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Abstract

We model trading and information diffusion in OTC markets, when dealers with private

information can engage in many bilateral transactions at the same time, they trade strate-

gically, and dealers’strategies are represented as quantity-price schedules. We show that

information diffusion is effective, but not informationally effi cient. While each bilateral

price partially aggregates the private information of all the dealers in one round of trading,

prices can be more informative even within the constraints imposed by our environment.

This is not a result of dealers’market power, but arises from the interaction between de-

centralization and differences in dealers’valuation of the asset. Furthermore, dealers with

more trading partners are ex post better informed, tend to trade and intermediate more,

earn more profit per transaction, set smaller effective spreads, and trade at less dispersed

prices. We also revisit alternative explanations behind the disruption of OTC markets in

the recent financial crisis.
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1 Introduction

A vast proportion of assets is traded in over-the-counter (OTC) markets. The disruption of

several of these markets during the financial crisis of 2008, has highlighted the crucial role that

OTC markets play in the financial system. The defining characteristic of OTC markets is that

trade is decentralized. Dealers trade bilaterally with a subset of other dealers, resulting in

different prices for each transaction.

In this paper we explore a novel approach to model OTC markets. In our model dealers

that have private information can engage in many bilateral transactions at the same time, trade

strategically, and their strategies are represented as quantity-price schedules. Our paper has a

dual focus.

On the theoretical side, our main focus is to study how much information is revealed

through trading in OTC markets. We show that information diffuses effectively through the

network of trades. In one round of trading, each bilateral price partially aggregates the private

information of all the dealers in the market, even when they are not a counterparty in the

respective transaction. Yet, typically, information diffusion is not informationally effi cient. If

each dealer puts less weight on her private information, prices can be more informative. We

also show that this systematic distortion of the price informativeness is not an outcome of

dealers’market power. Instead, it arises from the interaction between trade decentralization

and differences in dealers’valuation of the asset.

On the applied side, we emphasize that our model generates a joint distribution of prices

and quantities for every bilateral transaction. This implies an unusually rich set of predictions

at the transaction level. Our main observation is that dealers with more trading partners are

ex post better informed, tend to trade and intermediate more, earn more profit per transaction,

set smaller effective spreads, and trade at less dispersed, but more volatile prices. This also

implies that larger transactions are associated with smaller spreads, less price dispersion and

higher profits. We also revisit alternative explanations behind the disruption of OTC mar-

kets in the recent financial crisis. According to our model, narratives emphasizing increased

counterparty risk are more consistent to the observed stylized facts than those emphasizing

increased informational frictions .

In our main specification, there are n risk-neutral dealers organized in a dealer network.
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Intuitively, a link between i and j represents that they are potential counterparties in a trade.

There is a single risky asset in zero net supply. The final value of the asset is uncertain and

interdependent across dealers with an arbitrary correlation coeffi cient controlling the relative

importance of the common and private components. Each dealer observes a private signal

about her value, and all dealers have the same quality of information. Since values are interde-

pendent, inferring each others’signals is valuable. Values and signals are drawn from a known

multivariate normal distribution. Each dealer simultaneously chooses her trading strategy, un-

derstanding her price effect given other dealers’strategies. For any private signal, each dealer’s

trading strategy is a generalized demand function which specifies the quantity of the asset she

is willing to trade with each of her counterparties depending on the vector of prices in the

transactions she engages in. Each dealer, in addition to trading with other dealers, also trades

with price sensitive costumers. In equilibrium prices and quantities have to be consistent with

the set of generalized demand functions and the market clearing conditions for each link. We

refer to this structure as the OTC game. The OTC game is, essentially, a generalization of the

Vives (2011) variant of Kyle (1989) to networks. Most of our results apply to any network.

While finding an equilibrium in the space of generalized demand functions is a complex

problem, we simplify this by first solving for the map between signals and posterior beliefs.

For this, we specify a simpler, auxiliary game in which dealers, connected in the same network

and acting in the same informational environment as in the OTC game, do not trade. Instead,

their aim is to make a best guess of their own value conditional on their signals and the guesses

of the other dealers they are connected to. We label this structure the conditional-guessing

game. We then establish an equivalence between the posterior beliefs in the OTC game and

the equilibrium beliefs in the conditional-guessing game. As each dealer’s equilibrium guess

depends on her neighbors’guesses, and through those, depends on her neighbors’neighbors’

guesses etc., each equilibrium guess will partially incorporate the private information of all the

dealers in a connected network. However, dealers do not internalize how the informativeness

of their guess affects others’decision, and the equilibrium will typically not be informationally

effi cient. That is, dealers tend to put too much weight on their own signal, making their guess

ineffi ciently informative about the common component.

In the OTC game, we show that the equilibrium price in a given transaction is a weighted

sum of the posterior beliefs of the counterparties, and hence it inherits the main properties
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of beliefs. In addition, each dealer’s equilibrium position is proportional to the difference

between her expectation and the price. Therefore, a dealer sells at a price higher than her

belief to relatively optimist counterparties and buys at a price lower than her belief from

pessimists. This gives rise to dispersed prices and profitable intermediation for dealers with

many counterparties, as it is characteristic of real-world OTC markets. The proportionality

coeffi cient of a dealer’s positions depends on her exposure to adverse selection. When a dealer

cares less about the private information of her counterparty (for instance, when she participates

in multiple transactions, she can use prices from other transactions as additional sources of

information), this coeffi cient is larger.

An attractive feature of our model is that it yields a rich set of empirical predictions. Indeed,

given the equilibrium demand curves, we can calculate the joint distribution of several financial

indicators as a function of the underlying network and our parameters. The main implications

stem from observing that trading with connected dealers is less costly in terms of the price

impact. Therefore, more central dealers trade larger quantities and intermediate more. As

they learn more from all the prices they observe, they earn more profit per trade, even if they

trade at less dispersed prices. Even when the econometrician does not observe the underlying

network structure, our observations imply that large transactions should be associated with

smaller cost per unit of traded asset, larger profitability, more price volatility across time and

less price dispersion across transactions. We contrast these findings with existing empirical

work of and find substantial support.1

As a second application, we revisit narratives behind the episodes of OTC market distress

around the recent financial crisis. The stylized facts that have been identified by various studies2

are that price dispersion and price impacts tend to increase, and volume tends to decrease.

In our model, we can capture these effects when we remove links from the network, which

suggests an explanation based on counterparty risk. In contrast, changes in the informational

structure tend to move price dispersion and volume in the same direction inconsistently with the

evidence. The intuition is follows. When a pair of dealers is not willing to trade, information

1The negative association of unit cost and transaction size is a robust pattern in various markets (see Green,
Hollifield and Schurhoff (2007), Edwards, Harris and Piwowar (2007) and Li and Schürhoff (2012)). Also
Hollifield, Neklyudov and Spatt (2012), consistently with our prediction, finds that central dealers trade at lower
mark-up. However, in a different context, Li and Schürhoff (2012) finds the opposite.

2See Afonso, Kovner and Schoar (2011), Agarwal, Chang and Yavas (2012), Friewald, Jankowitsch and
Subrahmanyam (2012) and Gorton and Metrick (2012).
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flows are disrupted, increasing price dispersion, and, at the same time, trading is limited,

decreasing volume. In contrast, changes in the informational structure affects how relevant a

dealer finds the information of her counterparties. Thus, if dealers care more (less) about their

counterparties private information, this decreases (increases) price dispersion and volume and

increases (decreases) price impact.

In our model, trade takes place in one shot. This is an abstraction, that can be interpreted

as a reduced form of the complex dynamic bargaining process which leads to price determina-

tion in real work OTC markets. Dealers in our game can find the optimal demand functions

just by understanding the set-up. However, an important question whether they can also find

the equilibrium price vector without invoking an auctioneer, a concept which would be coun-

terintuitive in our decentralized environment. In the final part of the paper, we justify our

approach by constructing an explicit, decentralized protocol for the price-discovery process.

This exercise also highlights the advantages and limitations of our static approach compared

to a full dynamic treatment.

Related literature

Most models of OTC markets are based on search (e.g. Duffi e, Garleanu and Pedersen

(2005), Duffi e, Gârleanu and Pedersen (2007), Lagos, Rocheteau and Weill (2008), Vayanos

and Weill (2008), Lagos and Rocheteau (2009), Afonso and Lagos (2012), and Atkeson, Eis-

feldt and Weill (2012)). The majority of these models do not analyze learning through trade.

Important exceptions are Duffi e, Malamud and Manso (2009) and Golosov, Lorenzoni and

Tsyvinski (2009). Their main focus is the time-dimension of information diffusion either be-

tween differentially informed agents, or from homogeneously informed to uninformed agents.

A key assumption in these models is that there exists a continuum of atomistic agents on

the market. Therefore, it is a zero probability event that two agents meet repeatedly or any

agent meet with counterparties of their counterparties.3 This implies that agents are willing

to reveal their private information and do not have to asses whether the information of their

counterparties is determined by their connectedness and mutual counterparties. In contrast,

it is critical to our analysis that each dealer understands that her counterparties have over-

3An interesting example of a search model where repeated transactions play a role is Zhu (2012) who analyzes
the price formation in a bilateral relationship where a seller can ask quotes from a set of buyers repeatedly.
In contrast to our model, Zhu (2012) considers a pure private value set-up. Thus, the issue of information
aggregation through trade, which is the focus of our analysis, cannot be addressed in his model.
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lapping information as they themselves have common counterparties, or their counterparties

have common counterparties, etc. Thus, we provide novel insights for OTC markets in which a

small number of sophisticated financial institutions are responsible for the bulk of the trading

volume. At the same time, we collapse trade to a single period losing implications on the

dynamic dimension. Therefore, search models and our approach offer a complementary view

of trade and information diffusion in OTC markets.

There is a growing literature studying trading in a network (e.g. Kranton and Minehart

(2001), Rahi and Zigrand (2006), Gale and Kariv (2007), Gofman (2011), Condorelli and

Galeotti (2012), Choi, Galeotti and Goyal (2013), Malamud and Rostek (2013), Manea (2013),

Nava (2013)). These papers typically consider either the sequential trade of a single unit

of the asset or a Cournot-type quantity competition.4 In contrast, we allow agents to form

(generalized) demand schedules conditioning the quantities for each of their transactions on the

vector equilibrium prices in these transactions. This emphasizes that the terms of the various

transactions of a dealer are interconnected in an OTC market. Also, to our knowledge, none of

the papers within this class addresses the issue of information aggregation which is the focus

of our analysis.5

A separate literature studies Bayesian (Acemoglu et al. (2011)) and non-Bayesian (Bala and

Goyal (1998), DeMarzo, Vayanos and Zwiebel (2003), Golub and Jackson (2010)) learning in

the context of arbitrary connected social networks. In these papers, agents update their beliefs

about a payoff-relevant state after observing the actions of their neighbors in the network. Our

model complements these works by considering that (Bayesian) learning takes place through

trading.

The paper is organized as follows. The following section introduces the model set-up and

the equilibrium concept. In Section 3, we describe the conditional-guessing game, and we show

the existence of the equilibrium in the OTC game. We characterize the informational content

of prices in Section 4. In Section 5 we illustrate the properties of the OTC game with some

simple examples and in Section 6 we discuss potential applications. Section 7 provides dynamic

foundations for our main specification. Section 8 concludes.

4As an exception, Malamud and Rostek (2013) also use a multi-unit double-auction setup to model a decen-
tralized market. However, they do not consider the problem of learning through trade.

5While there is another stream of papers (e.g. Ozsoylev and Walden (2011), Colla and Mele (2010), Walden
(2013)) which consider that traders have access to the information of their neighbors in a network, in these
models trade takes place in a centralized market.
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2 A General Model of Trading in OTC Markets

2.1 The model set-up

We consider an economy with n risk-neutral dealers that trade bilaterally a divisible risky asset

in zero net supply. All trades take place at the same time. Dealers, apart from trading with

each other, also serve a price sensitive customer-base. Each dealer is uncertain about the value

of the asset. This uncertainty is captured by θi, referred to as dealer i’s value. We assume that

θi is normally distributed with mean 0 and variance σ2
θ. Moreover, we consider that values are

interdependent across dealers. In particular, V(θi, θj) = ρσ2
θ for any two agents i and j, where

V (·, ·) represents the variance-covariance operator, and ρ ∈ [0, 1]. Differences in dealers’values

reflect, for instance, differences in usage of the asset as collateral, in technologies to repackage

and resell cash-flows, in risk-management constraints.6

We assume that each dealer receives a private signal, si = θi + εi, where εi ∼ IIDN(0, σ2
ε)

and V(θj , εi) = 0, for all i and j.

Dealers are organized into a trading network, g where gi denote the set of i′s links and mi

≡ |gi| the number of i′s links. A link ij implies that i and j are potential trading partners.

Intuitively, agent i and j know and suffi ciently trust each other to trade in case they find

mutually agreeable terms. Each dealer i seeks to maximize her final wealth

∑
j∈gi

qji (θi − pij) ,

where qji is the quantity traded in a transaction with dealer j at a price pij . A network is

characterized by an adjacency matrix, which is a n× n matrix

A = (aij)ij∈{1,...,n}

where aij = 1 if i and j have a link and aij = 0 otherwise. While our main results hold for any

network, throughout the paper, we illustrate the results using two main types of networks as

examples.

6As we show in the Appendix, our formalization of the information structure is equivalent with setting
θi = θ̂ + ηi, where θ̂ is the common value element, while ηi is the private value element of i

′s valuation.
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Figure 1: This figures shows two examples of networks. Panel (a) shows a (7, 4) circulant
network. Panel (b) shows a star network.

Example 1 In an (n,m) circulant network each dealer is connected with m/2 other dealers

on her left and m/2 on her right. For instance, the (n, 2) circulant network is the circle. A

special case of a circulant network is the complete network, where m = n−1. (A (7, 4) circulant

network is shown panel (a) of Figure 1.)

Example 2 In an n−star network one dealer is connected with n− 1 other dealers, and no

other links exist. (A star network is shown in panel (b) of Figure 1.)

We define a one shot game where each dealer chooses an optimal trading strategy, provided

she takes as given others’strategies but she understands that her trade has a price effect. In

particular, the strategy of a dealer i is a map from the signal space to the space of generalized

demand functions. For each dealer i with signal si, a generalized demand function is a contin-

uous function Qi : Rmi → Rmi which maps the vector of prices7, pgi = (pij)j∈gi , that prevail

in the transactions that dealer i participates in network g into vector of quantities she wishes

to trade with each of her counterparties. The j-th element of this correspondence, Qji (si; pgi),

represents her demand function when her counterparty is dealer j, such that

Qi(si; pgi) =
(
Qji (si; pgi)

)
j∈gi

.

Note that our specification of generalized demand functions allows for a rich set of strategies.
7A vector is always considered to be a column vector, unless explicitly stated otherwise.
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First, a dealer can buy a given quantity at a given price from one counterparty and sell a

different quantity at a different price to another at the same time. Second, the fact that the

quantity that dealer i trades with dealer j, qji = Qji (si; pgi), depends on all the prices pgi ,

captures the potential interdependence across all the bilateral transactions of dealer i. For

example, if k is linked to i who is linked to j, a high demand from dealer k might raise the

bilateral price pki. This might make dealer i to revise her estimation of her value upwards and

adjust her supplied quantity both to k and to j accordingly. Third, the fact that Qji (si; pgi)

depends only on pgi but not on the full price vector emphasizes the critical feature of OTC

markets that the price and the quantity traded in a bilateral transaction are known only by

the two counterparties involved in the trade and are not revealed to all market participants.

Fourth, the fact that dealers choose demand schedules implies that dealers effectively bargain

both over prices and quantities. It is in contrast with most other models of OTC markets

where the traded quantity is fixed and agents bargain only over the price.

Apart from trading with each other, dealers also serve a price-sensitive customer base. In

particular, we assume that for each transaction between i and j the customer base generates a

downward sloping demand

Dij(pij) = βijpij , (1)

with an arbitrary constant βij < 0. In our analysis costumers play a pure technical role: the

exogenous demand (1) ensures the existence of the equilibrium.8

The expected payoff for dealer i corresponding to the strategy profile {Qi (si; pgi)}i∈{1,...,n}
is

E

∑
j∈gi

Qji (si; pgi) (θi − pij) |si


where pij are the elements of the bilateral clearing price vector p defined by the smallest element

of the set

P̃
(
{Qi (si; pgi)}i , s

)
≡
{

p
∣∣∣ Qji (si; pgi) +Qji

(
sj ; pgj

)
+ βijpij = 0, ∀ ij ∈ g

}
8 It has been known since Kyle (1989) that with only two trading agents there is no linear equilibrium in a

demand submission game. This is not different under our formulation. We follow Vives (2011) and introduce an
exogenous demand curve to overcome this problem. This assumption has a minimal effect on our analysis. As
we show in Corollary 1, prices and beliefs do not depend on βij and quantities scale linearly even when βij → 0.
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by lexicographical ordering9, if P̃ is non-empty. If P̃ is empty, we pick p to be the infinity

vector and say that the market brakes down and define all dealers’payoff to be zero. We refer

to the collection of these rules defining a unique p for any given signal and strategy profile as

p = P
(
{Qi (si; pgi)}i , s

)
.

2.2 Equilibrium concept

The environment described above represents a Bayesian game, henceforth the OTC game. The

risk-neutrality of dealers and the normal information structure allows us to search for a linear

equilibrium of this game defined as follows.

Definition 1 A Linear Bayesian Nash equilibrium of the OTC game is a vector of linear

generalized demand functions {Q1(s1; pg1),Q2(s2; pg2), ...,Qn(sn; pgn)} such that Qi(si; pgi)

solves the problem

max
(Qji )j∈gi

E


∑
j∈gi

Qji (si; pgi) (θi − pij)

 |si
 , (2)

for each dealer i, where p = P (·, s).

A dealer i chooses a demand function for each transaction ij, in order to maximize her

expected profits, given her information, si, and given the demand functions chosen by the

other dealers. Then, an equilibrium of the OTC game is a fixed point in demand functions.

3 The Equilibrium

In this section, we derive the equilibrium in the OTC game. We proceed in steps. First,

we derive the equilibrium strategies as a function of posterior beliefs. This step is standard.

Second, we solve for posterior beliefs. For this, we introduce an auxiliary game in which dealers,

connected in the same network and acting in the same informational environment as in the

OTC game, do not trade. Instead, they make a best guess of their own value conditional on

their signals and the guesses of the other dealers they are connected to. We label this structure

the conditional-guessing game. Third, we establish equivalence between the posterior beliefs

9The specific algorithm we choose to select a unique price vector is immaterial. To ensure that our game is
well defined, we need to specify dealers’payoffs as they depend on their strategies both on and off the equilibrium
path.
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in the OTC game and those in the conditional-guessing game and provide suffi cient conditions

for existence of the equilibrium in the OTC game for any network.

3.1 Derivation of demand functions

Our derivation follows Kyle (1989) and Vives (2011) with the necessary adjustments. We

conjecture an equilibrium in demand functions, where the demand function of dealer i in the

transaction with dealer j is given by

Qji (si; pgi) = bjisi +
(
cji

)T
pgi (3)

for any i and j, where (cji) = (cjik)k∈gi .

As it is standard in similar models, we simplify the optimization problem (2) which is

defined over a function space, to finding the functions Qji (si; pgi) point-by-point. That is, for

each realization of the vector of signals, s, we solve for the optimal quantity qji that each dealer

i demands when trading with a counterparty j. The idea is as follows. Given the conjecture

(3) and market clearing

Qji (si; pgi) +Qij(sj ; pgj ) + βijpij = 0, (4)

the residual inverse demand function of dealer i in a transaction with dealer j is

pij = −
bijsj +

∑
k∈gj ,k 6=i c

i
jkpjk + qji

ciji + βij
. (5)

Denote

Iji ≡ −

bijsj +
∑

k∈gj ,k 6=i
cijkpjk

 /
(
ciji + βij

)
(6)

and rewrite (5) as

pij = Iji −
1

ciji + βij
qji . (7)

The uncertainty that dealer i faces about the signals of others is reflected in the random

intercept of the residual inverse demand, Iji , while her capacity to affect the price is reflected in

the slope −1/
(
ciji + βij

)
. Thus, the price pij is informationally equivalent to the intercept I

j
i .

This implies that finding the vector of quantities qi = Qi(si; pgi) for one particular realization
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of the signals, s, is equivalent to solving

max
(qji )j∈gi

E

∑
j∈gi

qji

(
θi +

1

ciji + βij
qji − I

j
i

)
|si,pgi

 ,
or

max
(qji )j∈gi

∑
j∈gi

qji

(
E (θi|si,pgi) +

1

ciji + βij
qji − I

j
i

)
.

From the first order conditions we derive the quantities qji for each link of i and for each

realization of s as

2
1

ciji + βij
qji = Iji − E (θi|si,pgi) .

Then, using (7), we can find the optimal demand function

Qji (si; pgi) = −
(
ciji + βij

)
(E(θi |si,pgi )− pij) (8)

for each dealer i when trading with dealer j.

If we further substitute this into the bilateral market clearing condition (4) we obtain the

price between any pair of dealers i and j as a linear combination of the posteriors of i and j,

E(θi |si,pgi ) and E(θj
∣∣sj ,pgj )

pij =

(
ciji + βij

)
E(θi |si,pgi ) +

(
cjij + βij

)
E(θj

∣∣si,pgj )

ciji + cjij + 3βij
. (9)

At this point we depart from the standard derivation. The standard approach is to deter-

mine the coeffi cients in the demand function (3) as a fixed point of (8), given that E(θi |si,pgi )

can be expressed as a function of coeffi cients bji and cji. This procedure is virtually intractable

for general networks. Instead, our approach is to solve directly for the beliefs in the OTC

game. In fact, we can find the equilibrium beliefs in the OTC game without considering the

profit motives and the corresponding trading strategies of agents. For this, in the next section

we introduce an auxiliary game labeled the conditional-guessing game.
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3.2 The conditional-guessing game

The conditional guessing game is the non-competitive counterpart of the OTC game. The main

difference is that instead of choosing quantities and prices to maximize trading profits, each

agent aims to guess her value as precisely as she can. Importantly, agents are not constrained

to choose a scalar as their guess. In fact, each dealer is allowed to choose a conditional-guess

function which maps the guess of each of her neighbors into her guess.

Formally, we define the game as follows. Consider a set of n agents that are connected in

the same network g as in the corresponding OTC game. The information structure is also the

same as in the OTC game. Before the uncertainty is resolved, each agent i makes a guess, ei,

about her value of the asset, θi. Her guess is the outcome of a function that has as arguments

the guesses of other dealers she is connected to in the network g. In particular, given her signal,

dealer i chooses a guess function, Ei (si; egi), which maps the vector of guesses of her neighbors,

egi , into a guess ei. When the uncertainty is resolved, agent i receives a payoff

− (θi − ei)2 ,

where ei is an element of the guess vector e defined by the smallest element of the set

Ξ
(
{Ei (si; egi)}i , s

)
≡{e | ei = Ei (si; egi) , ∀ i} , (10)

by lexicographical ordering. We assume that if a fixed point in (10) did not exist, then dealers

would not make any guesses and their payoffs would be set to minus infinity. Essentially, the

set of conditions (10) is the counterpart in the conditional-guessing game of the market clearing

conditions in the OTC game.

Definition 2 An equilibrium of the conditional guessing game is given by a strategy profile

(E1, E2, ..., En) such that each agent i chooses strategy Ei : R × Rmi → R in order to maximize

her expected payoff

max
Ei

{
−E

(
(θi − Ei (si; egi))

2 |si
)}

,

where e =Ξ (·, s).

As in the OTC game, we simplify this optimization problem and find the guess functions
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Ei (si; egi) point-by-point. That is, for each realization of the signals, s, an agent i chooses

a guess that maximizes her expected profits, given her information, si, and given the guess

functions chosen by the other agents. Her optimal guess function is then given by

Ei (si; egi) = E (θi|si, egi) . (11)

In the next proposition, we state that the guessing game has an equilibrium in any network.

Proposition 1 In the conditional-guessing game, for any network g, there exists an equilib-

rium in linear guess functions, such that

Ei (si; egi) = ȳisi + z̄giegi

for any i, where ȳi is a scalar and z̄gi = (z̄ij)j∈gi is a row vector of length mi.

We derive the equilibrium in the conditional guessing game as a fixed point problem in the

space of n × n matrices, in which the guess of each agent i is a linear combination of signals

and guess functions Ei (si; egi) satisfy (11) for all i. In particular, consider an arbitrary n× n

matrix
′
V =

[
′
vi

]
i=1,..n

and let the guess of each agent i be

′
ei =

′
vis, (12)

given a realization of the signals s. It follows that, when dealer j takes as given the choices of

her neighbors,
′
egj , her best response guess is

′′
ej = E

(
θj |sj ,

′
egj

)
. (13)

Since each element of
′
egj is a linear function of the signals and the conditional expectation is

a linear operator for jointly normally distributed variables, equation (13) implies that there is

a unique vector
′′
vj such that

′′
ej =

′′
vjs. (14)

In other words, the conditional expectation operator defines a mapping from the n× n matrix
′
V =

[
′
vi

]
i=1,..n

to a new matrix of the same size
′′
V =

[
′′
vi

]
i=1,..n

. An equilibrium of the
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conditional guessing game exists if this mapping has a fixed point. Proposition 1 shows the

existence of a fixed point and describes the equilibrium as given by the coeffi cients of si and

egi in E (θi|si, egi) at this fixed point.

In the next section we establish an equivalence between the equilibria of the OTC game and

the conditional guessing game. In Section 4 we rely on this equivalence and use the properties

of the conditional guessing game to characterize beliefs in the OTC game.

3.3 Equivalence and existence

In this part we prove the main results of this section. First, we show that if there exists a

linear equilibrium in the OTC game then the posterior expectations represent an equilibrium

expectation vector in the corresponding conditional guessing game. Second, we provide suffi -

cient conditions under which we can construct an equilibrium of the OTC game building on an

equilibrium of the conditional guessing game.

Proposition 2 In any Linear Bayesian Nash equilibrium of the OTC game the vector with

elements ei defined as

ei = E(θi |si,pgi )

is an equilibrium expectation vector in the conditional guessing game.

The idea behind this proposition is as follows. We have already showed that in a lin-

ear equilibrium each bilateral price pij is a linear combination of the posteriors of i and j,

E(θi |si,pgi ) and E(θj
∣∣sj ,pgj ), as described in (9). Therefore, a dealer can infer the belief

of her counterparty from the price, given that she knows her own belief. When choosing her

generalized demand function, she essentially conditions her expectation about the asset value

on the expectations of the other dealers she is trading with. Consequently, the set of posteriors

implied in the OTC game works also as an equilibrium in the conditional guessing game.

Proposition 3 Let ȳi and z̄gi = (z̄ij)j∈gi the coeffi cients that support an equilibrium in the

conditional-guessing game and let ei = E(θi |si, egi ) the corresponding equilibrium expectation

of agent i. Then, there exists a Linear Bayesian Nash equilibrium in the OTC game, whenever
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ρ < 1 and the following system

yi(
1−

∑
k∈gi

zik
2−zki

4−zikzki

) = ȳi (15)

zij

2−zij
4−zijzji(

1−
∑
k∈gi

zik
2−zki

4−zikzki

) = z̄ij , ∀j ∈ gi

has a solution {yi, zij}i=1,..n,j∈gi such that zij ∈ (0, 2). The equilibrium demand functions are

given by (3) with

bji = −βij
2−zji

zij+zji−zijzji yi

cjij = −βij
2−zji

zij+zji−zijzji (zij − 1)

cjik = −βij
2−zji

zij+zji−zijzji zik.

, (16)

and the equilibrium prices and quantities are

pij =

(
ciji + βij

)
ei +

(
cjij + βij

)
ej

cjij + ciji + 3βij
(17)

qji = −
(
ciji + βij

)
(ei − pij) . (18)

These two propositions prove the equivalence between the two games. Proposition 2 shows

that one can construct an equilibrium of the conditional guessing game from an equilibrium of

the OTC game. Proposition 3 shows that, under some conditions, the reverse also holds. The

extra conditions are a consequence of the fact that in the reverse direction we are transforming

n expectations, ei, from the conditional guessing game into M ≥ n prices in the OTC game.

The conditions make sure that we can do it in a consistent way. While we do not have a general

proof that the system (15) has a solution for each network, we have no reason to suspect that

it does not.10

The conceptual advantage of our way of constructing the equilibrium over the standard

approach is that it is based on a much simpler and, as we will see in the next section, much

10Our numerical algorithm gives a well behaving solution in all our experiments including a wide range of
randomly generated networks. The Matlab code runs in a fraction of a second for any network we experimented.
The code for the algorithm along with a detailed explanation are available on the authors’websites. In addition,
we provide analytical expressions for the equilibrium objects for the star in the proof of Proposition 4 and for
the complete network in Appendix B.
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more intuitive fixed point problem. Note also that Proposition 3 also describes a simple nu-

merical algorithm to find the equilibrium of the OTC game for any network. In particular,

the conditional guessing game gives parameters ȳi and z̄ij , conditions (15) imply parameters

yi and zij , then (16) give parameters of the demand function implying prices and quantities by

(17)-(18).

The next proposition strengthen the existence result for our specific examples.

Proposition 4 1. In any network in the circulant family, the equilibrium of the OTC game

exists.

2. In a star network, the equilibrium of the OTC game exists.

Before proceeding to the detailed analysis of the features of the equilibrium in the next

section, we make three simple observations.

First, the equivalence of beliefs on the two games implies that any feature of the beliefs

in the OTC game must be unrelated in any way to price manipulation, imperfect competition

or other profit related motives. It is so, because these considerations are not present in the

conditional guessing game.

Second, the equilibrium coeffi cients both in the conditional guessing game and in the OTC

game depend only on the ratio σ2θ
σ2ε
and not on the individual parameters σ2

ε and σ
2
θ. We state

this result in the following lemma.11

Lemma 1 The coeffi cients vij , z̄ij , ȳi, zij , yi, b
j
i , c

j
ij and c

j
ik do not change in σ

2
ε and σ

2
θ if

σ2θ
σ2ε

remains constant.

Finally, consumers’demand has a pure technical role in our analysis. While there is no

equilibrium for βij = 0, for any βij < 0 prices and beliefs are the same and qji
βij
,
qij
βij

remain

constant. This is evident by simple observation of expressions (17)- (16). We summarize this

in the following Corollary.

11Note that the Lemma does not imply that any economic objects depend only on the ratio of σ
2
θ
σ2ε
. For example,

it is easy to see that for expected profit this is not the case.
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Corollary 1 For any collection of non-zero
{
βij
}
ij∈g including the limit where all βij → 0,

prices, pij and beliefs do not change and quantities scale linearly. That is

qji
βij

,
qij
βij

do not change with βij .

4 Prices and Information Diffusion

In this part we focus on the characteristics of equilibrium beliefs in OTC games and its impli-

cations on the informational effi ciency of prices. We start with two results on the equilibrium

of the conditional guessing game.

Lemma 2 In the conditional guessing game the following properties hold.

1. In any connected network g each dealer’s equilibrium guess is a linear combination of all

signals

ei = vis,

where vi is a row vector of length n and vi > 0.

2. In any connected network g when ρ = 1, there exists an equilibrium where each element of

the vectors vi is equal to
σ2θ

nσ2θ+σ2ε
. In this equilibrium each expectation effi ciently aggregates

all the private information in the economy.

In the OTC game the following corresponding claims also hold.

Proposition 5 Suppose that there exists an equilibrium in the OTC game. Then,

1. in any connected network g each bilateral price is a linear combination of all signals in

the economy, with a positive weight on each signal;

2. in any connected network g prices are privately fully revealing when ρ→ 1, as

lim
ρ→1

(V (θi|si,pgi)− V (θi|s)) = 0.
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These results suggest that a decentralized trading structure can be surprisingly effective

in transmitting information. Consider first result 1 of the Proposition 5. This shows that

although we consider only a single round of transactions, each price partially incorporates all

the private signals in the economy. A simple way to see this is to consider the residual demand

curve and its intercept, Iji , defined in (6)-(7). This intercept is stochastic and informationally

equivalent with the price pij . The chain structure embedded in the definition of I
j
i is critical.

The price pij gives information on I
j
i which gives some information on the prices agent j trade

at in equilibrium. For example, if agent j trades with agent k then pjk affects pij . By the

same logic, pjk in turn is affected by the prices agent k trades at with her counterparties, etc.

Therefore, pij aggregates the private information of signals of every agent, dealer i is indirectly

connected to, even if this connection is through several intermediaries.

This property of the equilibrium does not imply that dealers learn as much as in a centralized

market. When trade takes place in a centralized market, our environment collapses to the risk-

neutral case in Vives (2011). In particular, in a centralized market agents submit simple

demand functions to a market maker and the market clears at a single price. As Vives (2011)

shows, each dealer i learns all the relevant information in the economy, and her posterior belief

is given by

E (θi|s) .

However, in a network g, a dealer i can use only mi linear combinations of the vector of signals,

s, to infer the informational content of the other (n− 1) signals. Except in two special cases,

this is generally not suffi cient for the dealer to learn all the relevant information in the economy.

One trivial special case is when each agent has mi = n−1 neighbors, that is, when the network

is complete. The second special case is described by result 2 in Proposition 5. It claims that

in the common value limit, the decentralized structure does not impose any friction on the

information transmission process in any network. To shed more light on the intuition behind

the latter result, we have to understand better the learning process in the conditional guessing

game.

Consider the case when ρ = 1. The expressions (12)-(14) can be seen as an iterated

algorithm to find the equilibrium of the conditional guessing game in an arbitrary network.

That is, in the first round, each agent i receives an initial vector of messages,
′
egi , from her
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neighbors. Given that, each of agent i chooses her best guess,
′′
ei, as in (13). The vector of

messages
′′
egi , with elements given by (14), is the starting point for i in the following round.

By definition, if this algorithm converges to a fixed point, then this is an equilibrium of the

conditional guessing game. According to result 2 in Lemma 2, when ρ = 1, the equal-weighted

sum of signals, σ2θ
nσ2θ+σ2ε

1>s, is a fixed point. The reason is simple. With common values,
σ2θ

nσ2θ+σ2ε
1>s is the best possible guess for each agent given the information in the system. In

addition, as the sum of signals is a suffi cient statistic, the expectation operator (13) keeps this

guess unchanged. Since the equilibrium of the conditional guessing game is continuos in ρ,

information is aggregated effi ciently also in the OTC game in the common value limit. Clearly

though, exactly at ρ = 1 there is no equilibrium by the Grossman paradox.

Now we depart from the common value limit case. In this case, information transmission is

only partial. In particular, if agent k is located further from agent i, her signal is incorporated

to a smaller extent into agent i’s belief. To see the intuition, we apply the iterated algorithm

defined by (12)-(14) for the example of a circle-network of 11 dealers. We illustrate the steps

of the iteration in Figure 2 from the point of view of dealer 6. We plot the weights with which

signals are incorporated in the guess of dealer 5, 6 and 7,i.e. v5,v6,v7. In each figure the

dashed lines show messages sent by dealer 5 and 7 in a given round, and the solid line shows

the guess of agent 6 given the messages she receives. In round 0, we start the algorithm from

the common value limit, σ2θ
nσ2θ+σ2ε

1T s, illustrated by the straight dashed lines that overlap in

panel A. When ρ < 1, in contrast to the common value limit, σ2θ
nσ2θ+σ2ε

1T s is no longer a best

guess of θ6. The reason is that dealer 6’s own signal, s6, is more correlated to her value, θ6,

than the rest of the signals are. Therefore, the best guess of dealer 6 is a weighted sum of the

two equal-weighted messages and her own signal. This is shown by the solid line peaking at s6

in Panel A. Clearly, this is not a fixed point as all other agents choose their guesses in the same

way. Thus, in round 2, agent 6 receives messages that are represented by the dashed lines shown

on Panel B; these are the mirror images of the round−1 guess of dealer 6. Note that these new

messages are less informative for dealer 6 than the equal-weighted messages σ2θ
nσ2θ+σ2ε

1T s. The

reason is that even when ρ < 1, for dealer 6 the average of the other 10 dealers’signals is a

suffi cient statistic for her about all the information which is in the system apart from her own

signal, which she observes anyway. So from the round−0 messages, she could learn everything

she wanted to learn. From the round−1 messages she cannot. The extra weight that dealer
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5 and 7 place on their own private signals “jams”the information content of the messages for

dealer 6. Nevertheless, the round−2 messages are informative, and dealer 6 puts some positive

weight on those, and a larger weight on her own signal as the solid line on Panel B shows.

This guess has a “kink”at s5 and s7, because in this round dealer 6 conditions on messages

which overweight these two signals. Since all other agents choose their guess in a similar way

in round 2, the messages that dealer 6 gets in round 3 are a mirror image of her own guess, as

shown by the dashed lines in Panel C. The solid line in Panel C represents dealer’s 6 guess in

round 4. On Panel D, we depict the guess of dealer 6 in each round until round 5, where we

reach the fixed point. Note that it has all the properties we suggested: positive weight on each

agents’signals, but decreasing in the distance from dealer 6.

Figure 2: An iterated algorithm to find the equilibrium of the conditional guessing game in
a 11-circle. Each line shows weights on a given signal in a given message or guess. Dashed
lines denote messages dealer 6 recevies from her contacts of dealer 5 and 7, and the solid line
denotes her best response guess of her value. Panel A, B, C illustrates round 1, 2 and 3 of
iteration, respectively, while panel D illustrates all rounds until convergence. Parameters are
n = 11, ρ = −.8, σ2

θ = σ2
ε = 1, βij = −10

11 .

From this example, it is clear that each agent’s conditional guessing function affects how

much her neighbors can learn from her guess. This, in turn, affects the learning of her neighbors’
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neighbors, etc. This is a learning externality which agents do not internalize. Hence, an

interesting question is how individual guessing functions should be altered to help the learning

process. To be more precise, we define a measure of informational effi ciency as

U
(
{ȳi, z̄gi}i∈{1,...n}

)
≡ −E

[∑
i

(θi − Ei (si; egi))
2

]
. (19)

This is the sum of pay-off in the conditional guessing game. Given the equivalence of beliefs in

Proposition 2, it captures how close dealers’beliefs are to their value in equilibrium, both for the

OTC game as well as for the conditional guessing game. Therefore, this is an intuitive measure

of the informativeness of market prices in the OTC game. Then, we ask which conditional

guessing functions {Ei (si; egi)}i=1...n would maximize informational effi ciency (19) subject to

e =Ξ (·, s) and (10). We refer to this exercise as solving the informational effi ciency problem.

To continue our example, we show the solution of the informational effi ciency problem in the

last panel of Figure 2 (thick dashed curve). As it is apparent, dealers put too much weight

on their own signal than what is informationally effi cient. The reason is clear from the above

explanation. When dealers’distort messages towards their own signals, they do not internalize

that they reduce the information content of these guesses for others.

In the following proposition, we show that this observation is not unique to the example.

Indeed, in any star network the sum of payoffs would increase if, starting from the decentralized

equilibrium, each dealer would put less weight on her own signal and more weight on her

neighbors’guesses.

Proposition 6 Let U
(
{ȳi, z̄gi}i∈{1,...n}

)
be the sum of payoffs in an n-star network for any

given strategy profile {ȳi, z̄gi}i∈{1,...n} . Then, if
{
ȳ∗i , z̄

∗
gi

}
i∈{1,...n} is the decentralized equilibrium,

then

lim
δ→0

∂U
({
ȳ∗i − δ, z̄∗gi + δ1

}
i∈{1,...n}

)
∂δ

> 0.

That is, starting from the decentralized solution, marginally increasing weights on others’

guesses and marginally decreasing weights on own signal increases the sum of payoffs.

We check whether our observation that dealers overweight their own signal is robust to

different network structures and parameter values. For this, we have generated 1000 random
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networks in which each link is formed with probability half and with a randomly drawn infor-

mation precision ratio of σ
2
θ
σ2ε
for each network.12 We keep ρ constant at 0.5. The simulations

suggest that regardless of the shape of the network each dealer’s weight on her private signal,

ȳi, in the equilibrium of the conditional guessing game is larger than the weight which solves

the informational effi ciency problem, ȳSi .
13 Interestingly, we also observe that ceteris paribus

the percentage overweight, defined as ȳ∗i−ȳSi
ȳSi

, for the central dealer in a star network is larger

than for any dealer in our randomly generated networks. The first column of Table 1 in Section

6.1 shows the coeffi cients that result from a regression of ȳ
∗
i−ȳSi
ȳSi

on dealer i’s number of links

(degree), standard deviation of the degree distribution in the given network (asymmetry), the

total number of links in network (density) and information precision σ2θ
σ2ε
. It appears that the

overweighting is larger for more connected dealers, in asymmetric networks with small density,

and when the information precision is large. This is also consistent with our observation that

the central dealer in a star overweights the most. Our intuition is that overweighting is most

severe when a dealer is in the position to reveal a lot of information to her counterparties. The

potential is maximal for the central dealer in a star, who knows all the relevant information (as

she can use n− 1 guesses to learn about n− 1 signals) and whose guess could be informative

for all other, much less informed, dealers in the network.

By Proposition 3, the properties of the equilibrium in the conditional guessing game imply

the properties of prices in the OTC game. That is, the correlation between prices pij and

pkl tends to be lower if the link ij is further away from kl. Also, prices could transmit more

information even within the constraint imposed by our network structure. From the intuition

gathered from the conditional guessing game, it is clear that this distortion is not a result

of imperfect competition, or strategic trading motives that agents have. Instead, it is a con-

sequence of the learning externality arising from the interaction between the interdependent

value environment and the network structure.14

12For simplicity, we keep σ2θ = 1 and generate σ2ε as the square of a random variable from N (1, 0.1).
13We conjecture that a general property might be behind this observation. However, due to the lack of an

analytical proof and because simulations use particular parameters and are subject small numerical errors, we
cannot be sure that this is the case.
14Note that even if in our equilibrium dealers do not manupulate beleifs, in principle their might exist equilibria

where they do as we have not proven uniqueness. It is well understood that searching for non-linear equilibria
would be a notoriously hard problem even in the centralized version of our set-up. (See Breon-Drish (2012) and
Pálvölgyi and Venter (2011)).
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5 Discussion and Examples

In this section, we discuss how the decentralized trading environment affects prices, volume and

intermediation. We start with a simple example of a pair of dealers that trade and then discuss

the effects that arise because of the network structure in the context of an n−star network.

5.1 Bilateral trade

The analysis of the trade between two dealers can be seen both as a particular case of our OTC

game as well as a special case of a centralized market. This case provides a useful benchmark to

highlight some important insights which are partially or fully inherited by a more complex OTC

network structure. The equilibrium in the bilateral case can be characterized either following

the approach that we described in Section 3.1 or using Proposition 1 in Vives (2011), for n = 2.

Consider two dealers, indexed, for simplicity, by their position: L(eft) and R(ight). Then,

there exists an equilibrium in which the demand function of dealer i ∈ {L,R} is given by

Qi(si; p) = t (E (θi|si, p)− p) , (20)

where t ≡ − (c+ β) represents dealer’s trading intensity and captures the inverse of her price

effect. This corresponds to the interpretation that agent L (R) trades t units with counterparty

R (L) for every unit of perceived gain, E (θi|si, p)−p. Using that the belief of a dealer i ∈ {L,R}

is a linear combination between her signal and the price

E (θi|si, p) = ysi + zp,

and that the price is a linear combination of their posterior beliefs

p =
t [E (θL|sL, p) + E (θR|sR, p)]

2t+ (−β)
, (21)

we can solve for the equilibrium as a fixed point problem as described in Sections (3.2) and
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(3.3) and show that

y =
1− ρ

1− ρ+ σ2
ε/σ

2
θ

z =
2ρσ2

ε/σ
2
θ

1− ρ2 + σ2
ε/σ

2
θ

and

t = −β 1− ρ2 + σ2
ε/σ

2
θ

2ρσ2
ε/σ

2
θ

.

As the price in (21) is close to the average valuation of agents, equation (20) implies that

the agent with higher than average signal (optimist) tends to buy and the agents with lower

than average signal (pessimist) tends to sell the asset. Ultimately, the position that each dealer

holds in equilibrium depends on the interaction between two forces. First, the dealers can learn

from the price information about the common value component of their values. As dealer L

(R) finds the signal of her counterparty R (L) more informative for the estimation of her own

value, or as ρ and σ2
ε/σ

2
θ increase, her trading intensity, t, decreases. To see why this is the

case, suppose that the dealer with a higher initial belief considers to buy. If the other dealer

desires to sell more at the same time, pushing the price downwards, she typically increases

her demand as a response. However, this adjustment will be weaker, if she is worried that

the large supply indicates a low value for the asset. The stronger the information content of

her counterparty’s signal, the smaller the quantity response, t, is. As ρ and σ2
ε decrease or σ

2
θ

increases, the informational content in others’signals decreases and t increases without bounds.

That is, if dealers did not care about the information content of prices (or if they were price

takers), there would be no equilibrium with finite quantities as a consequence of risk-neutrality.

Second, dealers adjust their trade depending on how large they perceive the gains from

trade to be. In particular, gains from trade, measured as

E
[
(E (θL|sL, p)− E (θR|sR, p))2

]
=

2σ2
θ (1− ρ)2

1 + σ2
ε/σ

2
θ − ρ

decrease in ρ and σ2
ε/σ

2
θ. For instance, as ρ increases, the relative importance of the common

component increases. Similarly, as σ2
ε increases and the precision of dealers’information de-

creases, their expectation of the value of θi converges to their prior, 0. Both lead to smaller
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expected difference in posteriors.

In the next part, we discuss to what extent the mechanism of price formation and trading

volume changes in a decentralized market.

5.2 Trade in a star network

Just as in the bilateral trade benchmark, dealers’equilibrium trades in a network are driven

by both the relevance of others’information, as well as by how large the gains from trade are.

However, there are also important differences implied by the network structure.

As an illustration, we provide a numerical example for the simplest possible network. We

consider that three dealers are organized in a 3−star network. They are depicted by the

connected squares in Figure 3. As above, we index them by their position: Periphery L(eft),

C(entral), Periphery R(ight). The number in each square is the realization of their signal:

sL = −2, sC = 0, sR = 1. We picked βL,C = βR,C = β = −5. Prices are in the rhombi located

on the links and demand curves are at the bottom of the figure in the form

Qji = tji (E(θi |si,pgi )− pij) (22)

where tji ≡ −
(
ciji + βij

)
is the trading intensity of trader i when trading with counterparty j.

From (7), it is easy to see that 1/tji describes how much the price between dealer i and j needs

to adjust, if dealer i changed her quantity by one unit. Just for this example, we omit the

superscript to simplify the exposition, and use tP for the trading intensities of the periphery

dealers L and R, and tC for the trading intensity of the central dealer C (since the periphery

dealers are symmetric, tP = 10.8 and tC = 10.5). Substituting in the prices and signals gives

the traded quantities in the first line of the rectangles. Below the quantities, between brackets,

we calculated the profit or loss realized on that particular trade in the case when the realized

value, θi, is zero for all dealers. All quantities are rounded to the nearest decimal. For example,

the central dealer forms the posterior expectation of −0.1, buys 3 units from the left and sells

2.4 units to the right at prices −0.4 and 0.1 respectively, earning 2.9 unit of profit in total from

the trades. Note, that while counterparties hold a position of opposite sign and same order of

magnitude, bought and sold quantities over a given link does not add up to 0. This is because

the net of the two positions is absorbed by the customers.
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Figure 3: The connected squares depict three dealers organized in a 3−star network. Their
realized signals are in the middle of the square. Prices are in rhombi, demand curves are at
the bottom of the figure, with the posterior expectations in italic. The traded quantities are
in the first line of the rectangles. Below, the profit or loss realized on that particular trade in
the case when θi = 0 for all i. Parameters are ρ = 0.5, σ2

θ = σ2
ε = 1, βij = −5.

There are a number of observations which generalize to other examples. First, as in the

bilateral case, dealers adjust their trades depending on how much information they learn from

the prices at which they are trading at. This is reflected in changes in the trading intensity of a

dealer in response to changes in ρ and σ2
ε/σ

2
θ. However, the decentralized structure introduces a

natural asymmetry in trading. That is, even if all dealers have the same quality of information,

trading intensities are different. To see this, consider the best response slope cCP,C of periphery

dealer L (R) to the slope of dealer C, cPC,P , derived from (8) as

cCP,C =
(
cPC,P + β

)
(1− zP ) , (23)

where zP is the coeffi cient of the price between C and the periphery dealer L (R), pL,C (pR,C)

in the expectation E(θL|sL, pL,C) (E(θR|sR, pR,C)). We can re-write this expression15 in terms

of trading intensities as

−tC = tP (zP − 1) + β

−tP = tC (zC − 1) + β

15 In E(θC |sC , pL,C , pR,C) the coeffi cients of the two prices are equal. Thus, with a slight abuse of notation we
denote both zC in this simple example.
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or

tC = −β 2− zP
zC + zP − zP zC

tP = −β 2− zC
zC + zP − zP zC

.

In our example, the trading intensity of the central agent is smaller than that of the other

agents. The reason is that the central agent relies on each price as a source of learning less

than the periphery agents do, i.e. zP > zC . Indeed, this is the case, as the central agent can

learn from two prices. Therefore, she is less subject to adverse selection. An extra unit sold by

the left agent triggers a smaller price-adjustment by the central agent inducing the left agent

to trade more aggressively. This explains tP > tC . These observations generalize when trading

takes place in a star of n traders, as described in the following proposition.

Proposition 7 In an n−star network the following statements hold

1. zP > zC ;

2. tP > tC ;

3. ∂tC
∂σ2

, ∂tC∂ρ ,
∂tP
∂σ2

, ∂tP∂ρ < 0 for n = 3, where σ2 ≡ σ2
ε/σ

2
θ.

Second, as in the bilateral case, dealers adjust their trade depending on how large they

perceive the gains from trade to be. While in a general network gains from trade are pair

specific, we characterize how they depend on the underlying parameters in a n−star network

in the following proposition.

Proposition 8 In an n-star, let the equilibrium beliefs be given by

eC = E (θC |sC ,pgC )

for the central agent C, and

ei = E (θi|si, piC)

for any periphery agent i 6= C. Then, the gains from trade, measured as

E
(

(eC − ei)2
)
,

28



decrease in ρ, σ2
ε/σ

2
θ and in n for any i.

It is interesting to observe how the asymmetry in position simultaneously effects prices and

quantities through trading intensities. To see this, using (17) and (22) we re-write the price

between L and C as a weighted average of the posterior expectations of L, C and 0 (the bliss

point of customers)

pL,C =
tP eL + tCeC + (−β) 0

tP + tC + (−β)
.

The expression for the price between R and C is analogous. This expression shows that the

more aggressive an agent trades, the closer the price is to her expectation, decreasing her

perceived per-unit profit |ei − pij |. Intuitively, in our example, the pessimistic agent prefers

to sell assets to the center agent with larger trading intensity than the trading intensity the

central agent is willing to buy with. As markets has to clear, the only way they can agree on

the terms, if the pessimistic agent, L, gives a price concession to agent C. The reasoning is

identical for the trade between R and C.

Third, price dispersion arises naturally in this model. The central dealer is trading the

same asset at two different prices, because she is facing two different demand curves. Just as

a monopolist does in a standard price-discrimination setting, the central agent sets a higher

price in the market where demand is higher. In fact, from (17), we can foresee that the price

dispersion in our framework must be closely related to the dispersion of posterior beliefs.

Fourth, profitable intermediation by central agents also arises naturally. That is, the central

dealer’s net position (3−2.4) is significantly lower than her gross position (3+2.4) as she trades

not only to take a speculative bet but also to intermediate between her counterparties.

6 Applications: Theory and Facts

An attractive feature of our model is that it generates a rich set of empirical predictions.

Namely, for any given information structure and dealer network, our model generates the full

list of demand curves and the joint distribution of bilateral prices and quantities, and measures

of price dispersion, intermediation, trading volume etc. Therefore, one can directly compare our

results to the stylized facts described by the growing empirical literature using transaction level

OTC data. In this way, our model can help to decide whether dealer’s asymmetric information
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can or cannot be behind stylized facts in particular markets, during particular episodes.

To illustrate this feature, we push our model in two directions. In section 6.1, we are

interested in the robust implications of our model to the relationship between the standard

financial indicators as cost of trading, price dispersion, size of trades and characteristics of the

dealer network. In section 6.2, we focus on episodes of distress in OTC markets. In particular,

using our model, we confront narratives on potential mechanisms behind these episodes to the

observed stylized facts emerging from existing empirical analyses.

6.1 Informational trades in OTC markets

In this part, we highlight some robust empirical predictions of our model. As a main tool,

we simulate data sets by solving for our equilibrium in a large number of randomly generated

networks, and run regressions on various financial and network characteristics. The underlying

thought experiment is that a given network corresponds to a given market where dealers trade

repeatedly. In each round of trade there are transactions between all connected dealer-pairs

as it is described in our static model. Then, in the next round a new set of signals are

realized implying a new round of transactions in the same network. Note that for this thought

experiment we do not have to generate realization of signals. Instead, based on the equilibrium

coeffi cients of each demand curve we can form expectations over the signals to get the expected

value of any relevant financial indicators. Therefore, running regressions on the expectation of

these financial indicators and network characteristics gives us robust connections which should

hold across various market structures.

We start by finding the model equivalents of our main financial indicators of interest:

trading cost, gross volume, intermediation, price dispersion and price volatility.

The majority of the empirical literature conceptualizes trading cost (also referred to as

mark-up or effective spread) as the cost of selling and instantaneously buying back a given

quantity as a fraction of the value of the transaction. This is the percentage cost of a round-

trip trade. We can construct the theoretical counterpart of the percentage cost of a round-trip

trade as follows. Let us consider the difference of the price, pBij , at which trader i could buy a

quantity qji from trader j, and the price, pSij , at which i could sell the same quantity to j and
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normalize this by the value of the transaction for i given her fundamental valuation θi

pBij − pSij
qji θi

=
−
bijsj+

∑
k∈gj ,k 6=i

cijkpjk+qji

ciji+βij
+

bijsj+
∑
k∈gj ,k 6=i

cijkpjk−q
j
i

ciji+βij

qji θi
=

2(
ciji + βij

)
θi
, (24)

where we used (5). As the distribution of θi is the same for each dealer, we will refer to

−1
ciji+βij

+ −1

cjji+βij
and 1

|gi|Σi∈gi
2

ciji+βij
as our measures of the average cost of trade corresponding

to the transaction between i and j, and the average cost of trade corresponding to dealer i,

respectively.

For measuring average transaction size or gross volume for a given dealer, we consider the

measure E (Σi∈gi |qi|). For intermediation, we consider the absolute ratio of the expected gross

trading volume to the expected net trading volume

∣∣∣∣E(Σi∈gi |qi|)
E(Σi∈giqi)

∣∣∣∣ for a given dealer. Clearly, this
ratio is always 1 for a dealer who has a single link to trade, but can be very large for dealers

who trade a lot with their multiple trading partners, but many of their trades cancel each other.

As a measure of profitability, we consider the expected profit per transaction E
(
qji (θi − pij)

)
.

Note that for a given trading pair, cost of trading is independent of the size of the trans-

action. This comes from the linear nature of our model. However, in line with the intuition

embedded in (23), we expect that more connected dealers trade more at lower percentage cost,

as they are less worried about adverse selection. Also as information precision, σ
2
θ
σ2ε
, increases,

adverse selection is less severe, decreasing the cost and increasing the size of the transactions.

More connected traders should also intermediate the most and have the higher expected profit

per trade given the large volume and the more precise posterior due to the larger number of

observed prices .

Turning to price dispersion, note that our framework can capture two distinct concepts of

price dispersion. Recall, that according to our thought experiment, for each generated network,

we can think of a hypothetical panel data-set with both a time-series dimension (across rounds

of trades) and a cross-sectional dimension (across dealer-pairs). In this hypothetical panel,

we refer to the price variability in the time-series dimension for a given dealer-pair as price

volatility. In contrast, we refer to the price variability across the bilateral relationships in a given

cross-section in a given round as price dispersion. More formally, consider the covariance matrix

of prices in each transaction, Σp. The diagonal elements of Σp represent price volatility, while
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overweight profit/trade intermediation cost gross volume price volatility dispersion

constant 0.18∗∗∗ -0.855∗∗∗ -63.46∗∗∗ 0.105∗∗∗ -380.3∗∗∗ 37.6∗∗∗ 0.103∗∗∗

(34.85) (-84.172) (-19.5) (203.251) (-190.27) (477.22) (12.783)

degree 0.02∗∗∗ 0.15∗∗∗ 19.9∗∗∗ -0.006∗∗∗ 57.92∗∗∗ 0.99∗∗∗ -0.024∗∗∗

(39.38) (192.289) (79.84) (-171.084) (378.13) (164.01) (-41.164)

density -0.04∗∗∗ 0.018∗∗∗ -2.34∗∗∗ -0.002∗∗∗ 9.62∗∗∗ 0.67∗∗∗ -0.001

(-50.12) (9.602) (-3.92) (-34.338) (26.22) (46.06) (-1.585)

asymmetry 0.03∗∗∗ -0.043∗∗∗ -23.45∗∗∗ 0.001∗∗∗ 27.24∗∗∗ -0.22∗∗∗ 0.038∗∗∗

(14.55) (-11.816) (-19.75) (3.775) (37.33) (-7.93) (12.939)

information 0.01∗∗∗ 0.059∗∗∗ 1.17∗∗∗ -0.002∗∗∗ 20.12∗∗∗ 2.27∗∗∗ 0.0004

precision (-23.31) (53.318) (3.28) (-47.849) (91.95) (263.62) (0.547)

R2 0.25 0.82 0.42 0.8 0.95 0.91 0.17

N 11000 11000 11000 11000 11000 11000 11000

Table 1: Regressions on a simulated dataset of percentage overweighting, profit per trade,
intermediation, cost, gross volume, price volatility and dispersion on dealer and network char-
acteristics, i.e., number of links (degree), standard deviation of the degree distribution (asym-
metry), total number of links in network (density) and information precision in 1000 random
network where each link is formed with probability half. Standard OLS regressions with t-stats
in parenthesis. σ2

ε is the square of a random variable drawn from N(1, 0.1) and information

precision is σ2θ
σ2ε
. Remaining parameters are fixed at n = 11, ρ = 0.5 and σ2

θ = 1.

the off-diagonal elements of Σp measure price dispersion. Therefore, a transparent, normalized,

single-value measure of the price dispersion across all dealer pairs is the determinant of the

correlation matrix of prices. The price dispersion for a given dealer can be measured as the

determinant of the sub-matrix of the correlation matrix corresponding to the prices the given

dealer trades at.

While empirically price dispersion and price volatility are closely related and might not

be separable, in our model these two objects are driven by different forces. Price volatility

tends to be large in those transactions in which dealers trade large quantities . This is because

demand-schedules are downward sloping implying larger price effects for large trades. Since,

as we argued before, dealers with many connections tend to trade a lot, price volatility will be

largest for these pairs. In contrast, price dispersion tends to be small across dealers who learn a

lot from prices, because their posteriors are close and prices are weighted averages of posteriors.

As better connected dealers learn more, price dispersion will be small across dealer-pairs where

both counterparties have many connections.

Table 1 shows the output of dealer-level regressions connecting these trading characteristics
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with network characteristics. We use our simulated data-set of 1000 networks and the dealer

and network characteristics we have introduced at the end of Section 4. The table shows

standard OLS regressions with t-values in parenthesis. Consistently with our expectations, we

see that more connected dealers trade more, earn more profit per trade, intermediate more and

trade at smaller mark-up, at less dispersed, but more volatile prices 16 Also, markets with more

precise information are more profitable, have larger volumes, more intermediation and smaller

mark-ups.

Because of data limitation, studies which connect dealer’s network characteristics with

economic indicators are rare. As an example Li and Schürhoff (2012), consistently with our

predictions, also show that central agents trade more and seem to be better informed than

others. Interestingly, the two empirical studies we are aware of directly addressing the rela-

tionship between mark-up and network position, Li and Schürhoff (2012), Hollifield, Neklyudov

and Spatt (2012), find opposing patterns. While Li and Schürhoff (2012) finds that in the mu-

nicipal bond market more central dealers trade at higher mark-up, Hollifield, Neklyudov and

Spatt (2012), consistently with our prediction, finds that in the collateralized loan market more

central dealers trade at lower mark-up. Our model suggests that in municipal bond market

pricing of assets is driven by other forces than asymmetric information.

Note that thinking about the underlying trading network structure might be useful even

when the econometrician has only limited information on dealers’ characteristics. Indeed,

Table 1 also gives information on how some financial indicators are connected to others by the

underlying network characteristics. In particular, we should expect that larger transaction size

is associated to smaller cost of trading, more profitability per transactions, less dispersed prices

across simultaneous transactions, but more volatile prices across time-periods. The reason is

that each of these characterize transactions of more connected dealers. From this group of

predictions, the pattern that percentage cost is decreasing in the size of the transaction is

a robust observation found in many different contexts (see Green, Hollifield and Schurhoff

(2007), Edwards, Harris and Piwowar (2007) and Li and Schürhoff (2012)). To the extent

that information precision is lower for lower rated bonds, our observation on the negative

connection between cost of trade and information precision is consistent with the findings of

Edwards, Harris and Piwowar (2007) and Bao, Pan and Wang (2011).

16Using eigenvalue centrality instead of degree centrality gives very similar results.
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Friewald et al (2012)1 7 Afonso et al. (2012) Gorton and Metrick (2012)1 8 Agarwal et al. (2012)1 9

Market Corporate bonds Fed Funds Repo MBS
Event Subprime & GM/Ford Lehman Subprime Subprime
Price dispersion
Price impact
Volume

↗
↗
↔

↗
N/A
↔

N/A
↗
N/A

N/A
N/A
↘

Table 2: Stylized facts about financial crises from the empirical literature

6.2 OTC markets in distress

In the previous part, we highlighted few robust implications of our theory for OTC markets

where trading is driven by asymmetric information. In this part, as another illustration of

the range of potential applications, we confront narratives behind OTC market distress to the

stylized facts emerging from existing empirical analyses.

As a starting point, in Table 2 we summarize the findings of four recent empirical papers

that investigate the effect of a liquidity event on market indicators. Three main indicators

stand out: price dispersion, price impact and volume.

The stylized picture that emerges is that in a financial crisis price dispersion and price

impact tend to increase and volume tends to decrease or stay constant. While each paper uses

different proxies for these indicators, we consider that the measures introduced in the previous

section capture best the economic content of the indicators. In particular, just as before, we

use the determinant of the correlation matrix as a measure of price dispersion. For volume, we

use the expected gross volume of a each dealer j, E (Σi∈gi |qi|) . For price impact, we use the

average cost of trades in a given transaction, −1
ciji+βij

+ −1

cjji+βij
.

For the analysis, we use the 2-level core-periphery network depicted on Figure 4. This

network has a core of four connected dealers who are linked with one mid-level dealer each.

Each mid-level dealer can intermediate between the core group and one other dealer. Given

that real-world OTC markets tend to have a core-periphery structure, this network is a simple

example to see how transactions within the core group differ from transactions between core and

mid-level dealers and mid-level and periphery dealers. For example, the left column on Figure

5 shows dispersion volume and cost of trading as a function of information precision, σ
2
θ
σ2ε
, for

each segment of the 2-level core-periphery market. In line with our previous observations, we

find that volume is the largest, while cost and price dispersion is the lowest for the transactions
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Figure 4: A two-level core-perihpery network. Central dealers are red, mid-level dealers are
blue and periphery dealers are green.

within the core group of dealers. Also, price dispersion and volume are increasing, while cost

is decreasing in information precision.

Given our measures of the relevant indicators and our 2-level core-periphery example, we

confront three potential narratives with the stylized facts.

1. Fundamental uncertainty increases around a crisis. That is, the ratio σ2ε
σ2θ
decreases.

2. Asymmetry of information increases during financial crisis. In our framework, we can

illustrate this effect by increasing one of the core dealers (dealer 4’s) signal noise σ2
ε. This

captures the idea that some of the dealers can have relative disadvantage of valuating the

securities compared to others, as in Dang, Gorton and Holmström (2009).

3. Counterparty risk increases. We capture this by assuming that dealer 4 loses its links to

2 and 3, that is, dealer 4 is no longer a core-dealer. This exercise is in the spirit of Afonso

et al. (2012), who find that heightened concerns about counterparty risk restricted the

access of weaker banks to interbank credit.

The effects of each of the experiments on price dispersion, trading volume and average

cost of trading in a given transaction are illustrated at Figure 5. In particular each column

corresponds to an experiment, while each row corresponds to one of the measures. The left

column shows the case in which each dealers’information precision increases from 0.35 to 1.

The middle column, we show the case in which only dealer’s 4 information precision increases
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Figure 5: The effects of changing information precision of each dealers (left column), of changing
information precision of dealer 4 only (middle column) and of breaking the link between dealers
4 and 2 and between 4 and 3 (right column) on price dispersion (first row), trading volume
(middle row) and average cost of trading in a given transaction (bottom row). On each panels
in the left and right columns σ2

ε of each dealer changes. On each panels in the middle column
only dealer 4’s σ2

ε changes while for others it is fixed at 1. To facilitate the comparison between
the scenarios, curves from the left column are copied to each of the other corresponding figures
as thin curves. Other paramters are ρ = 0.5, σ2

θ = 1 and βij = −10
12 .
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from 0.35 to 1 (thick curves), while for all other dealers it is fixed at σ
2
θ
σ2ε

= 1. In the right column,

we show the case when there is no link between 4 and 2, nor between 4 and 1 (thick curves),

as dealers’information precision increases from 0.35 to 1. To facilitate the comparison between

the scenarios, we plot the curves from the left column in each of the other corresponding figures

in the middle and right column as thin curves.

The main take-away is that the first two narratives do not seem to be consistent with the

stylized facts we observe. In each of these scenarios price dispersion and trading volume move

in the same direction. As we explained in Section 5, this is driven by two forces: how much a

dealer cares about the private information of her counterparty and how the perceived gains from

trade are affected. For example, when σ2θ
σ2ε
decreases, dealers learn more from each other, and,

at the same time, they perceive smaller differences in posteriors. Both these effects imply that

price dispersion and trading volume decrease. Similarly, when dealer’s 4 information precision

decreases, she trusts less her private information, and learns more from others, which decreases

price-dispersion (not surprisingly, price dispersion decreases even more when all dealers’private

information is less precise, as comparing thin and thick curves in the middle panel of the first

row shows). Trading volume goes down as well because as information becomes less precise,

dealers posterior beliefs are closer, and the expected gains from trade are smaller.20

However, the last experiment, in which we break two of the links of dealer 4, gives a different

pattern. Comparing thick curves with the corresponding thin curves in the right column we

see that breaking links pushes price dispersion up and trading volume down for each group of

transactions (core-core, mid-core, and mid-periphery), consistent with the empirical evidence.

By assuming away the possibility that dealer 4 can trade with dealer 2 and 3, narrative 3

exogenously reduces the possible trading opportunities, and, at the same, reduces the possible

learning opportunities. The former decreases volume, the latter increases the heterogeneity of

posterior expectations, and, therefore, increases price dispersion.21

20Note that comparing thin and thick curves in the middle panel that larger information asymmetry does
not imply less trade in our set-up. Indeed, we see that both the volume of 1 and 4 is larger when only 1 has
a less precise information (thick curves) compared when each agent has less precise information (thin curves).
Increasing asymmetry of information between two dealers tends to affect trading intensities of the two traders
into the opposite direction, leading to a small net effect on trading volume. Therefore, the gains-from-trade
effect dominates which leads to more trade whenever the information of any of the dealers is more precise.

21Along the same lines, one can analyze the responses of each group of traders in each of our experiments.
Such analysis would lead to similar insights, so it is omitted for brevity.
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Finally, let us emphasize that although we have found more support for (this specific inter-

pretation of) counterparty risk than for information based narratives, our comparative statics

exercises are simplistic interpretations of these narratives. While we believe that the intuition

behind our conclusions are relevant in a more general context, undoubtedly, more research is

needed to conclude that information based stories cannot be the reason behind market break-

downs in OTC markets.

7 Dynamic Foundations

In our model, all trades take place simultaneously. This poses the conceptually complex prob-

lem of finding the equilibrium price and quantity vectors at which transactions take place. One

solution, commonly used in the literature, is to employ a central auctioneer. In particular, each

dealer submits her signal and vector of demand functions to the auctioneer. The auctioneer

then informs each pair of dealers what the trading price is, as well as their respective positions.

However, in our decentralized environment, a central auctioneer is an unattractive concept.

As an alternative, we consider the following two-step process for finding the equilibrium.

In the first step, each dealer can find her best response demand function, given the choices of

the other (n − 1) dealers. Implicitly, each dealer is able to compute the equilibrium demand

functions for herself and all the other dealers, for any realization of the vector of signals. In the

second step, realized signals are mapped into traded quantities and prices through a dynamic

(non-strategic) protocol in which dealers exchange a series of quotes with their counterparties.

The protocol specifies an updating rule for beliefs, a price rule and a quantity rule based on

the coeffi cients of the demand curves determined at the first step. We describe this protocol in

detail below and show that it leads to the same outcome as our OTC game.

Suppose that time is discrete, and in each period there are two stages: the morning stage

and the evening stage. In the evening, each dealer i sends a message, hi,t, to all counterparties

she has in the network g. In the morning, each dealer receives these messages. In the following

evening, a dealer updates the message she sends by the updating-rule using her signal and

the information received in the morning. Messages can be interpreted, for instance, as quotes

that dealers exchange with their counterparties. Upon receiving a set of quotes, a dealer might

decide to contact her counterparties with other quotes, before trade actually occurs. The
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protocol stops if there exists an arbitrarily small scalar δi > 0, such that |hi,t − hi,tδ | ≤ δi for

each i, in any subsequent period t ≥ tδ. That, is the protocol stops when no dealer wants to

significantly revise her message in the evening after receiving information in the morning.

When the protocol stops, messages are mapped to into prices and quantities by price and

quantity rules for each pair of dealers that have a link in the network g. These rules are common

knowledge for all dealers. No transactions take place before the protocol stops.

Suppose that there exists an equilibrium in the one-shot OTC game. Let dealers use their

equilibrium strategy in the conditional guessing game as the updating rule, such that

hi,t = ȳisi + z̄Tgihgi,t−1, ∀i

where hgi,t = (hj,t)j∈gi , and ȳi and z̄ij have been characterized, for any i and j ∈ gi, in

Proposition 1. Further, consider a price rule based on (17) that determines the price between

a pair of agents ij that have a link in the network g as follows

pij,t =
(2− zji)
4− zijzji

hi,t +
(2− zij)
4− zijzji

hj,t,

where the relationship between zij and z̄ij has been characterized in Proposition 3. Given the

prices, the quantity rule allocates to agent i, in the transaction with j, qji,t(si,pgi,t), where the

function has been characterized in Proposition 3. Then the following statements hold.

Proposition 9 Let ht = (hi,t)i∈{1,2,...,n} be the vector of messages sent at time t, and µ = (µi)i∈{1,2,...,n}

be a vector of IID N(0, σ2
µ) random normal variables. Suppose that ρ < 1. Then

1. If ht =
(
I − Z̄

)−1
Ȳ s, then ht+1 =

(
I − Z̄

)−1
Ȳ s, for any t.

2. If ht0 =
(
I − Z̄

)−1
Ȳ (s + µ), then there exists a vector of arbitrarily small scalars δ =

(δi)i∈{1,2,...,n} such that trading takes place in period tδ and

∣∣∣htδ − (I − Z̄)−1
Ȳ s
∣∣∣ < 1

2
δ.

3. If ht0 =
(
I − Z̄

)−1
Ȳ (s + µ), then there exists a vector of arbitrarily small scalars δ =
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(δi)i∈{1,2,...,n} such that trading takes place in period tδ and

|E (θi|si,hgi,t0 ,hgi,t0+1, ...,hgi,tδ)− E (θi|si,pgi)| <
1

2
δ,

where pgi are the equilibrium prices in the one-short OTC game.

The first part states that vector of equilibrium beliefs e defined in Section 3.2, is a steady

state of the protocol. The second and third parts state that the dynamic protocol leads to the

same beliefs (even if the trader uses the full history of past messages) and, consequently, to the

same traded prices and quantities as the corresponding OTC game, independently from which

vector of messages we start the protocol at.

Note that in this part we focused on the existence of a decentralized mechanism for finding

the equilibrium prices and quantities. We do not claim that the updating-, price- and quantity-

rules are optimal for the dealer. For example, it is very likely that the dealer would prefer to

use a dynamic strategy where the updating rule has time varying coeffi cients. Indeed, this

highlights the main limitation of our static approach to model the OTC market: we cannot

consider such dynamic strategies.

8 Conclusions

In this paper we present a model of strategic information diffusion in over-the-counter markets.

In our set-up a dealer can trade any quantity of the asset she finds desirable, and understands

that her trade may affect transaction prices. Moreover, she can decide to buy a certain quantity

at a given price from one counterparty and sell a different quantity at a different price to

another.

We show that the equilibrium price in each transaction partially aggregates the private

information of all agents in the economy. The informational effi ciency of prices is the highest

in networks where each agent trades with every other agent, or in the common value limit,

regardless of the network structure. Otherwise, agents tend to overweight their own signal

compared to the outcome which would maximize information effi ciency.

An attractive feature of our model is that it gives a rich set of empirical predictions. As an

illustration for the possible range of applications, we compare the model generated economic
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indicators under different scenarios of changing economic environment with the stylized facts

in recent empirical papers. We find more support for the arguments that the increased coun-

terparty risk was the main determinant of the distress of OTC markets in the recent financial

crisis, as opposed to narratives based on the deterioration of the informational environment.

For future research, one could use our model as the main building block for the analysis of

endogenous network formation given that our model gives the payoffs for any given network.

Alternatively, with a suffi ciently detailed data-set in hand, one could use our framework for a

structural estimation of the parameters in different states of the economy.
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A Appendix: Proofs

Throughout several of the following proofs we often decompose θi into a common value com-
ponent, θ̂, and a private value component, ηi, such that

θi = θ̂ + ηi

and
si = θ̂ + ηi + εi

with θ̂ ∼ N(0, σ2
θ̂
), ηi ∼ IID N(0, σ2

η) and V
(
ηi, ηj

)
= 0. This implies that

(1− ρ)σ2
θ = σ2

η

Further, we generalize the notation V to be the variance-covariance operator applied to
vectors of random variables. For instance, V(x) represents that variance-covariance matrix of
vector x, and V(x,y) represents the covariance matrix between vector x and y.

Proof of Proposition 1

We need the following Lemmas for the construction of our proof.

Lemma A.1 Consider the jointly normally distributed variables (θi, s). Let an arbitrary weight-
ing vector ω > 0. Consider the coeffi cient of si in the projection of E (θ|si). Adding ωT s as a
conditioning variable, additional to si, decreases the coeffi cient of si, that is,

∂E
(
θi|si,ωT s

)
∂si

<
∂E (θi|si)

∂si

Proof. From the projection theorem

E
(
θi|si,ωT s

)
= E (θi|si) +

V
(
θi,ω

T s|si
)

V (ωT s|si)
(
ωT s− E

(
ωT s|si

))
consequently

∂E
(
θi|si,ωT s

)
∂si

=
∂E (θi|si)

∂si
−
V
(
θi,ω

T s|si
)

V (ωT s|si)
V
(
si,ω

T s
)

V (si)
.

Thus, it is suffi cient to show that V
(
ωT s, si

)
> 0 and V

(
θi,ω

T s|si
)
> 0. For the former, we

know that
V
(
ωT s, si

)
= ωi

(
σ2
ε + (1− ρ)σ2

θ

)
+ ρσ2

θω
T1 > 0

Then, we use the projection theorem to show that

V
(
θi,ω

T s|si
)

=

(
σ2
θ σ2

θω
T1

σ2
θω

T1 V
(
ωT s

) )
− 1

σ2
θ + σ2

ε

(
σ2
θ(

ωi
(
σ2
ε + (1− ρ)σ2

θ

)
+ ρσ2

θω
T1
) ) ( σ2

θ

(
ωi
(
σ2
ε + (1− ρ)σ2

θ

)
+ ρσ2

θω
T1
) )
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implying that

V
(
θi,ω

T s|si
)

= σ2
θω

T1−
(
ωi
(
σ2
ε + (1− ρ)σ2

θ

)
+ ρσ2

θω
T1
)
σ2
θ

σ2
θ + σ2

ε

= σ2
θ

σ2
ε + (1− ρ)σ2

θ

σ2
θ + σ2

ε

(
ωT1− ωi

)
> 0.

Lemma A.2 Take the jointly normally distributed system
(
θ̂
x

)
where x = θ̂1+ε′+ε′′, with

the following properties

• E
(
θ̂
x

)
= 0, V

(
θ̂, ε′

)
= 0 and V

(
θ̂, ε′′

)
= 0;

• V (ε′) is diagonal, and V (x) ≥ V
(
θ̂1 + ε′

)
.

Then the vector ω defined by

E
(
θ̂|x
)

= ωTx

has the properties that ωT1 <1 and ω ∈ (0, 1)n .

Proof. By the projection theorem, we have that

ωT = V
(
θ̂,x
)

(V (x))−1 .

Then

V
(
θ̂,x
)

(V (x))−1≤V
(
θ̂, θ̂1 + ε′ + ε′′

)(
V
(
θ̂1 + ε′

))−1
= V

(
θ̂, θ̂1

)(
V
(
θ̂1 + ε′

))−1
.

The inequality comes from the fact that both V (x) and V
(
θ̂1 + ε̂

)
are positive definite ma-

trixes and that V (x) ≥ V
(
θ̂1 + ε̂

)
. (See Horn and Johnson (1985), Corollary 7.7.4(a)).

Since

V
(
θ̂, θ̂1

)(
V
(
θ̂1 + ε′

))−1
1 = 1−

1
σ2
θ̂

1
V(ε′)1+ 1

σ2
θ̂

< 1,

then
ωT1 <1

which implies that
ω ∈ (0, 1)n .

Lemma A.3 For any network g, define a mapping F : Rn×n → Rn×n as follows. Let V be
an n× n matrix with rows vj and

ej= vjs
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for each j = 1, ...n. The mapping F (V) is given by
E (θ1|s1, eg1)
E (θ2|s2, eg2)

...
E (θn|sn, egn)

 = F (V) s.

Then, the mapping F is a continuos self-map on the space [0, 1]n×n .

Proof. Let
v0
j =

(
v0
j1 v0

j2 ... v0
jn

)
and consider that

ej = v0
js

= v0
j

(
θ̂1 + ε+ η

)
where 1 is a column vector of ones and

η =
(
η1 η2 ... ηn

)T
and

ε =
(
ε1 ε2 ... εn

)T
Let

êj =
ej

v0
j1

= θ̂ +
v0
j

v0
j1

(ε+ η)

and
êgi = (êj)j∈gi

To prove the result, we apply Lemma A.2 for each E (θi|si, egi). In particular, for each
i, we construct a vector ε′gi with the first element (εi + ηi) and the j-th element equal to
v0jj
v0j1

(
εj + ηj

)
with j ∈ gi, and a vector ε

′′
gi with the first element 0 and the j-th element equal

to
v0j
v0j1

(
ε+ η−

(
εj + ηj

)
1j
)
with j ∈ gi (1j is a column vector of 0 and 1 at position j). Then,

we have that (
si
êgi

)
= θ̂1 + ε′gi + ε

′′
gi

Below, we show that the conditions in Lemma A.2 apply.
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First, by construction, ε′gi has a diagonal variance-covariance matrix. Next, we also show

that V
(

si
êgi

)
≥ V

(
θ̂1 + ε′gi

)
element by element. Indeed

V (êj) = σ2
θ̂

+

(
v0
jj

v0
j1

)2 (
σ2
ε + σ2

η

)
+

(
v0
j

v0
j1

)
V
(
ε+ η−

(
εj + ηj

)
1j
)( v0

j

v0
j1

)T

+
v0
jj

v0
j1
V
((
εj + ηj

)
,
(
ε+ η−

(
εj + ηj

)
1j
))( v0

j

v0
j1

)T
and

V (êj , êk) = σ2
θ̂

+
v0
kk

v0
k1
V
(
(εk + ηk) ,

(
ε+ η−

(
εj + ηj

)
1j
))( v0

j

v0
j1

)T

+
v0
jj

v0
j1
V
((
εj + ηj

)
, (ε+ η− (εk + ηk) 1j)

)( v0
k

v0
k1

)T
+

v0
j

v0
j1
V
((
ε+ η−

(
εj + ηj

)
1j
)
, (ε+ η− (εk + ηk) 1j)

)( v0
k

v0
k1

)T
,

which implies that

V (êj) > σ2
θ̂

+

(
v0
jj

v0
j1

)2 (
σ2
ε + σ2

η

)
(A.1)

and
V (êj , êk) > σ2

θ̂
. (A.2)

This is because
V
((
εj + ηj

)
,
(
ε+ η−

(
εj + ηj

)
1j
))

= 0

and
V
(
ηi, ηj

)
= 0 and V (εi, εj) = 0 ∀i, j.

Moreover,

V (si, êj) = σ2
θ̂

+
v0
ji(

v0
j

)T
1

(
σ2
ε + σ2

η

)
> σ2

θ̂
. (A.3)

From (A.1), (A.2), and (A.3), it follows that V
(

si
êgi

)
≥ V

(
θ̂1T+ε′gi

)
. Then, for

each i there exists a column vector ωgi = (ωij)j∈{i∪gi}with the properties that ω
T
gi1 <1 and

ωgi∈ (0, 1)mi+1, such that

E
(
θ̂|si, êgi

)
= ωTgi

(
si
êgi

)
.

It is immediate that

E (θi|si, egi) = E (θi|si, êgi) = E
(
θ̂|si, êgi

)
+ E (ηi|si)
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where

E (ηi|si) =
σ2
η

σ2
θ̂

+ σ2
η + σ2

ε

si.

Then, from Lemma A.1,

vii = ωii +
∑
k∈gi

ωik
v0
ki

v0
k1

+
σ2
η

σ2
θ̂

+ σ2
η + σ2

ε

=
∂E (θi|si, egi)

∂si
<
∂E (θi|si)

∂si
< 1 (A.4)

and

vij =
∑
k∈gi

ωik
v0
kj

v0
k1

<
∑
k∈gi

ωik < 1, ∀j ∈ gi. (A.5)

Thus far, we have used only that v0
ij ≥ 0 (and not that v0

ij ∈ [0, 1]). This implies that if
v0
ij ≥ 0, then vij ∈ [0, 1]. Then it must be true also that ∀v0

ij ∈ [0, 1], then vij ∈ [0, 1]. This
concludes the proof.

Now we are ready to prove the statement.
An equilibrium exists if there exists a matrix V and matrices Ȳ and Z̄ such that

V s =
(
Ȳ + Z̄V

)
s,

and
F (V ) s =

(
Ȳ + Z̄V

)
s,

where F (·) is the mapping introduced in Lemma A.3. The first condition insures that

e = V s

is a fixed point in (10), and the second condition insures that first order conditions (11) are
satisfied.

We construct an equilibrium for ρ < 1 and for ρ = 1 as follows.
Case 1: ρ < 1
By Brower’s fixed point theorem, the mapping F (·) admits a fixed point on [0, 1]n×n. Let

V ∗ ∈ [0, 1]n×n be a matrix such that

F (V ∗) = V ∗.

Let Ȳ be a diagonal matrix with elements

ȳi = ωii +
σ2
η

σ2
θ̂

+ σ2
η + σ2

ε

and let Z̄ have elements

z̄ij=

{ ωij

(v∗j )
T
1
, if ij ∈ g

0, otherwise

where ωii and ωij have been introduced the proof above. Both matrices Ȳ ≥ 0 and Z̄ ≥ 0.
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Substituting V ∗ in (A.4) and (A.5), it follows that

V ∗ = Ȳ + Z̄V ∗,

and since F (V ∗) = V ∗, then
F (V ∗) = Ȳ + Z̄V ∗.

Case 2: ρ = 1
Let Ȳ = 0 and Z̄ have elements z̄ij if ij ∈ g, and 0 otherwise, with

∑
j∈gi

z̄ij = 1. Let V ∗ be

a matrix with v∗ij =
σ2
θ̂

nσ2
θ̂
+σ2ε

for any i and j.

It is straightforward to see that
V ∗ = Z̄V ∗.

Next we show that
F (V ∗) = V ∗.

Next, we show that the matrix V ∗ with v∗ij =
σ2
θ̂

nσ2
θ̂
+σ2ε

for any i and j satisfies

F (V ∗) = V ∗.

By definition, matrix V ∗ with v∗ij =
σ2
θ̂

nσ2
θ̂
+σ2ε

is a fixed point of the mapping F (·), if

ei = v∗
n∑
i=1

sj , ∀i ∈ {1, 2, ..., n}

then

E (θi|si, egi) = v∗
n∑
j=1

sj ,∀i ∈ {1, 2, ..., n} .

As ρ = 1, then θi = θ̂ for any i and

E (θi|si, egi) = E

(
θ̂|v∗

n∑
i=1

si

)

=
1

v∗
σ2
θ̂

nσ2
θ̂

+ σ2
ε

v∗
n∑
i=1

si

= v∗
n∑
i=1

si.

It follows that
F (V ∗) = Z̄V ∗.

This concludes the proof.
In the remaining proofs, we use the results in the following Lemma

Lemma A.4 In the conditional guessing game, the following properties hold whenever ρ < 1.
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1. Ȳ ∈ (0, 1]n×n,

2. limn→∞ Z̄n = 0 and
(
I − Z̄

)
is invertible, and

3. e =
(
I − Z̄

)−1
Ȳ s, where e = (ei)i∈{1,2,...,n}, Ȳ is a matrix with elements ȳi on the diago-

nal and 0 otherwise, and Z̄ is a matrix with elements z̄ij, when i and j(6= i) have a link
and 0 otherwise.

4. The coeffi cients in matrices V, Ȳ and Z̄ depend on σ2
ε and σ

2
θ only through the ratio

σ2ε
σ2θ

Proof.

1. From (A.4) it also follows that

ȳi <
∂E (θi|si, egi)

∂si
< 1.

Moreover, as ρ < 1, then σ2
η > 0, which implies that ȳi > 0. It follows that Ȳ is invertible.

2. We first show that matrix V ∗ is nonsingular. For this we construct a matrix W ∗ =
Ȳ −1

(
I − Z̄

)
and show that W ∗V ∗ = I. Indeed, the element on the position (i, i) on the

diagonal of W ∗V ∗ is equal to

1

ȳi

v∗ii −∑
k∈gi

z̄ikv
∗
ki

 =
1

ȳi

ωii +
∑
k∈gi

ωik
v∗ki(

v∗k
)T

1
+

σ2
η

σ2
θ̂

+ σ2
η + σ2

ε

−
∑
k∈gi

ωik(
v∗k
)T

1
v∗ki


=

1

ȳi

(
ωii +

σ2
η

σ2
θ̂

+ σ2
η + σ2

ε

)
= 1

while the element on the position (i, j) off the diagonal of W ∗V ∗ is equal to

1

ȳi

v∗ij −∑
k∈gi

z̄ikv
∗
kj

 =
1

ȳi

∑
k∈gi

ωik
v∗kj(

v∗k
)T

1
−
∑
k∈gi

ωik(
v∗k
)T

1
v∗kj

 = 0

where we used again the fact that V ∗ is a fixed point in (A.4) and (A.5). Since V ∗ is
nonsingular, then

(
I − Z̄

)
is also nonsingular as(

I − Z̄
)

= Ȳ (V ∗)−1 .

Given that Z̄ ≥ 0 and
(
I − Z̄

)−1 ≥ 0 (which follows from above) this implies, as shown
in Meyer (2000), that the largest eigenvalue of Z̄ is strictly smaller than 1. This is a
useful result, as it is suffi cient to show that

lim
n→∞

Z̄n = 0n×n
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and that (
I − Z̄

)−1
=
∞∑
n=1

Z̄n.

(For both claims see Meyer (2000) pp. 620 & 618.)

3. The equilibrium outcome guess vector is, by construction

e = V ∗s

which implies that
e =

(
I − Z̄

)−1
Ȳ.

4. To see the result, observe that the mapping F (V ) is invariant in σ2θ
σ2ε
. To see this, consider

the part of the mapping F (V ) which determines the first column of F (V ) as an example.
If V 1 is a matrix with n rows and m1 columns containing the columns of V corresponding
to g1, then the transformation which determines the first column of F (V ) is

[
σ2
θ ρσ2

θ × 11×n−1 i1 V 1
]([ i1

V 1

] (
ρσ2

θ × 1n×n + diag
(
(1− ρ)σ2

θ + σ2
ε

)
× 11×n

) [
i1 V 1

])−1

=

=
[

1 ρ× 11×n−1 i1 V 1
]([ i1

V 1

](
ρ× 1n×n + diag

(
(1− ρ) +

σ2
ε

σ2
θ

)
× 11×n

)[
i1 V 1

])−1

where i1 is the first column of the identity matrix and the operator diag (·) forms a
diagonal matrix with the given vector in the diagonal. By the same argument, each
columns of F (V ) depend only on σ2ε

σ2θ
and not on the σ2

ε and σ
2
θ separately.

Proof of Proposition 2

In an equilibrium of the OTC game, prices and quantities satisfy the first order conditions (8)
and must be such that all bilateral trades clear.

Since market clearing conditions (4) are linear in prices and signals, we know that each
price (if an equilibrium price vector exists) must be a certain linear combination of signals.
Thus, each price is normally distributed.

From the first order conditions we have that

qji (si,pgi) = −
(
ciji + βij

)
(E(θi |si,pgi )− pij) .

The bilateral clearing condition between a trader i and trader j that have a link in network g
implies that

−
(
ciji + βij

)
(E(θi |si,pgi )− pij)−

(
cjij + βij

) (
E(θj

∣∣sj ,pgj )− pij
)

+ βijpij = 0
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and solving for the price pij we have that

pij =

(
ciji + βij

)
E(θi |si,pgi ) +

(
cjij + βij

)
E(θj

∣∣sj ,pgj )

ciji + cjij + 3βij

Since agent i knows E(θi |si,pgi ), by definition, the vector of prices pgi is informationally
equivalent for her with the vector of posteriors of her neighbors Egi =

{
E(θj

∣∣sj ,pgj )
}
j∈gi

.
This implies that

E(θi |si,pgi ) = E(θi |si,Egi ).

Note also that as each price is a linear combination of signals and E (θj |·) is a linear operator on
jointly normal variables, there must be a vector wi that E(θi |si,pgi ) = E(θi |si,Egi ) = wis.
That is, the collection of {wi}i=1,...n has to satisfy the system of n equations given by

wis =E(θi

∣∣∣si, {wjs}j∈gi )

for every i. However, the collection {wi}i=1,...n that is a solution of this system, is also an
equilibrium of the conditional guessing game by construction.

Lemma A.5 Suppose that there exists a linear equilibrium in the OTC game in which the
belief of each dealer i is given by

E(θi|si,pgi) = yisi +
∑
j∈gi

zijpij .

Then the equilibrium demand functions

Qji (si; pgi) = bjisi +
(
cji

)T
pgi

must be such that
bji = −βij

2−zji
zij+zji−zijzji yi

cjij = −βij
2−zji

zij+zji−zijzji (zij − 1)

cjik = −βij
2−zji

zij+zji−zijzji zik.

Proof. Taking into account that agents’beliefs have an affi ne structure and identifying coef-
ficients in (8) we obtain that

bji = −
(
ciji + βij

)
yi

cjij = −
(
ciji + βij

)
(zij − 1)

cjik = −
(
ciji + βij

)
zik

for any i and j ∈ gi. Therefore, for any pair ij that has a link in the network g, the following
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two equations must hold at the same time

cjij = −
(
ciji + βij

)
(zij − 1)

ciji = −
(
cjij + βij

)
(zji − 1) .

which implies that

cjij =
(zij − 1) (zji − 2)

zij + zji − zijzji
βij

ciji =
(zji − 1) (zij − 2)

zij + zji − zijzji
βij .

A simple manipulations shows that

ciji + βij =
2− zji

zij + zji − zijzji
βij

and (
ciji + βij

)
ciji + cjij + 3βij

=
2− zji

4− zijzji
.

Proof of Proposition 3, Lemma 1 and Corollary 1

We show that given an equilibrium of the conditional-guessing game and the conditions of the
proposition, we can always construct an equilibrium for the OTC game with beliefs given by

E(θi |si,pgi ) = E(θi |si, egi ).

To see this, consider an equilibrium of the conditional-guessing game in which

E(θi |si, egi ) = ȳisi +
∑
k∈gi

z̄ikE(θk |sk, egk )

for every i. If the system (15) has a solution, then

E(θi |si, egi ) =
yi(

1−
∑
k∈gi

zik
2−zki

4−zikzki

)si +
∑
k∈gi

zij

2−zij
4−zijzji(

1−
∑
k∈gi

zik
2−zki

4−zikzki

)E(θk |sk, egk ) (A.6)

holds for every realization of the signals, and for each i. Using that from Lemma A.5

2− zki
4− zikzki

=

(
ciki + βik

)
ciki + ckik + 3βik

,
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we can rewrite (A.6) as

E(θi |si, egi ) = yisi +
∑
k∈gi

zik

(
ciki + βik

)
E(θi |si, egi ) +

(
ckik + βik

)
E(θk |sk, egk )

ciki + ckik + 3βik
.

Now we show that picking the prices and demand functions

pij =

(
ciki + βik

)
E(θi |si, egi ) +

(
ckik + βik

)
E(θk |sk, egk )

ciki + ckik + 3βik
(A.7)

Qji (si; pgi) = −
(
ciji + βij

)
(E(θi |si, egi )− pij) (A.8)

is an equilibrium of the OTC game.
First note that this choice implies

E(θi |si, egi ) = yisi +
∑
k∈gi

zikpij = E(θi |si,pgi ). (A.9)

The second equality comes from the fact that the first equality holds for any realization of
signals and the projection theorem determines a unique linear combination with this property
for a given set of jointly normally distributed variables. Thus, (A.8) for each ij link is equivalent
with the corresponding first order condition (8). Finally, (A.9) also implies that the bilateral
clearing condition between a dealer i and dealer j that have a link in network g

−
(
ciji + βij

)
(E(θi |si,pgi )− pij)−

(
cjij + βij

) (
E(θj

∣∣sj ,pgj )− pij
)

+ βijpij = 0

is equivalent to (A.7). That concludes the statement.

Proof of Lemma 3.
The Lemma is a simple consequence of result 4 in Lemma A.4 and the expressions for all

the coeffi cients in the statement.

Proof of Corollary 1.
This follows straightforwardly from Lemma A.5.Substituting bji and c

j
ij in (17) and (18) we

obtain that

pij =
(2− zji) ei + (2− zij) ej

4− zijzji

Qji (si; pgi) = − 2− zji
zij + zji − zijzji

βij (ei − pij) .

This implies that prices do not depend on βij and that equilibrium quantities are linear in βij .

Proof of Proposition 4

Case 1: Circulant networks
In circulant networks, it is easy to see that beliefs must be symmetric in the equilibrium of
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the conditional guessing game in the sense of

z̄ij = z̄ji.

The proof develops in two steps.
Step 1 : First, we show that each z̄ij ∈ [0, 1] . To see this, consider any symmetric matrix

X with each of its elements non-negative. Suppose that there exists a xij = xji ≥ 1 (including
the case when i = j). It is easy to see that in X2 the diagonal element on the i-th row is

n∑
k=1

x2
ik ≥ 1.

As Z̄ is also symmetric and non-negative element by element, a simple induction argument
shows that there cannot be a z̄ij ≥ 1 element, because in this case in all matrices Z̄2, Z̄4, Z̄8...Z̄2k

there is at least one diagonal not smaller than 1. This would be in contradiction with the prop-
erty that Z̄n →

n→∞
0 shown in Lemma A.4.

Step 2 : Now, we search for equilibria such that beliefs are symmetric, that is

zij = zji

for any pair ij that has a link in network g.
The system (15) becomes

yi(
1−

∑
k∈gi

zik
2−zik
4−z2ik

) = ȳi

zij

2−zij
4−z2ij(

1−
∑
k∈gi

zik
2−zik
4−z2ik

) = z̄ij

for any i ∈ {1, 2, ..., n}. Working out the equation for zij , we obtain

zij
2 + zij

= z̄ij

1−
∑
k∈gi

zik
2 + zik


and summing up for all j ∈ gi

∑
j∈gi

zij
2 + zij

=
∑
j∈gi

z̄ij

1−
∑
k∈gi

zik
2 + zik

 .

Denote
Si ≡

∑
k∈gi

zik
2 + zik

.
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Substituting above and summing again for j ∈ gi

Si

1 +
∑
j∈gi

z̄ij

 =
∑
j∈gi

z̄ij

or

Si =

∑
j∈gi

z̄ij(
1 +

∑
j∈gi

z̄ij

) .
We can now obtain

zij =
2z̄ij (1− Si)

1− z̄ij (1− Si)
(A.10)

and
yi = ȳi (1− Si) .

Finally, the following logic show that zij ≤ 2. As z̄ij < 1, 2z̄ij <

(
1 +

∑
j∈gi

z̄ij

)
implying that

2z̄ij (1− Si) < 1 or 2z̄ij (1− Si) < 2 (1− z̄ij (1− Si)) , which gives the result by A.10.
Case 2: Star networks
Without loss of generality, we characterize a star network with dealer 1 at the centre. There

exist at least one equilibrium of the conditional guessing game such that for dealer 1

z̄1i = z̄C (A.11)

for any i. Similarly, for any dealer i in the periphery

z̄i1 = z̄P .

The system (15) becomes

yC

1− (n− 1) zC
2−zP

4−zCzP
= ȳC (A.12)

zC

2−zC
4−zCzP

1− (n− 1) zC
2−zP

4−zCzP
= z̄C (A.13)

for the central agent and

yP

1− zP 2−zC
4−zP zC

= ȳP (A.14)

zP

2−zP
4−zP zC

1− zP 2−zC
4−zP zC

= z̄P (A.15)

for agents in the periphery.
The proof develops in two steps.
Step 1 : We first solve for the coeffi cients (ȳC , z̄C) and (ȳP , z̄P ) and show that they are
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smaller than 1.
We start with dealer 1, who chooses her demand function conditional on the beliefs of the

other (n − 1) dealers. Given that she knows s1, she can invert the signals of all the other
dealers. Hence, her belief is given by

E(θ1|s1, eg1) = E(θ1|s) =
1− ρ

1 + σ2 − ρ

(
s1 +

ρσ2

(1− ρ) (1 + σ2 − ρ+ nρ)

n∑
i=1

si

)
.

where we denote σ2 ≡ σ2ε
σ2θ
. Given that

E(θ1|s1, eg1) = v11s1 +

n∑
j=2

v1jsj ,

this implies that

v11 =
1− ρ

1 + σ2 − ρ

(
1 +

ρσ2

(1− ρ) (1 + σ2 − ρ+ nρ)

)
(A.16)

v1j =
1− ρ

1 + σ2 − ρ
ρσ2

(1− ρ) (1 + σ2 − ρ+ nρ)
(A.17)

for all j 6= 1.
Further, the belief of a periphery dealer i is given by

E(θi|si, e1) =

(
1

Ṽ (θi, e1)

)T (
1 + σ2 Ṽ (si, e1)

Ṽ (si, e1) V (e1)

)−1(
si
e1

)
,

where Ṽ (·, ·) ≡ V(·,·)
σ2θ

is the scaled covariance operator and

Ṽ (e1) =
(1− ρ) (1 + (n− 1) ρ) + σ2

(
1 + (n− 1) ρ2

)
(1 + σ2 − ρ) (1 + σ2 + (n− 1) ρ)

Ṽ (si, e1) = ρ

Ṽ (θi, e1) = ρ
(1− ρ) (1 + (n− 1) ρ) + σ2 (2 + (n− 2) ρ)

(1 + σ2 − ρ) (1 + σ2 + (n− 1) ρ)
.

Since

E(θi|si, e1) =
Ṽ (e1)− Ṽ (θi, e1) ρ

Ṽ (e1) (1 + σ2)− ρ2
si +

Ṽ (θi, e1)
(
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
e1

= viisi + vi1si +

n∑
j=2
j 6=i

v1jsj

for any i 6= 1, it follows that
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vi1 =
Ṽ (θi, e1)

(
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
v11 (A.18)

vii =
Ṽ (e1)− Ṽ (θi, e1) ρ

Ṽ (e1) (1 + σ2)− ρ2
+
Ṽ (θi, e1)

(
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
v1j (A.19)

vij =
Ṽ (θi, e1)

(
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
v1j (A.20)

and

ȳP =
Ṽ (e1)− Ṽ (θi, e1) ρ

Ṽ (e1) (1 + σ2)− ρ2

z̄P =
Ṽ (θi, e1)

(
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2

Moreover, since

e1 = E(θ1|s1, eg1) = ȳCs1 +
n∑
j=2

z̄Cej = ȳCs1 +
n∑
j=2

z̄C (ȳP si + z̄P e1) ,

then

E(θ1|s1, eg1) =
ȳC

1− (n− 1) z̄C z̄P
s1 +

n∑
j=2

z̄C ȳP
1− (n− 1) z̄C z̄P

si.

This implies that
z̄C =

v1j

ȳP + (n− 1) z̄P v1j

and
ȳC =

v11ȳP
ȳP + (n− 1) z̄P v1j

.

Tedious, but straightforward calculations show that22

0 < z̄C < z̄P < 1.

Step 2 : We now solve the system (A.12-A.15). From equation (A.15) it is easy to see that

zP = 2z̄P (A.21)

Next, we show that

zC = z̄C (n+ 2z̄P − nz̄P − 1) + 1−
√

((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C .

22 In addition, since −σ4θ (ρ−1)2
σ2
θ
+σ2ε−ρσ2θ

< 0 ⇔ (V (θi, e1)− V (e1))
(
σ2θ + σ2ε

)
< 0, then

V(θi,e1)(σ2θ+σ
2
ε)−ρσ

4
θ

V(e1)(σ2θ+σ2ε)−ρ2σ
4
θ

< 1,

or z̄p < 1.
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Indeed, substituting the solution for zP in equation (A.13), we obtain

zC
2− zC

4− 2z̄P zC
= z̄C

(
1− (n− 1) zC

2− 2z̄P
4− 2z̄P zC

)
or

z2
C + zC (z̄C (2z̄P − 2) (n− 1)− 2z̄C z̄P − 2) + 4z̄C = 0.

This equation has two solutions

zC1 = z̄C (n+ 2z̄P − nz̄P − 1) + 1−
√

((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4C

zC2 = z̄C (n+ 2z̄P − nz̄P − 1) + 1 +

√
((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4C.

First note that the expression under the square root is always positive. This follows from the
fact that it is increasing in n. Since even for n = 3, (z̄C (2− z̄P ) + 1)2 − 4C = 0 does not have
a solution for z̄P in the unit interval, then the expression under the square root must be always
positive. Clearly as z̄C and z̄P are in the unit interval, then (n+ 2z̄P − nz̄P − 1) > 0 for any
n ≥ 2, and both zC1 and zC2 are positive. However, only the zC1 is smaller than 2. For this,
note that zC2 is larger than 2 iff

z̄C (n+ 2z̄P − nz̄P − 1)− 1 +

√
((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C > 0

or

0 > (1− z̄C (n+ 2z̄P − nz̄P − 1))2−
(

((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C

)
= −4 (1− z̄P ) (n− 2) z̄C

which always holds. In contrast, zC1 is always smaller than 2 as

z̄C (n+ 2z̄P − nz̄P − 1) + 1−
√

((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C < 2(
((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C

)
− (z̄C (n+ 2z̄P − nz̄P − 1)− 1)2 = 4z̄C (1− z̄P ) (n− 2) > 0.

Finally, given zC and zP , the solutions for (A.12) and (A.14) follow immediately.

Proof of Lemma 2

1. Suppose network g is connected. This implies that between any two agents i and j, there
exists a sequence of dealers {i1, i2, ..., ir} such that ii1 ∈ g, ikik+1 ∈ g, and irj ∈ g for any
k ∈ {1, 2, ..., r}. The sequence {i1, i2, ..., ir} forms a path between i and j. The length of
this path, r, represents the distance between i and j.

Let V ∗ be the fixed point, as introduced in the proof of Proposition 1. Then, the equi-
librium guess vector is given by

e = V ∗s.

Suppose that there exists an equilibrium

v∗ij = 0
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for some i and j at distance r from each other. Then from (A.5) if follows that

∑
k∈gi

ωik
v∗kj(

v∗k
)T

1
= 0,

and, since ωik > 0 for ∀i, k ∈ {1, 2, ..., n}, then it must be that

v∗kj = 0, ∀k ∈ gi.

This means that all the neighbors of agent i place 0 weight on j’s information. Further,
this implies ∑

l∈gk

ωil
v∗lj(

v∗l
)T

1
= 0,

and
v∗lj = 0, ∀l ∈ gk.

Hence, all the neighbors and the neighbors of the neighbors of agent i place 0 weight
on j’s information. We can iterate the argument for r steps, and show that it must be
that any agent at distance at most r from i places 0 weight on j’s information. Since the
distance between i and j is r, then

v∗jj = 0,

which is a contradiction, since (A.4) must hold and ρ < 1 (σ2
η > 0). This concludes the

first part of the proof.

2. See Case 2 in the proof of Proposition 1.

Proof of Proposition 5

1. From Proposition 2 we know that in any equilibrium of the OTC game

E(θi|si,pgi) = E(θi|si, egi).

Lemma 2 shows that each equilibrium expectation in the conditional guessing game is a
linear combination of all signals in the economy

E(θi|si, egi) = vis

where vi > 0 for all i. Since the equilibrium price in any trade between two dealers i and
j is a weighted sum of their respective beliefs, as in (17), and the weights are positive,
then the result follows immediately.

2. As ρ→ 1, we show that there exists an equilibrium such that

lim
ρ→1

E (θi|si,pgi) = v∗
n∑
i=1

si, ∀i ∈ {1, 2, ..., n}
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where v∗ =
σ2θ

nσ2θ+σ2ε
.

If there exists an equilibrium in the OTC game, then it follows from the proof of Propo-
sition 1 that

E(θi |si,pgi ) = ȳisi +
∑
k∈gi

z̄ikE(θk |sk,pgk ).

or
E(θi |si, egi ) = ȳisi +

∑
k∈gi

z̄ikE(θk |sk, egk ).

Taking the limit as ρ→ 1, and using Case 2 in the proof of Proposition 1, we have that

lim
ρ→1

E (θi|si,pgi) =
σ2
θ

nσ2
θ + σ2

ε

n∑
i=1

si.

Given that
lim
ρ→1

E (θi|si,pgi)

The conditional variance is

V (θi|si,pgi) = σ2
θ − V (E (θi|si,pgi))

and taking the limit ρ→ 1, we obtain

lim
ρ→1
V (θi|si,pgi) = σ2

θ −
(

σ2
θ

nσ2
θ + σ2

ε

)2

n
(
σ2
ε + nσ2

θ

)
.

and

lim
ρ→1
V (θi|s) = σ2

θ − V
(
E
(
θ̂|s
))

= σ2
θ −

(
σ2
θ

nσ2
θ + σ2

ε

)2

n
(
σ2
ε + nσ2

θ

)
= σ2

θ

σ2
ε

nσ2
θ + σ2

ε
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Proof of Proposition 6

Observe that V = (I = Z)−1 Y, for n-star network has the elements of

v11 = yC
1

1− (n− 1) zCzP

vi1 = yC
zP

1− (n− 1) zCzP

vii = yP
1− (n− 2) zCzP
1− (n− 1) zCzP

v1i = yP
zC

1− (n− 1) zCzP

vij = yP
zCzP

1− (n− 1) zCzP

where yC , yP are the weights on the private signal and zC , zP are the weights on the others’
guesses in the central and periphery agents’ guessing function respectively. As maximizing

E
(
−Σi (θ − ei)2

)
is equivalent with maximizing

2tr (V Σθs)− tr
(
V ΣV T

)
where Σii = 1 + σ2,Σij = ρ, [Σθs]ii = 1, [Σθs]ij = ρ, we calculate the expressions for the
components of this objective function.[

V ΣV T
]
11

=
(
1 + σ2

)
v2

11 +
(
1 + σ2

)
(n− 1) v2

1i + ρ2 (n− 1) v1iv11 + ρ (n− 1) (n− 2) v2
1i

=
((1+σ2)y2C+((1+σ2)+ρ(n−2))(n−1)y2P z

2
C+ρ2(n−1)yCyP zC)

(1−(n−1)zCzP )2

and[
V ΣV T

]
ii

=
(
(n− 2) (n− 3) v2

ij + (n− 2) 2 (vi,1 + vi,i) vij + 2vi,1vi,i
)
ρ+
(
σ2 + 1

) (
v2
ii + (n− 2) v2

ij + v2
i,1

)
=

=

(
yC+zCyP (n−2)

(
1− (n−1)

2
zCzP

))
2zP yP ρ+(σ2+1)((1−(n−2)zCzP )2y2P+(n−2)y2P z

2
P z

2
C+y2Cz

2
P )

(1−(n−1)zCzP )2

and
tr
(
V ΣV T

)
=
[
V ΣV T

]
11

+ (n− 1)
[
V ΣV T

]
ii
.

Also,

tr (V Σθs) = v11 + (n− 1) vii + ρ (n− 1) (v1i + vi1) + ρ (n− 1) (n− 2) vij =

=
yC + ρ (n− 1) yP zC
(1− (n− 1) zCzP )

+ (n− 1)
yP (1− (n− 2) zCzP (1− ρ)) + ρyCzP

(1− (n− 1) zCzP )

This implies that

lim
δ→0

∂U (zC + δ, zP + δ, yC − δ, yP − δ)
∂δ

= −f (z̄P , z̄C , ȳC , ȳP ;n, ρ, σ)

(−1 + (n− 1)zCzP ) 3
,
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where f (·) is a polynomial. Then we substitute in the analytical expressions for the decentral-
ized optimum z∗C , z

∗
P , y

∗
C , y

∗
P given in closed form in Proposition 4 and rewrite limδ→0

∂U(z∗C+δ,z∗P+δ,y∗C−δ,y∗P−δ)
∂δ

as a fraction. Both the numerator and the denominator are polynomials of σ2.of order 9.
A careful inspection reveals that each of the coeffi cients are positive for any ρ ∈ (0, 1) and
n ≥ 3.(Details on the resulting expressions in these calculations are available from the authors
on request.)

Proof of Proposition 7

1. From the proof of Proposition 4, we have that

zC = z̄C (n+ 2z̄P − nz̄P − 1) + 1−
√

((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C .

Then,
zC < 2z̄P = zP

iff

z̄C <
z̄P (1− z̄P )

z̄P (1− z̄P ) (n− 1) + z̄2
P + 1

,

which holds for any 0 < z̄C < z̄P < 1.

2. From the definition of the trading intensity and from (8) it follows that

tC
tP

=
2− zP
2− zC

,

which implies tC < tP .

3. Tedious, but straightforward calculations show that ∂z̄P
∂ρ ,

∂z̄P
∂σ2

> 0, and when n = 3,
∂z̄C
∂ρ ,

∂z̄C
∂σ2

> 0 (see the proof of Proposition 4 for closed-form solutions for z̄P and z̄C).
The statements follows given the definition of tC and tP , after further algebra showing
that ∂tC

∂zP
, ∂tC∂zC

, ∂tP∂zP
, ∂tP∂zC

< 0 and ∂zP
∂z̄P

> 0, ∂zP∂z̄P
= 0, ∂zC∂z̄C

> 0, ∂zC∂z̄P
> 0.

Proof of Proposition 8

Given (A.18)-(A.20), we find that

E
(

(eC − eP )2
)

= V (eC − eP )

=
(ρ− 1)2 ((n− 2) ρ2 + 2

)
σ4 + 2 (1− ρ) (ρ+ 1) ((n− 2) ρ+ 2)σ2 + 2 (ρ+ 1) (ρ− 1)2 (1− ρ+ nρ)

(1− ρ+ σ2)
(

(ρ2 (n− 2) + 1)σ4 + (1− ρ) (ρ+ 1) ((n− 2) ρ+ 2)σ2 + (ρ+ 1) (1− ρ)2 (1− ρ+ nρ)
) ,

where, as before σ2 ≡ σ2ε
σ2θ
.

The monotonicity in n follows from straightforward derivations.
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To show the monotonicity in σ2, we write

(
1− ρ+ σ2

)2( (
ρ2 (n− 2) + 1

)
σ4 + (1− ρ) (ρ+ 1) (ρ (n− 2) + 2)σ2

+ (ρ+ 1) (1− ρ)2 ((n− 1) ρ+ 1)

)2
∂V (eC − eP )

∂σ2

as a polynomial of σ2 and check that each coeffi cient in this polynomial is negative.
To show the monotonicity in ρ, we write

(
1− ρ+ σ2

)2( (
ρ2 (n− 2) + 1

)
σ4 + (1− ρ) (ρ+ 1) (ρ (n− 2) + 2)σ2

+ (ρ+ 1) (1− ρ)2 ((n− 1) ρ+ 1)

)2
∂V (eC − eP )

∂ρ

as a polynomial of σ2. Each coeffi cient is negative at n = 3 and decreasing in n.

Proof of Proposition 9

Dealers revise their messages according to the rule that

hi,t = ȳisi + z̄Tgihgi,t−1, ∀i.

or, in matrix form
ht+1 = Ȳ s + Z̄ht.

1. Since ht0 =
(
I − Z̄

)−1
Ȳ s, then

ht0+1 = Ȳ s + Z̄ht0

= Ȳ s + Z̄
(
I − Z̄

)−1
Ȳ s

= Ȳ s +
(
I −

(
I − Z̄

)) (
I − Z̄

)−1
Ȳ s

= Ȳ s +
(
I − Z̄

)−1
Ȳ s− Ȳ s

=
(
I − Z̄

)−1
Ȳ s

It follows straightforwardly, from an inductively argument that

ht =
(
I − Z̄

)−1
Ȳ s.

2. From
ht0+1 = Ȳ s + Z̄ht0

it follows that
ht0+n =

(
I + Z̄ + ...+ Z̄n−1

)
Ȳ s+Z̄nht0

In the limit as n→∞, from Proposition 1 we know that

lim
n→∞

ht0+n =
(
I − Z̄

)−1
Ȳ s.

This implies that for any vector γ ∈ Rn+, there exists an nγ such that∣∣∣ht0+n −
(
I − Z̄

)−1
Ȳ s
∣∣∣ < γ,∀n ≥ nγ .
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Fix an arbitrarily small vector γ. Then

−γ <
(
I − Z̄

)−1
Ȳ s− ht0+nγ < γ

and
−γ < ht0+n −

(
I − Z̄

)−1
Ȳ s < γ,∀n ≥ nγ .

Adding up these two inequalities we have that

−2γ < ht0+n − ht0+nγ < 2γ,∀n ≥ nγ .

This shows that there exists δ = 2γ and tδ = t0 + nγ such that

|ht − htδ | < δ,∀t ≥ tδ.

which implies that the protocol stops at tδ.

3. We start by observing that

E (θi|si,hgi,t0 ,hgi,t0+1, ...,hgi,t0+n) = E (θi|si,hgi,t0+n) ,∀n ≥ 0.

Further, in the limit n→∞, we have that

lim
n→∞

ht0+n =
(
I − Z̄

)−1
Ȳ s = e,

and subsequently
lim
n→∞

hgi,t0+n = egi ,∀i.

Then
lim
n→∞

E (θi|si,hgi,t0+n) = E (θi|si, egi) = E (θi|si,pgi) .

As above, we can construct tδ such that protocol stops and show that

|E (θi|si,hgi,t0+n)− E (θi|si,pgi)| <
1

2
δ.

B Appendix: Complete network

In the complete network, each dealer i chooses her demand function conditional on the beliefs
of the other (n− 1) dealers. Given that she knows si, she can invert the signals of all the other
dealers. Hence, her belief is given by

E(θi|si, egi) = E(θi|s) = σ2
θ

1− ρ
σ2
θ + σ2

ε − ρσ2
θ

(
si +

ρσ2
ε

(1− ρ)
(
σ2
θ + σ2

ε − ρσ2
θ + nρσ2

θ

) n∑
i=1

si

)
.

Then, following the same procedure as above (for a star), and taking into account that in
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a star trading strategies are symmetric, we obtain that

E(θi|si, egi) = ȳsi + z̄
n∑
j=1
j 6=i

ej

where
ej = E(θj |sj , egj )

and

ȳ =
σ2
θ (1− ρ) (1 + (n− 1) ρ)

σ2
θ + σ2

ε + ρ2σ2
θ − 2ρσ2

θ − 2ρσ2
ε − nρ2σ2

θ + nρσ2
θ + nρσ2

ε

z̄ =
ρσ2

ε

σ2
θ + σ2

ε + ρ2σ2
θ − 2ρσ2

θ − 2ρσ2
ε − nρ2σ2

θ + nρσ2
θ + nρσ2

ε

.

Solving the system (15), we obtain

yi =
σ2
θ (1− ρ) (1 + (n− 1) ρ)(

σ2
θ (1− ρ) (1 + (n− 1) ρ) + σ2

ε (1 + 2 (n− 3) ρ)
)

+ 3ρσ2
ε

, ∀i

zij =
2ρσ2

ε(
σ2
θ (1− ρ) (1 + (n− 1) ρ) + σ2

ε (1 + 2 (n− 3) ρ)
)

+ 2ρσ2
ε

, ∀ij.

Substituting in the expressions for bji , c
j
ij , and c

k
ij , respectively, in Proposition (3) we obtain

bji = −
βij
2

σ2
θ (1− ρ)

ρσ2
ε

(1 + (n− 1) ρ)
(
σ2
θ (1− ρ) (1 + (n− 1) ρ) + (1 + 2nρ− 4ρ)σ2

ε

)
σ2
θ (1− ρ) (1 + (n− 1) ρ) + (1 + 2nρ− 3ρ)σ2

ε

ciij = βij
1

2ρσ2
ε

(
σ2
θ (1− ρ) (1 + (n− 1) ρ) + σ2

ε (1 + 2 (n− 3) ρ)
)

ckij = −βij .
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