habits. The negative coefficients on the “post” variable also indicate that

electricity use was reduced during the reminder window, providing evidence of intermittent

price salience that is consistent with our model and the results in (Gilbert and Graff Zivin,

2013).

Extending this analysis to results from the habits-as-durables model in table 6, we see

that the largest impacts of the price reminder on habits occur when the reminder period is

defined as three days, and operate on the most recent lags of consumption. However, as the

window of time is broadened, significant positive coefficients are found on the interactions

with further lags, suggesting that the weight placed on past consumption is being shifted
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further away from new habits as more time passes after the price reminder arrives.

Table 5: The effect of a price update on short memory habits

3 days 7 days 10 days 14 days

post -0.49∗∗∗ -0.37∗∗∗ -0.40∗∗∗ -0.14∗∗∗

(0.0157) (0.0120) (0.0112) (0.00937)

γ1 0.42∗∗∗ 0.42∗∗∗ 0.41∗∗∗ 0.41∗∗∗

(0.00373) (0.00367) (0.00275) (0.00309)

post*γ1 0.028∗∗∗ -0.0080 0.0087 0.0084

(0.00963) (0.00924) (0.00972) (0.00703)

N 1570888 1570888 1570888 1570888

R2 0.344 0.344 0.345 0.344

aic 9719634.8 9719709.6 9719052.8 9720555.3

bic 9721769.3 9721844.0 9721187.3 9722689.8

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Leads of temperature, polynomial terms, and interactions included in all columns
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Table 6: The effect of a price update on durable habits

3 days 7 days 10 days 14 days

post -0.40∗∗∗ -0.28∗∗∗ -0.41∗∗∗ -0.21∗∗∗

(0.0263) (0.0190) (0.0169) (0.0151)

γ1 0.43∗∗∗ 0.43∗∗∗ 0.43∗∗∗ 0.42∗∗∗

(0.00347) (0.00372) (0.00392) (0.00412)

γ2 0.076∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.071∗∗∗

(0.00320) (0.00345) (0.00363) (0.00399)

γ3 0.0088∗∗∗ 0.0068∗∗ 0.0061∗ 0.0049

(0.00309) (0.00330) (0.00346) (0.00377)

γ4 -0.011∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.010∗∗∗

(0.00306) (0.00326) (0.00336) (0.00366)

γ5 0.0050∗ 0.0032 -0.00057 0.00014

(0.00303) (0.00324) (0.00344) (0.00364)

γ6 0.024∗∗∗ 0.020∗∗∗ 0.013∗∗∗ 0.0073∗

(0.00309) (0.00331) (0.00353) (0.00384)

γ7 -0.020∗∗∗ -0.021∗∗∗ -0.023∗∗∗ -0.020∗∗∗

(0.00285) (0.00306) (0.00327) (0.00368)

post*γ1 0.047∗∗∗ 0.014∗ 0.010 0.032∗∗∗

(0.0128) (0.00820) (0.00721) (0.00678)

post*γ2 0.071∗∗∗ 0.040∗∗∗ 0.023∗∗∗ 0.026∗∗∗

(0.0118) (0.00758) (0.00680) (0.00626)

post*γ3 0.013 0.016∗∗ 0.011 0.013∗∗

(0.0120) (0.00782) (0.00695) (0.00619)

post*γ4 -0.012 0.011 0.0096 -0.0028

(0.0101) (0.00732) (0.00681) (0.00607)

post*γ5 -0.0055 -0.0011 0.011∗ 0.011∗

(0.0112) (0.00750) (0.00652) (0.00604)

post*γ6 -0.016 0.011 0.028∗∗∗ 0.034∗∗∗

(0.0124) (0.00809) (0.00682) (0.00624)

post*γ7 0.026∗∗ 0.017∗∗ 0.012∗∗ -0.0015

(0.0119) (0.00747) (0.00634) (0.00572)

N 709532 709532 709532 709532

R2 0.353 0.352 0.353 0.353

aic 4444699.0 4445006.4 4444442.0 4444718.5

bic 4445249.6 4445557.1 4444992.6 4445269.2

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

One lead of temperature, polynomial terms, and interactions included in all columns
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Lastly, we investigate heterogeneity in habit persistence between households by estimat-

ing the short- and long-memory models on each household separately. For the short memory

model, we display the distribution of estimated γ1 across households in the figure below.

Seventy-four percent of these are positive and statistically significant, suggesting that some

degree of habit formation is a dominant feature of this consumption good, although there is

a significant minority of households whose consumption series is not well-described by this

model. For the long-memory model, the distribution of γ1 is very similar to the distribution

from the short memory model. When we conduct an F-test of the second through seventh

lags, however, in order to find out how many households have a long memory habit process,

we find that only 18% of households have a p-value less than 5%. The long memory process

may therefore be a strong feature of only a subset of households. Clearly the correct habit

duration varies by household and may lie between one lag and seven lags, so 18% is a lower

bound on the share of households with long memory habits. Further investigation of this

heterogeneity is a topic of ongoing research. Identifying households with different types of

habit processes suggests that alternative programs may need to be designed for different

household types.

Figure 3: Distribution of γ1i for short memory habits

8. Conclusion

This is the first study that we know of to demonstrate habit persistence in daily con-

sumption. We find support for a habits-as-durables model suggesting that even distant past
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consumption influences present consumption. The context - residential electricity use - gives

rise to important behavioral and policy implications. Insalient prices or inattention to prices

can lead to inefficiently large habit stock accumulation. We find some evidence that informa-

tion or cognitive constraints are leading to excess consumption because households engage

in temporary conservation in the days after receiving a bill even though true marginal prices

have not changed. The effect of information on habit formation is an important topic for

future research.

These stocks make it more difficult to achieve short-term demand responses on days when

electricity grids are constrained and peak power is expensive to deliver. This finding does

provide some optimism for the long-term effectiveness of more permanent pricing policies

like pollution taxes. However, habits are heterogeneous across households and it may be the

case that a minority of households account for the predominance of long memory habits.

Exploring the patterns of this heterogeneity and defining the implications for Pigouvian

taxes and peak pricing demand response programs is an important topic for future research.
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Appendix A. Tables

Table A.7: SDG&E Rate Structures 4/15/2009 to 1/31/2009

Rates ($/kWh)
Dates DR DRLI A (flat rate)

4/15/2009 Baseline (11.5 kWh/day) 0.04363 0.04854 0.06544
101% to 130% of Baseline 0.0638 0.06871
131% to 200% of Baseline 0.21818 0.16067

Over 200% of Baseline 0.23818 0.16067
5/1/2009 Baseline (11.8 kWh/day) 0.01692 0.02183 0.07508

101% to 130% of Baseline 0.03709 0.042
131% to 200% of Baseline 0.20379 0.14472

Over 200% of Baseline 0.22379 0.14472
9/1/2009 Baseline (11.8 kWh/day) 0.01692 0.02183 0.07239

101% to 130% of Baseline 0.03709 0.042
131% to 200% of Baseline 0.1988 0.13973

Over 200% of Baseline 0.2188 0.13973
11/1/2009 Baseline (11.5 kWh/day) 0.04455 0.04946 0.06253

101% to 130% of Baseline 0.06472 0.06963
131% to 200% of Baseline 0.21019 0.15268

Over 200% of Baseline 0.23019 0.15268
1/1/2010 Baseline (10.8 kWh/day) 0.06026 0.05867 0.07222

101% to 130% of Baseline 0.08103 0.07944
131% to 200% of Baseline 0.18952 0.1394

Over 200% of Baseline 0.20952 0.1394
Notes: During the time span our data covers (April 15, 2009 to January 31, 2010), residential electricity
rates changed several times by small amounts. This table describes in detail the rates faced by our sample
of households.
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