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Abstract
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I. INTRODUCTION

What determines the relative income shares of workers and the owners of capital? Histor-

ically, this question was deemed so fundamental that in 1817 Ricardo called it "the principal

problem in Political Economy."1 For nearly two centuries this question has intrigued econo-

mists. One feature of the behavior of factor shares that has struck economists in particular

is their apparent stability. As Solow (1958) puts it, there is a widespread belief that labor’s

share is "one of the great constants of nature, like the velocity of light." Of course, factor

shares are not strictly constant; they exhibit significant variation over time. The problem is

how to explain both the relative stability we observe and the systematic variation.

In this paper, I present a theory of how factor shares are determined. The question of what

determines income shares can be broken into three distinct parts: production, distribution,

and equilibrium. First, what is the total quantity of output produced by combining a given

quantity of capital and labor inputs? Second, how is the income obtained from jointly

producing a single unit of output divided between workers and firms? Third, what is the

equilibrium quantity of capital and labor in the economy? To determine equilibrium factor

shares, it is necessary to answer all three questions simultaneously.

I first develop microfoundations for an aggregate production function in a frictional labor

market environment where workers and firms are randomly matched. The aggregate produc-

tion function is unified in the sense that the production technology and the matching process

are not separable but intertwined. This provides a simple way of modelling unemployment

that is built directly into the aggregate production function itself. The key inputs determin-

ing aggregate output are (i) the capital hired or purchased by firms, and (ii) the total labor

force or number of potential workers, who may end up either employed or unemployed. The

unified process of matching and production plays a critical role in enabling us to see how

labor market conditions, particularly unemployment, influence factor shares.

In order to produce, firms need to first purchase a machine (capital) and then search for a

worker. Firms enter until expected profits are zero and their demand for capital determines

the equilibrium quantity of capital. Wages are determined by Bertrand competition between

firms who compete directly to hire workers. Firms’productivity levels are drawn from a

Pareto distribution. When two or more firms approach an unemployed worker, the one

with the highest productivity hires the worker and pays a wage equal to the second highest

productivity. If exactly one firm approaches the worker, he is paid his reservation wage.

If no one approaches a worker, he remains unemployed for that period. While this is not

a bargaining model, the process of Bertrand competition effectively endogenizes a worker’s

1Ricardo (1911), p. 1 in the 1911 edition, first published in 1817.
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relative "bargaining" position.2 Equilibrium factor shares depend on the reservation wage,

the ratio of searching firms to unemployed workers, and the firm productivity distribution.

In the limit as the level of firm entry goes to infinity and unemployment disappears, it

turns out that (i) the aggregate production function is Cobb-Douglas, and (ii) factors are

paid their marginal products. Both of these are theoretical results, not assumptions. Jointly,

they imply that factor shares are asymptotically constant. The first asymptotic result is

closely connected with the classic result of Houthakker (1955) and more recent papers by

Jones (2005) and Lagos (2006). The result regarding the asymptotic constancy of factor

shares, which follows from both (i) and (ii), is entirely new.

While these asymptotic results provide a neat way of embedding the standard neoclassical

setting as a limiting case, what happens outside this limiting case has greater empirical

relevance. This general environment, in which unemployment does exist, is the true focus of

this paper, not the frictionless asymptotic results. In the presence of unemployment, factor

shares are not generally constant but vary depending on labor market conditions such as the

unemployment rate and workers’reservation wage. The theory is therefore flexible enough

to account for both the relative stability and the systematic variation in factor shares.

Stability of Factor Shares. The constancy of factor shares in the long run is generally

considered a stylized fact in macroeconomics. However, as Kaldor (1955) states, this apparent

stability is puzzling and "makes the question of what determines these shares more, rather

than less, intriguing." It gives rise to the question, why are factor shares relatively stable?

There are two standard alternatives for accounting for the stability of factor shares. The most

common is to assume the aggregate production function is Cobb-Douglas and factor mar-

kets are competitive. The second alternative is to use the constant-elasticity-of-substitution

(CES) aggregate production function introduced by Arrow et al. (1961) and assume that

technological change is purely labor-augmenting.3

In the theory presented here, there are two distinct ways in which constant factor shares

can emerge. First, there is the asymptotic result: as the level of firm entry increases and

unemployment disappears, the aggregate production function approaches a Cobb-Douglas

limit and factor shares are constant. The parameter determining capital’s share is inherited

2Since firms target workers and wages are determined through a second-price auction, there is a close
relationship with the theory of competing auctions developed in Peters and Severinov (1997). The framework
is also related to Postel-Vinay and Robin (2002), who use Bertrand competition to determine wages in an
environment with on-the-job search. The wage determination mechanism in this paper can also be seen as a
generalization of that used in directed search models of the labor market such as Julien et al. (2000) where
firms are homogeneous and they are chosen at random when more than one approaches a given worker.

3Acemoglu (2003) provides microfoundations for the second alternative. In his paper, the economy con-
verges in the long run to one with purely labor-augmenting technical change and constant factor shares.
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from the underlying Pareto distribution of firm productivity levels. This asymptotic result

is analogous, at least mathematically, to a result found in Jones (2005). In general, how-

ever, the aggregate production function derived here is not Cobb-Douglas. The elasticity of

substitution between capital and labor is not constant at all but variable, and it is always

less than one. Nonetheless, constant factor shares can arise because factors are not neces-

sarily paid their marginal product. In this way, the possibility of constant factor shares is

consistent with an aggregate production function that has an elasticity of substitution below

one, a theoretical result that complements a large body of empirical work that suggests this

elasticity is well below one.4

Factor shares are constant when workers’reservation wage equals or exceeds the minimum

firm productivity. As we will see, this is because the expected division of output between

workers and successful firms is endogenously linear in this case. While it has been known since

Houthakker (1955) that the Pareto distribution can generate a Cobb-Douglas production

function, this result is novel: in the presence of Bertrand competition for workers, the Pareto

distribution leads to constant factor shares even when the aggregate production function is

not Cobb-Douglas. Moreover, the parameter determining the factor income distribution is

the same as the technology parameter in the aggregate production function, since both are

inherited from the underlying distribution. There is therefore a deep and natural connection

between the Pareto distribution and the tendency towards stable factor shares.

Variation in Factor Shares. The theory can explain how constant factor shares could

arise, but it is also flexible enough to account for systematic variation. While constancy is

a theoretical possibility, when I calibrate the model to U.S. data it predicts factor shares

that are relatively stable but not constant. In the benchmark calibration, the endogenous

value of workers’reservation wage is always less than the minimum firm productivity. In this

case, the model predicts that labor’s share is decreasing in the level of unemployment and

increasing in workers’reservation wage, which depends on factors that may change over time

such as future employment prospects and unemployment insurance eligibility.

Labor’s share exhibits short-term fluctuations over the business cycle. In the U.S., labor’s

share fluctuates in a counter-cyclical manner at a quarterly frequency. However, while labor’s

share falls on impact in response to a positive productivity shock, it rises to an even higher

level a year later and the positive impact persists for some time (Rios-Rull and Santaeulalia-

Llopis (2010)). Shifting our attention to annual time periods, we will see that there is a

slightly negative relationship between the unemployment rate in a given year and labor’s

4See Antras (2004) and Chirinko (2008) for recent summaries of these estimates. An exception is Karabar-
bounis and Neiman (2013), who estimate the elasticity of substitution to be σ = 1.25.
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share the following year. At an annual frequency, the model’s predictions are consistent

with this fact: when unemployment is lower, labor’s share tends to rise because greater

competition to hire workers increases their endogenous relative "bargaining" position.

In Section IV of this paper, I present a simple quantitative exercise where I examine

the model’s predictions about the relationship between unemployment rates, unemployment

benefits, and factor shares. Using only data on unemployment rates and unemployment

insurance eligibility, I calibrate the model and compare its predictions regarding factor shares

to the U.S. data from 1951-2010.5 The model can explain much of the behavior of factor

shares in the U.S. during a period of more than fifty years from 1951-2003. During this period,

the standard deviation of capital’s share is 0.0068 for the perfect foresight equilibrium and

0.0075 when workers are myopic, compared with 0.0093 for the data. The correlation between

the data and the model’s predictions for capital’s share during the period 1951-2003 is 0.69

for the perfect foresight equilibrium and 0.73 when workers are myopic. The sharp rise in

capital’s share from 2004-2005 appears to be due to factors outside the model’s scope.

I.A. Related Literature.

While the behavior of factor shares is a topic that has been relatively neglected in recent

decades, there have been signs of a resurgence of interest in the topic. Karabarbounis and

Neiman (2013) document a global decline in labor’s share in the corporate sector since the

early 1980s. Using a CES production technology for intermediate inputs, they attribute

this decline to a fall in the relative price of investment goods by estimating an elasticity of

substitution between capital and labor that is greater than one. Elsby et al. (2013) discuss the

recent decline in labor’s share in the U.S. and identify globalization and the rise in off-shoring

of labor-intensive tasks as potentially important factors.

This paper’s focus on the relationship between labor market conditions and factor shares

links it with papers such as Bentolila and Saint-Paul (2003), and earlier work by Blanchard

(1997) which highlights the possibility of medium-run shifts in labor’s share due to labor

market deregulation and changes in workers’bargaining power or the degree of unionization.

In Blanchard and Giavazzi (2003), factor shares depend simultaneously on labor market

deregulation, which is captured by workers’bargaining power, and product market dereg-

ulation, which is captured by the markups of imperfectly competitive firms. When more

firms enter, there is greater competition in the product market and markups fall, leading to

an increase in labor’s share. Similarly, if there is an increase in workers’bargaining power,

due to an increase in unionization for example, labor’s share will increase. In the present

5Factor shares data is obtained from the Bureau of Labor Statistics multifactor productivity historical
data release. Details are found in Section IV.
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paper, when more firms enter there is greater competition between firms to hire workers,

which generates both lower unemployment and a higher endogenous "bargaining" power of

workers, thereby increasing labor’s share.

Since this paper is concerned with deeper microfoundations, it is most closely related to

Jones (2005) and Lagos (2006), both of whom derive Cobb-Douglas production functions

from microfoundations following Houthakker (1955). While these papers take very different

approaches, each of them uses an underlying distribution of productivity levels or ideas that is

Pareto and aggregates across micro level production units to obtain a Cobb-Douglas aggregate

production function. This paper is perhaps closest in spirit to Jones (2005), but there are at

least two key points of divergence. First, Jones’paper is primarily concerned with production,

while this paper also provides microfoundations for the distribution of income between capital

and labor. Second, the aggregation result is itself different, as I discuss in Section II.

The unified nature of the aggregate production function distinguishes my approach not

only from Jones (2005) but also Lagos (2006). While Jones abstracts from labor market

frictions, they are central to both Lagos’paper and mine. In Lagos’framework, workers and

vacancies are randomly matched in bilateral meetings through an exogenous matching func-

tion. The surplus generated by such matches is divided through generalized Nash bargaining

in a manner that is standard in Mortensen and Pissarides (1994) style models. In this paper,

firms compete directly for workers and wages are determined through a second-price auction

which effectively endogenizes workers’relative "bargaining power".

We can now return to the original question: What determines the relative income shares

of workers and the owners of capital? Consider two of the key components — production

and distribution. Modern macroeconomics often answers this question by imposing two as-

sumptions: (i) a specific aggregate production function, and (ii) competitive factor markets.

As a consequence, the nature of the aggregate production function (i.e. its technological

properties) directly determines the nature of the factor income distribution. In both Lagos

(2006) and this paper, neither assumption is made. However, in Lagos’paper and other en-

vironments with an exogenous wage bargaining parameter, production and distribution are

essentially divorced from each other. Here, the close relationship between factor remunera-

tion and marginal products is not lost. In fact, the parameter governing the factor income

distribution is endogenously equal to the production technology parameter, since both are

inherited from the underlying firm productivity distribution. We will see that this result

arises naturally in the unified theory of production, employment and wages presented here.

The rest of the paper is structured as follows. Section II presents the basic model. I

first derive the aggregate production function and then determine the equilibrium level of

firm entry. I determine the conditions under which factor shares are constant and examine
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how equilibrium factor shares are affected by changes in labor market conditions and the

underlying productivity distribution. Section III extends the model to a simple dynamic

environment and presents some comparative statics results for the steady state equilibrium.

Section IV presents the quantitative analysis. All proofs are in the Appendix.

II. BASIC MODEL

Consider a static environment. There is a continuum of ex ante homogeneous risk-neutral

potential workers of measure L and a continuum of risk-neutral firms of measure V. The ratio

of firms to workers is θ = V/L. The equilibrium ratio of firms to workers, θ∗, is determined

by a zero profit condition.

Firms pay an entry cost, r, to obtain one unit of capital and a single productivity draw

from a distribution G(x). Total capital is given by firms’ demand, K = V, and hence

θ = k = K/L, the capital/labor ratio. The cost r can be interpreted as the rental rate of

capital, since it is the cost of hiring one unit of capital for a single period.

After paying the cost of capital r, firms draw a productivity level x from a distribution

G(x). An firm with productivity x can produce x units of output using a single unit of

capital and a single worker’s labor for one period. We assume that G(x) is continuous and

differentiable with support (xmin,∞) and no mass points. We normalize xmin = 1.
Firms can approach only a single worker. Since workers are homogeneous and firms are

uncoordinated, firms make job offers to workers at random. This gives rise to a Poisson dis-

tribution with parameter θ for the number of firms approaching each worker.6 The expected

number of firms competing for a given worker is θ, so this ratio can be interpreted as labor

market tightness, or the degree of competition for workers’labor.

Each match between a worker and a firm with productivity x produces x units of the final

good with price normalized to one. From the worker’s perspective, there are three possible

matching outcomes: unemployment, a bilateral match, or a multilateral match. Every firm

approaches a single worker, but it is successful only if it has the highest productivity for the

particular worker it approaches.

Unemployment. If no firms arrive, the worker is unemployed and output is zero. The

worker receives a payoff z ∈ [0, 1], the value of non-market activity. By the Poisson distrib-

ution, this occurs with probability e−θ, so u(θ) = e−θ is the unemployment rate.

Bilateral match. If exactly one firm approaches worker j, it employs the worker and

produces output at his own productivity level, xj. The worker is paid his outside option, z.7

6Since firms approach each worker with equal probability, the Poisson distribution arises because we are
taking the limit of a binomial distribution.

7This assumption can be justified by general results from auction theory found in McAfee (1993) and

6



The firm’s net payoff is πj = xj − z − r.
Multilateral match. If two or more firms approach worker j, they compete for the worker’s

labor in Bertrand style competition. The firm with the highest productivity level, x1j , employs

the worker and produces output at productivity x1j . The worker’s wage equals x
2
j , the second-

highest productivity, and the firm’s net payoff is πj = x1j − x2j − r. Firms receive a payoff of
zero if they do not successfully hire a worker.

II.A. Aggregate Production Function

This process of matching and production generates an endogenous cross-sectional pro-

ductivity distribution across potential workers, H(x; θ). This distribution simultaneously in-

corporates two dimensions: the employment effect of the frictional matching process, which

leads to unemployment for some workers; and the productivity effect of the competition be-

tween firms, which leads to an allocation of labor towards higher productivity firms, thereby

increasing aggregate output per worker.

The dual effect of firm entry on both employment and productivity is not new, but the

channel is novel. An increase in the degree of competition for workers, θ, directly influ-

ences the entire productivity distribution across workers. This contrasts, for example, with

search-theoretic models of the labor market in which an increase in the ratio of vacancies to

unemployed workers leads to a simple truncation of the cross-sectional productivity distrib-

ution by increasing the cut-off productivity threshold.8

Consider a specific distribution of firm productivity levels, the Pareto distribution. Let

G(x) = 1− x−1/λ where λ ∈ (0, 1). This distribution is used by Jones (2005), Lagos (2006),

and Houthakker (1955) to derive Cobb-Douglas aggregate production functions.9

Suppose that n firms approach a given worker. If n ≥ 1, the firm with the highest

productivity hires the worker and the resulting productivity is the maximum of n draws from

G(x). If no firms approach a given worker, he is unemployed and produces zero output. Let

H(x|n) = G(x)n be the distribution of the worker’s productivity conditional on the number of

firms arriving, n. To obtain the unconditional distribution, H(x; θ), the distribution H(x|n)

must be weighted by the probability that n firms approach, which is given by a Poisson

Peters and Severinov (1997). When the number of bidders is determined endogenously by a free entry
condition, it is optimal for sellers to set a reserve price equal to their outside option.

8This will also be the case in the dynamic model of Section III, where an endogenous reservation wage
greater than the minimum firm productivity leads to a truncation of the productivity distribution. However,
this effect is additional to the primary effect described here.

9Gabaix (2009) provides a review of the numerous applications and results regarding the Pareto or power
law distribution in economics.
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distribution with parameter θ, so

H(x; θ) =

∞∑
n=0

θne−θ

n!
G(x)n = e−θ(1−G(x)) = e−θx

−1/λ
. (1)

The distribution H(x; θ) = e−θx
−1/λ

has continuous support [1,∞) and a mass point at zero

with probability mass u(θ) = e−θ, the unemployment rate. Since there is a continuum of

workers, this is both the distribution of each worker’s productivity and the cross-sectional

distribution across all potential workers. As θ →∞, this distribution converges to the Type
II Extreme Value or Fréchet distribution.10

Aggregate Output. To obtain output per capita, y = Y/L, we simply take the expected

value of the endogenous workers’productivity distribution, H(x; θ). Since we have k = θ,

output per capita can be expressed as a function of k alone. The intensive form of the

production function is

f(k) = γ(1− λ, k)kλ, (2)

where γ(s, x) ≡
∫ x
0
ts−1e−tdt, the Lower Incomplete Gamma function. The expression γ(1−

λ, k) is increasing in both k and λ for λ ∈ (0, 1).11 We have f ′(k) > 0, f ′′(k) < 0, and

limk→∞ f
′(k) = 0 as usual, but limk→0 f

′(k) = (1−λ)−1. (See Appendix A.1.) Using the fact

that k = θ, we can write the aggregate production function as

Y = γ(1− λ, θ)KλL1−λ. (3)

This function clearly has constant returns to scale in K and L. Importantly, however, it is

not Cobb-Douglas since the term γ(1 − λ, θ) depends on θ = K/L. Only in the limit as

θ →∞ (i.e. as unemployment goes to zero) do we have Y = Γ(1− λ)KλL1−λ where Γ(s) ≡
limx→∞ γ(s, x) =

∫∞
0
ts−1e−tdt, the Gamma function.12 In this limiting case, the aggregate

production function is indeed Cobb-Douglas since Γ(1− λ) is a constant.13

The fact that the production function is not generally Cobb-Douglas arises from a crucial

difference between this aggregation result and that found in Jones (2005). He considers a

large number of production units, each of which uses a local Leontief production technology.

10The Fréchet extreme value distribution is used in the model of international trade by Eaton and Kortum
(2002), and it is derived from microfoundations in Kortum (1997) and Eaton and Kortum (1999). As well as
Jones (2005), the Fréchet distribution is also featured in Lucas (2009) and Hsieh et al. (2011).
11The Lower Incomplete Gamma function is decreasing in s for any s ∈ (0, 1).
12The Gamma function is the unique function that extends the factorial function to R+.
13Strictly speaking, to say that a production function is asymptotically Cobb-Douglas, we require that

limk→∞
f(k)
kα = A for some constants α ∈ (0, 1) and A > 0. Here, α = λ and A = Γ(1− λ).
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He then takes the convex hull of available ideas to derive a "global" production function,

where ideas represent different ways of combining capital and labor to produce output.14

Since Jones considers the convex hull across the entire economy, and takes the limit as the

number of ideas becomes large, he works directly with a Type II Extreme Value or Fréchet

distribution. The "global" production function is asymptotically Cobb-Douglas in the long

run as the total number of ideas across the economy grows over time.

In contrast with Jones’approach, we take the highest firm productivity draw for each

worker and then aggregate across all workers. Since the number of firms approaching a given

worker during a single time period is relatively small, I consider the exact distribution which

arises for finite θ, namely H(x) = e−θx
−1/λ

with continuous support [1,∞) plus a mass point

at zero which represents unemployment. While Jones’global production function becomes

Cobb-Douglas over time as the number of ideas grows large, the aggregate production function

derived here is not, in general, Cobb-Douglas. I focus on the general environment where

unemployment exists and the elasticity of substitution is below one.

Elasticity of Substitution. Considered as a property of the aggregate production func-

tion, the elasticity of substitution between capital and labor, σ, is the percentage change in

the K/L ratio for a given percentage change in the ratio of marginal products. Using the

expression for σ in Arrow et al. (1961),

σ =
−f ′(k)(f(k)− kf ′(k))

kf(k)f ′′(k)
. (4)

For the production function given by (2), the elasticity of substitution is

σ =
λ+ ε(1− λ, θ)
λ+ ε(2− λ, θ) , (5)

where ε(s, x) denotes the elasticity of γ(s, x) with respect to x.15 In particular,

ε(1− λ, θ) =
θ1−λe−θ

γ(1− λ, θ) . (6)

In the limit as θ → 0, we have σ → 1/2 since limx→0 ε(s, x) = s. In the limit as θ →∞, the
elasticity of substitution σ → 1 as limx→∞ ε(s, x) = 0. This elasticity is always less than one,

14See also Caselli and Coleman (2006), who use a related approach to examine technology choice and the
world technology frontier.
15See Appendix A.0 for some properties of the elasticity ε(s, x). In particular, ε(s, x) is increasing in s and

decreasing in x.
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regardless of the value of the capital/labor ratio, k = θ.16 (See Appendix A.2 and A.3.)

Proposition 1 If G(x) is Pareto, the elasticity of substitution between capital and labor, σ,

is always less than one and converges to one in the limit as θ →∞.

Importantly, the fact that σ < 1 is a theoretical result, not an assumption. This contrasts

with the standard alternative to assuming a Cobb-Douglas aggregate production function —

namely, to start with a CES production function and assume a particular value of σ, as

estimated by empirical studies. While standard, this approach is problematic because in the

empirical literature the value of the elasticity σ is still very much open to debate. Estimates

vary widely, from as low as 0.3 to greater than one. Most empirical studies, however, in-

dicate that the elasticity is significantly below one.17 The theoretical result presented here

therefore complements the large body of empirical work, including Antras (2004), that finds

this elasticity is likely to be significantly less than one.

Unified Production and Matching. Search-theoretic models of the labor market gener-

ally feature an exogenous matching function, M(U, V ), which gives the number of matched

worker/firm pairs —or simply "matches" —as a function of the number of unemployed work-

ers and job vacancies. It is common to assume the matching function is constant returns

to scale, so M(U, V )/U = m(θ), where θ = V/U .18 In this paper, the aggregate production

function, Y = γ(1−λ, θ)KλL1−λ, is not just a production function multiplied by a matching

function. Instead, it is a unified aggregate production and matching function.

A matching process is the process by which workers and firms are "matched" to form

worker/firm pairs and the unemployment rate is determined. A production process is the

process according to which a given match produces a certain quantity of output. In this

model, matching and production are two aspects of a single process. If no firms approach a

given worker, he is unemployed. If at least one firm approaches a worker, the firm with the

highest productivity hires the worker and produces output at that productivity level. Both

the employment status of a given worker and their expected output depend upon the number

of firms competing to hire the worker.

The production process incorporates the fact that an important effect of greater compe-

tition to hire workers is an allocation of labor towards more productive firms. More firms

competing for a given worker’s labor implies a higher expected value of the maximum pro-

ductivity, which leads to higher output for that worker and hence higher aggregate labor
16This result also holds when the production function and the elasticity of substitution are defined in a

more conventional manner, so that y = f̃(κ) where κ ≡ K/Le and Le is the number of employed workers.
See Appendix A.3.
17See footnote 3 in Acemoglu (2003) for a summary of the empirical estimates of this elasticity.
18See Petrongolo and Pissarides (2001) and Rogerson et al. (2005) for surveys of the relevant literature.
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productivity. Seen in this light, the expression γ(1−λ, θ) can be interpreted as a kind of gen-
eralization of the matching function which includes the effect of competition between firms

on aggregate output.

To understand how this unified production function works, we can isolate both the match-

ing function and the production function by considering two limiting directions. Recall that

L represents all workers, including the unemployed. First, we can recover the matching

function by considering the limit as λ → 0. This is equivalent to assuming a degenerate

underlying distribution, G(x). Since γ(1, θ) = 1 − e−θ, the aggregate production function

collapses to the urn-ball matching function, m(θ) = 1− e−θ.19

The second direction gives us the limiting production function. If we take the limit as

θ → ∞, we obtain the Cobb-Douglas production function, Y = Γ(1 − λ)KλL1−λ. In this

limiting case, there is no unemployment and hence L is the number of employed workers.

The expression Γ(1− λ) is the maximum level for γ(1− λ, θ) as the number of firms goes to
infinity and unemployment disappears.

In general, the unified aggregate production function, Y = γ(1−λ, θ)KλL1−λ, incorporates

both production and matching simultaneously. The marginal product of labor represents the

effect on aggregate output of an extra potential worker, who may end up either employed or

unemployed depending on the matching outcomes. The marginal product of capital repre-

sents the marginal contribution of an extra unit of hired capital, which may end up either

utilized or unutilized depending on whether or not the firm is successful.

II.B. Equilibrium

The equilibrium level of firm entry, θ∗, is determined by a zero profit condition which

ensures the expected payoff for firms, net of entry cost, is zero. The expected net payoff

for firms, π(θ), is determined by both the probability of success (i.e. having the highest

productivity for a given worker) and the expected payoff for a successful firm. The former is

determined by the Poisson distribution, while the latter depends on the wage determination

mechanism.

After a firm approaches a given worker, there are two possibilities. If the firm is alone,

it employs the worker at wage z. If there are two or more firms competing, the one with

the highest productivity hires the worker at a wage equal to the second highest productivity.

This environment is equivalent in terms of expected payoffs to a second-price auction where

19The urn-ball matching function, first introduced by Butters (1977) and Hall (1979), arises endogenously
in directed search models of the labor market as the economy becomes large. The urn-ball matching function
arises endogenously in directed search models of the labor market. For papers related to directed search see,
for example, Peters (1991), Montgomery (1991), Shimer (1996), Moen (1997), Julien et al. (2000), Burdett
et al. (2001), Shi (2001), Shimer (2005a), Albrecht et al. (2006), and Galenianos and Kircher (2009).
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each firm’s valuation of a worker’s labor equals their productivity draw from the distribution

G(x).There is a stochastic number of bidders determined by the Poisson distribution.20 This

environment is similar to the competing auctions framework analyzed by Peters and Severinov

(1997). In Appendix A.4, I derive the following zero profit condition:

π(θ) =

∫ ∞
1

e−θ(1−G(x))(1−G(x))dx+ e−θ(1− z)− r = 0. (7)

It is easy to see that π′(θ) < 0, so if there exists a θ such that π(θ) > 0, the equilibrium

must be unique. Since π(0) = EG(x) − z − r, if we have EG(x) > r + z then π(0) > 0 and

there exists a unique equilibrium level of firm entry, θ∗ > 0, such that π(θ∗) = 0. On the

other hand, if π(0) ≤ 0 no firms enter and θ∗ = 0. (See Appendix A.5.)

For any distribution G(x), the equilibrium θ∗ is decreasing in the value of non-market

activity, z, and decreasing in the rental rate of capital, r. This implies that the equilibrium

unemployment rate, u(θ∗) = e−θ
∗
, is increasing in the value of non-market activity z and

increasing in r. These results are intuitive. A higher value of non-market activity, z, means

that firms are deterred by the lower expected profits, so θ∗ is lower and unemployment is

higher. A lower rental rate rate of capital, r, implies higher expected profits for firms, which

leads to an increase in θ∗ and a lower unemployment rate. (See Appendix A.6.)

The equilibrium level of firm entry, θ∗, determines expected wages, w(θ∗) = f(θ∗) − rθ∗.
This is just total wages divided by the number of potential workers, i.e. the expected payoff

from market activity for all workers, including the unemployed.21 While expected wages

are pinned down by the equilibrium θ∗, the wage determination mechanism gives rise to

residual wage dispersion across workers. This is because the actual wage paid to a particular

worker depends on the specific productivity levels of the firms bidding for that worker. Even

workers with identical productivity outcomes ex post can receive different wages because the

profit/wages split depends on the value of the second highest productivity.

For the Pareto distribution, G(x) = 1 − x−1/λ, the equilibrium ratio of firms to workers

θ∗ is the unique solution to

λθλ−1γ(1− λ, θ) + (1− z)e−θ = r. (8)

(See Appendix A.7.) The equilibrium θ∗ is increasing in λ and the equilibrium unemployment

rate, u(θ∗), is decreasing in λ. A change in the parameter λ affects the productivity of all

20Auctions with a stochastic number of bidders were first studied by McAfee and McMillan (1987).
21The expected payoff for workers from both market and non-market activity is ŵ(θ∗) = f(θ∗)−rθ∗+ze−θ.

It is easy to verify that if workers were able to choose ex ante a bilateral wage, b∗, in order to maximize their
expected payoff, ŵ(θ∗), they would choose b∗ equal to their outside option, z.
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matches, since it increases both the mean and the variance of the Pareto distribution.22

Equilibrium output per capita, f(θ∗) = θλγ(1−λ, θ), is increasing in λ. (See Appendix A.8.)
Factors are paid their marginal product if and only if either z = 0 or θ → ∞. The

marginal product of capital is MPK = f ′(θ) = λθλ−1γ(1− λ, θ) + e−θ, so r = MPK only if

either z = 0 or θ →∞. Expected wages are given by w(θ) = f(θ)−rθ = (1−λ)y−(1−z)θe−θ,

while the marginal product of labor is MPL = f(θ)− θf ′(θ) = (1− λ)y − θe−θ. This is the
marginal product of an extra potential worker, as discussed in Section II.A. If z > 0, workers

are paid more than their marginal product. The "wage gap", w−MPL = zθe−θ, disappears

only when the value of non-market activity is zero, or as θ →∞.
In the limiting case where θ → ∞, all matches are multilateral, expected wages are

w(θ) = (1−λ)y, and the expected payoff for a successful researcher is rθ = λy. Both the fact

that the profit/wages split is linear and the particular value of the linear split are endogenous

here. This linear division of income at the aggregate level occurs simultaneously with micro-

level wage dispersion across individual workers and wide variation in profits across firms. In

general, however, not all matches are multilateral, so the aggregate profit/wages split is only

approximately linear. We turn to the question of how to determine factor shares next.

II.C. Factor Income Shares

Imagine there are owners of capital who are paid the cost r by firms to lend them a

single unit of capital for one period. Since there is a zero profit condition for firms, output

is simply split between workers and owners of capital. The share of income going to capital

is sK = rK/Y. Using (3) and (8), capital’s share is

sK = λ+ (1− z)ε(1− λ, θ), (9)

where ε(1− λ, θ) is the elasticity given by (6).
One way to interpret (9) is to consider the special case where z = 0. In this case, factors

are paid their marginal product. Capital’s share is equal to the elasticity of the aggregate

production function, Y = γ(1 − λ, θ)KλL1−λ, with respect to capital, namely sK = λ +

ε(1−λ, θ). Dissecting this further, capital is paid both the elasticity, λ, of the Cobb-Douglas
production function, Y = KλL1−λ, plus the elasticity, ε(1−λ, θ), of the generalized matching
function, γ(1 − λ, θ), with respect to capital. In the degenerate case where λ = 0, capital’s

share equals the elasticity of the matching function, m(θ) = 1− e−θ, with respect to θ. More
generally, when λ > 0, capital is paid for its contribution to both matching and production.

22The expected value of the Pareto distribution G(x) = 1− x−1/λ is 1
1−λ and the variance is

λ2

(1−2λ)(1−λ)2
(for λ < 1/2), both of which are increasing in λ.
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If we consider the direct effect of θ on factor shares outside of equilibrium, then capital’s

share is decreasing in θ. This is because the term ε(1−λ, θ) is decreasing in θ. (See Appendix
A.9.) Equivalently, labor’s share is increasing in θ. This result is intuitive since θ is a measure

of the degree of competition for workers’labor. Greater competition for workers results in

a higher labor share. As the number of firms goes to infinity, capital’s share approaches its

lower bound, sK = λ. As the number of firms goes to zero, unemployment is pervasive and

capital’s share reaches its upper bound, sK = 1− z(1− λ).

The significance of the value of non-market activity, z, decreases as θ →∞. The intuition
here is simple. As θ becomes small (i.e. unemployment is high), the value z is increasingly

important, since wages equal z if exactly one firm arrives. The importance of workers’outside

option, z, is negligible if θ is very high (i.e. unemployment is low) since the probability of

having only one firm approach a given worker is very small. Once two or more firms compete

for a particular worker, wages are bid up and workers’outside option is immaterial.

When are factor shares constant? Suppose the underlying distribution G(x) is held fixed.

By constant factor shares, I mean simply that factor shares depend only on the parameters

inherited from G(x). For the Pareto distribution, this means that factor shares are constant

if they depend only on λ. Proposition 2 summarizes two distinct conditions under which

factor shares are constant. Both are easy to see from looking at (9). In the limit as θ →∞,
we have γ(1−λ, θ)→ Γ(1−λ), so the elasticity ε(1−λ, θ) goes to zero and sK = λ. If z = 1,

the right term disappears so factor shares are again constant, sK = λ.

Proposition 2 Factor shares are constant, sK = λ and sL = 1− λ, in two cases:
(i) Full employment: in the limit as θ →∞ (i.e. as unemployment goes to zero);

(ii) Workers’outside option equals minimum firm productivity: z = xmin = 1.

In general, if factors are paid their marginal product, factor shares are constant if and

only if the aggregate production function is Cobb-Douglas.23 Equivalently, if factor shares are

constant, then factors are paid their marginal product if and only if the aggregate production

function is Cobb-Douglas. Both cases in Proposition 2 are consistent with this fact, but in

different ways. In case (i), factors are paid their marginal product and we have a Cobb-

Douglas aggregate production function. In case (ii), factors are not paid their marginal

product and the aggregate production function is not Cobb-Douglas.

Comparative Statics. We now consider how equilibrium factor shares vary depending on

labor market conditions and the underlying productivity distribution G(x). The equilibrium

23The possibility of factor shares that are asymptotically constant along a balanced growth path, due
to labor-augmenting technical change and a CES production function with σ < 1, is a different kind of
"constancy" (see Acemoglu (2003)).
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capital share is s∗K = λ + (1 − z)ε(1 − λ, θ∗) where θ∗ solves (8). This is clearly increasing
in the rental rate of capital r, since there is only the indirect effect on s∗K through θ. If r

increases, θ∗ decreases, and since ε(1− λ, θ) is decreasing in θ the effect is an increase in the
equilibrium capital share s∗K .

Next, how does s∗K vary with changes in the value of non-market activity, z? If z increases,

the direct effect is that sK should decrease. However, the indirect effect is that an increase

in z leads to a lower level of equilibrium firm entry, θ∗. Since ε(1 − λ, θ) is decreasing in θ,
this indirect effect should lead s∗K to increase. The net result is unclear, but it turns out that

the direct effect always dominates: the equilibrium capital share is decreasing in the value

of non-market activity, z. While an increase in z increases unemployment, it also increases

labor’s share of output. (See Appendix A.10.)

Proposition 3 The equilibrium labor share, s∗L, is increasing in the value of non-market

activity, z, and decreasing in the rental rate of capital r.

We can also consider how equilibrium factor shares respond to changes in the underlying

firm productivity distribution, G(x). For the Pareto distribution, an increase in the shape

parameter λ increases both the mean and the variance of this distribution. In turn, this shift

in λ feeds into the endogenous productivity distribution across workers and thereby increases

aggregate productivity, both directly and through its effect on θ.

When factor shares are "constant", (i.e. if either θ → ∞ or z = 1), it is clear that if λ

increases, capital’s share rises and labor’s share falls. It is important to emphasize that this

is not simply a direct "shock" to capital share, however, since it is a result that sK = λ as

θ →∞ or z = 1, where λ is the parameter of the underlying productivity distribution.

Outside these special cases, the effect of a change in λ is more complicated. There are two

distinct channels through which changes in λ may affect equilibrium factor shares. When

λ increases, there is a direct effect which implies that s∗K should be increasing in λ. But

there is also a more subtle effect through the term ε(1−λ, θ∗). There are two components to
this channel. First, there is an indirect effect whereby θ∗ increases with λ since more firms

are attracted by the higher expected profits. This leads to greater competition for workers’

labor, which has the effect of decreasing s∗K , since ε(1−λ, θ) is decreasing in θ (for a given λ).
Second, there is a direct effect through the function ε(1−λ, θ). Since ε(1−λ, θ) is decreasing
in λ (for a given θ), an increase in λ also has the effect of decreasing s∗K . The overall effect

of an increase in λ through the term ε(1− λ, θ∗) is therefore one of decreasing s∗K .

Proposition 4 The equilibrium capital share, s∗K, is increasing in λ provided the value of
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non-market activity, z, is suffi ciently high:

z >
1

2− λ.

It turns out that the net effect is ambiguous: either the positive or the negative channel

may dominate. The value of non-market activity z is key in determining the relative im-

portance of these two channels. From (9), we can see that the term (1 − z) acts as a kind

of "weight" on the component ε(1 − λ, θ) in capital’s share. A higher z gives less weight to
this component and more weight to the direct influence of the parameter λ. In Appendix

A.11, I derive a condition on z and λ, described in Proposition 4, which is suffi cient (but not

necessary) for the equilibrium capital share to be increasing in λ.

III. DYNAMIC MODEL

This section extends the model to a simple dynamic environment. One limitation of the

static model is the fact that the ratio of firms to workers, θ = V/L, and the capital/labor

ratio, k = K/L, are too closely connected —in fact, they are equal to each other. This makes

capital a flow value; all capital is newly hired by firms during a single period. The dynamic

model corrects this problem by treating capital as a stock : the sum of existing capital in place

from previously formed matches plus the capital inflow from new firms. At the same time, the

minimum wage that workers are willing to accept in the dynamic setting —their reservation

wage —is endogenous, and it reflects the value of continued search in future periods as well

as the flow payoff from unemployment. This enables us to calibrate the model in Section IV

and examine its predictions quantitatively.

III.A. Basic Environment

There are an infinite number of discrete time periods. In each period, there is a continuum

of homogeneous risk-neutral workers of measure L. At the start of period t, a continuum of

measure Ut of these workers are unemployed. In each period, there is also a continuum of

risk-neutral potential firms. The measure of entering firms in period t is Vt and the ratio of

entering firms to unemployed workers is φt = Vt/Ut.

Unemployed workers choose whether to accept or reject job offers, and potential firms

simultaneously make an entry decision. We will see that there is unique reservation wage

bt ≥ 0 such that workers accept a job offer if and only if the wage offered is greater than or

equal to bt. Given the reservation wage bt, the level of firm entry φt is pinned down by a zero

profit condition. Given the level of firm entry φt, workers’reservation wage bt is determined
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by an indifference condition that equates the expected payoffs from accepting and rejecting

a job offer with wage bt.

An equilibrium is a sequence {(φ∗t , b∗t )}∞t=0 that satisfies a zero profit condition for firms and
an indifference condition for unemployed workers for each time t. A steady state equilibrium

is an equilibrium where φ∗t = φ∗ and b∗t = b∗ for all t, and unemployment is constant.

To enter, potential firms must pay an upfront cost Ct, which can be interpreted as the

cost of purchasing a machine or manufacturing plant with no scrap value. Each machine

represents a single unit of capital. After paying the cost Ct, firms draw a productivity level

x from a differentiable distribution G(x) with support (xmin,∞) and no mass points. We

normalize xmin = 1.

After learning their productivity x, firms can choose to search for a worker. If x > bt,

firms search for worker. If x ≤ bt, they will exit immediately since they cannot afford to

pay workers their reservation wage. The ratio of searching firms to unemployed workers is

θt = φt(1 − G(bt)). Searching firms approach unemployed workers at random since workers

are homogeneous and firms are uncoordinated. As in the static model, this gives rise to a

Poisson distribution with parameter θt for the number of firms targeting each unemployed

worker. For the sake of tractability, workers who are already employed cannot be targeted

by firms.

If a firm succeeds in hiring a worker, they can produce output and earn profits until the

match is destroyed. Firms discount future profits using a discount factor β ∈ (0, 1). Matches

are destroyed at the end of each period at an exogenous rate δ ∈ (0, 1]. When a match

is destroyed, the worker becomes unemployed and the firm exits. For simplicity, capital is

destroyed when a match is destroyed. When the firm "exits", it re-enters the pool of potential

firms who must pay a fixed cost Ct if they wish to search for workers at time t.

If no firms approach a given worker, he receives a flow payoff zt ∈ [0, 1] and remains

unemployed. If exactly one firm approaches worker j, the firm hires him and produces

output yj = xj each period. In each period until the match is destroyed, the worker is paid

his reservation wage b∗t at the time of hiring t and the firm earns flow profits πj = xj − b∗t .
If more than one firm competes for worker j, the one with the highest productivity hires the

worker and produces output yj = x1j , the highest productivity, in each period. Unsuccessful

firms exit.24 Wages are determined by Bertrand competition, which reflects the intensity of

competition to hire the worker at the time of hiring. The worker is paid a wage wj = x2j , the

second-highest productivity, and the firm earns flow profits πj = x1j − x2j each period until
the match is destroyed.

24For simplicity, I assume that a firm’s capital investment is destroyed when it is unsuccessful in hiring a
worker, just as it is when a match is destroyed. Failure to hire a worker can be interpreted as a failure of the
new business venture. Less productive firms face a higher probability of failure.
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III.B. Unemployment, Capital, and Output

The ratio of searching firms to unemployed workers, θt, is the key variable driving un-

employment, aggregate output, and factor shares. In this section, we start by describing the

evolution of unemployment, capital, and output, taking a sequence {(θt, bt)}∞t=0 as given, and
determine the steady state unemployment rate, capital-labor ratio, and output per capita.

In Section III.C, we characterize the steady state equilibrium and present some comparative

statics results.

Unemployment. Suppose that all workers are unemployed at the start of time t = 0, i.e.

U0 = L. The evolution of unemployment is given by the following:

Ut = Ut−1 − (1− e−θt−1)Ut−1 + δ(L− Ut−1 + (1− e−θt−1)Ut−1). (10)

The number of unemployed workers at the start of period t equals the number who were

unemployed at the start of period t − 1, minus the unemployed workers who found jobs in

period t − 1, plus the number of matches that were destroyed in period t − 1. This law of

motion for unemployment simplifies to

Ut = (1− δ) e−θt−1 Ut−1 + δ L. (11)

The unemployment rate ut in period t is simply the proportion of the labor force who are

initially unemployed at the start of period t but who are not approached by a firm during

that period, which occurs with probability e−θt . That is,

ut =
Ut e

−θt

L
. (12)

This is the within-period unemployment rate, i.e. the proportion of the labor force that is

not employed within period t. It does not include those who lose their jobs at the end of the

period due to match destruction.25

Now consider an economy where θt = θ and bt = b for all t. In the limit as t → ∞, we
have Ut = Ut−1 = U . Substituting into (11), we obtain the following expression for steady

state unemployment, which equates the inflows and outflows from unemployment.

U =
δL

1− (1− δ)e−θ . (13)

25Since the matching process is urn-ball and match destruction takes place at the end of the period, the
unemployment dynamics are the same as those which arise in some directed search models of the labor
market, such as Julien et al. (2000).
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The steady state unemployment rate is given by

u(θ) =
δe−θ

1− (1− δ)e−θ . (14)

Capital. The existing capital stock is given by the number of active matches, i.e. the

number of matches formed in previous periods that have not yet been destroyed. This is just

the number of workers who are employed at the start of period t, L − Ut. The quantity of
"new" capital in each period equals the number of entering firms, Vt = φtUt, who each pay

the cost Ct to purchase a machine during that period, regardless of whether or not they are

successful in hiring workers. Total capital Kt is "old" plus "new" capital in period t,

Kt = (L− Ut) + θtUt/(1−G(bt)). (15)

In the steady state, each of the variables in (15) is constant and the capital/labor ratio can

be obtained by substituting (13) into (15). Let k = K/L, where L is the total labor force.

The steady state capital/labor ratio is

k(θ, b) =
δθ + (1− δ)(1−G(b))(1− e−θ)

(1−G(b))(1− (1− δ)e−θ) . (16)

We no longer have θ = k, however k is strictly increasing in θ (taking b as given), so we still

have a one-to-one mapping between k and θ in the steady state. (See Appendix A.12.)

Aggregate Output. To obtain an aggregate production function, I assume the distribu-

tion of firm productivity levels, G(x), is constant over time. This assumption is useful for

analytical tractability, but it rules out an examination of how changes in this distribution

over time may influence factor shares. As we will see in Section IV, however, the theory can

explain much of the post-war variation in factor shares in the U.S. at an annual frequency

even without allowing the distribution G(x) to change over time.

Again we assume G(x) is Pareto, namely G(x) = 1 − x−1/λ. Suppose that bt is given.
Let Gbt(x) be the (possibly) truncated distribution of searching firms’productivity levels,

Gbt(x) = Pr(X ≤ x|x ≥ bt). For the Pareto distribution, the truncated distribution re-

mains Pareto, namely Gbt(x) = 1−
(

x
x0t

)−1/λ
where x0t = max{1, bt}. The minimum of the

distribution is x0t ≥ 1 since only firms with productivity greater than bt search.

In the dynamic model, aggregate output Yt at time t can be decomposed into output from

new matches, Y new
t , plus output from existing matches,
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Yt = Y new
t + (1− δ)Yt−1. (17)

The total output, Y new
t , produced by new matches during period t is determined in the same

manner as the static model where all matches are "new". New output Y new
t is the expected

value of the endogenous productivity distribution across initially unemployed workers at time

t, namely H(x; θt, x0t) = e
−θt

(
x
x0t

)−1/λ
with continuous support [x0t,∞) plus a mass point at

zero. The expected value is

Y new
t = x0tγ(1− λ, θt)θλtUt. (18)

Now suppose we are in a steady state where θt = θ, bt = b, x0 = max{1, b} and Ut = U

for all t. In this case, Y new
t is also constant. Steady state output Y is attained in the limit

where the economy entered a steady state for θ infinitely many periods ago.26 Steady state

aggregate output is

Y =
x0γ(1− λ, θ)θλU

δ
. (20)

In the special case where δ = 1 and b ≤ 1, we have Y = γ(1 − λ, θ)KλL1−λ and the results

from Section II.A hold. In particular, we obtain a Cobb-Douglas production function only

in the limit where θ →∞ and unemployment disappears.

Substituting in the steady state number of unemployed workers given by (13), we can

now determine steady state output per capita, y = Y/L,

y(θ, b) =
x0γ(1− λ, θ)θλ

1− (1− δ)e−θ . (21)

Output per capita is increasing in θ (taking b as given). (See Appendix A.13.) Since there is

a one-to-one mapping between θ and k, we have θ(k) and can write y = f(k), although we

do not have a simple closed form expression for f(k). This is a unified aggregate production

function which incorporates both a matching process and a production technology. In the

dynamic setting, output per capita is now also directly affected by the match destruction

rate δ and workers’ reservation wage b, since x0 is the minimum of the searching firms’

productivity distribution.

26To see this, imagine that the economy converged to a steady state s periods ago. Matches that were
created n periods ago survive to the current period with probability (1− δ)n so Yt is given by the following
expression. As s→∞, the right term disappears and the left term is constant.

Yt =

s∑
n=0

(1− δ)nx0θλγ(1− λ, θ)θλU +

t∑
n=s+1

(1− δ)nx0t−nθλt−nγ(1− λ, θt−n)θλt−nUt−n. (19)
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III.C. Equilibrium

Unemployed workers choose to either accept or reject job offers and firms simultaneously

make an entry decision that determines θt. There will be a unique reservation wage bt such

that workers will accept a job offer if and only if the wage offered is greater than or equal to

bt. Given the level of firm entry φt, we will see that workers’reservation wage bt is determined

by an indifference condition that equates the expected payoffs from accepting and rejecting

a job offer with wage bt. Given a reservation wage bt, the level of firm entry φt (and hence

the key ratio θt) is determined by a zero profit condition.

Recall that an equilibrium is a sequence {(φ∗t , b∗t )}∞t=0 that jointly satisfies a zero profit
condition for firms and an indifference condition for unemployed workers at each time t.

A steady state equilibrium is an equilibrium where φ∗t = φ∗ and b∗t = b∗ for all t, and

condition (13) for steady state unemployment holds. In this section, I focus on steady

state equilibria. I prove that there exists a unique steady state equilibrium (φ∗, b∗) and

provide some comparative static results regarding this equilibrium and and some important

equilibrium outcomes such as output per capita and the unemployment rate.

Firms’Entry Decision. Suppose we are in a stationary environment where the cost of

purchasing capital, C, and the flow payoff from unemployment, z, are constant over time.

First consider the firms’entry decision. Taking workers’reservation wage b as given, the level

of firm entry, φ, is pinned down by a zero profit condition. In any given period, firms will enter

until the discounted present value of expected profits, net of the cost of purchasing a machine

C, are zero. The zero profit condition extends the static version (7) in a straightforward

manner. (See Appendix A.14.)

C =
(1−G(b))

(∫∞
x0
e−θ(1−Gb(x))(1−Gb(x))dx+ e−θ(x0 − b)

)
(1− β(1− δ)) . (22)

where θ = φ(1 − G(b)). Firms who pay the cost C receive a productivity draw from G(x).

With probability 1 − G(b), they search for a worker. Given that they are searching, their

expected flow payoff is essentially the expected payoff for bidders in a second-price auction

where the distribution of firm productivity levels is now the truncated distribution Gb(x) with

minimum x0 = max{1, b}. The expected flow payoff is discounted by the effective discount
rate, β(1 − δ), which incorporates both the discount factor β and the exogenous match

survival rate. For the Pareto distribution, the zero profit condition is

C =
x
−1/λ
0

(
x0λθ

λ−1γ(1− λ, θ) + e−θ(x0 − b)
)

1− β(1− δ) . (23)
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Assumption 1 implies that there is a critical value bc(λ, β, δ, C) > z such that for any b ≤ bc,

there exists a unique level of firm entry φ ≥ 0 which satisfies (23). (See Appendix A.15.) If

b > bc, there is no firm entry and hence φ = 0. So for any given b ≥ 0, there is a unique level

of firm entry φ and we have a function φr : R+ → R+. In Appendix A.16, I show that when
b ≤ bc, we have φ

′
r(b) ≤ 0. Since φ = 0 when b > bc, the function φr is decreasing in b.

Assumption 1 The cost of purchasing capital is not too high: C < 1
1−β(1−δ)

(
1
1−λ − z

)
.

Workers’Reservation Wage. We now turn to workers’decision to accept or reject job

offers, taking φ as given. Let V U be the expected value of being unemployed at the start of

a period, and let V E(x) be the expected value of being employed at wage x. When offered

a job that pays a wage x, a worker can either accept it and receive V E(x) or reject it and

remain unemployed, in which case he receives z + βV U . Unemployed workers will accept a

job offer at wage x if V E(x) ≥ z + βV U and reject it otherwise.

Appendix A.17 shows that for any given φ ≥ 0, there exists a reservation wage b such

that workers will accept a job offer if and only if the wage offered is greater than or equal to

b. So we have a function br : R+ → R+ and b′r(φ) ≥ 0 for all φ. (See Appendix A.18.) The

reservation wage b satisfies the indifference condition (24),

V E(b) = z + βV U . (24)

Given the existence of a reservation wage b, equations (25) jointly determine V U and V E(x),

V E(x) = x+ β((1− δ)V E(x) + δV U), (25)

V U = e−θ(z + βV U) + (1− e−θ)V E(wnew),

where θ = φ(1−G(b)) and wnew is the expected wage,

wnew =
x0(1− λ)θλγ(1− λ, θ)− θe−θ(x0 − b)

1− e−θ . (26)

Equations (25) can be understood as follows. If a worker is employed at wage x in the

current period, he receives a flow payoff x. If the match survives, he receives the discounted

expected value of being employed at wage x in the next period. If the match is destroyed, he

receives the discounted expected value of being unemployed at the start of the next period.

If a worker is unemployed at the start of the current period, there are two possibilities. With

probability e−θ, he remains unemployed and receives a flow payoff z plus the discounted value
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of being unemployed at the start of the next period. With probability 1− e−θ, the worker is
employed at an expected wage of wnew.

If we substitute V E(b) from (25) into (24), we obtain

b = z(1− β(1− δ)) + β(1− β)(1− δ)V U . (27)

Substituting V U from (25) into (27), the steady state reservation wage satisfies the following:

b =
z(1− β(1− δ)) + β(1− δ)(1− e−θ)wnew

1− β(1− δ)e−θ . (28)

where wnew is given by (26). Observe that when φ = θ = 0, we have br(φ) = z, the value of

non-market activity. Since b′r(φ) > 0, we have br(φ) ≥ z for all φ. If δ = 1, then b = z.

Steady State Equilibrium. A steady state equilibrium is a pair (φ∗, b∗) that simultane-

ously satisfies the zero profit condition (23) and workers’indifference condition (24) for each

time t, as well as condition (13) for steady state unemployment. We know that for any given

φ ≥ 0, (28) has a unique solution br(φ). At the same time, we know that for any given b ≤ bc,

(23) has a unique solution φr(b), and if b ≥ bc we have φr(b) = 0. The function br is increasing

in φ, and φr is decreasing in b. Hence there exists a unique steady state equilibrium (φ∗, b∗).

This equilibrium satisfies both (28) and (23), and in the limit as t → ∞ the economy also

satisfies equation (13) for steady state unemployment.27

Figure I provides an example of the functions br(φ) and φr(b) and the equilibrium (φ∗, b∗),

where b∗ < 1 and hence φ∗ = θ∗.

Proposition 5 There is a unique steady state equilibrium (φ∗, b∗) and θ∗ = φ∗(1−G(b∗)).

Proposition 6 contains some comparative statics results regarding the effects of the key

parameters —the value of non-market activity z, the cost of purchasing capital C, and the

parameter λ from the underlying productivity distribution G(x) —on the equilibrium (φ∗, b∗).

The effects of the discount factor, β, and the match destruction rate, δ, are ambiguous. (See

Appendix A.19.)

We restrict our attention to the case where b∗ < 1 and θ∗ = φ∗. As we will see in Section

III.D, this turns out to be the more interesting case regarding the behavior of factor shares.

Proposition 6 If b∗ < xmin = 1, workers’reservation wage b∗ is increasing in λ and z, and

decreasing in C. The equilibrium ratio θ∗ is decreasing in z and C, and increasing in λ.

27Assumption 1 ensures that bc > z, which rules out the possibility that φ∗ = 0 and b∗ = z is the only
equilibrium.
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Using the expressions for the steady state unemployment rate (14), output per capita (21)

and the capital-labor ratio (16), we can infer some comparative statics results regarding the

steady state equilibrium unemployment, u∗ = u(θ∗), output per capita, y∗ = y(θ∗), and the

capital-labor ratio, k∗ = k(θ∗), for the case where b∗ < 1. Proposition 7 summarizes these

results. (See Appendix A.20.)

Proposition 7 If b∗ < xmin = 1, then (i) the equilibrium unemployment rate u∗ is increasing

in both z and C, and decreasing in λ; (ii) the equilibrium capital-labor ratio k∗ is decreasing

in z and C, and increasing in λ; (iii) equilibrium output per capita y∗is decreasing in z and

C, and increasing in λ.

III.D. Factor Income Shares

In this section, I first derive general expressions for factor shares when the economy is not

necessarily in a steady state, taking a sequence {(θt, bt)}∞t=0 as given. I then determine steady
state factor shares and present some comparative statics results regarding the equilibrium

factor shares in the steady state.

Factor shares are effectively a weighted average of the relative income shares determined

in both new matches and previously formed matches that are still active. To start with,

expected wages for all workers who are unemployed at the start of period t, including those

who remain unemployed, is wnewt (1− e−θt), where wnewt is given by (26). Substituting in (18)

for the output from new matches, Y new
t , labor’s share for new matches at time t is

snewL,t =
wnewt (1− e−θt)Ut

Y new
t

= 1− λ−
(

1− bt
x0t

)
ε(1− λ, θt). (29)

Capital’s share in new matches at time t, snewK,t ≡ 1− snewLt , is therefore

snewK,t = λ+

(
1− bt

x0t

)
ε(1− λ, θt). (30)

Capital’s share of aggregate output at time t is given by the following weighted average,

sK,t =
snewK,t Y

new
t + sK,t−1(1− δ)Yt−1

Yt
. (31)

Capital’s share in new matches, snewK,t , is weighted by the value of new output, Y new
t , and

the previous period’s capital share is weighted by the value of output produced by matches

existing in the previous period that are still active.
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Steady state capital share is given by

sK = λ+

(
1− b

x0

)
ε(1− λ, θ), (32)

where x0 = max{1, b} and ε(1 − λ, θ) is the elasticity given by (6). Since b = z < 1 in the

static model, equation (32) nests the earlier result for the static model (9) as a special case.

In general, steady state capital share is decreasing in θ (taking b as given) since the

elasticity ε(1−λ, θ) is decreasing in θ. Intuitively, as the ratio of searching firms to unemployed
workers rises, greater competition for workers leads to an increase in labor’s share. Since

greater competition for workers, reflected in a higher ratio θ, leads to lower unemployment

u(θ) through (14), this gives rise to a negative relationship between unemployment and labor’s

share. At the same time, capital share is decreasing in b (taking θ as given) since workers

are paid more in bilateral matches when the reservation wage is higher.

Proposition 8 Factor shares are constant, sK = λ and sL = 1− λ, in two cases:
(i) Full employment: in the limit as θ →∞ (i.e. as unemployment goes to zero);

(ii) Reservation wage equals or exceeds the minimum firm productivity: b ≥ xmin = 1.

When are factor shares constant? Steady state factor shares are constant in two distinct

cases which are analogous to Proposition 2 for the static model. First, there is an asymptotic

result: factor shares are constant in the limit as θ → ∞ and unemployment disappears.

Second, factor shares are constant when workers’ reservation wage equals or exceeds the

minimum firm productivity. The model predicts constant factor shares when workers’reser-

vation wage b exceeds the minimum firm productivity level, xmin = 1. In Section IV, when

we calibrate the model, we will be in a position to see whether this condition is likely to

actually hold. It turns out that in the benchmark calibration the endogenous reservation

wage is always less than one, which allows for some variation in factor shares over time.

Decomposition of Capital Share. We treat capital share simply as the residual of labor’s

share, sK ≡ 1− sL. However, capital share can be decomposed into two distinct components
in the dynamic setting. The exact breakdown depends on the match destruction rate δ and

the discount factor β. Each period, the share of output going to the owners of capital, sC , is

sC =
δ

1− β(1− δ)

(
λ+

(
1− b

x0

)
ε(1− λ, θ)

)
. (33)

This is the proportion of aggregate output paid to the owners of capital at the start of each

period when firms pay the cost C. Each period, the share of output, sπ, accruing to firms as
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a group, after wages and capital costs are paid, is

sπ =
(1− δ)(1− β)

1− β(1− δ)

(
λ+

(
1− b

x0

)
ε(1− λ, θ)

)
. (34)

If δ = 1, we have sπ = 0 and there is no firm profit share, as in the static model. In general,

the ratio sπ/sC is decreasing in both the match destruction rate δ and the discount factor β,

but the aggregate division of output between capital and labor does not depend directly on

δ and β. The shares of output accruing to capital owners and firms are grouped together as

capital share, sK = sC + sπ, where sK is given by (32).

Comparative Statics. We now present some comparative statics results for the steady

state equilibrium factor shares. For the interesting case where b∗ < 1 and there is some

variation in factor shares, the following expression represents the steady state equilibrium

capital share,

s∗K = λ+ (1− b∗) ε(1− λ, θ∗), (35)

where b∗ is the equilibrium reservation wage and θ∗ = φ∗ is the equilibrium ratio of searching

firms to unemployed workers.

Proposition 9 The equilibrium labor share, s∗L, is increasing in the value of non-market

activity, z, and decreasing in the cost of purchasing capital, C.

How do equilibrium factor shares respond to a change in the cost of investing in capital?

Suppose there is an increase in C. There is an indirect effect on capital share through the

equilibrium ratio θ∗. A higher cost C means that entry is less attractive for firms, which

decreases the equilibrium ratio θ∗. The decrease in θ∗ has a positive effect on capital share

since there is less competition for workers. Overall, equilibrium capital share is increasing in

the cost C.

We can also compare two economies with different values of non-market activity, z. There

are two opposing effects of an increase in z. When z increases, b∗ increases and there is a

negative effect on capital share. But there is also a positive indirect effect on capital share

through θ∗, since a higher z decreases the level of firm entry, which has a positive impact on

capital share. Overall, the negative effect dominates. (See Appendix A.21.)

IV. QUANTITATIVE EXERCISE

In this section, I examine one of the model’s predictions quantitatively by asking the

following question: Through the lens of the model, can variations in unemployment rates and
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unemployment benefits explain the behavior of factor shares in the U.S. over the period 1951-

2010? To answer this question, I calibrate the model and use annual data on unemployment

rates and unemployment insurance eligibility to predict the movements in factor shares during

this period. The model’s predictions are then compared with the data.

The theory predicts that factor shares are constant when workers’reservation wage equals

or exceeds the minimum firm productivity level. In the benchmark calibration, the endoge-

nous reservation wage is always less than the minimum firm productivity, which allows for

systematic variation in factor shares. To reach the threshold value of bt ≥ xmin = 1, a rela-

tively high level for the value of non-market activity, zt, is required. For more realistic values

of zt —less than around 70% of average wages —the model predicts that factor shares are not

constant but they are at least relatively stable, in a sense we will now make precise.

Strategy. The basic strategy for this quantitative exercise is quite simple. I use unem-

ployment data to directly pin down θt for each period, in order to match the unemployment

rates exactly. The sequence of reservation wages, {bt}, is in turn determined by the values
{θt}, and factor shares are determined by the entire sequence {(θt, bt)}. By matching the
unemployment rates directly, I abstract from the well-known diffi culties that search models

have in generating sizeable fluctuations in unemployment. This enables me to examine the

relationship between unemployment and factor shares predicted by the model, taking the

fluctuations in unemployment as given.

Given a sequence of unemployment rates {ut} and the parameter δ, we can determine
the corresponding sequence {θt} using (14) and (10), and thereby the sequence of reservation
wages {bt}. Given a sequence {(θt, bt)}, aggregate output Yt is given by (19) and (18), and
capital’s share sKt is given by (32) and (30) for each period t.28

Workers’reservation wage bt depends on both current labor market conditions and ex-

pectations of future values of θt and zt. Let V E
t (x) be the expected value of being employed

at wage x at the start of period t, and let V U
t be the expected value of being unemployed at

the start of period t. A reservation wage bt at time t must satisfy V E
t (bt) = zt + βV U

t+1, where

V E
t (x) = x+ β((1− δ)V E

t+1(x) + δV U
t+1),

V U
t = e−θt(zt + βV U

t+1) + (1− e−θt)V E
t (wnewt ).

28Assuming the zero profit condition for firm entry holds for all t, we could of course back out the implied
sequence of values {Ct} using the following expression:

Ct =
x
−1/λ
0t

(
x0tλθ

λ−1
t γ(1− λ, θt) + e−θt(x0t − bt)

)
1− β(1− δ) , x0t = max{1, bt}.
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Suppose that zt = z and θt = θ from time T onwards. There exists a unique reserva-

tion wage bt = b ∈ R+ for all t ≥ T, and hence we can determine the steady state value

of unemployment, V U
T = V U(θ, b, z). Given the sequence {θt}Tt=0, we can calculate the en-

tire remaining sequence of reservation wages {bt}T−1t=0 by working backwards from period T,

provided we can also determine the sequence {zt}Tt=0.
For this simple exercise, I present two extreme cases with regard to workers’expectations.

In the myopic equilibrium, workers use only current labor market conditions, as given by θt
and zt, to determine their reservation wage bt. In the perfect foresight equilibrium, workers

use both current and future values of θt and zt to determine bt; there is no uncertainty.

Value of Non-Market Activity. In the search literature, it is standard to think of the

flow payoff from unemployment, zt, in terms of a "replacement rate", i.e. the level of un-

employment insurance benefits as a percentage of average wages, although it is understood

to include the value of leisure. Generally, a single value for this replacement rate is chosen

and the issue of eligibility for benefits is ignored. Over the post-war period, however, eli-

gibility for unemployment insurance (UI) has increased dramatically in the U.S., while the

after-tax replacement rate for insured workers has been relatively constant (Anderson and

Meyer (1997)). For example, the UI coverage rate (or percentage of workers who are eligible

for UI) was around 59% in 1948 compared with 93% in 1980.29 As Figure II indicates, while

eligibility increased steadily from 1948 until around 1980, it has been fairly stable since then.

For this quantitative exercise, I define the value of non-market activity, zt, in a way

that incorporates UI eligibility. I start by choosing a target level α for the average value

of non-market activity as a percentage of average wages throughout the entire period. This

enhances comparability with the search-theoretic literature, where a single value for α is

generally chosen. I define the value of non-market activity in period t as zt = ηptwt−1 where

wt−1 is average wages in the previous period,30 pt is the probability of being eligible for UI,

and η is a "normalization" parameter that enables us to match the target α.

The value of pt is determined by both UI coverage data and long-term unemployment

data. In particular, define pt ≡ et(1 − LTUt), where LTUt is the long-term unemployment

rate and et is the UI coverage rate.31 The inclusion of long-term unemployment is intended as

a simple proxy for the fact that covered workers who become long-term unemployed may lose

eligibility for UI due to exhaustion of benefits. Greater incidence of long-term unemployment

29Economic Report of the President (2009, 1983)
30Average wages for employed workers in the previous period is given by wt−1 = sLt−1Yt−1/(1− ut−1).
31It is important to use the UI coverage rate since a worker’s outside option depends on whether he or she

is eligible for unemployment insurance. Actual receipt of UI benefits is a different matter altogether, as this
depends on take-up rates which are affected by many other factors and vary across states. For details on
this, see for example Blank and Card (1991).
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decreases the average value of non-market activity, zt, by decreasing pt.

Data Sources. The factor shares data is found in the Bureau of Labor Statistics Multifac-

tor Productivity historical release, which covers the period 1948-2010. This data is derived by

the BLS from the NIPA. The BLS Multifactor Productivity release provides data for the pri-

vate business sector, which excludes both general government and government enterprises.32

The unemployment rate data is the BLS civilian annual average unemployment rate from

1948-2012. The long-term unemployment rate is the BLS measure of the annual average

number of unemployed workers who are unemployed for 27 weeks or longer as a proportion

of the total unemployed from 1948-2012. The UI coverage rate is the proportion of employed

workers in the civilian labor force who are eligible for UI benefits. This data is obtained from

the Economic Report of the President (2009, 1983) and covers the period 1948-2007.33

Calibration. For this quantitative exercise, I assume that all production and payments

are shifted forward by one period after matching occurs so that it takes one year for current

labor market conditions to be reflected in factor shares. Since I use annual data, shorter

frequency movements in factor shares are not captured in this exercise.

In the initial period, before the unemployment data starts in 1948, I assume the economy’s

unemployment rate is the long-run average of 5.8% for the full period 1948-2012. At the

end of the period 1948-2012, I assume there is a transition to a steady state equilibrium

corresponding to the long-run average unemployment rate of 5.8%. In both the initial period

and the end steady state, I assume the long-term unemployment rate is the long-run average

of 14.7%, but the coverage rate et equals the 1948 level in the initial period and the 2007

level in the end steady state (due to the time trend).

During the period 1948-2012, I use the unemployment data to generate predictions for

factor shares, but I start to test the model’s predictions only from 1951 due to the weighted

average nature of factor shares. By 1951, more than 90% of the matches have been formed

during 1948 onwards, so the results are not sensitive to the initial unemployment rate.

32The BLS MFP release defines the Private Business Sector as GDP minus general government and gov-
ernment enterprises, minus output of household workers, nonprofit institutions, gross housing product of
owner-occupied dwellings, and the rental value of nonprofit institutional real estate. Labor’s share is la-
bor compensation divided by the total of labor and capital cost. Labor compensation is defined as wages
and salaries of employees plus employers’contributions for social insurance and private benefit plans, and
all other fringe benefits in current dollars. An estimate of the wages, salaries, and supplemental pay-
ments of the self-employed is included. Technical details regarding the BLS MFP data can be found at
http://www.bls.gov/mfp/mprtech.pdf.
33Through 1996, covered employment includes persons under the following programs: State, Unemploy-

ment Compensation for Federal Employees (UCFE), Railroad Retirement Board (RRB), and Unemployment
Compensation for Ex-Servicemembers (UCX). From 1997, covered employment includes only the State and
UCFE programs.
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In the benchmark calibration, I set β = 0.95, δ = 0.45 and α = 0.5. The target α for the

average value of non-market activity as a percentage of average wages is perhaps the most

controversial value to choose. There has been much debate in the search literature about

what this value should be. In Shimer (2005b), a value of 0.4 is chosen, while in Hagedorn and

Manovskii (2008) the value of non-market activity is much higher. The approach taken here

is to simply let α = 0.5 and then perform some robustness checks where I vary this target. I

also conduct robustness checks where I vary δ.34

After setting δ, β and α, I simultaneously choose a value for λ to match the mean capital

share, a value for η to match the target α, a sequence {θt}Tt=1 to match the unemployment
rates from 1948 to 2012, and values θ0 and θSS to match the long-run average unemployment

rate in the initial period and the end steady state respectively.

In the benchmark calibration, I choose λ to match the mean capital share during the

period 1951-2003. I take this approach because capital’s share rises sharply in 2004-2005 in

the data. If I include the period 2004-2010, the mean capital share rises and the standard

deviation jumps up dramatically, affecting the fit of the model for the entire period 1951-2003.

As we will see, the model cannot explain the sharp rise in capital’s share during 2004-2005

using a single value of λ, so I focus the analysis on the period 1951-2003.

IV.A. Results

Figure III compares the model’s predictions for capital’s share when workers are myopic

with the U.S. data for the full period 1951-2010. Figure IV presents the same graph for the

perfect foresight equilibrium. The main difference between the two alternatives is that the

model’s predictions for factor shares are smoothed out when workers have perfect foresight

because current conditions do not have quite as strong an impact on factor shares.

One striking feature of Figures III and IV is the steep rise in capital’s share in the 2000s,

particularly around 2004-2005. Capital’s share jumps from 0.32 in 2003 to 0.35 in 2005. This

dramatic rise is not predicted by the model, despite the relatively good fit from 1951 to 2003.

There are many factors outside the scope of the present model which could be relevant here.

Through the lens of the model, it certainly appears that something very unusual happened to

factor shares in the U.S. after 2003, something which cannot be easily reconciled with their

34The annual match destruction rate of δ = 0.45 in the benchmark calibration represents a monthly rate
of 3.75%. This includes both job-to-job transitions and transitions from employment into unemployment.
(Job-to-job transitions are not explicit in the model but correspond to cases where a worker loses their job at
the end of one period and instantly gains another at the start of the next period without going through any
spell of unemployment.) Estimates of the job separation rate, including both quits and layoffs, are usually
between 3-5% monthly or 35-60% annually. See Davis et al. (2010) for a discussion of the downward bias
in the published JOLTS separations rate and an adjusted estimate of 4.65% monthly (quits plus layoffs)
compared with the published JOLTS rate of 3.46% for the period 2001-2006.
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behavior through the entire post-war period prior to this point.

Table I summarizes the quantitative results for the myopic and perfect foresight equilibria

for 1951-2003. The correlation between the data and the model’s predictions during the

period of over fifty years from 1951-2003 is 0.69 for the perfect foresight equilibrium and 0.73

when workers are myopic. The standard deviation of capital’s share is lower than in the data,

0.0068 for the perfect foresight equilibrium and 0.0075 when workers are myopic compared

with 0.0093. At least part of this discrepancy is likely due to measurement error.

For the sake of comparison, Figure V is a scatterplot showing the weakly positive rela-

tionship between capital’s share in the US from 1951-2003 and the unemployment rate one

year earlier. Figure VI is a scatterplot showing the much stronger linear relationship between

the model’s predictions for capital share and the data on capital share from 1951-2003.

As Table I indicates, the autocorrelation of the model’s predictions for capital’s share is

significantly higher than in the data, 0.895 for the perfect foresight equilibrium and 0.847

for the myopic model compared with 0.611. Again, this may be due partly to measurement

error, but it may also be due to certain simplifying assumptions of the model. In particular,

wages for existing matches cannot be re-negotiated and there is no on-the-job search, so only

new matches respond to changes in labor market conditions. Relaxing these assumptions in

future extensions of the model may somewhat reduce the persistence of factor shares.

In terms of robustness checks, I present the results of different calibrations of the model

where I allow α and δ to vary. In Table II I allow α to vary while holding δ = 0.45 fixed,

and in Table III I allow δ to vary while holding α = 0.5 fixed. Since the results for the

perfect foresight equilibrium are not quite as strong as when workers are myopic, I proceed

conservatively and focus exclusively on the perfect foresight case.

Table II shows that the main effect of varying the target replacement rate α is that the

standard deviation of capital’s share decreases when α increases. This is intuitive: as α

increases, the value of non-market activity zt increases and so does workers’reservation wage

bt, decreasing the variation in factor shares. Eventually, if the reservation wage is suffi ciently

high that it exceeds the minimum firm productivity, factor shares will be constant. Lower

values of α are more consistent with the variation we see in the data but if α is too low

this diminishes the importance of changes in zt over time, which help the model explain the

movements in factor shares over the long time period 1951-2003.

Table III indicates that the correlation between the data and the model’s predictions for

capital’s share hardly changes at all for different values of the match destruction rate, δ. The

main effect of increasing δ is that the standard deviation is higher due to the fact that a

greater proportion of matches are newly formed each period and hence factor shares exhibit

a higher degree of sensitivity to changes in labor market conditions.
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V. CONCLUSION

This paper presents a novel theory designed to answer the classic question of how factor

shares are determined. To answer this question, I first develop microfoundations for a unified

aggregate production and matching function that incorporates unemployment. In contrast

with the classic result of Houthakker (1955), and more recently Jones (2005) and Lagos

(2006), the aggregate production function derived here is Cobb-Douglas only in the friction-

less limiting case where unemployment disappears. In general, the elasticity of substitution

between capital and labor is less than one.

The wage determination mechanism of Bertrand competition which arises naturally in

this environment, together with the aggregate production and matching function, jointly de-

termine factor shares. In theory, constant factor shares can arise in two distinct cases: in the

limit as unemployment disappears, and when workers’reservation wage exceeds the minimum

firm productivity. In general, factor shares are variable and they depend crucially on unem-

ployment and workers’reservation wage, as well as on the underlying Pareto distribution of

firm productivity levels.

The results of the quantitative exercise suggest that labor market conditions are indeed

a key driver of the behavior of factor shares. Using only data on unemployment rates and

unemployment insurance eligibility, the model can explain much of the behavior of factor

shares in the U.S. over a period of more than fifty years from 1951 to 2003.

There is much further research to be done. Testing the theory’s predictions for countries

other than the U.S. and looking at cross-country differences in the behavior of factor shares

are next on the agenda, as is attempting to explain the puzzle of why labor’s share fell so

sharply in the U.S. during the recent period 2004-2010. At the same time, one extension of

the model which might improve its ability to match the persistence properties of the factor

shares data would be to incorporate on-the-job search for workers.

The unified theory of production, employment, and wages developed in this paper is both

simple and parsimonious but also rich in predictions not only regarding factor shares but

many important topics in macroeconomics such as unemployment fluctuations, wage and

productivity dispersion, and the nature of the aggregate production function. Exploring and

testing these predictions is part of a future research agenda.
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APPENDIX

A.0 Useful facts

Here I collect some useful facts that will be used repeatedly in the proofs in this Appendix. For
any s ∈ R+and x ∈ R+, the Lower Incomplete Gamma function is defined in the following manner.

γ(s, x) ≡
∫ x

0

ts−1e−t dt (36)

Fact 1 Recurrence relation: γ(s, x) = (s− 1)γ(s− 1, x)− xs−1e−x

Fact 2 ∂
∂x
γ(s, x) = xs−1e−x

Fact 3 ∂
∂s
γ(s, x) =

∫ x
0
ts−1e−t(ln t)dt

Fact 4 The elasticity of γ(s, x) with respect to x is

ε(s, x) =
xse−x

γ(s, x)
(37)

Fact 5 ε(s, x) is strictly increasing in s, ∂
∂s
ε(s, x) > 0, for x > 0.

Fact 6 ε(s, x) is decreasing in x, ∂
∂x
ε(s, x) ≤ 0

Fact 1 is obtained through integration by parts on (36). Facts 5 and 6 can be derived as follows.
Differentiating (37) with respect to s using Fact 3, we obtain

∂

∂s
ε(s, x) = xse−x

(∫ x
0

(lnx− ln t)ts−1e−tdt

γ(s, x)2

)
If x > 0, since lnx ≥ ln t for all t ≤ x we have

∫ x
0

(lnx − ln t)ts−1e−tdt > 0, so ∂
∂s
ε(s, x) > 0.

Differentiating ε(s, x) with respect to x using Fact 2, we have

∂

∂x
ε(s, x) =

xs−1e−x

γ(s, x)

(
s− x− xse−x

γ(s, x)

)
(38)

So ∂
∂x
ε(s, x) ≤ 0 if and only if x ≥ s− ε(s, x), or equivalently x ≥ s− ε(s, x). Applying Fact 1,

this is true provided that

x ≥ γ(s+ 1, x)

γ(s, x)

Rearranging and multiplying both sides by xs, this is true if and only if ε(s+1, x) ≥ ε(s, x), which
follows from Fact 5. So we have ∂

∂x
ε(s, x) ≤ 0.
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A.1 Properties of aggregate production function

Letting θ = k and taking the expected value of the distribution H(x; k) = e−k(1−G(x)) with
continuous support [1,∞) plus a mass point at zero, we have

f(k) =

∫ ∞
1

xkg(x)e−k(1−G(x))dx

Now let G(x) = 1− x−1/λ. Changing variables, letting let t = k(1−G(x)),

f(k) = kλ
∫ k

0

t−λe−tdt

Now, by definition, γ(s, x) =
∫ x
0
ts−1e−t dt, the Lower Incomplete Gamma function. Setting x = k

and s = 1− λ, we have the intensive production function (2),

f(k) = γ(1− λ, k)kλ

By Fact 2, we obtain
f ′(k) = λkλ−1γ(1− λ, k) + e−k > 0 (39)

So limk→0 f
′(k) = limk→0 λk

λ−1γ(1−λ, k)+e−k = (1−λ)−1, limk→∞ f
′(k) = limk→∞ λk

λ−1γ(1−
λ, k) + e−k = 0. Finally, to derive f ′′(k) we use Fact 1, setting s = 2− λ and x = k to obtain

f ′′(k) = −
(
λkλ−2γ(2− λ, k) + e−k

)
< 0 (40)

A.2 Derivation of elasticity of substitution

Inserting f ′(k) and f ′′(k) from (39) and (40) into definition (4), we have

σ =
−f ′(k)(f(k)− kf ′(k))

kf(k)f ′′(k)

=
−(λkλ−1γ(1− λ, k) + e−k)kλγ(2− λ, k)

kλ+1γ(1− λ, k)(−(λkλ−2γ(2− λ, k) + e−k))

Rearranging and simplifying, we have

σ =
λ+ k1−λe−k/γ(1− λ, k)

λ+ k2−λe−k/γ(2− λ, k)

Using k = θ, we have (5),

σ =
λ+ ε(1− λ, θ)
λ+ ε(2− λ, θ) .

A.3 Proof of Proposition 1

To show that σ < 1, it is suffi cient to show that ε(1−λ, θ) < ε(2−λ, θ). This follows directly
from Fact 5, which states that ε(s, x) is increasing in s for x > 0.
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Proof that σ̃ < 1. The elasticity of substitution σ is defined as a property of the function
f(θ) = γ(1 − λ, θ)θλ, where θ = V/L = K/L and L is the labor force, or total number of
potential workers. We can also consider the elasticity of substitution σ̃ defined as a property of the
function f(κ) = γ(1 − λ, κ)κλ where κ ≡ K/Le and Le ≡ (1 − e−θ)L, the number of employed
workers. So we have κ = θ/(1 − e−θ). Since κ′(θ) = (1 − e−θ − θe−θ)/(1 − e−θ)2 > 0, κ(θ)
is invertible and we can write θ(κ). Let g(κ) ≡ f(θ(κ)). The elasticity of substitution between
capital and employed workers, σ̃, is given by

σ̃ =
−g′(κ)(g(κ)− κg′(κ))

κg(κ)g′′(κ)

In the limit as θ →∞, it is clear that κ/θ → 1, so we have σ̃ → σ and hence σ̃ → 1 as θ →∞.
To show that σ̃ < 1 in general, it suffi ces to show that σ̃ ≤ σ as we have already proven that
σ < 1. Now g′(κ) = f ′(θ)θ′(κ) and g′′(κ) = f ′′(θ)(θ′(κ))2 + f ′(θ)θ′′(κ). So we have

σ̃ =
−f ′(θ)θ′(κ)(f(θ)− κf ′(θ)θ′(κ))

κf(θ)(f ′′(θ)(θ′(κ))2 + f ′(θ)θ′′(κ))

To show that σ̃ ≤ σ, we need to prove that

σ̃ =
−f ′(θ)θ′(κ)(f(θ)− κf ′(θ)θ′(κ))

κf(θ)(f ′′(θ)(θ′(κ))2 + f ′(θ)θ′′(κ))
≤ −f

′(θ)(f(θ)− θf ′(θ))
θf(θ)f ′′(θ)

= σ

Substituting in κ = θ/(1− e−θ) and using the fact that f(θ) ≥ 0 and f ′(θ) > 0 from (39), this is
equivalent to showing that

θ′(κ)((1− e−θ)f(θ)− θf ′(θ)θ′(κ))

(f ′′(θ)(θ′(κ))2 + f ′(θ)θ′′(κ))
≥ f(θ)− θf ′(θ)

f ′′(θ)
(41)

Now κ′(θ) = (1− e−θ − θe−θ)/(1− e−θ)2, so we have

θ′(κ) =
(1− e−θ)2

1− e−θ − θe−θ

Differentiating with respect to κ and simplifying,

θ′′(κ) =
e−θ(1− e−θ)(2− θ − e−θ(2 + θ))

(1− e−θ − θe−θ)2

Using the fact that f ′′(θ) < 0 from (40) and rearranging (41), we need to prove that

Af(θ)− θf ′(θ)
1 + A

≤ f(θ)− θf ′(θ) (42)

where

A =
1− e−θ
θ′(κ)

and B =
f ′(θ)θ′′(κ)

f ′′(θ)(θ′(κ))2

Now 1− e−θ ≤ θ′(κ) so A ≤ 1 and it suffi ces to show that B ≥ 0. Since f ′(θ) > 0 and f ′′(θ) < 0,
from (39) and (40) respectively, and clearly (θ′(κ))2 > 0, we need only show that θ′′(κ) ≤ 0,
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which holds if and only if 2 − θ − e−θ(2 + θ) ≤ 0. Let h(θ) = 2 − θ − e−θ(2 + θ). Then
h′(θ) = −(1 − e−θ − θe−θ) ≤ 0 and h(0) = 0, so h(θ) ≤ 0 for all θ ≥ 0. Hence A ≥ 0 and
therefore (42) also holds, so we have proven that σ̃ ≤ σ and hence σ̃ < 1.

A.4 Derivation of zero profit condition

Suppose that a firm has a draw from the distribution G(x) and that n firms are competing to
hire a given worker j. Conditional on x and n, let β(x, n) be the probability a firm is successful in
hiring worker j, let R(x, n) be the expected payoff if it is successful, and let π(x, n) be the expected
payoff for the firm net of entry cost, namely π(x, n) = β(x, n)R(x, n) − r. From the perspective
of the firm, we have n ≥ 1 necessarily, so there are two cases to consider: n = 1 and n ≥ 2.

Case 1. n = 1. In this case, the wage paid is z. The expected net payoff, given a draw x from
G(x), is therefore π(x, 1) = x−z−r. Integrating over the distribution G(x), we have the expected
net payoff from a bilateral match is π1 =

∫∞
1

(x− z) dG(x)− r .

Case 2. n ≥ 2. Suppose that n ≥ 2 firms approach worker j. In this case, R(x, n) = (x −
w(x, n)), where w(x, n) is the expected value of the second-best draw given that x is the highest
productivity at worker j and there are n firms. The expected net payoff for a firm in this case is

π2(x, n) = β(x, n)(x− w(x, n))− r (43)

Here w(x, n) = E(Y n
2 |Y n

1 = x), where Y n
2 is the second order statistic from n draws, and Y n

1 is the
best draw from n draws. LetH(y, n) be the distribution of Y n

1 , i.e. the distribution of the first-order
statistic, which is just H(y, n) = G(y)n. Now E(Y n

2 |Y n
1 = x) = E(Y n−1

1 |Y n−1
1 < x) where Y n−1

1

is the first order statistic for n− 1 draws (see p. 23 Krishna (2010)). Expected wages as a function
of the highest productivity, x, and the number of firms, n, is therefore w(x, n) = 1

H(x,n−1)

∫ x
1
y

dH(y, n− 1). Substituting w(x, n) into (43), we have

π2(x, n) = β(x, n)

(
x− 1

H(x,n−1)

∫ x

1

y dH(y, n− 1)

)
− r

Now β(x, n) can be determined as follows. Given n firms at worker j, the probability that a given
one of these firms, with productivity draw x, has the best idea is G(x)n−1. This is the probability
that the other n − 1 firms at worker j all have draws less than x. (By assumption, G(x) has
no mass points, so the probability that two firms draw identical values is zero.) So β(x, n) =
G(x)n−1 = H(x, n− 1). Substituting into the above, we obtain π2(x, n) = x.H(x, n− 1)−

∫ x
1
y

dH(y, n− 1)− r. Using integration by parts, we have π2(x, n) =
∫ x
1
H(y, n− 1)dy − r .

When n ≥ 2, the expected payoff from approaching worker j is π2(n) =
∫∞
1
π2(x, n)g(x)dx−r.

Again integrating by parts, we obtain

π2(n) = [π2(x, n)G(x)]∞1 −
∫ ∞
1

d

dx
[π2(x, n)]G(x)dx− r
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Now, d
dx

[π2(x, n)] = d
dx

(∫ x
1
H(y, n− 1)dy − r

)
= H(x, n−1).Also, [π2(x, n)G(x)]∞1 = limx→∞ π2(x, n),

which is given by
∫∞
1
H(y, n− 1)dy, since G(x)→ 1 as x→∞ and G(1) = 0. So we have

π2(n) =

∫ ∞
1

H(y, n− 1)dy −
∫ ∞
1

H(x, n− 1)G(x)dx− r

Rearranging and substituting H(x, n− 1) = β(x, n), we have

π2(n) =

∫ ∞
1

β(x, n)(1−G(x))dx− r (44)

We can now determine π2(θ), the expected net payoff for a firm given that n ≥ 2.

π2(θ) =
1

Pr(nj ≥ 2)

∞∑
n=2

Pr(nj = n)π(n) =

∫ ∞
1

β(x)(1−G(x))dx− r (45)

where β(x) is the probability of being successful given that n ≥ 2. The probability β(x) can be
determined as follows.

β(x) =
1

Pr(nj ≥ 2)

∞∑
n=2

Pr(nj = n)β(x, n) =
1

Pr(nj ≥ 2)

∞∑
n=2

Pr(nj = n)G(x)n−1

From the perspective of workers, the probability of n arrivals is given by the Poisson distribution,
namely Pr(n̂j = n) = e−θθn/n! From the perspective of firms, however, this must be weighted,

Pr(nj = n) = Pr(n̂j = n)
n

E(n̂j)
=
e−θθn−1

(n− 1)!

So β(x) is given as follows,

β(x) =
1

1− e−θ
∞∑
n=2

e−θθn−1

(n− 1)!
G(x)n−1 =

e−θ(1−G(x)) − e−θ
1− e−θ

Substituting β(x) into the expression (45) for π2(θ), we get

π2(θ) =

∫ ∞
1

e−θ(1−G(x)) − e−θ
1− e−θ (1−G(x))dx− r (46)

We can now obtain π(θ), the expected net payoff for a firm, π(θ) = Pr(nj ≥ 2)π2(θ)+Pr(nj =
1)π1. Substituting in π1 and π2(θ) from (46), we have

π(θ) = (1− e−θ)
∫ ∞
1

(
e−θ(1−G(x)) − e−θ

1− e−θ

)
(1−G(x))dx+ e−θ

∫ ∞
1

(x− z) dG(x)− r
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Rearranging, we get

π(θ) =

∫ ∞
1

e−θ(1−G(x))(1−G(x))dx+ e−θ
((∫ ∞

1

x g(x)dx−
∫ ∞
1

(1−G(x))dx

)
− z
)
− r

Using integration by parts, we have∫ ∞
1

x g(x)dx−
∫ ∞
1

(1−G(x))dx = − [x(1−G(x))]∞1 = 1

provided we assume that limx→∞ x(1−G(x)) = 0. So we have (7).

π(θ) =

∫ ∞
1

e−θ(1−G(x))(1−G(x))dx+ e−θ (1− z)− r

A.5 Existence and uniqueness of equilibrium

Existence. Let F (θ) =

∫ ∞
1

e−θ(1−G(x))(1 − G(x))dx + e−θ(1 − z). Clearly, the zero profit

condition, π(θ) = 0, holds if and only if F (θ) = r, where r > 0. Now F (θ) is continuous in θ on
[0,∞) and F (θ)→ 0 as θ →∞. If we can ensure that F (0) > r, the intermediate value theorem

implies there must exist a θ > 0 such that F (θ) = r. Now, F (0) =

∫ ∞
1

(1−G(x))dx+ (1− z) =

EG(x)− 1 + 1− z = EG(x)− z. So we can ensure that F (0) > r provided that EG(x) > z + r.

Uniqueness. To prove uniqueness of the equilibrium θ∗ such that F (θ) = r, it suffi ces to show
that F ′(θ) < 0. Now let f(θ, x) = e−θ(1−G(x)) (1−G(x)) . Since both f(θ, x) and ∂

∂θ
(f(θ, x))

are continuous in both θ and x on [1,∞), we can use Leibniz’ integral rule, which implies that

F ′(θ) =

∫ ∞
1

∂
∂θ

(f(θ, x))dx−(1−z)e−θ = −
∫ ∞
1

(1−G(x))2 e−θ(1−G(x))dx−(1−z)e−θ. Clearly,

F ′(θ) < 0, so there exists a unique θ∗ such that F (θ) = r.

A.6 Proof of comparative statics for θ∗ for any G(x)

Let F (θ; z, r) =
∫∞
1
e−θ(1−G(x))(1−G(x))dx+ e−θ (1− z)− r = 0. By the implicit function

theorem, ∂θ
∗

∂z
= −∂F/∂z

∂F/∂θ
. Now ∂F

∂z
= −e−θ and ∂F

∂θ
= −

∫∞
1
e−θ(1−G(x))(1−G(x))2dx−e−θ (1− z) .

Now since z ≤ 1, we have

∂θ∗

∂z
=

−e−θ(∫∞
1
e−θ(1−G(x))(1−G(x))2dx+ e−θ (1− z)

) < 0

Also, ∂θ
∗

∂r
= −∂F/∂r

∂F/∂θ
where ∂F

∂r
= −1. Using ∂F

∂θ
from above, we have

∂θ∗

∂r
=

−1(∫∞
1
e−θ(1−G(x))(1−G(x))2dx+ e−θ (1− z)

) < 0
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A.7 Zero profit condition —Pareto distribution

Starting with the zero profit condition and G(x) = 1− x−1/λ, let y = G(x) to obtain:

π(θ) = λ

∫ 1

0

e−θ(1−y)(1− y)−λdy + e−θ(1− z)− r

Changing variables, let t = θ(1− y), so dy = −dt/θ

π(θ) = λθλ−1
∫ θ

0

t−λe−tdt+ e−θ(1− z)− r

Now by definition (36), γ(s, x) =
∫ x
0
ts−1e−t dt. Setting x = θ and s = 1− λ, we have (8).

π(θ) = λθλ−1γ(1− λ, θ) + e−θ(1− z)− r = 0

A.8 Proof of comparative statics for θ∗ —Pareto distribution

We have already shown in Appendix A.6 that ∂θ∗

∂z
< 0 and ∂θ∗

∂r
< 0 for any distribution G(x).

However, we include the derivations for the Pareto distribution here because the expressions for ∂θ
∗

∂z

and ∂θ∗

∂r
will be used in subsequent proofs. We also prove that ∂θ∗

∂λ
> 0 and output per capita is

increasing in λ.
Let F (θ;λ, z, r) = λθλ−1γ(1− λ, θ) + (1− z)e−θ − r = 0. By the implicit function theorem,

∂θ∗

∂z
= −∂F/∂z

∂F/∂θ
. Now ∂F

∂z
= −e−θ and by differentiating and then applying Fact 1, we have

∂F

∂θ
= −λθλ−2γ(2− λ, θ)− (1− z)e−θ (47)

Now since z ≤ 1, we have

∂θ∗

∂z
=

−e−θ

λθλ−2γ(2− λ, θ) + (1− z)e−θ
< 0 (48)

We also have ∂θ∗

∂r
= −∂F/∂r

∂F/∂θ
where ∂F

∂r
= −1. Using (47), we have

∂θ∗

∂r
=

−1

λθλ−2γ(2− λ, θ) + (1− z)e−θ
< 0 (49)

By the implicit function theorem, dθ
∗

dλ
= −∂F/∂λ

∂F/∂θ
, where ∂F

∂λ
is given by

∂F

∂λ
= θλ−1γ(1− λ, θ) + λ

(
θλ−1(ln θ)γ(1− λ, θ) + θλ−1

∂

∂λ
γ(1− λ, θ)

)
= θλ−1γ(1− λ, θ) + λθλ−1

∫ θ

0

t−λe−t(ln θ − ln t)dt
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since ∂
∂λ
γ(1− λ, θ) = −

∫ θ
0
t−λe−t(ln t)dt, by an application of Fact 3. Using (47), we have

∂θ∗

∂λ
=
θλ−1

(
γ(1− λ, θ) + λ

∫ θ
0
t−λe−t(ln θ − ln t)dt

)
λθλ−2γ(2− λ, θ) + (1− z)e−θ

> 0 (50)

since we have
∫ θ
0
t−λe−t(ln θ − ln t)dt ≥ 0 from A.3. Finally, f(θ(λ), λ) = θλγ(1 − λ, θ) and let

y∗ = f(θ∗(λ), λ). Then dy∗

dλ
= ∂f

∂θ
∂θ∗

∂λ
+ ∂f

∂λ
. Now f ′(θ) > 0 and ∂θ∗

∂λ
> 0 from above, so it suffi ces

to show that ∂f
∂λ
> 0. Using Fact 3, ∂f

∂λ
= θλ ln θγ(1− λ, θ) + θλ ∂

∂λ
γ(1− λ, θ), so we have

∂f

∂λ
= θλ

(∫ θ

0

t−λe−t(ln θ − ln t)dt

)
> 0. (51)

A.9 Proof that capital share, sK , is decreasing in θ

Since sK = λ + (1− z)ε(1− λ, θ), it is suffi cient to prove that ε(1− λ, θ) is decreasing in θ.
This follows directly from Fact 6. To establish upper and lower bounds, recall that as θ → 0, we
have ε(s, x) → s, and as θ → ∞, we have ε(1 − λ, θ) → 0. This means that as θ → 0, we have
sK = 1− z(1− λ), and as θ →∞, we have sK = λ.

A.10 Proof of Proposition 3

Let s∗K = λ+ (1− z)ε(1− λ, θ∗(z)). Differentiating with respect to z,

ds∗K
dz

=
∂

∂z
(λ+ (1− z)ε(1− λ, θ∗(z))) +

∂θ∗

∂z

∂

∂θ
ε(1− λ, θ)

= −ε(1− λ, θ) + (1− z)
∂θ∗

∂z

dε(1− λ, θ)
dθ

Substituting in ∂
∂x
ε(s, x) from (38), letting s = 1− λ and x = θ, we have

ds∗K
dz

=
−θ1−λe−θ
γ(1− λ, θ) + (1− z)

∂θ∗

∂z

θ−λe−θ

γ(1− λ, θ)

(
1− λ− θ − θ1−λe−θ

γ(1− λ, θ)

)
Rearranging, this means that

ds∗K
dz
≤ 0 if and only if

θ ≥ (1− z)
∂θ∗

∂z

(
1− λ− θ − θ1−λe−θ

γ(1− λ, θ)

)
(52)

= (1− z)
∂θ∗

∂z

(
γ(2− λ, θ)
γ(1− λ, θ) − θ

)
(53)

Now substituting in ∂θ∗

∂z
from (48), this is equivalent to

sK = λ+ (1− z)ε(1− λ, θ) ≥ 0

which is clearly always true. So we have
ds∗K
dz
≤ 0.
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A.11 Proof of Proposition 4

Let s∗K = λ+ (1−z)θ1−λe−θ
γ(1−λ,θ) where θ∗(λ) solves λθλ−1γ(1− λ, θ) + (1− z)e−θ = r. Rearranging

the zero profit condition and substituting into the expression for capital share, we get

s∗K =
rθ1−λ

γ(1− λ, θ)

So we have
ds∗K
dλ

= r
∂

∂θ

(
θ1−λ

γ(1− λ, θ)

)
dθ∗

dλ
+ r

∂

∂λ

(
θ1−λ

γ(1− λ, θ)

)
(54)

Using Fact 1, we have

∂

∂θ

(
θ1−λ

γ(1− λ, θ)

)
=

(1− λ)θ−λ

γ(1− λ, θ) −
θ1−2λe−θ

γ(1− λ, θ)2

Applying Fact 3 and simplifying,

∂

∂λ

(
θ1−λ

γ(1− λ, θ)

)
=

−θ1−λ

γ(1− λ, θ)2

(∫ θ

0

t−λe−t(ln θ − ln t) dt

)
Letting B =

∫ θ
0
t−λe−t(ln θ − ln t)dt and substituting into (54),

ds∗K
dλ

=
rθ−λ

γ(1− λ, θ)

((
(1− λ)− θ1−λe−θ

γ(1− λ, θ)

)
∂θ∗

∂λ
− θB

γ(1− λ, θ)

)
Applying Fact 1, we have

ds∗K
dλ

> 0 if and only if

γ(2− λ, θ)dθ
∗

dλ
> θB

Substituting in dθ∗

dλ
from (50) and simplifying,

ds∗K
dλ

> 0 if and only if

γ(2− λ, θ)γ(1− λ, θ) > B(1− z)θ2−λe−θ (55)

Now let F2,2(a1, a2; b1, b2; z) be a generalized hypergeometric function defined by

F2,2(a1, a2; b1, b2; z) =

∞∑
n=0

(a1)n(a2)n
(b1)n(b2)n

zn

n!

Here (a)n is the Pochhammer symbol or ascending factorial function, defined by (a)n = Γ(a +
n)/Γ(a). Calculating the integral B and then simplifying, we have the following. The last equal-

ity follows from the fact that limx→0
x1−λ

(1−λ)2F2,2(1 − λ, 1 − λ; 2 − λ, 2 − λ;−x) = 0 and also
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limx→0(lnx)γ(1− λ, x) = 0.

B = ln θ

∫ θ

0

t−λe−tdt−
∫ θ

0

t−λe−t ln t dt (56)

= (ln θ)γ(1− λ, θ)−
[
(lnx)γ(1− λ, x)− x1−λ

(1− λ)2
F2,2(1− λ, 1− λ; 2− λ, 2− λ;−x)

]θ
0

=
θ1−λ

(1− λ)2
F2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ)

The required inequality (55) can now be stated in terms of generalized hypergeometric functions
using the following identity for the incomplete gamma function, γ(x, z) = zxx−1F1,1(x;x+1;−z).

(1− z)e−θ <

(
1− λ
2− λ

)
F1,1(1− λ; 2− λ;−θ)F1,1(2− λ; 3− λ;−θ)

F2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ) (57)

In the limit as either θ → ∞ or z → 1, this inequality always holds, which is consistent with the
fact that in these limiting cases we have s∗K = λ so ds∗K/dλ > 0.

Now suppose that z > 1/(2− λ), so that 1− z < 1−λ
2−λ . To establish (57) and hence prove that

ds∗K/dλ > 0 , it suffi ces to prove the following general lemma. The desired inequality follows from
the special case where a = 1− λ and x = θ.

Lemma 1 For any a ≥ 0 and any x ≥ 0, we have

e−xF2,2(a, a; a+ 1, a+ 1;−x) ≤ F1,1(a; a+ 1;−x)F1,1(a+ 1; a+ 2;−x) (58)

Proof. First, we use the following result found in Miller and Paris (2012) just after Eq. (5.3),
obtained by specialization of 9.1 (34) in Luke (1969).

F2,2(a, f ; b, c;−x) =
∞∑
k=0

(a)k(c− f)k
(b)k(c)k

xk

k!
F1,1(a+ k; b+ k;−x) (59)

Setting f = a and b = c = a+ 1 in (59), and using the fact that (1)k = k!, we have

F2,2(a, a; a+ 1, a+ 1;−x) =
∞∑
k=0

(a)k
(a+ 1)2k

xkF1,1(a+ k; a+ 1 + k;−x)

Next, we apply Kummer’s first transformation, F1,1(y; z;−x) = e−xF1,1(z − y; z;x) to all F1,1
terms. (See, for example, Andrews et al. (2000), [Eq. 4.1.11]). After replacing F1,1(1; a+2;x) with
its definition and cancelling the term e−2x from both sides, the desired inequality (58) becomes

∞∑
k=0

(a)k x
k

(a+ 1)2k
F1,1(1; a+ 1 + k;x) ≤ F1,1(1; a+ 1;x)

∞∑
k=0

xk

(a+ 2)k
(60)
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Since all terms in both series are positive now, we can simply compare coeffi cients of like powers of
x. Inequality (60) holds provided that for all k ∈ N, we have

(a)k
(a+ 1)2k

F1,1(1; a+ 1 + k;x) ≤ F1,1(1; a+ 1;x)
1

(a+ 2)k
(61)

It can easily be verified that the following holds:

(a)k(a+ 2)k
(a+ 1)2k

=
a(a+ k + 1)

(a+ 1)(a+ k)
≤ 1

Also, F1,1(1; a + 1 + k;x) ≤ F1,1(1; a + 1; x) for all k ∈ N since the function F1,1(a1; b1;x) is

decreasing in its second argument, ∂F1,1(a1;b1;x)
∂b1

< 0. (See for example Erdelyi et al. (1953) for this
derivative.) So (61) holds and the lemma is proven.

A.12 Proof that k is increasing in θ

Here we prove that k is increasing in θ, taken b as given. Differentiating (16), we have

k′(θ) =

 δ+(1−δ)(1−G(b))e−θ
(1−G(b))(1−(1−δ)e−θ)

− (1−G(b))(1−δ)e−θ(δθ+(1−δ)(1−G(b))(1−e−θ))
((1−G(b))(1−(1−δ)e−θ))2


We have k′(θ) ≥ 0 if and only if

(δ + (1− δ)(1−G(b))e−θ)(1− (1− δ)e−θ) ≥ (1− δ)e−θ
(
δθ + (1− δ)(1−G(b))(1− e−θ)

)
With some algebra, this is equivalent to

1− (1− δ)e−θ − (1− δ)θe−θ + (1− δ)(1−G(b))e−θ ≥ 0 (62)

Since (1− δ)(1−G(b))e−θ ≥ 0, it suffi ces to show that

1− (1− δ)e−θ − (1− δ)θe−θ ≥ 0

Since δ ≤ 1, it suffi ces to show that 1− e−θ − θe−θ ≥ 0, which is true.

A.13 Proof that output per capita is increasing in θ

Output per capita is increasing in θ (taking b as given), where y(θ, b) = x0γ(1−λ,θ)θλ
1−(1−δ)e−θ .Differentiating

y with respect to θ, we have

∂y

∂θ
=
x0
(
(e−θ + γ(1− λ, θ)λθλ−1)(1− (1− δ)e−θ)− γ(1− λ, θ)θλ(1− δ)e−θ

)
(1− (1− δ)e−θ)2
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Rearranging, using the fact that (1 − δ)e−θ < 1, and dividing both sides by θλ−1γ(1 − λ, θ), we
obtain ∂y

∂θ
≥ 0 if and only if

λ+
θ1−λe−θ

γ(1− λ, θ) ≥
(1− δ)θe−θ

1− (1− δ)e−θ (63)

Since (1−δ)θe−θ
1−(1−δ)e−θ is decreasing in δ, it suffi ces to show that

λ+
θ1−λe−θ

γ(1− λ, θ) ≥
θe−θ

1− e−θ

which is true provided that h′(λ) ≥ 0 where h(λ) = λ + θ1−λe−θ

γ(1−λ,θ) , since h(0) = θe−θ

1−e−θ . Differenti-

ating h(λ), we have

h′(λ) =
d

dλ

(
λ+

θe−θ

θλγ(1− λ, θ)

)
= 1− θe−θ

(θλγ(1− λ, θ))2
d

dλ
(θλγ(1− λ, θ))

Substituting in ∂
∂λ

(θλγ(1− λ, θ)) from (51) and simplifying, we have

h′(λ) = 1− θ1−λe−θB

γ(1− λ, θ)2

where B =
∫ θ
0
t−λe−t(ln θ − ln t)dt. So h′(λ) ≥ 0 if and only if

θ1−λe−θB ≤ γ(1− λ, θ)2

Substituting expression (56) for B, we require that(
θ1−λ

1− λ

)2
e−θF2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ) ≤ γ(1− λ, θ)2

Using the following identity for the incomplete gamma function (as in Appendix A.11), γ(x, z) =
zxx−1F1,1(x;x+ 1;−z), this is equivalent to

e−θF2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ) ≤ F1,1(1− λ; 2− λ;−θ)2 (64)

Now Lemma 1 implies that the left-hand side of (64) is less than or equal to F1,1(1 − λ; 2 −
λ;−θ)F1,1(2− λ; 3− λ;−θ), so it suffi ces to show that

F1,1(2− λ; 3− λ;−θ) ≤ F1,1(1− λ; 2− λ;−θ)

Applying Kummer’s first transformation, F1,1(y; z;−x) = e−xF1,1(z − y; z;x), we require that
F1,1(1; 3− λ; θ) ≤ F1,1(1; 2− λ; θ). This is true since the function F1,1(a1; b1;x) is decreasing in
its second argument (see Appendix A.11). Hence h′(λ) ≥ 0, so the original inequality (63) holds
and ∂y

∂θ
≥ 0.
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A.14 Derivation of zero profit condition

Let J1(x) be the discounted expected revenue net of wages for an entrepreneur with productivity
x that faces no competition when hiring worker. Let J2(x) be the discounted expected revenue net
of wages for a successful entrepreneur with productivity x that faces competition when hiring. If
w(x) is the expected value of x2 given that x is highest, then

J1(x) =
x− b

1− β(1− δ) , J2(x) =
x− w(x)

1− β(1− δ)

Let η(θ, x) be the probability of successfully hiring, given θ and x, and given that there are two or
more entrepreneurs competing.

η(θ, x) =
e−θ(1−Gb(x)) − e−θ

1− e−θ

The value function for entrepreneurs, Ṽ , is

Ṽ = −C + (1−G(b))

(
e−θ
∫∞
x0
J1(x)dGb(x)

+(1− e−θ)
∫∞
x0
η(θ, x)J2(x)dGb(x)

)
Using analogous reasoning to that found in Appendix A.4, we have∫ ∞

x0

η(θ, x)(x− w(x))dGb(x) =

∫ ∞
x0

η(θ, x)(1−Gb(x))dx

Setting Ṽ = 0, we obtain

C =
(1−G(b))

1− β(1− δ)

(
e−θ
∫∞
x0

(x− b)dGb(x)

+(1− e−θ)
∫∞
x0
η(θ, x)(1−Gb(x))dx

)
Rearranging and using integration by parts as in Appendix A.4, the zero profit condition is

C =
(1−G(b))

(∫∞
x0
e−θ(1−Gb(x))(1−Gb(x))dx+ e−θ(x0 − b)

)
1− β(1− δ)

For the Pareto distribution, Gb(x) = 1−
(
x
x0

)−1/λ
where x0 = max{1, b}, so we have

C =
(1−G(b))

(
x0λθ

λ−1γ(1− λ, θ) + e−θ(x0 − b)
)

1− β(1− δ)

where θ = φ(1−G(b)).
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A.15 Proof that there exists a unique φ for any given b

Existence. Let F (θ) = (1 − G(b))
(∫∞

x0
e−θ(1−Gb(x))(1−Gb(x))dx+ e−θ(x0 − b)

)
, where

b ∈ R+ is taken as given. The zero profit condition holds if and only if F (θ) = C(1− β(1− δ)),
where C(1−β(1−δ) > 0. Now F (θ) is continuous in θ on [0,∞) and F (θ)→ 0 as θ →∞. If we
can ensure that F (0) ≥ C(1−β(1−δ)), the intermediate value theorem implies there exists θ ≥ 0

such that F (θ) = C(1 − β(1 − δ)). Now, F (0) = (1 − G(b))
(∫∞

x0
(1−Gb(x))dx+ (1− b)

)
=

(1−G(b))(EGb(x)− b). If G(x) is Pareto, we have F (0) ≥ C(1−β(1−δ)) provided the following
condition holds:

C ≤ 1−G(b)

1− β(1− δ)

(
x0

1− λ − b
)

(65)

If condition (65) holds, there exists θ ≥ 0 and hence there exists φ ≥ 0 such that the zero profit
condition holds, where φ = θ/(1−G(b)). If (65) fails, then θ = φ = 0.

Critical value. There is a unique critical value bc(λ, β, δ, C) > z such that condition (65) holds

whenever b ≤ bc. To see this, let f(b) = 1−G(b)
1−β(1−δ)

(
x0
1−λ − b

)
− C. Condition (65) holds if and only

if f(b) ≥ 0. First we prove that f ′(b) < 0. If b ≤ 1, we have f(b) = 1
1−β(1−δ)

(
1
1−λ − b

)
− C, so

f ′(b) = −1
1−β(1−δ) < 0. If b > 1, we have f(b) = λb1−1/λ

(1−λ)(1−β(1−δ)) − C, so f
′(b) = −b−1/λ

(1−β(1−δ)) < 0.

So for all b ≥ 0, we have f ′(b) < 0. Now if f(0) ≥ 0, then since f ′(b) < 0 and f(b) → −C as
b→∞, there exists a unique bc ≥ 0 such that f(bc) = 0. To ensure that bc > z, we need f(z) > 0,
which is true provided that condition (66) holds. This condition also implies that f(0) > 0, since
f ′(b) < 0. Hence there exists a unique critical value bc > z such that f(bc) = 0, and condition
(65) holds whenever b ≤ bc.

C <
1

1− β(1− δ)

(
1

1− λ − z
)

(66)

Uniqueness. To prove the uniqueness of θ where F (θ) = C(1 − β(1 − δ)), and hence the
uniqueness of φ = θ/(1 − G(b)), it suffi ces to show that F ′(θ) < 0. Applying Leibniz’ integral

rule, we have F ′(θ) = −(1 − G(b))
(∫∞

x0
(1−Gb(x))2 e−θ(1−Gb(x))dx+ (1− b)e−θ

)
< 0. So for

any given b, there is a unique θ and hence a unique φ that satisfies the zero profit condition. This
gives us the function φr(b) : R+ → R+.

A.16 Proof that φ′r(b) < 0

Let F1(θ, b) = x
−1/λ
0 (x0λθ

λ−1γ(1 − λ, θ) + e−θ(x0 − b)) − C(1 − β(1 − δ)) = 0 where
x0 = max{1, b}. When b < 1, F1(θ, b) = λθλ−1γ(1 − λ, θ) + e−θ(1 − b) − C(1 − β(1 − δ)),
so ∂F1/∂b = −e−θ and ∂F1/∂θ = −(λθλ−2γ(2 − λ, θ) + e−θ(1 − b)). By the implicit function
theorem, θ′(b) = φ′(b) = − ∂F1/∂b

∂F1/∂θ
, which gives the following expression, which is clearly negative.

φ′(b) = θ′(b) =
−e−θ

λθλ−2γ(2− λ, θ) + e−θ(1− b)
< 0, b < 1
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When b ≥ 1, we have F1(θ(φ, b), b) = b1−1/λλθλ−1γ(1 − λ, θ) − C(1 − β(1 − δ)) where

θ(φ, b) = φ(1−G(b)) = φb−1/λ and hence ∂θ
∂b

= − 1
λ
φb−1/λ−1 = − 1

λ
θb−1. Now φ′(b) = − dF1/db

dF1/dφ
,

where ∂F1/∂θ = −b1−1/λλθλ−2γ(2−λ, θ) is obtained by differentiating and then applying Fact 3.

dF1
db

=
∂F1
∂θ

∂θ

∂b
+
∂F1
∂b

= −b1−1/λλθλ−2γ(2− λ, θ)
(
−1

λ
θb−1

)
− b−1/λ(1− λ)θλ−1γ(1− λ, θ)

= −b−1/λe−θ

Also, dF1
dφ

is given by

dF1
dφ

=
∂F1
∂θ

∂θ

∂φ
= −b1−1/λλθλ−2γ(2− λ, θ)b−1/λ

So we have the following expression for φ′(b), which is again clearly negative.

φ′(b) = − dF1/db
dF1/dφ

=
−e−θ

b1−1/λλθλ−2γ(2− λ, θ)
< 0, b ≥ 1

In general, we have

φ′(b) =
−e−θ

x
−1/λ
0

(
x0λθ

λ−2γ(2− λ, θ) + e−θ(x0 − b)
) < 0, x0 = max{1, b}

A.17 Reservation wage

Workers decide whether to accept or reject wage offers b, taking φ as given. If V E(b) ≥ z+βV U ,
workers accept the wage offer b , while if V E(b) < z + βV U they reject the wage offer. We show
that for any given φ there exists a unique reservation wage b such that workers will accept a wage
offer x if and only if x ≥ b. This gives us a function br(φ) : R+ → R+. The reservation wage b
satisfies V E(b) = z + βV U . Let H(b) = V E(b)− z − βV U . Workers accept a wage offer b if and
only if H(b) ≥ 0. Using the fact that

V E(w) =
w + βδV U(w)

1− β(1− δ)

from (25) and then substituting into H(b) and simplifying, we have

H(b) =
b− β(1− δ)(1− β)V U

1− β(1− δ) − z

First, there exists at least one b such that H(b) = 0. To start with, observe that H(0) < 0. Also,
we have limb→∞H(b) = +∞. So there exists at least one b such that H(b) = 0. Next, H ′(b) > 0
clearly. Hence there exists a unique reservation wage b such that H(b) = 0, i.e., V E(b) = z+βV U .
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A.18 Proof that b′r(φ) ≥ 0

We start with the following expression for the reservation wage:

b =
z(1− β(1− δ)) + β(1− δ)(1− e−θ)wnew

1− β(1− δ)e−θ .

Let F2(θ, b) = b(1 − β(1 − δ)e−θ) − z(1 − β(1 − δ)) − β(1 − δ)w(θ, b) = 0 and let w(θ, b) =
(1− e−θ)wnew = x0(1− λ)θλγ(1− λ, θ)− θe−θ(x0 − b) where x0 = max{1, b}. We have

∂F2
∂θ

= β(1− δ)
(
be−θ − ∂w

∂θ

)
(67)

∂F2
∂b

= 1− β(1− δ)e−θ − β(1− δ)∂w
∂b

(68)

Case 1. b < 1. In this case, w(θ, b) = (1− λ)θλγ(1− λ, θ)− θe−θ(1− b). Differentiating with
respect to θ and b, we have

∂w

∂θ
= (1− λ)(λθλ−1γ(1− λ, θ) + e−θ)− (1− b)(e−θ(1− θ))

∂w

∂b
= θe−θ

Substituting into (67) and (68) and simplifying, we have

∂F2
∂θ

= −β(1− δ)(λθλ−1γ(2− λ, θ) + (1− b)θe−θ)

∂F2
∂b

= 1− β(1− δ)e−θ − β(1− δ)θe−θ

and hence using b′(φ) = b′(θ) = −∂F2/∂θ
∂F2/∂b

,

b′(φ) = b′(θ) =
β(1− δ)(λθλ−1γ(2− λ, θ) + (1− b)θe−θ)

1− β(1− δ)e−θ − β(1− δ)θe−θ , b < 1

The numerator is positive when b < 1 and the denominator is positive, 1− β(1− δ)e−θ − β(1−
δ)θe−θ > 0, since 1− e−θ − θe−θ > 0 and β(1− δ) < 1, so b′(φ) > 0 when b < 1.

Case 2. b ≥ 1. In this case, we have F2(θ(φ, b), b) = b(1− β(1− δ)e−θ)− z(1− β(1− δ))−
β(1− δ)w(θ, b) where w(θ, b) = b(1−λ)θλγ(1−λ, θ) and θ(φ, b) = φ(1−G(b)) = φb−1/λ, and
hence ∂θ

∂b
= − 1

λ
θb−1. Differentiating with respect to θ and b, we have

∂w

∂θ
= b(1− λ)(λθλ−1γ(1− λ, θ) + e−θ)
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∂w

∂b
= (1− λ)θλγ(1− λ, θ)

Substituting into (67) and (68) and simplifying,

∂F2
∂θ

= −β(1− δ)bλθλ−1γ(2− λ, θ)

∂F2
∂b

= 1− β(1− δ)e−θ − β(1− δ)(1− λ)θλγ(1− λ, θ)

Now b′(φ) = −dF2/∂φ
dF2/∂b

, where

dF2
dφ

=
∂F2
∂θ

∂θ

∂φ
= −b1−1/λβ(1− δ)λθλ−1γ(2− λ, θ)

dF2
db

=
∂F2
∂θ

∂θ

∂b
+
∂F2
∂b

= −β(1− δ)bλθλ−1γ(2− λ, θ)
(
−1

λ
θb−1

)
+ 1− β(1− δ)e−θ − β(1− δ)(1− λ)θλγ(1− λ, θ)

= 1− β(1− δ)e−θ − β(1− δ)θe−θ

by applying Fact 3. So we have the following expression for b′(φ), which is positive since 1−β(1−
δ)e−θ − β(1− δ)θe−θ > 0.

b′(φ) = −dF2/∂φ
dF2/∂b

=
b1−1/λβ(1− δ)λθλ−1γ(2− λ, θ)
1− β(1− δ)e−θ − β(1− δ)θe−θ , b ≥ 1

In general, we have

b′(φ) =
x
−1/λ
0 β(1− δ)(x0λθλ−1γ(2− λ, θ) + (x0 − b)θe−θ)

1− β(1− δ)e−θ − β(1− δ)θe−θ , x0 = max{1, b}

A.19 Proof of Proposition 6

Here we establish some comparative statics results for the equilibrium (φ∗, b∗) with respect to
the parameters pi ∈ p = (z, λ, C). We restrict our attention to the case where b < 1 (where
φ = θ). First we define the following functions, F1(θ, b;p) and F2(θ, b;p).

F1(θ, b;p) = x
−1/λ
0 (x0λθ

λ−1γ(1− λ, θ) + e−θ(x0 − b))− C(1− β(1− δ))

F2(θ, b;p) = b(1− β(1− δ)e−θ)− z(1− β(1− δ))− β(1− δ)w(θ, b, λ)

where x0 = max{1, b} and w(θ, b, λ) = x0(1 − λ)θλγ(1 − λ, θ) − θe−θ(x0 − b). The equation
F1(θ, b;p) = 0 implicitly defines the best-response function θr(.) for b < bc and θr(b) = 0 for any
b ≥ bc. The equation F2(θ, b;p) = 0 implicitly defines the best-response function br(.). We know
that x∗ = (θ∗, b∗) is an equilibrium if and only if F1(θ

∗, b∗;p) = 0 and F2(θ
∗, b∗;p) = 0. By the
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implicit function theorem, for any pi ∈ p we have

∂x∗(pi)

∂pi
= −(Dx(x

∗(pi), pi))
−1Dpi(x

∗(pi), pi)

where Dx =

[
∂br
∂θ
−1

−1 ∂θr
∂b

]
and Dpi =

[ ∂br
∂pi
∂θr
∂pi

]
for all pi ∈ p.

Before proving the comparative statics results, we first collect together some results that have
already been obtained in the proofs above.

∂F1
∂θ

= −(λθλ−2γ(2− λ, θ) + e−θ(1− b)), b < 1

∂F1
∂b

= −e−θ, b < 1

∂F2
∂θ

= −β(1− δ)(λθλ−1γ(2− λ, θ) + (1− b)θe−θ), b < 1

∂F2
∂b

= 1− β(1− δ)e−θ − β(1− δ)θe−θ, b < 1

We need ∂br/∂pi and ∂θr/∂pifor all pi ∈ p. Using the implicit function theorem in relation to

F1(θ, b;p) and F2(θ, b;p), we have ∂θr/∂pi = −∂F1/∂pi
∂F1/∂θ

and ∂br/∂pi = −∂F2/∂pi
∂F2/∂b

for all pi ∈ p.
So we need to first determine ∂F1/∂pi and ∂F2/∂pi for all pi ∈ p. Let B =

∫ θ
0
t−λe−t(ln θ−ln t)dt.

∂F1
∂λ

= θλ−1(γ(1− λ, θ) + λB), b < 1

∂F1
∂z

= 0

∂F1
∂C

= −(1− β(1− δ))

∂F2
∂λ

= β(1− δ)θλ(γ(1− λ, θ)− (1− λ)B), b < 1

∂F2
∂z

= −(1− β(1− δ))
∂F2
∂C

= 0

Now using the fact that ∂θr/∂pi = −∂F1/∂pi
∂F1/∂θ

and ∂br/∂pi = −∂F2/∂pi
∂F2/∂b

for all i, we obtain

∂θr
∂λ

= −∂F1/∂λ
∂F1/∂θ

=
θλ−1(γ(1− λ, θ) + λB)

λθλ−2γ(2− λ, θ) + e−θ(1− b)
, b < 1

∂θr
∂z

= −∂F1/∂z
∂F1/∂θ

= 0

∂θr
∂C

= −∂F1/∂C
∂F1/∂θ

=
−(1− β(1− δ))

λθλ−2γ(2− λ, θ) + e−θ(1− b)
, b < 1
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and we have

∂br
∂λ

= −∂F2/∂λ
∂F2/∂b

=
−β(1− δ)θλ(γ(1− λ, θ)− (1− λ)B)

1− β(1− δ)e−θ − β(1− δ)θe−θ , b < 1

∂br
∂z

= −∂F2/∂z
∂F2/∂b

=
1− β(1− δ)

1− β(1− δ)e−θ − β(1− δ)θe−θ , b < 1

∂br
∂C

= −∂F2/∂C
∂F2/∂b

= 0

Now we have ∂θ∗/∂pi = −(det(Dx))
−1
(
∂θr
∂b

∂br
∂pi

+ ∂θr
∂pi

)
and ∂b∗/∂pi = −(det(Dx))

−1
(
∂br
∂pi

+ ∂br
∂θ

∂θr
∂pi

)
.

First let D = −(det(Dx))
−1. For b < 1, substituting in ∂br/∂θ and ∂θr/∂b from above, we have

D = − 1

det(Dx)
= −

(
1

∂br
∂θ

∂θr
∂b
− 1

)
=

1

1− ∂br
∂θ

∂θr
∂b

=
1− β(1− δ)e−θ − β(1− δ)θe−θ

1− β(1− δ)e−θ > 0

Finally, substituting in ∂θr/∂b, ∂br/∂θ,
∂br
∂pi
and ∂θr

∂pi
into ∂θ∗/∂pi = −(det(Dx))

−1
(
∂θr
∂b

∂br
∂pi

+ ∂θr
∂pi

)
and ∂b∗/∂pi = −(det(Dx))

−1
(
∂br
∂pi

+ ∂br
∂θ

∂θr
∂pi

)
, we obtain the following.

Comparative statics for λ. For b < 1, we have

∂θ∗

∂λ
= D

 (
−e−θ

λθλ−2γ(2−λ,θ)+e−θ(1−b)

)(
−β(1−δ)θλ(γ(1−λ,θ)−(1−λ)B)
1−β(1−δ)e−θ−β(1−δ)θe−θ

)
+ θλ−1(γ(1−λ,θ)+λB)
λθλ−2γ(2−λ,θ)+e−θ(1−b)

 , b < 1

=
θλ−1

(
γ(1− λ, θ) + λB − Bβ(1−δ)θe−θ

1−β(1−δ)e−θ

)
λθλ−2γ(2− λ, θ + e−θ(1− b)

=
θλ−1 (γ(1− λ, θ) + (λ− J)B)

λθλ−2γ(2− λ, θ) + e−θ(1− b)
, where J =

β(1− δ)θe−θ
1− β(1− δ)e−θ

where B =
∫ θ
0
t−λe−t(ln θ − ln t)dt. Now we have ∂θ∗

∂λ
≥ 0 if and only if

γ(1− λ, θ) + (λ− J)B ≥ 0

If λ ≥ J , this is clearly true. Suppose instead that J > λ. Rearranging and then multiplying both
sides by 1− λ, the above inequality is true if and only if

B(1− λ)

γ(1− λ, θ) ≤
1− λ
J − λ

Now (1−λ)/(J−λ) > 1/J provided J < 1, which is true since 1−β(1−δ)e−θ−β(1−δ)θe−θ > 0.
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So it suffi ces to show that
B(1− λ)

γ(1− λ, θ)
β(1− δ)θe−θ

1− β(1− δ)e−θ ≤ 1 (69)

In Appendix A.11, we proved that (2− λ)γ(2− λ, θ)γ(1− λ, θ) > B(1− λ)θ2−λe−θ, so we have

B(1− λ)

γ(1− λ, θ) <
(2− λ)γ(2− λ, θ)

θ2−λe−θ

Substituting into (69), it is suffi cient to show

β(1− δ)θλ−1γ(2− λ, θ)
1− β(1− δ)e−θ ≤ 1

2− λ

Now let m(θ) = β(1−δ)θλ−1γ(2−λ,θ)
1−β(1−δ)e−θ . It can be shown that m̂ = max m(θ) is

m̂ =
1− ζ

2− λ− ζ

where ζ(β, δ) = arg max m(θ) and ζ is the unique solution to 1 − β(1 − δ)e−ζ = ζ. To ensure
that ∂θ∗

∂λ
≥ 0 for b < 1, we require that

1− ζ
2− λ− ζ <

1

2− λ

which is always true since λ < 1 and ζ > 0. So we have ∂θ∗

∂λ
≥ 0 for b < 1, regardless of the values

of λ, β and δ.
We also have ∂b∗

∂λ
≥ 0 for b < 1.

∂b∗

∂λ
= D

( −β(1−δ)θλ(γ(1−λ,θ)−(1−λ)B)
1−β(1−δ)e−θ−β(1−δ)θe−θ

+β(1−δ)(λθλ−1γ(2−λ,θ)+(1−b)θe−θ)
1−β(1−δ)e−θ−β(1−δ)θe−θ

θλ−1(γ(1−λ,θ)+λB)
λθλ−2γ(2−λ,θ)+e−θ(1−b)

)
, b < 1

=
Bβ(1− δ)θλ

1− β(1− δ)e−θ ≥ 0

Comparative statics for z.

∂θ∗

∂z
= D

(
−e−θ

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)(
1− β(1− δ)

1− β(1− δ)e−θ − β(1− δ)θe−θ

)
, b < 1(70)

=
−(1− β(1− δ))
1− β(1− δ)e−θ

(
e−θ

(λθλ−2γ(2− λ, θ) + e−θ(1− b))

)
< 0

52



∂b∗

∂z
= D

(
1− β(1− δ)

1− β(1− δ)e−θ − β(1− δ)θe−θ

)
, b < 1 (71)

=
1− β(1− δ)

1− β(1− δ)e−θ > 0

Comparative statics for C.

∂θ∗

∂C
= D

(
−(1− β(1− δ))

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)
, b < 1 (72)

=
−(1− β(1− δ))
1− β(1− δ)e−θ

(
1− β(1− δ)e−θ − β(1− δ)θe−θ

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)
< 0

∂b∗

∂C
= D

(
β(1− δ)(λθλ−1γ(2− λ, θ) + (1− b)θe−θ)

1− β(1− δ)e−θ − β(1− δ)θe−θ

)(
−(1− β(1− δ))

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)
, b < 1(73)

=
−(1− β(1− δ))
1− β(1− δ)e−θ

(
β(1− δ)(λθλ−1γ(2− λ, θ) + (1− b)θe−θ)

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)
≤ 0

A.20 Proof of Proposition 7

Proof of (i). Consider u∗ = u(θ∗) = u(θ∗(λ; z;C)). Since ∂θ∗

∂z
≤ 0, ∂θ

∗

∂C
≤ 0, and ∂θ∗

∂λ
≥ 0 for

b < 1, if u′(θ) ≤ 0 then ∂u∗

∂z
= du

dθ
∂θ∗

∂z
≥ 0, ∂u

∗

∂C
= du

dθ
∂θ∗

∂C
≥ 0, and ∂u∗

∂λ
= du

dθ
∂θ∗

∂λ
≤ 0 for b < 1.

Rearranging (14), we have u(θ) = δ/(eθ − (1 − δ)), which is clearly decreasing in θ so u′(θ) ≤ 0
and the result is proven.

Proof of (ii). Consider k∗ = k(θ∗). We have ∂k∗

∂z
= ∂k

∂θ
∂θ∗

∂z
≤ 0, ∂k

∗

∂C
= ∂k

∂θ
∂θ∗

∂C
≤ 0, and ∂k∗

∂λ
=

∂k
∂θ

∂θ∗

∂λ
for b < 1. Start with the expression for k from (16) and rearranging, we have

k(θ) =
δθ + (1− δ)(1− e−θ)

1− (1− δ)e−θ , b < 1

We know that ∂k
∂θ
≥ 0. Since ∂θ∗

∂C
< 0, we have ∂k∗

∂C
= ∂k

∂θ
∂θ∗

∂C
≤ 0. For b < 1, we have ∂θ∗

∂λ
≥ 0 and

∂k
∂θ
≥ 0, so ∂k∗

∂λ
= ∂k

∂θ
∂θ∗

∂λ
≥ 0. We also know that ∂θ∗

∂z
≤ 0, so ∂k∗

∂z
= ∂k

∂θ
∂θ∗

∂z
≤ 0.

Proof of (iii). Consider y∗ = y(θ∗, λ). Since ∂θ∗

∂C
≤ 0, we have ∂y∗

∂C
= ∂y

∂θ
∂θ∗

∂C
≤ 0, provided

that dy
dθ
≥ 0, which is true. Starting with (21), we have y(θ, λ) = γ(1−λ,θ)θλ

1−(1−δ)e−θ for b < 1. So ∂y∗

∂λ
=

dy
dθ

∂θ∗

∂λ
+ ∂y

∂λ
, where ∂θ∗

∂λ
≥ 0 and y′(θ) ≥ 0. In order to prove that ∂y∗

∂λ
≥ 0, it suffi ces to show that

∂y
∂λ
≥ 0. Similarly to (51) in Appendix A.8, differentiating y(θ, λ) with respect to λ yields:

∂y

∂λ
=
θλ
(∫ θ

0
t−λe−t(ln θ − ln t)dt

)
1− (1− δ)e−θ ≥ 0

So we conclude that ∂y∗

∂λ
≥ 0 when b < 1. Finally, ∂y

∗

∂z
= dy

dθ
∂θ∗

∂z
≤ 0 when b < 1, since ∂θ∗

∂z
≤ 0.
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A.21 Proof of Proposition 9

We show that
ds∗K
dC
≥ 0 and

ds∗K
dz
≤ 0 where s∗K = λ+ (1− b∗)ε(1−λ, θ∗). First, differentiating

s∗K with respect to C, we have

ds∗K
dC

=
−∂b∗
∂C

ε(1− λ, θ) + (1− b∗)∂θ
∗

∂C

∂

∂θ
ε(1− λ, θ)

Since db∗

dC
≤ 0 from (73), ∂

∂θ
ε(1 − λ, θ) ≤ 0 by Fact 6, and ∂θ∗

∂C
< 0 from (72), we have ds∗K

dC
≥ 0.

Next, differentiating s∗K with respect to z, we have

ds∗K
dz

= −∂b
∗

∂z
ε(1− λ, θ) + (1− b∗)∂θ

∗

∂z

∂

∂θ
ε(1− λ, θ)

Substituting in ∂
∂x
ε(s, x) from (38), where s = 1− λ and x = θ, we have

ds∗K
dz

= −∂b
∗

∂z
ε(1− λ, θ) + (1− b)∂θ

∗

∂z

θ−λe−θ

γ(1− λ, θ)

(
1− λ− θ − θ1−λe−θ

γ(1− λ, θ)

)
Substituting in ∂b∗

∂z
from (71) and ∂θ∗

∂z
from (70), we have

ds∗K
dz

= − θ−λe−θ(1− β(1− δ))
γ(1− λ, θ)(1− β(1− δ)e−θ)

(
θ +

(
e−θ(1− b)

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)(
1− λ− θ − θ1−λe−θ

γ(1− λ, θ)

))
So

ds∗K
dz
≤ 0 if and only if

ds∗K
dz

= θ +

(
e−θ(1− b)

λθλ−2γ(2− λ, θ) + e−θ(1− b)

)(
1− λ− θ − θ1−λe−θ

γ(1− λ, θ)

)
≥ 0

Rearranging, this holds if and only if

sK = λ+ (1− b)ε(1− λ, θ) ≥ 0

which is clearly always true, so we have
ds∗K
dz
≤ 0.
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Figure I: Example of an Equilibrium (φ∗, b∗)
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Figure II: Unemployment Insurance Coverage Rates in the US, 1948-2007
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Figure III: Data vs Model Capital Share —Myopic Workers, 1951-2010
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Figure IV: Data vs Model Capital Share —Perfect Foresight, 1951-2010

61



Figure V: Scatterplot of Capital Share (data) and Unemployment Rate (one year lag),
1951-2003. Line of best fit is bold.
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Figure VI: Scatterplot of Capital Share (data) and Capital Share (model),
1951-2003. Perfect foresight equilibrium. Bold line of best fit, 45 degree line dotted.
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TABLES

Data Myopic model Perfect foresight

Mean capital share 0.324 0.324 0.324

Standard deviation of capital share 0.0093 0.0075 0.0068

Correlation b/n model and data 1.000 0.731 0.690

Autocorrelation (1 period lag) 0.611 0.847 0.895

Table I: Capital Share - Data, Myopic Model, Perfect Foresight, 1951-2003
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Data Model

Average replacement rate, α 0.40 0.45 0.50 0.55 0.60

Mean capital share 0.324 0.324 0.324 0.324 0.324 0.324

Standard deviation capital share 0.0093 0.0084 0.0074 0.0068 0.0066 0.0061

Correlation b/n model and data 1.000 0.578 0.646 0.690 0.683 0.574

Autocorrelation (1 period lag) 0.611 0.895 0.891 0.895 0.914 0.937

Table II: Varying the Average Replacement Rate - Perfect Foresight Equilibrium, 1951-2003
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Data Model

Match destruction rate, δ 0.35 0.40 0.45 0.50 0.55

Mean capital share 0.324 0.324 0.324 0.324 0.324 0.324

Standard deviation capital share 0.0093 0.0061 0.0065 0.0068 0.0072 0.0078

Correlation b/n model and data 1.000 0.674 0.687 0.690 0.691 0.689

Autocorrelation (1 period lag) 0.611 0.924 0.913 0.895 0.884 0.870

Table III: Varying the Match Destruction Rate - Perfect Foresight Equilibrium, 1951-2003
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