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Abstract

It has been frequently noted that successful language use depends on the inter-
locutors’ higher-order beliefs. David Lewis [21], for example, informally introduces
common knowledge as part of his account of language as a convention. We, instead,
formally model and study the effects of higher-order uncertainty about language. We
find that in common-interest communication games higher-order uncertainty about lan-
guage, while potentially resulting in suboptimal language use at any finite knowledge
order, by itself has negligible ex ante payoff consequences. In contrast, with imperfect
incentive alignment, higher-order uncertainty about language may lead to complete
communication failure for any finite-order knowledge of language.

∗We have benefitted from comments by James Fisher, Sidartha Gordon, Kohei Kawamura, Anton
Kolotilin, Shih En Lu, Ariel Rubinstein, Joel Sobel, Jonathan Weinstein and from seminar audiences at
Simon Fraser University, University of Arizona, Universität Bielefeld, University of British Columbia, Uni-
versity of Southern California and Tel Aviv University. We owe special thanks to Stephen Morris for having
urged us to examine the connection of our conception of uncertainty about language with David Lewis’s
work.



1 Introduction

Many prominent authors across a wide range of disciplines (philosophy of language, linguis-

tics, social psychology) have stressed the importance of common knowledge for successful

language use.1 Lewis [21], who is widely credited with having given the first (verbal) def-

inition of common knowledge (in 1969), placed it at center stage in his seminal account of

language as a convention.2 Grice [17] mentioned higher-order knowledge (“he knows (and

knows that I know that he knows)”) of “conventional meaning of the words,” “identity of

any references” and “other items of background knowledge” as among the prerequisites for

participants in a conversation to be able to work out conversational implicatures. Clark and

Marshall [10], [11], who adopted Schiffer’s [28] terminology of referring to common knowl-

edge as “mutual knowledge,” emphasized the necessity of “mutual knowledge” for definite

reference.

Clark and Marshall [10] noted that “To refer to a woman as she, the woman, or Nancy,

we usually have good evidence that our audience knows her too” and asked: “But exactly

what ‘shared’ knowledge is required?” In a series of examples they illustrated possible failures

of definite reference with increasingly large but finite knowledge orders, and formulated a

“mutual knowledge paradox,” that successful definite reference appears to require common

knowledge (“mutual kowledge” in their terminology) while the “infinite number of condi-

tions” required appear “absurdly complicated.” They suggested “copresence” as a possible

source of common knowledge (and resolution of the paradox) and mentioned both “cultural

copresence” and “linguistic copresence” as examples.

Karttunen and Peters [19] introduced the notion of “common ground” to describe the

background information that a rational speaker can be assumed to take for granted at any

given point in a conversation, and Stalnaker [29] equated common ground with “what is

treated as their common knowledge or mutual knowledge” by speakers in a conversation.

Clark and Brennan [9] examined how common ground is secured and accumulated in conver-

sations, a process that they refered to as grounding. In linguistics, Thompson and Kaufmann

[31] have proposed a game-theoretic model of conversational grounding that models errors in

production and comprehension of messages (similarly to Blume, Board and Kawamura [6])

and explored the formal connections between grounding, common knowledge and common

belief.

1Clark’s [8] recent book on applications of game theory to linguistics devotes an entire chapter to the role
of common knowledge and has additional references.

2Aumann [1] offered a formal definition of common knowledge and established equivalence of the iterative
definition of common knowledge and a definition in terms of self-evident events. Friedell [15], [16], treated
common knowledge formally in 1967 [15] and introduced a variety of examples, including the ideas that
public announcements and eye contact might be possible sources of common knowledge.
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Clark and Wilkes-Gibbs [12] experimentally studied the process by which participants in

a conversation establish “mutual belief” about speaker meaning using a referential communi-

cation task due to Krauss and Weinheimer [20] in which pairs of individuals converse about

arranging complex figures. Weber and Camerer [32] used a similar task to investigate ex-

perimentally how lack of a common language due to different organizational cultures affects

merger outcomes. Blume, DeJong, Kim and Sprinkle [5] studied the emergence of meaning

from a priori meaningless messages in a laboratory setting. Common to these experimen-

tal studies is that there are stages in the interaction among participants in which message

meanings fail to be common knowledge and there is only partial communication success.

In Blume and Board [7] we recently proposed a framework for studying communication

when meanings are imperfectly shared (and in that sense there is lack of “linguistic cop-

resence”).3 We focused on the consequences of first-order failure of knowledge of language

and observed that while some form of communication generally remains possible, in optimal

equilibria there will typically be indeterminacy of meaning, characterized by disagreement

between speaker and listener meaning of messages. Indeterminacy of meaning implies that

language use is suboptimal. Here we adapt this framework to understand higher-order un-

certainty about language.4

To get a sense of higher-order uncertainty about language and how we model it, consider

the following allegory, which we will flesh out in Example 3 later: A customer visits a

hardware store to purchase a saw. It has been a busy day and as a result there are only a

few saws left on display. There is, however, a wide selection of saws in the back of the store,

which are not on display but a sales clerk can bring to the front. The customer may not

know the names for some of the saws in the store. She may then try to describe a saw whose

name she does not know (say a “bow saw”) as best has she can, perhaps using the name

of a substitute (a “hacksaw”) or a category name (a “saw”). The sales clerk may not know

which names of saws the customer knows. If he hears the customer use the name of a saw,

he may not know whether the customer wants that saw or is just using the name as a best

approximation of the saw she truly desires. This is a case of the sales clerk facing first-order

uncertainty about the customer’s language. The customer may not know whether the sales

clerk knows that the customer knows the proper term for a particular saw. In that event the

customer does not know whether the sales clerk will take her use of a name for a saw at face

value or interpret it as a substitution. This is an instance of second-order uncertainty about

3Halpern and Kets [18] study multiagent modal logics that allow for different agents having different
semantics and ways to reason about this possibility. They find that relaxing the common prior assumption
is more permissive than relaxing the assumption that agents have common interpretations.

4Di Pei [25] investigates the consequences of higher-order uncertainty about the conflict of interest in
sender-receiver games.
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the customer’s language; third-order uncertainty about language is uncertainty about second-

order uncertainty about language and so on. Unless the opportunity cost of talking is zero,

it will be impractical for the customer to list all names she knows and thereby to remove

all (higher-order) uncertainty about her language. In that spirit, for simplicity, we allow

only one communication round. Our allegory makes reference to semantic meanings. In our

model we abstract from semantic meanings. Our model captures (higher-order) uncertainty

about language while keeping restrictions on strategic use of messages at a minimum. In

our example, the substitution of names – “hacksaw” for “bow saw” – is partially driven

by semantic meanings; in our model, there are no restrictions on substitution other than

message availability.

We find that in common-interest communication games higher-order uncertainty about

language, while potentially resulting in suboptimal language use at any finite knowledge or-

der, by itself has negligible ex ante payoff consequences. In contrast, with imperfect incentive

alignment, higher-order uncertainty about language may lead to complete communication

failure for any finite-order knowledge of language. Our findings suggest that Lewis was

right to have been concerned about failures of higher-order knowledge of language, but that

the adverse consequences of such failures are only fully realized outside of common-interest

environments.

2 Higher-order uncertainty about language

When there is uncertainty about language, messages may not be used optimally, conditional

on their availability, in optimal equilibria, as noted by Blume and Board [7]. Here we ask

whether in common-interest communication games we continue to see suboptimal language

use in optimal equilibria when agents face higher-order uncertainty about language, whether

such interim suboptimality translates into ex ante payoff losses from higher-order uncertainty

about language, and, whether outside of common-interest environments there are circum-

stances where higher-order uncertainty about language leads to complete communication

failure.

We study communication games between two players, a sender, who has payoff-relevant

private information and a receiver who has no payoff-relevant private information himself,

but cares about the sender’s information. At the communication stage the sender sends a

message to the receiver. At the action stage, both players simultaneously take an action.

We allow for the possibility that the sender’s action set is empty, in which case, following

the literature, we refer to the game as a sender-receiver game.

In all the games that we consider there is higher-order uncertainty about the sender’s
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language type, the subset λ of the finite message space M that is available to her. To represent

players’ higher-order uncertainty about the sender’s language type, we use an information

structure I = 〈Ω,L,OS,OR, q〉.

• Ω = {ω1, ω2, . . .} is a countable state space;

• L : Ω → 2M specifies the set of messages available to the sender at each state (her

language type);

• OS is a partition of Ω, the sender’s information partition;

• OR is the receiver’s information partition;

• q is the (common) prior on Ω.

To streamline the notation, let L(ω) = λω and let q(ω) = qω. The information partitions

describe the knowledge of the players: at state ω, the sender knows that the true state is

in OS(ω) but no more (where OS(ω) is the element of OS containing ω); and similarly for

the receiver. We assume that the sender knows her own language type: if ω′ ∈ OS(ω), then

λω = λω′ . Define L(Ω) := {λ ∈ 2M |∃ω ∈ Ω with λ = λω}.
Information structures encode uncertainty only about the sender’s language type, not

about the payoff-relevant information t (the sender’s payoff type). We assume that the

distribution from which t is drawn is independent of q. Given that the sender is fully

informed about t, and the receiver knows nothing about t, it would be straightforward to

extend the partitions and common prior over the full space of uncertainty, T ×Ω, but to do

so would unnecessarily complicate the notation.

We will say that there is 1st-order knowledge of language in our setting whenever both

of the players know the sender’s language type, and that there is nth-order knowledge of

language whenever both of the players know that there is (n − 1)th-order knowledge of

language. Finally, we will say that there is a failure of nth-order knowledge of language

whenever players do not have nth-order knowledge of the sender’s language type.

3 Sender-Receiver Games

We begin by examining sender-receiver games; i.e., only the receiver takes an action after the

communication stage. In the common-interest sender-receiver games we consider, a privately

informed sender, S, communicates with a receiver, R, by sending a message m ∈ M , where

#(M) ≥ 2 and M is finite. The common payoff U(a, t) depends on the receiver’s action,

a ∈ A = R, and the sender’s payoff-relevant information t ∈ T = [0, 1], her payoff type.
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The sender’s payoff type t is drawn from a differentiable distribution F on T with a density

f that is everywhere positive on T. The function U is assumed to be twice continuously

differentiable and, using subscripts to denote partial derivatives, the remaining assumptions

are that for each realization of t there exists an action a∗t such that U1(a∗t , t) = 0; and,

U11(a, t) < 0 < U12(a, t) for all a and t. In addition, we assume that the set of messages

λ ⊆M that are available to the sender (i.e. her language type) and what players know and

believe about the sender’s language type are determined by an information structure I, as

described above. In this section we also assume that the language state space Ω is finite.

The assumptions on payoffs and payoff-type distribution are those of Crawford and Sobel

[13] specialized to the common-interest case; we will refer to this as the common-interest CS

model.

For some of our examples we will be interested in a special class of sender-receiver games

where both players have identical quadratic loss functions −(a − t)2 as payoffs and the

sender’s payoff type, t, is uniformly distributed on the interval [0, 1]; this is the common-

interest variant of the leading uniform-quadratic example of Crawford and Sobel [13], which

we will refer to as the uniform-quadratic CS model.

In the resulting game a sender strategy is a function σ : T × Ω → ∆(M) that satisfies

σ(t, ω) ∈ λω for all t ∈ T and all ω ∈ Ω and is measurable with respect to OS. A receiver

strategy is a function ρ : M × Ω → R that is measurable with respect to OR. Thus for any

strategy pair (σ, ρ), ρ(m,ω) denotes the receiver’s response to the message m at state ω and

σ(t, ω) the distribution over messages if the sender’s payoff type is t at state ω.

At any state ω a sender strategy σ induces a mapping σω : T → ∆(λω), where σω(t) =

σ(t, ω) for all t ∈ T and all ω ∈ Ω. We will refer to this mapping as the sender’s language at

ω. Similarly, we can define the receiver’s language at state ω, ρω : M → R, via the property

that ρω(m) = ρ(m,ω). A language σ̂ω of the sender is optimal at ω if together with a best

response ρ̂ω to σ̂ω by the receiver it maximizes the sender’s payoff at ω over all language pairs

that are feasible at ω. A language ρ̂ω of the receiver is optimal at ω if it is a best response

to an optimal language σ̂ω of the sender at ω. Thus, an optimal language pair (σ̂ω, ρ̂ω) at ω

maximizes joint payoffs subject only to the constraint that sender messages have to belong

to λω. Given a strategy pair (σ, ρ), we say that there is suboptimal language use at state ω

if either σω or ρω is not optimal at ω.

The following simple example illustrates the suboptimal language use that may arise with

higher-order uncertainty about language.

Example 1 Consider a sender-receiver game in which both players have identical quadratic-

loss payoff functions −(a − t)2 and the sender’s payoff type, t, is uniformly distributed on

the interval [0, 1]. Suppose that Ω = {ω1, ω2, ω3, ω4, ω5} and that the information partitions
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are given by

Sender : OS = {{ω1}, {ω2, ω3}, {ω4, ω5}}
Receiver : OR = {{ω1, ω2}, {ω3, ω4}, {ω5}}.

In addition, assume that at ω1 the sender’s language type is λω1 = {m1}, (i.e. the sender has

only message m1 available), and that at every other state ω ∈ Ω the sender’s language type

is λω = {m1,m2}, (i.e. the sender has both messages m1 and m2 available). The common

prior, q, is uniform on Ω.

Notice that {ω2, ω3, ω4, ω5} is the set of states at which the sender has all messages avail-

able; {ω3, ω4, ω5} is the set of states at which the receiver knows that the sender has all

messages available; {ω4, ω5} is the set of states at which the sender knows that the receiver

knows that the sender has all messages available; and {ω5} is the set of states in which the

receiver knows that the sender knows that the receiver knows that the sender has all messages

available.

At language states in {ω3, ω4, ω5} there is first-order knowledge of language; at states in

{ω4, ω5} there is second-order knowledge of language; and, at state ω5 there is third-order

knowledge of language. At no state is there higher than third-order knowledge of language

and in particular there is never common knowledge of language.

We look for an equilibrium (σ, ρ) in which at element {ωi, ωi+1}, with i ∈ {2, 4}, of the

sender’s information partition there is a critical type θi such that payoff types t < θi send

message m1 and payoff types t > θi send message m2. Let aj1 denote the receiver’s equilibrium

response at ωj (j ∈ {1, 3, 5}) to message m1, and let aj1 denote the response to message m2.

In equilibrium θi, i = 2, 4, and ajk, k = 1, 2, j = 1, 3, 5 must satisfy the conditions:

a1
1 =

1
2

+ θ2
θ2
2

1 + θ2

; a1
2 =

1 + θ2

2
; a3

1 =
θ2

θ2
2

+ θ4
θ4
2

θ2 + θ4

;

a3
2 =

(1− θ2)1+θ2
2

+ (1− θ4)1+θ4
2

(1− θ2) + (1− θ4)
; a5

1 =
θ4

2
; a5

2 =
1 + θ4

2
;

(θ2 − a1
1)2 + (θ2 − a3

1)2 = (θ2 − a1
2)2 + (θ2 − a3

2)2; and,

(θ4 − a3
1)2 + (θ4 − a5

1)2 = (θ4 − a3
2)2 + (θ4 − a5

2)2.

This system of equations has a unique solution satisfying the constraints that 0 < θ2 <

1 and 0 < θ4 < 1: θ2 = 0.54896, θ4 = 0.509768, a1
1 = 0.420074, a1

2 = 0.77448, a3
1 =

0.265045, a3
2 = 0.764274, a5

1 = 0.254884 and a5
2 = 0.754884. Thus, at every state where

the sender has a choice of which message to send, each message induces a non-degenerate
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lottery over receiver actions. Hence, not only is the receiver uncertain about the sender’s use

of messages, but the sender is also uncertain about the receiver’s interpretation of messages.

There is no state in which either sender-meaning or receiver-meaning is known by both play-

ers. Since having such knowledge would improve payoffs, there is indeterminacy of meaning,

as defined by Blume and Board [7], and hence suboptimal language use.

Importantly, even though at state ω5 there is third-order knowledge of language, players

are not making optimal use of the available messages, which would require that θ4 = 1
2
. Notice

also that at ω3, where the receiver has only first-order knowledge of the fact that the sender

has both messages, there is a larger distortion in the sender’s strategy, i.e. θ2 − 1
2
> θ4 − 1

2
,

and therefore players appear to make better use of the available messages with a higher order

of knowledge of message availability.

Example 1 suggests that there can be the persistence of suboptimal language use with

increasing order of knowledge of the sender’s language. We turn next to showing that for a

class of equilibria that satisfy a sensible condition on focal message use – no order reversal

of meanings – this observation generalizes to arbitrary information structures.

An equilibrium is interval partitional if at any information state ω the set of payoff types

T can be partitioned into intervals such that types belonging to the same interval send a

common message and types belonging to distinct intervals send distinct messages. Given an

equilibrium with sender strategy σ, let Θ(mi, ωk) := {t ∈ T | σ(t, ωk)(mi) > 0} denote the

set of all payoff types who send message mi with strictly positive probability at state ωk. For

any two distinct sets T1 ⊂ T and T2 ⊂ T that have positive probability we say that T1 > T2

if inf T1 ≥ supT2.

Definition 1 An equilibrium is order preserving if it is interval-partitional and Θ(m′, ωk)

> Θ(m,ωk) at some state ωk implies that Θ(m′, ωk′) > Θ(m,ωk′) at all states ωk′ at which

m′ and m are used with positive probability.

Since our intent is to identify a characteristic of informative order-preserving equilibria,

it is useful to know that they always exist. The following result establishes existence of in-

formative order-preserving equilibria for the uniform-quadratic CS model with two messages

and for arbitrary information structures. For the next result, assume that M = {m1,m2}
and that there is at least one information state ω with λω = {m1,m2}.

Lemma 1 In the uniform-quadratic CS game with two messages and an arbitrary informa-

tion structure an informative order-preserving equilibrium exists.
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Lemma 1 establishes not only that communication is possible in this environment, but

that it can take a form where messages have some common meaning across information

states, in the sense that the sender and the receiver commonly agree on which message

means “low” and which means “high.” The proof of this and other results can be found in

the appendix.

Having established the existence of informative order-preserving equilibria for general

information structures, we now show that, regardless of the information structure, in infor-

mative order-preserving equilibria suboptimal language use is pervasive.

Observation 1 Suppose that at any state ω either λω = {m1} or λω = {m1,m2}. Then

for any information structure and for any state ω∗ with λω∗ = {m1,m2} unless the language

type is common knowledge at ω∗, in any informative order-preserving equilibrium of the

uniform-quadratic CS game, the sender does not use an optimal language at ω∗.

The following example explores the role of the restriction to order-preserving equilibria

in Observation 1.

Example 2 Consider the information structure with partitions

Sender: OS = {{ω1, ω2}, {ω3}, {ω4, ω5}}
Receiver: OR = {{ω1}, {ω2, ω3, ω4}, {ω5}}

Assume that all states are equally likely and that the set of available messages is {m1} at

ω3 and {m1,m2} otherwise. One easily checks that the following strategy pair, (σ, ρ), is an

equilibrium: At {ω1, ω2} the sender sends m1 for t ∈
[
0, 1

2

)
and m2 otherwise. At {ω4, ω5}

the sender sends m2 for t ∈
[
0, 1

2

)
and m1 otherwise; the receiver uses his unique best reply

to the specified sender strategy. Then at both {ω1} and {ω5} the receiver knows that the

sender is using an optimal language, despite the fact that the set of available messages is not

common knowledge.

It is worth noting that there is a better equilibrium, and that in this equilibrium the sender

never uses an optimal language when she has two messages available. To see this, modify the

above strategy profile so that at {ω4, ω5} the sender sends m1 for t ∈
[
0, 1

2

)
and m2 otherwise

and the receiver uses a best reply at {ω5}. The resulting strategy profile, (σ̃, ρ̃) has a strictly

higher ex ante payoff than (σ, ρ). Therefore, an optimal strategy profile for this game also

must have a higher payoff than (σ, ρ) and since this is a common-interest game any optimal

equilibrium must have a higher payoff than (σ, ρ).

In this example the original order-reversing equilibrium was not optimal. This will not

always be so, since there are cases where order-reversal is necessary for optimality, as with
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the information structure

Sender: OS = {{ω1}, {ω2, ω3}, {ω4, ω5}, {ω6}}
Receiver: OR = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}}

where λω1 = λω6 = {m1,m2}, λω2 = {m2,m3}, λω4 = {m1,m3} and all language states are

equally likely. Note that optimality is achieved if at ω1 the sender sends m1 for t ∈
[
0, 1

2

)
and

m2 otherwise; at ω2 the sender sends m3 for t ∈
[
0, 1

2

)
and m2 otherwise; at ω4 the sender

sends m3 for t ∈
[
0, 1

2

)
and m1 otherwise; and, at ω6 the sender sends m2 for t ∈

[
0, 1

2

)
and

m1 otherwise. Furthermore, in any optimal equilibrium at ω1 the sender sends either m1 for

t ∈
[
0, 1

2

)
and m2 for t ∈

(
1
2
, 1
]

or m2 for t ∈
[
0, 1

2

)
and m1 for t ∈

(
1
2
, 1
]
, and in either case

the role of m1 and m2 is reversed at ω6.

In an order-preserving equilibrium “high” and “low” may mean different things at dif-

ferent information states and in addition their meaning at a given information state may be

uncertain; but it is never the case that the meanings of “high” and “low” at one language

state are flipped at another. In that sense order-preserving equilibria have an appeal as

being focal. Example 2 shows that there is no close connection between ex ante optimal-

ity of equilibria and those equilibria being order-preserving. In the first part of Example 2

optimality requires that equilibria be order preserving, and in the second part of the same

example, optimality requires that equilibria be order reversing. In the first case, higher-

order uncertainty of language on its own results in suboptimal language use. In the second

case, suboptimal language use may arise as a combination of higher-order uncertainty about

language and equilibria being selected on the basis of being focal.

Observation 1 provides sufficient conditions for higher-order uncertainty about language

to result in pervasive suboptimal language use. At the same time, Example 1 hints at the

possibility that suboptimal language use may diminish with higher knowledge order. Our

next example shows that increasing knowledge order may not result in improved language

use, even in ex ante optimal equilibria. In Example 3 in any optimal equilibrium language

use remains bounded away from optimality for any finite knowledge order.

In the example, whenever the receiver does not know the sender’s language type his

behavior is strongly influenced by his prior over payoff types. Given the implied restriction

on the receiver’s behavior and the assumption that higher-order knowledge states are far less

likely than lower-order knowledge states, ex ante optimality pins down the sender’s strategy

when he has all possible messages available but is uncertain about whether the receiver knows

this fact. This uniquely determines the receiver’s response to messages when he knows the

sender’s language type but lacks higher-order knowledge. From there, behavior at higher-
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order knowledge states is uniquely determined by induction, at each step using the fact that

higher-order knowledge states are far less likely than lower-order knowledge states.

Example 3 Consider a finite sender-receiver game with common payoffs given by the fol-

lowing table. The sender has three equally likely payoff types, t1, t2 and t3, and the receiver

has four actions a1, . . . , a4. Each cell in the payoff table indicates the common payoff from

the corresponding type-action pair (ti, aj). After privately observing her payoff type ti the

sender sends a message mk from her set of available messages to the receiver who then takes

an action aj in response to the sender’s message.

t1

t2

t3

a1 a2 a3 a4

7 9 0 10

7 9 10 0

7 0 6 0

If the sender’s set of available messages is comprised of m1 and m2, then in any optimal

equilibrium payoff types t2 and t3 send a common message, and the ex ante payoff from any

optimal equilibrium is 26
3
.

Assume now that there is higher-order uncertainty about language. The sender’s lan-

guage type is either {m1} or {m1,m2}, that is, either the sender has only message m1

available or the sender has both messages m1 and m2 available. The language state space

Ω = {ω1, ω2, ω3, . . .} is assumed to be countably infinite. The common prior on the language

state space Ω is the geometric distribution that assigns probability p(1− p)n−1 to state ωn for

some p ∈ (0, 1). Let λω1 = {m1} and λωn = {m1,m2} ∀n 6= 1; i.e., at every language state

ωn except ω1 both messages are available. The sender’s information partition is given by:

OS = {{ω1}, {ω2, ω3}, {ω4, ω5}, . . .}

The receiver’s information partition is given by:

OR = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}, . . .}

Then for sufficiently large p

10



1. (m1,OR(ω1)) 7→ a1 in every equilibrium.

This is because for large p the receiver’s posterior at ω1 following message m1 is ap-

proximately the same as the prior, regardless of how the sender uses messages at ω2.

Since the receiver’s best response to the prior, a1, is unique it remains a best response

against beliefs sufficiently close to the prior.

2. (t3,OS(ω2)) 7→ m1 in every (ex ante) optimal equilibrium.

This is a consequence of the fact that for large p the payoff at ω2 is an order of magni-

tude more important for the ex ante expected payoff than payoffs at any ωn with n > 2.

From (1) above, at ω2 the message m1 induces action a1 with probability one. We need

to determine how to use message m2 optimally at language state ω2. Since payoff type

t3 already gets her maximal payoff, we can focus on maximizing payoffs for the remain-

ing payoff types. Since they have only one message available, the best alternative is for

both of them to pool on message m2. Then only m1 induces a1 and payoff type t3 will

send it.

3. (t1,OS(ω2)) 7→ m2 in every optimal equilibrium.

The argument is the same as for (2) above.

4. (t2,OS(ω2)) 7→ m2 in every optimal equilibrium.

The argument is the same as for (2) above.

5. (m1,OR(ωn)) 7→ a1 ∀n in every optimal equilibrium.

From (1) – (4) we know what the sender’s strategy prescribes at {ω2, ω3}. Since at

{ω3, ω4}, the language state ω3 is an order of magnitude more likely than ω4, the

receiver’s beliefs at that information set are almost entirely determined by what the

sender’s strategy prescribes at ω3. Against those beliefs, it is uniquely optimal to respond

to message m1 with action a1 and to respond to message m2 with action a2.

From hereon, we can proceed by induction: For any odd n > 2, if the receiver’s strategy

at {ωn, ωn+1} prescribes to respond to m1 with a1 and to m2 with a2, and it is uniquely

optimal for the sender at {ωn+1, ωn+2} to send message m1 if her payoff type is t3 and

m2 if her payoff type is either t1 or t2, using the fact that for large p the language state

ωn+1 is an order of magnitude more likely than language state ωn+2.

Similarly, for any even n > 2, if the sender’s strategy at {ωn, ωn+1} prescribes to send

message m1 if her payoff type is t3 and m2 if her payoff type is either t1 or t2, then
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it is uniquely optimal for the receiver at {ωn+1, ωn+2} to respond to m1 with a1 and to

m2 with a2.

In addition to (5), this establishes that the unique optimal equilibrium satisfies proper-

ties (6) – (9) below.

6. (m2,OR(ωn)) 7→ a2 ∀n in every optimal equilibrium.

7. (t1,OS(ωn)) 7→ m2 ∀n > 1 in every optimal equilibrium.

8. (t2,OS(ωn)) 7→ m2 ∀n > 1 in every optimal equilibrium.

9. (t3,OS(ωn)) 7→ m1 ∀n > 1 in every optimal equilibrium.

Hence, we can conclude that for large enough p ∈ (0, 1) there is a unique (ex ante) optimal

equilibrium. In this unique optimal equilibrium behavior at all higher-order knowledge states

is the same; regardless of the knowledge order, behavior is bounded away from optimal equi-

librium behavior if the language type were common knowledge; and, language-interim payoffs

(where language types are known but payoff types are not) are bounded away from optimal

common-knowledge payoffs, regardless of knowledge order — at sufficiently high knowledge

orders, the language-interim payoff is 25
3

, while the optimal common-knowledge-of-language

payoff would be 26
3
.

Before moving on to results that address entire classes of information structures (viz.

Propositions 1 and 2), it is instructive to use Example 3 to suggest how a particular infor-

mation structure with higher-order uncertainty about language might arise. To this end we

return to and flesh out the allegory from the introduction: A customer visits a hardware

store to purchase a saw. Only a small selection of saws is on display, but there are more

saws in the back of the store that the sales clerk can bring to the front. The customer can

be one of three payoff types, all of which are equally likely: Type t1 wants a bow saw, t2

wants a hacksaw, and t3 wants general information about saws. Type t3 gets some utility

from being shown a hack saw, but gets annoyed by the time it takes the clerk to find and

show her a bow saw, for which she has no use. Types t1 and t2 prefer to be shown both a

hacksaw and a bow saw to being shown a large selection of saws, but mind the time it takes

the clerk to bring saws they are not looking for. Note that this is consistent with the payoff

structure in Example 3.

The customer knows the expression “I am looking for a saw” (corresponding to m1

in Example 3) and may or may not know the expression “I am looking for a bow saw”

(corresponding to m2 in Example 3). In Example 3 it is commonly known that she does
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not know any other expressions. This is a consequence of avoiding any reference to semantic

meaning in our formal model. If we did allow for a role of semantic meanings but sensibly

imposed limits on how far strategic meaning can depart from semantic meaning we could

have the customer know other expressions, as long as they are clearly not appropriate for

the situation at hand, as “I would like a bottle of bourbon.”

In case the customer knows the expression “I am looking for a bow saw” the clerk may

know this fact, perhaps from remembering an earlier encounter with the customer during

which the customer mentioned bow saws, or not know this fact if he forgot the earlier

encounter; this is an instance of first-order uncertainty about the customer’s language.

In case the clerk remembers the encounter, the customer may be uncertain about whether

the clerk knows that she knows the expression “I am looking for a bow saw”, because she may

or may not remember the prior encounter with the clerk; this is an instance of second-order

uncertainty about the customer’s language.

In case both the customer and the clerk remember the encounter, the clerk may be

uncertain about whether the customer knows that he knows that the customer knows the

expression “I am looking for a bow saw,” if he does not observe a socially expected acknowl-

edgement of the prior encounter; this is an instance of third-order uncertainty about the

customer’s language.

By telling more elaborate stories along these lines we can generate uncertainty of any

order about the customer’s language. The structure of these stories for the example at

hand essentially implements the logic of Rubinstein’s [27] electronic mail exchange: If the

customer knows the expression “I am looking for a bow saw” the electronic mail system

automatically sends a message to the clerk; whenever a message is received a message is

returned automatically; messages arrive with positive probability less than one, and the

message exchange stops the first time no message is received.

The key impact of higher-order uncertainty in Example 3 is that even though, conditional

on both expressions “I am looking for a saw” and “I am looking for a bow saw” being available

to the customer, in an ex ante optimal equilibrium the message “I am looking for a bow saw”

is used both by a customer looking for a bow saw and one looking for a hacksaw, even though

it would be preferable to reserve the message “I am looking for a bow saw” for the payoff

type who is interested in a bow saw.5

5A sensible question to ask at this point is why repeated talk would not eliminate the problem of (higher-
order) uncertainty about language. What would prevent the customer from simply disclosing her language
type and then using her available messages optimally? In Example 3 an additional communication round
in which the sender can send m2 when available and m1 otherwise would make it possible for the sender’s
language type to become common knowledge before any payoff relevant information is communicated.

This is true but an artifact of keeping the example simple: (1) We assumed that m1 is always available.
If instead either message were sometimes unavailable, a single additional communication round would not
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We have given various examples in which higher-order uncertainty about language in

sender-receiver games results in suboptimal language use. As a bit of an antidote to this

negative observation about the impact of higher-order uncertainty about language on efficient

language use, and foreshadowing our results on more general common-interest communica-

tion games, we conclude with a simple observation concerning higher-order uncertainty about

language in general common-interest CS games.

Proposition 1 In any common-interest CS game with a finite message space M and an

information structure such that at some language state ω̃ the receiver knows that message

m1 is available (m1 ∈ λω for all ω ∈ OR(ω̃)), and message m2 is available (m2 ∈ λω̃), there

is a strict ex ante benefit from communication in any optimal equilibrium.

Proof: Let

a(t, t) :=

{
arg maxa∈A

∫ t
t
U(a, t)f(t)dt for t < t

a∗
t

for t = t

Then U12 > 0 implies that a(0, 1) < a
(

1
2
, 1
)
< a(1, 1) = a∗1 and that there exists a type

t̃ ∈ (0, 1) who is indifferent between the actions a(0, 1) and a
(

1
2
, 1
)
. All types t ∈ (t̃, 1]

strictly prefer action a
(

1
2
, 1
)

to action a(0, 1).

Consider the strategy pair (σ, ρ) that is defined by

σ(t, ω) =

{
m2 if m1,m2 ∈ λω and t ∈ (t̃, 1]

m1 otherwise

and

ρ(m,ω) =

{
a
(

1
2
, 1
)

if m = m2 and ω ∈ OR(ω̃), and

a(0, 1) otherwise

At every language-payoff state pair (ω, t) where either ω /∈ OR(ω̃), t ∈ [0, t̃] or m2 /∈ λω the

ex post payoff from (σ, ρ) is the same as in a pooling equilibrium. At all of the remaining

suffice to make the sender’s language type common knowledge. (2) In the example, the sender’s payoff
and language type spaces are small. With a larger language type space more rounds of communication
would be required to make the sender’s language type common knowledge and with a larger payoff type
space more detailed information about the sender’s language type than could be given with a few additional
communication rounds might be valuable. Then, unless sending messages is completely costless and time is
no consideration, the sender will face a tradeoff between conveying information about language and directly
payoff-relevant information. (3) We have not invoked any restrictions that would come from messages
having prior semantic meanings that might rule out using a restricted set of available expressions for giving
comprehensive information about that set. Finally, it is worth mentioning that one attraction of our setup is
that it shows how seemingly idle talk that has no immediate payoff consequences can be useful in establishing
a common language.
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language-payoff state pairs the sender’s payoff type belongs to (t̃, 1], the receiver takes action

a
(

1
2
, 1
)
, and therefore the ex post payoff exceeds that from a pooling equilibrium. Since the

latter set of language-payoff state pairs has strictly positive probability, it follows that the

ex ante payoff from the strategy pair (σ, ρ) strictly exceeds that from a pooling equilibrium.

Since we have a common-interest game, an ex ante optimal strategy profile is an equilibrium

profile. Existence of such a profile follows from a straightforward compactness argument (we

will establish existence under more general conditions in the next subsection). Evidently,

the payoff from this profile cannot be less than that from (σ, ρ). �

In summary, despite the fact that in common-interest uniform-quadratic CS games we

can give sufficient conditions for higher-order uncertainty about language to imply subop-

timal language use (Observation1) and that in other related games it can be the case that

interim expected payoffs for any finite order of knowledge of language are bounded away

from interim expected payoffs with common knowledge of language (Example 3), under a

very mild condition – that with positive probability there are two messages, one of which

the receiver knows is available and one which simply is available – there is a strict ex ante

benefit from communication in optimal equilibria of common-interest CS games. Thus, in

general, regardless of higher-order uncertainty about language, communication has a role in

common-interest CS games.

4 Common-interest communication games

We ended the last section on a positive note, showing that under fairly general conditions

higher-order uncertainty about language does not prevent communicative gains in sender-

receiver games. Here we continue this theme while considering a more general class of

communication games in which both sender and receiver act following the communication

stage.

We continue to consider common-interest communication games where a privately in-

formed sender, S, communicates with a receiver, R, by sending a message m ∈ M , where

#(M) ≥ 2 and M is finite. Now, however, following the sender’s message both sender and re-

ceiver simultaneously choose actions aS ∈ AS and aR ∈ AR. The common payoff U(aS, aR, t)

depends on the sender’s action aS ∈ AS, the receiver’s action aR ∈ AR, and the sender’s

payoff-relevant private information t ∈ T , her payoff type. We assume that AS and AR are

compact and convex subsets of finite dimensional Euclidean spaces, that T is a compact

subset of a finite-dimensional Euclidean space, and that the payoff function U is concave

(and therefore continuous) in its first two arguments for all t ∈ T. The sender’s payoff type
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t is drawn from a commonly known distribution F on T.

We continue to assume that the set of messages λ ⊆ M that are available to the sender

(i.e. her language type) and players’ higher-order knowledge and belief about the sender’s

language type are determined by an information structure I with a finite language-state

space Ω.

Examples 1 and 3 illustrate how higher-order failures of knowledge of language can result

in suboptimal language use. It is worth keeping in mind, however, that in both cases the

losses at higher-order knowledge states are compensated by corresponding gains at lower-

order knowledge states; if we tried to force optimal language use conditional on available

messages at higher-order knowledge states, any resulting strategy would be less well equipped

to make the best use of available message at lower-order knowledge states. In this sense,

there is no ex ante payoff loss from higher-order uncertainty about language.

A version of this observation holds under very general conditions. As the following result

shows, in optimal equilibria of common-interest communication games, where both sender

and receiver act at the action stage, from an ex ante payoff perspective only failures of first-

order knowledge matter. Regardless of the information structure, as long as the receiver

knows the sender’s language type with high probability, suboptimal language use as a result

of higher-order uncertainty about language can occur but must be either insignificant or

improbable.

For each information structure I = 〈Ω,L,OS,OR, q〉 define

Ω̂ := {ω ∈ Ω|λω = arg max
λ∈L(ΩN )

Prob(λ|OR(ω))}.

This is the set of states at which the receiver’s best guess of the sender’s language type

conditional on her information is correct. In the sequel we will refer to Ω̂ as the correct-best-

guess set (for the information structure I). We say that a sequence of information structures

{In}∞n=1 satisfies vanishing first-order uncertainty if the corresponding sequence {Ω̂n}∞n=1 of

correct-best-guess sets satisfies limn→∞ Prob(Ω̂n) = 1.

Let U(I) denote the (ex ante) payoff from an optimal equilibrium in the game G(I) with

information structure I, whose existence is assured by the following observation.

Lemma 2 Regardless of the information structure I, any common-interest communication

game G(I) has an optimal equilibrium.

Let U∗(I) denote the payoff from an optimal equilibrium of the game with an information

structure that is obtained from I by replacing the knowledge partitions of both players by

the finest partition, so that the language type is common knowledge at every state (existence

of such an equilibrium follows once more from Lemma 2). Then:
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Proposition 2 For any common-interest communication game, for any sequence of infor-

mation structures {In}∞n=1, that satisfies vanishing first-order uncertainty:

lim
n→∞

|U(In)− U∗(In)| = 0.

Proof: For every λ ∈ Λ and every In, use Ωλ(In) to denote the set of states at which the

sender’s language type is λ according to In. For all λ ∈ Λ and at every state in Ωλ(In) let the

sender use a strategy σλ that would be part of an optimal profile (σλ, ρλ) if it were common

knowledge that her language type is λ; existence of (σλ, ρλ) follows from Lemma 2. At every

state ω ∈ Ωn let the receiver use a strategy ρλ(ω) with

λ(ω) ∈ arg max
λ

Prob(λ|OR(ω)),

where ρλ(ω) is part of an optimal profile (σλ(ω), ρλ(ω)) given the language type λ(ω). This

strategy profile is chosen so that at every state ω the sender uses available messages λ(ω)

in a way that makes it possible for the receiver to use a response that is jointly optimal

conditional on the available messages. Our assumption on the correct-best-guess set ensures

that most of the time this joint optimality is achieved, regardless of other details of the

information structure. Only at the states in Ωn \ Ω̂n are the sender’s and receiver’s strategies

mismatched, in the sense of failing to be part of an optimal profile (σλ(ω), ρλ(ω)) given the

language type λ(ω), and by assumption the probability of those events converges to zero.

Hence there is some sequence of strategy profiles {(σn, ρn)}∞N=1 corresponding to the sequence

of games {Gn}∞=1 that are induced by the sequence of information structures {In}∞n=1 for

which

lim
n→∞

|U(σn, ρn)− U∗(In)| = 0.

For each G(In) the payoff from an optimal strategy profile (σ∗n, ρ
∗
n) is no less than the payoff

from the profile (σn, ρn), where existence follows from Lemma 2. Since we are considering

common-interest games, each optimal profile (σ∗n, ρ
∗
n) is an equilibrium profile for G(In). The

claim follows. �

It is useful to return to Example 3 to gain intuition for Proposition 2 and illustrate the

role of correct-best-guess sets in understanding the irrelevance of higher-order uncertainty

for ex ante payoffs in common-interest games.6 Note that the correct-best-guess set in the

6In the example the state space Ω is infinite, while it is assumed to be finite for Proposition 2. Finiteness
helps establish existence in the proof of the opposition. In the example, we construct the equilibria of interest
explicitly. So existence is not an issue.
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game of Example 3 is Ω \ {ω2}, for all p ∈ (0, 1). Now consider information structures that

only differ in the value of p. This leaves two ways of having the probability of the correct-

best-guess set converge to one. Either p converges to zero, or it converges to one. The

case where p converges to zero we already discussed: the ex ante optimal equilibrium payoff

converges to the pooling equilibrium payoff in the game where it is common knowledge that

only one message is available. In this case higher-order uncertainty about language is ex

ante irrelevant because the states where language types are known but there is higher-order

uncertainty are of low probability; higher-order uncertainty about language is irrelevant

because it is improbable.

For the other case, where p converges to one, first note that regardless of the value of

p ∈ (0, 1) there is always an equilibrium in which all payoff types of the sender use message

m1 at ω1 and where at all other ωn payoff type t1 sends message m2 and both payoff types t2

and t3 send message m1; the receiver always responds to m2 with action a4 and to m1 with

action a1 at {ω1, ω2} and with a3 otherwise. In this equilibrium there is optimal language use

at every state in Ω, except at ω2. This suboptimality at ω2 becomes ex ante irrelevant as p

converges to one since the probability of ω2 converges to zero; here higher-order uncertainty

about language is irrelevant not because it is improbable but because there is no departure

from ex post optimal language use at all states where the receiver knows the sender’s language

type and thus suffers only from higher-order uncertainty about language.

We conclude that even though there are circumstances under which failure of higher-

order knowledge of language of any finite order leads to suboptimal language use in optimal

equilibria of common-interest communication games, unless there are significant failures of

low-order knowledge, the ex ante payoff consequences are negligible.7 This observation is

reinforced by our next result, which shows that increasing the order of knowledge about

language never hurts in common-interest communication games.

To formalize this idea, we introduce a relation on the set of information structures

that we call language-knowledge dominance. Intuitively, an information structure language-

knowledge dominates another if it is obtained from the former by expanding an information

set O−`(ω0) of one of the players, −`, by including additional states that together form a

7This optimistic conclusion for common-interest communication games may appear to stand in contrast
with Weinstein and Yildiz’s [33] finding that by making small changes to higher order beliefs any rational-
izable outcome of a game can be made the unique rationalizable outcome. In our setting this would include
pooling outcomes in which the receiver ignores the message and which are bounded away from efficient
message use. The principal difference is that we focus exclusively on perturbations of the game that concern
beliefs about the sender’s language type. In addition, we adopt an ex ante perspective whereas Weinstein and
Yildiz are interested in the interim stage; the later difference manifests itself in our Example 3 where the ex
ante loss from higher-order uncertainty about language is negligible while the interim payoff from knowing
that all potential messages are available remains bounded away from the payoff when this availability is
common knowledge.
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new information set for the other player, `, in such a way that the added states do not

reduce message availability. This way, at the added states player ` is as well informed about

player −`’s knowledge at the expansion of O−`(ω0) as at O−`(ω0) before, and all the strategic

options that player −` had at O−`(ω0) remain intact at the expansion of that set.

Definition 2 An information structure I ′ = 〈Ω′,L′,O′S,O′R, q′〉 language-knowledge

dominates the information structure I = 〈Ω,L,OS,OR, q〉 if and only if there is a player

` ∈ {S,R} and a state ω0 ∈ Ω such that

1. Ω′ ) Ω;

2. Φ := Ω′ \ Ω;

3. O′`(ω) = Φ, ∀ω ∈ Φ;

4. O′−`(ω) = Φ ∪ O−`(ω0), ∀ω ∈ Φ;

5. O′`(ω) = O`(ω), ∀ω ∈ Ω;

6. O′−`(ω) = O−`(ω), ∀ω ∈ Ω′ \ O′−`(ω0);

7. λ′ω̃ ⊇ λω, ∀ω̃ ∈ Φ and ω ∈ O−`(ω0);

8. λ′ω ⊇ λω, ∀ω ∈ Ω;

9. q′ω = qω ∀ω ∈ Ω′ \ O′−`(ω0); and,

10. q′ω > 0, ∀ω ∈ Ω′.

As before, let U(I) denote the ex ante maximal payoff for the game with information

structure I. Then we have the following result.

Proposition 3 If information structure I ′ language-knowledge dominates information struc-

ture I, then U(I ′) ≥ U(I).

Proof: Let (τ`, τ−`) be a strategy profile that attains U(I) in the game with information

structure I and consider the strategy profile (τ ′`, τ
′
−`) in the game with information structure

I ′ that is defined by τ ′−`(O′−`(ω)) = τ−`(O−`(ω)) for all ω ∈ Ω (note that this specifies τ ′−`
also for ω ∈ Φ), τ ′`(O′`(ω)) = τ`(O`(ω)) for all ω ∈ Ω, and τ ′`(O′`(ω)) is a best reply to

τ ′−`(O′−`(ω0)) for all ω ∈ Φ. Then ex post payoffs at all language states in Ω′ \ O′−`(ω0)

are the same for both information structures. Furthermore the prior probabilities of these
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language states did not change. Hence, any change in the ex ante payoff of player −` will be a

consequence of a difference in the payoff conditional onO−`(ω0) in the game with information

structure I and the payoff conditional on O′−`(ω0) in the game with information structure

I ′. The latter payoff however cannot be lower since we have moved probability to states at

which the other player, `, is both better informed and no more language constrained. �

5 Communication collapse with higher-order uncertainty

about language

Our analysis thus far has shown that in common-interest communication games higher-

order uncertainty about the sender’s language may lead to pervasive suboptimal language

use, but that at the same time from an ex ante perspective the consequences of higher-

order uncertainty about language by themselves appear rather benign. In contrast, in this

section we will show that with imperfectly aligned incentives higher-order uncertainty about

language can entail complete communication collapse regardless of finite-order knowledge

in situations where communication could be put to good use with common knowledge of

language.

The following example constructs such a scenario by building on insights of Rubinstein

[27], Baliga and Morris [3], and Aumann [2].

Example 4 Two players play a two-stage game with one-sided private information repre-

sented by two equally likely payoff states t1 and t2 (so the payoff type space for the sender is

T = {t1, t2}). In the communication stage the privately-informed sender sends a message to

the receiver. In the action stage both players simultaneously take actions which determine

payoffs according to the tables in Figure 1.

It is easily verified that if it is common knowledge that the sender has two messages, mα

and mβ, available, then there is an equilibrium in which the sender sends message mα in

payoff state t1, message mβ in payoff state t2, and each player i takes action αi if and only

if message mα has been sent.

Suppose instead that it is not common knowledge which messages are available to the

sender. Consider an information structure with a (countably infinite) state space Ω =

{ω1, ω2, . . .} and some common prior q with the property that qk > qk+1 for all k = 1, 2 . . ..

The players’ information partitions are given by

Sender : OS = {{ω1}, {ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8} . . .}
Receiver : OR = {{ω1, ω2, ω3}, {ω4, ω5}, {ω6, ω7}, {ω8, ω9}, . . .}.
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αS

βS

αR βR

3, 3 −10, 2

2,−10 1, 1

t1

αS

βS

αR βR

−10,−10 −10,−9

−9,−10 1, 1

t2

Figure 1: Payoff States

Finally, assume that λω1 = {mα}, λω2 = {mβ}, and λωk
= {mα,mβ} for all k = 3, 4, . . .

(i.e. the sender has only mα available at ω1, she has only mβ available at ω2, and she has

both messages available at every other state).

Then it follows from Proposition 4 below that in any equilibrium of the game only actions

βS and βR are taken, regardless of the payoff state and the information state. In particular

for any finite order of knowledge of the fact that both messages are available to the sender,

they remain ineffective in equilibrium.

The following is a sketch of the argument for the game under consideration:

1. At ω1, regardless of the sender’s strategy, the receiver believes it is more likely that

the sender’s message is uninformative than informative, and hence the relatively safe

action βR is uniquely optimal for the receiver.

2. At ω3 and ω4, the sender considers ω3 more likely than ω4, and therefore she believes

that the receiver takes action βR with at least probability one half; it follows that action

βS is uniquely optimal for the sender.

3. If at ω4 the sender had a message that would induce the receiver to take action αR with

positive probability, she would send such a message in payoff state t1 despite (as we

showed) taking action βS herself. This is a consequence of a violation of Aumann’s [2]

self-signaling condition8 at state t1: at state t1 the sender wants to persuade the

receiver to take action αR regardless of her own intended action.

8The terminology is due to Farrell and Rabin [14]. A pre-play message is self-signaling provided the
speaker wants it to be believed if and only if it is true. This is one possible condition for a message to be
credible. Another is that it be self-committing: the speaker has an incentive to fulfill it if it is believed. In
the (complete-information) game with payoff matrix corresponding to state t1 a sender message “I will take
action αS” is self-committing because the action pair (αS , αR) forms an equilibrium. The message is not
self-signaling because the sender would also want it to be believed if he intends to take actions βS .
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4. At ω4 and ω5, the receiver considers ω4 more likely than ω5; thus (3) implies that,

regardless of the message, he believes that the sender uses action βS with probability

greater than one half.

5. Given (4), it is uniquely optimal for the receiver to take action βR at ω4 and at ω5.

6. Steps (2)-(5) can be turned into an induction argument that shows that for all ωk the

sender uses action βS regardless of the payoff state and the receiver uses action βR

regardless of the message.

It is instructive to compare Example 4, in which interests are imperfectly aligned, with

the earlier Example 3, which dealt with common-interest games. For Example 3 we showed

that as p converges to one and in the process the probability of the correct-best-guess set

converges to one, higher-order-uncertainty about language becomes ex ante irrelevant in

the sense that there is a sequence of equilibria with payoffs that converge to the optimal

equilibrium payoff with common knowledge about language. Analogously, in Example 4 we

can consider a sequence of information structures that only differ in the prior, q, such that

q1, the prior probability of state ω1, converges to zero. For each information structure in this

sequence, the correct-best-guess set is Ω \ {ω2, ω3}. Given the condition that qk > qk+1, any

sequence of information structures in which q1 converges to zero has the property that the

probability of the correct-best-guess set converges to one. Here, however, unlike in Example

3 equilibrium payoffs remain bounded away from maximal equilibrium payoffs with common

knowledge of language, illustrating the different impacts of higher-order uncertainty about

language in common-interest games and games in with only imperfect incentive alignment.

Rubinstein [27] shows how lack of higher-order knowledge can translate into coordination

failures. Baliga and Morris [3] demonstrate how a violation of the self-signaling condition can

render communication ineffective in games with one-sided private information and Morris

[24] shows that this effect persists with higher-order knowledge failures of the form used in

Rubinstein’s electronic mail game.9

Our example differs from Baliga and Morris in that with our payoff structure private

information about payoffs by itself would not lead to communication failure; it has to be

accompanied by private information about language (because we have failure of the self-

signaling condition in only one state). It differs from the electronic mail game because

9In the electronic mail game (higher-order) uncertainty is about the sender’s payoff type and generated
by imperfect non-strategic communication. The exchange of messages is automatic, a device to set up the
information structure. In contrast, in our example the (higher-order) uncertainty is about language and
communication is strategic. Imperfect strategic communication in the electronic mail game has been studied
by Binmore and Samuelson [4] and Morris [23]; in their settings (higher-order) uncertainty about language
is not an issue.
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adopting the payoff structure from the electronic mail game and leaving our example other-

wise unchanged would not prevent communication: since in the electronic mail game there

are multiple equilibria conditional on each payoff state players could simply use the messages

mα and mβ as coordination devices at low-knowledge states and switch to using them to

signal information about payoff states at higher-knowledge states.

Consider also the payoff structure in Figure 2, taken from Steiner and Stewart [30].

Unlike Figure 1, this payoff structure does not violate the self-signaling condition. As a

result, even though messages are useless at low knowledge states, they can become useful

at higher-knowledge states. For the information structure in Example 4, there exists an

equilibrium in which the sender uses the following strategy:

{({ω1}, t1) 7→ (mα, βS)

({ω1}, t2) 7→ (mα, βS)

({ω2}, t1) 7→ (mβ, βS)

({ω2}, t2) 7→ (mβ, βS)

({ω3, ω4}, t1) 7→ (mβ, βS)

({ω3, ω4}, t2) 7→ (mβ, βS)

({ωk, ωk+1}, t1) 7→ (mα, αS),

({ωk, ωk+1}, t2) 7→ (mβ, βS)} for all k ≥ 5.

The receiver responds to both messages at {ω1, ω2, ω3} with βR and otherwise follows the rule

mα 7→ αR and mβ 7→ βR. As a result, messages are used effectively for all information states

ωk with k ≥ 5. As in our example, the sender takes action βS at {ω3, ω4} regardless of the

payoff state, but unlike in our example here the sender has no incentive at those information

states to take advantage of the receiver’s sensitivity to messages at {ω4, ω5}.
The results in this section generalize Example 4 in two directions. We first fix the in-

formation structure and provide a sufficient condition on the payoff structure that ensures

communication failure in a class of games with arbitrary finite action spaces, payoff-type

spaces and message spaces. Then, fixing the payoff structure from Figure 1, we identify a

necessary condition on the information structure for the existence of communicative equilib-

ria (that satisfy a mild regularity condition – requiring that there is a clear designation of

which of the two messages is sometimes used to bring about efficient coordination in state

t1).
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αS

βS

αR βR

1− p,1− p −p, 0

0,−p 0, 0

t1

αS

βS

αR βR

−p,−p −p, 0

0,−p 0, 0

t2

Figure 2: Payoff States (p ∈ (1/2, 1))

The following result identifies characteristics of communication games with one-sided

private information that lead to communication breakdown for any finite order of knowledge

of language (it also verifies the details of Example 4). For this purpose we consider a class of

games with two players, a sender (S) and a receiver (R). The sender privately observes her

payoff type t from a finite set T and sends a message m from a finite set M to the receiver.

Each t ∈ T has strictly positive prior probability π(t). The sender’s message has to satisfy

the constraint that m ∈ λ where λ ⊂ M is her privately known language type. Each player

i = S,R has a finite set of actions Ai. Following the communication stage, both players

simultaneously take actions aS ∈ AS and aR ∈ AR. Given these actions and the sender’s

payoff type, each player i receives a payoff Ui(aS, aR, t). As before, the players’ knowledge

about the sender’s language is represented by an information structure I = 〈Ω, λ,OS,OR, q〉.
Call any game of this form a communication game.

We are interested in a subclass of such games in which (i) the receiver has a preferred

“safe” action that is uniquely optimal if there is sufficient uncertainty about either the

sender’s action or her payoff type; (ii) the sender has a unique “safe” best reply for sufficiently

strong beliefs that the receiver will use his safe action, and (iii) it is difficult for the sender

credibly to communicate an intent to take an action other than her safe best reply.

An action a0
R for the receiver is “safe” if is uniquely optimal regardless of the sender’s

(rational) rule for mapping payoff types into actions for any belief that does not assign more

than probability 2π(t)
1+π(t)

to any type t, i.e.

∑
t∈T

UR(αS(t), a0
R, t)µ(t) >

∑
t∈T

UR(αS(t), aR, t)µ(t)

for all aR 6= a0
R, for all αs : T → AS that are best responses to some (mixed) receiver action
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and for all µ ∈ ∆(T ) with µ(t) < 2π(t)
1+π(t)

∀t. We say that the game satisfies the safe-action

condition if the receiver has a safe action.

For a game that satisfies the safe-action condition, we call a sender action a0
S “safe” if

independent of the payoff type, it is a unique best reply against beliefs that assign at least

probability one half to the receiver taking action a0
R, i.e.

US(a0
S, pa

0
R + (1− p)αR, t) > US(aS, pa

0
R + (1− p)αR, t)

∀αR ∈ ∆(AR),∀aS 6= a0
S,∀p ≥ 1/2,∀t ∈ T. We say that the game satisfies the sender

safe-response condition if the sender has a safe action.

A game that satisfies the sender-safe response condition satisfies the receiver safe-

response condition if at every payoff state t, provided the sender uses her safe response

a0
S with at least probability one half, the receiver’s safe action a0

R is a unique best reply, i.e.

UR(pa0
S + (1− p)αS, a0

R, t) > UR(pa0
S + (1− p)αS, aR, t)

∀αS ∈ ∆(AS),∀aR 6= a0
R,∀p ≥ 1/2,∀t ∈ T.

A game that satisfies the sender- and receiver-best response conditions satisfies the no-

self-signaling condition if in every state t in which a0
S is not dominant for the sender,

conditional on taking action a0
S herself, the sender prefers that the receiver take any action

other than a0
R, i.e. for all t such that there exist aS 6= a0

S and aR with US(aS, aR, t) ≥
US(a0

S, aR, t) it is the case that

US(a0
S, a

0
R, t) < US(a0

S, aR, t) ∀aR 6= a0
R.

Proposition 4 In any communication game that satisfies the safe-action, sender-safe-response,

receiver-safe-response and no-self-signaling conditions, with information partitions

OS = {{ω1}, . . . , {ων}, {ων+1, ων+2}, {ων+3, ων+4}, {ων+5, ων+6}, . . . . . . .}
OR = {{ω1, . . . , ων , ων+1}, {ων+2, ων+3}, {ων+4, ων+5}, {ων+6, ων+7}, . . .},

where ν = #(M), λωi
= {mi} for i = 1, . . . , ν, λωi

= M for i > ν and qi ≥ qi+1, only the

safe actions a0
S and a0

R are taken in equilibrium.

Proposition 4 identifies a sufficient condition on the payoff structure that ensures com-

munication failure for a fixed information structure. We now reverse our perspective by

considering general information structures, while fixing the payoff structure. Our goal is

to identify a condition on the information structure that is necessary for communication at
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some information state, given the payoff structure in Figure 1. The key will be that there is

at least one message for which it is common p-belief for sufficiently high p that the receiver

p-believes that this messages is available to the sender. Only then is it possible to use the

other message without fear that it may be “contaminated” by the possibility that it is sent

out of necessity rather than deliberately.

As a warmup and to introduce the definition of common p-belief due to Monderer and

Samet [22], we start by verifying that for the information structure employed in Example 4,

common p-belief that the receiver p-believes message m is available fails at every information

state for both m = mα and m = mβ, for p ≥ 2/3. Without loss of generality, consider message

mβ. Use E(m) to denote the event that message m is available to the sender and for any

event F denote by Bp
i (F ) the event that player i believes F with at least probability p. Fix

p = 2/3. Observe that E(mβ) = {ω2, ω3, . . .} and Bp
R(E(mβ)) = {ω4, ω5, . . .}. Recall that

for an event F to be common p-belief at ω, ω must belong to a p-evident event E at which

both players p-believe F . Formally, an event E is p-evident if E ⊆ Bp
i (E), i = 1, 2, and an

event F is common p-belief at state ω if there exists a p-evident event E with ω ∈ E and

E ⊆ Bp
i (F ), i = 1, 2.

Note that for any event F , Bp
R(Bp

R(F )) = Bp
R(F ). The condition E ⊆ Bp

R(E(mβ)), implies

that a candidate for the p-evident event E must satisfy E ⊆ {ω4, ω5, . . .}. Also, if ω2k ∈ E for

k > 1, then ω2k−1 ∈ E; otherwise ω2k /∈ Bp
S(E), which would violate E ⊆ Bp

S(E). Similarly,

if ω2k+1 ∈ E for k > 1, then ω2k ∈ E; otherwise ω2k+1 /∈ Bp
R(E), which would violate

E ⊆ Bp
R(E). Taken together, these two observations imply that we must have ω3 ∈ E, which

results in a contradiction. Hence, in the example there is no state ω at which the event

Bp
R(E(mβ)) is common p-belief for p = 2/3.

For the Steiner-Stewart payoff structure (Figure 2) we constructed an equilibrium in

which at some information states the sender uses message mα to signal credibly that he

will take action αS. In that equilibrium mα is the only message that ever indicates that the

sender will take action αS and in that sense message meaning is consistent across information

states. We call such equilibria semantically uniform:

Definition 3 In a semantically uniform equilibrium, if there is a state ω at which

(m,αS) has positive probability, then (m′, αS) has probability zero for m′ 6= m at all ω′ ∈ Ω.

Our next result establishes necessary conditions for the existence of semantically uniform

equilibria for the payoff structure in Example 4 in which there is effective communication

with positive probability.
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Proposition 5 For the payoff structure in Figure 1, existence of a semantically uniform

equilibrium in which there is a state ω at which the action pair (αS, αR) has positive prob-

ability requires that for p ≥ 10/11 there is a message m ∈ {mα,mβ} for which the event

Bp
R(E(m)) is common p-belief at ω.

Note that the message m in this result should be thought of as the message that induces βR

in equilibrium. Intuitively, R responds to message m̃ 6= m with αR only if he is sufficiently

certain that the alternative message m was available and therefore m̃ was not sent out of

necessity.

6 Discussion

We have shown that failures of higher-order uncertainty about language may result in subop-

timal language use in optimal equilibria of common-interest games, validating the concerns

of Lewis [21] and others. Spelling out these failures in fully specified games shows, however,

that there is an important distinction between common-interest communication games and

more general classes of communication games. In common-interest communication games

the ex ante payoff loss from lack of higher-order uncertainty about language is negligible,

while in richer settings higher-order uncertainty about language may result in complete com-

munication collapse.
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A Proofs

Proof of Lemma 1

Proof: Let σ1 be an arbitrary informative order-preserving strategy of the sender. Assume

without loss of generality that at every ω where m2 is available and sent, Θ(m2, ωk) >

Θ(m1, ωk). Let ΩS
1 , . . . ,Ω

S
L be an enumeration of the elements of OS, and ΩR

1 , . . . ,Ω
R
M an

enumeration of the elements of OR. Since σ1(t, ω) is constant across ΩS
` for each t ∈ T , for

` = 1, . . . , L, we can write Θ(m,ΩS
` ) and denote the sup Θ(m1,Ω

S
` ) = inf Θ(m2,Ω

S
` ) by θ`.

For all ω ∈ ΩR
j , let qj` denote the receiver’s posterior belief that ω ∈ ΩR

` . Then the receiver’s

best reply to message m1 is

a1
j =

∑L
`=1 qj`θ`

θ`
2∑L

`=1 qj`θ`

and his best reply to message m2 is

a2
j =

∑L
`=1 qj`(1− θ`)

1+θ`
2∑L

`=1 qj`(1− θ`)

as long as the denominators are well defined.

Notice that for all `, θ`
2
≤ 1

2
and 1+θ`

2
≥ 1

2
, and since σ1 is informative, there is at least

one `′ for which
θ′`
2
< 1

2
and

1+θ′`
2

> 1
2
. Therefore at every ΩR

j at which the receiver expects

to receive both messages with positive probability any best reply by the receiver satisfies

a1
j < a2

j . For every other ΩR
j′ one of the actions is equal to 1

2
and we are free to choose the

other action so that the a′1j < a′2j holds.

Hence there exists be a best reply ρ1 of the receiver to σ1 that satisfies the property that

a1
j < a2

j all j = 1, . . . ,M. Call any receiver strategy with this property order preserving.

Note that the payoff from (σ1, ρ1) exceeds the payoff from pooling.

At any element ΩS
` of her information partition the sender has a posterior belief φ`j that

the receiver’s information is given by ΩR
j . Therefore, for a sender with payoff type t and

information ΩS
` , the payoff difference between sending message m2 and m1 is given by

−
J∑
j=1

(a2
j − t)2φ`j +

J∑
j=1

(a1
j − t)2φ`j

= E[a2|m1]− E[a2|m2] + 2t(E[a|m2]− E[a|m1]),

Since the receiver strategy ρ1 is order-preserving, it follows that E[a|m2] > E[a|m1] and
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therefore the sender’s best reply σ2 to ρ1 is order-preserving.

Continuing in this manner we can construct a sequence of order-preserving strategy pairs

{(σn, ρn)}. Note that the common ex ante payoffs along this sequence are increasing and

since payoffs are bounded converge to a limit payoff, U . Note that each strategy pair (σn, ρn)

can be viewed as an element of a compact Euclidean space. Therefore the sequence {(σn, ρn)}
has a convergent subsequence. Reindex, so that now {(σn, ρn)} stands for that subsequence.

Denote the limit of that subsequence by (σ, ρ). Suppose that (σ, ρ) is not an equilibrium.

Then one of the players has a best reply that raises the payoff above U . Continuity of payoffs

then implies that for large enough n payoffs from (σn, ρn) have to be above U, which leads

to a contradiction. Since the payoff from (σ1, ρ1) exceeds the payoff from pooling and since

payoffs are nondecreasing along the sequence {(σn, ρn)}, the payoff from (σ, ρ) exceeds the

payoff from pooling. Hence the equilibrium (σ, ρ) is informative. �

Proof of Observation 1

Proof: Given that attention is restricted to order-preserving equilibria, it is without loss of

generality to focus on equilibria in which for every sender with information ΩS
` there exists

θ` ∈ [0, 1] such that every payoff type t < θ` sends message m1 and every payoff type t > θ`

sends message m2.

Since Ω is finite, we can define θ := min{θ`|θ` > 0}. Note that the set {θ`|θ` > 0} is

nonempty because there is at least one state at which it is not common knowledge that

message m2 is available (hence there must be a state at which only m1 is available).10

At every information state ωi at which message m1 is sent with positive probability all

payoff types t < θ (and possibly others) send message m1 with probability one. Hence, for

every receiver type ΩR
j who expects to receive both messages with positive probability the

response a1
j to receiving message m1 satisfies a1

j ≥ a1 = θ
2
. Since m1 is always available,

for every receiver type ΩS
j who expects to receive both messages with positive probability

a message m2 indicates that the sender’s payoff type is in a set of the form (θj, 1] with

θj ≥ θ. Hence, for every receiver type ΩR
j who expects to receive both messages with positive

probability a2
j satisfies a2

j ≥ a2 = 1+θ
2
.

For every information type ΩS
` of the sender who sends message m1 with positive proba-

bility, θ` > 0. Thus, θ either equals one, or is realized at an information state of the sender

where she sends both messages with positive probability. Assume that ΩS
` is such an infor-

10The reason for restricting attention to this set is that for example there may be an isolated information
state at which both messages are available and only message m2 is used with positive probability.
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mation state, i.e. the sender of type (θ,ΩS
` ) is indifferent between the lottery over actions

induced by message m1, with payoff −
∑J

j=1(a1
j−θ)2φ`j, and the lottery over actions induced

by m2, with payoff −
∑J

j=1(a2
j − θ)2φ`j. Note that for any j with φ`j > 0 it is the case that

a2
j > a1

j and a2
j > θ. Consider two cases: If a1

j ≥ θ, then −(a1
j − θ)2 > −(a2

j − θ)2. If a1
j < θ

and θ < 1
2

, then −(a1
j − θ)2 ≥ −( θ

2
− θ)2 > −(1+θ

2
− θ)2 ≥ −(a2

j − θ)2. Therefore, if we had

θ < 1
2
, type θ would strictly prefer to send message m2, which contradicts our assumption

that type (θ,ΩS
` ) is indifferent. Therefore, we conclude that θ ≥ 1

2
.

Suppose there is an information state ωi with θi = 1
2

(i.e. the sender is using an optimal

language at ωi) where it is not common knowledge that λωi
= {m1,m2}. Then from above

θi = θ = 1
2
. Observe that in order for θi = θ = 1

2
the receiver’s response a1

j′ at ΩR(ωi) to m1

must be θ
2

and the response a2
j′ to m2 must be 1+θ

2
. Otherwise, since for all j, a1

j ∈ [ θ
2
, 1

2
] and

a2
j ∈ [1+θ

2
, 1] we would have −(a1

j − θ)2 ≥ −( θ
2
− θ)2 = −(1+θ

2
− θ)2 ≥ −(a2

j − θ)2 for all j and

at least one of the two inequalities strict for j′ and therefore sender type (ΩS(ωi), θ) would

strictly prefer to send message m1.

Call an information state ωj adjacent to ωi if there exists ωl ∈ ΩR(ωi) such that ωj ∈
ΩS(ωl.) At every state ωj that is adjacent to ωi, it must be the case that θj = 1

2
. Otherwise

the receiver with type ΩR(ωi) will take actions a1
j′ >

θ
2

and a1
j′ >

1+θ
2

, which would be

inconsistent with θi = θ = 1
2
. If it is not common knowledge at ωi that λωi

= {m1,m2}, then

there exists a chain of states (ω1, . . . , ωi) with the property that any two consecutive elements

in the chain are adjacent, λωl
= {m1,m2} for all l 6= 1 and λω1 = {m1}. By induction, at

every information state in the chain we must have payoff types t > 1
2

sending message m1

and payoff types t < 1
2

sending message 2. But this contradicts λω1 = {m1}. �

Proof of Lemma 2

Proof: Given that we have a common-interest game, an optimal strategy profile will be an

equilibrium profile, and hence trivially an optimal equilibrium profile. With this in mind,

it suffices to show that an optimal strategy profile (σ∗, ρ∗) exists. We will decompose this

problem into first showing that there is an optimal sender-strategy, σ(ρ), for every ρ and

then showing that the problem of maximizing over ρ has a solution. Given concavity, the

receiver cannot gain from randomization. Therefore it suffices to restrict attention to pure

receiver strategies ρ. Given receiver strategy ρ, if there exists a sender strategy σ(ρ) that

solves

max
aS∈AS ,m∈λω

E{U(aS, ρ(m,OR(ω)), t)|OS(ω)} (1)
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for every (t,OS(ω), i.e. is interim optimal, then this strategy is an ex ante optimal sender

response to ρ. The problem in (1) has a solution since for each m ∈ λω,

E{U(aS, ρ(m,OR(ω)), t)|OS(ω)}

is a continuous function of aS on a compact set, and the set λω is finite. Denote the

set of OR-measurable functions in AM×Ω
R by AM×Ω

R (OR). The set AM×Ω
R (OR) is the set

of receiver strategies. Since AR is compact, so is AM×Ω
R (OR). The problem of finding a

strategy combination that maximizes the common ex ante payoff of sender and receiver now

reduces to solving

max
ρ∈AM×Ω

R (OR)
Q(ρ) =

∑
ω∈Ω

qω

∫
T

max
aS∈AS ,m∈λω

E{U(aS, ρ(m,OR(ω)), t)|OS(ω)}dF.

Since U and the max operator are continuous functions, the integrand in the expression

defining the function Q is continuous and therefore by the Lebesgue dominated convergence

theorem, Q is continuous. Therefore, Q achieves a maximum on the compact set AM×Ω
R (OR).

�

Proof of Proposition 4

Proof: Given an equilibrium strategy pair (σ, ρ), and somewhat economizing on notation,

use P(t|m) to denote the receiver’s posterior probability of payoff type t conditional on having

observed message m at information set ΩR(ω1). For any two events E and F , use E ∩ F to

denote the joint event that both E and F occurred. Sightly abusing notation write ωm for
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the event that λω = {m}, i.e. the sender only has message m available. Then

P(t|m) =
P(m|t ∩ ων+1)P(t ∩ ων+1) + P(m|t ∩ ωm)P(t ∩ ωm)∑

τ P(m|τ ∩ ων+1)P(τ ∩ ων+1) +
∑

τ P(m|τ ∩ ωm)P(τ ∩ ωm)

=
P(m|t ∩ ων+1)π(t)qν+1 + P(m|t ∩ ωm)π(t)qm∑

τ P(m|τ ∩ ων+1)π(τ)qν+1 +
∑

τ P(m|τ ∩ ωm)π(τ)qm

=
P(m|t ∩ ων+1)π(t)qν+1 + π(t)qm∑
τ P(m|τ ∩ ων+1)π(τ)qν+1 + qm

≤ π(t)qν+1 + π(t)qm
π(t)qν+1 + qm

≤ π(t)qm + π(t)qm
π(t)qm + qm

=
2π(t)

1 + π(t)

Hence the safe-action condition implies that for all ω ∈ OR(ω1), regardless of the message

observed, the receiver’s unique optimal reply is the safe action aR0 .

At ων+1 and ων+2 the sender assigns posterior probability at least 1/2 to state ων+1.

Therefore, and since we just showed that at ων+1 the receiver uses action aR0 exclusively, by

the sender-safe-response condition, at ων+1 and ων+2 the sender will use action a0
S regardless

of her payoff type t.

Suppose there exists a message m′ such that following m′ at ω ∈ OR(ων+2) the receiver

takes an action other than a0
R with positive probability, i.e. ρ(a0

R | m′, ων+2)) < 1. Let TD ⊂ T

denote the set of payoff types for whom a0
S is dominant and TN = T \ TD. Let M̃ ⊂ M be

the set of messages that induce receiver actions other than a0
R with positive probability at

ω ∈ OR(ων+2). Then the no-self-signaling condition implies that at ω ∈ OS(ων+1) all types

in TN send messages that induce actions other than a0
R with positive probability, i.e.∑

m∈M̃

Prob(m|TN ∩ OS(ων+1)) = 1.

Thus, since ∑
m∈M̃

Prob(m|TN ∩ OS(ων+3)) ≤ 1,

there exists m̃ ∈ M̃ such that

Prob(m̃|TN ∩ OS(ων+1)) ≥ Prob(m̃|TN ∩ OS(ων+3)).
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Together with qi ≥ qi+1 for all i this implies that

Prob(m̃ ∩ TN ∩ OS(ων+1)) = Prob(m̃|TN ∩ OS(ων+1))Prob(TN ∩ OS(ων+1))

≥ Prob(m̃|TN ∩ OS(ων+3))Prob(TN ∩ OS(ων+3))

= Prob(m̃ ∩ TN ∩ OS(ων+3))

Therefore, again economizing on notation, if we let Prob(a0
S|m̃) denote the receiver’s

posterior probability of the sender taking action a0
S conditional on having observed message

m̃ at ω ∈ OR(ων+2), then

Prob(a0
S|m̃) = Prob(a0

S|m̃ ∩ TD)
Prob(m̃ ∩ TD)

Prob(m̃)

+ Prob(a0
S|m̃ ∩ TN ∩ OS(ων+1))

Prob(m̃ ∩ TN ∩ OS(ων+1))

Prob(m̃)

+ Prob(a0
S|m̃ ∩ TN ∩ OS(ων+3))

Prob(m̃ ∩ TN ∩ OS(ων+3))

Prob(m̃)

= Prob(a0
S|m̃ ∩ TD)

Prob(m̃ ∩ TD)

Prob(m̃)

+

(
1− Prob(m̃ ∩ TD)

Prob(m̃)

)
×{

Prob(a0
S|m̃ ∩ TN ∩ OS(ων+1))

Prob(m̃ ∩ TN ∩ OS(ων+1))

Prob(m̃)− Prob(m̃ ∩ TD)

+ Prob(a0
S|m̃ ∩ TN ∩ OS(ων+3))

Prob(m̃ ∩ TN ∩ OS(ων+3))

Prob(m̃)− Prob(m̃ ∩ TD)

}
≥ 1

2

This, however, implies by the receiver-safe-response condition that following message m̃ at

ω ∈ OR(ων+2) the receiver takes action a0
R with probability one, contradicting the fact that

ρ(a0
R|m̃,OR(ων+2)) < 1.

Suppose that for k ≥ 1 we have ρR(a0
R|m,OR(ων+2k)) = 1 for all m ∈ M . Then, using

the same logic as above, ρS(a0
S|OS(ων+2k+1)) = 1 by the sender-safe-response condition, from

which we get ρR(a0
R|m,OR(ων+2k+2)) = 1 for all m ∈M by the no-self-signaling and receiver-

safe-response conditions. Therefore, by induction, ρR(a0
R|m,OR(ωi)) = 1 for all m ∈M and

all i and ρS(a0
S|OS(ωi)) = 1 for all i. �
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Proof of Proposition 5

Proof: Without loss of generality, suppose that there is a semantically uniform equilibrium,

E , in which at state ω the triple (mα, αS, αR) has positive probability. We will show that

ω ∈ Bp
R(E(mβ)) and the event Bp

R(E(mβ)) is common p-belief at ω for p = 10/11; the

only other possibility for an equilibrium in which (αS, αR) has positive probability is for

(mβ, αS, αR) to have positive probability, in which case an argument that exactly mirrors

the one given below would show that ω ∈ Bp
R(E(mα)) and that the event Bp

R(E(mα)) would

be common p-belief at ω.

Define p0 := P(t1 ∩ αS|mα ∩ OR(ω)). Note that if R chooses action αR, then he receives

a payoff of 3 if the event t1 ∩ αS is realized and -10 otherwise. Similarly, if R chooses action

βR, then he receives a payoff of 2 if the event t1 ∩ αS is realized and 1 otherwise; the latter

observation uses the fact that the sender never uses αS in state t2 since to do so would be

strictly dominated. Then a necessary condition for R to take action αR at state ω following

message mα in equilibrium is that

p0 · 3 + (1− p0) · (−10) ≥ p0 · 2 + (1− p0) · 1,

which is equivalent to p0 ≥ 11
12
.

Let A(mα) denote the event that only mα is available and denote by p1 the probability

of its complement E(mβ). Note that
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p0 = P(αS ∩ t1|mα ∩ OR(ω))

=
P(αS ∩ t1 ∩mα ∩ OR(ω))

P(mα ∩ OR(ω))

=
P(αS ∩ t1 ∩mα|OR(ω))P(OR(ω))

P(mα|OR(ω))P(OR(ω))

=
P(αS ∩ t1 ∩mα|OR(ω))

P(mα|OR(ω)))

=
P(αS ∩ t1 ∩mα|OR(ω))

P(αS ∩ t1 ∩mα|OR(ω))) + P((αS ∩ t1)C ∩mα|OR(ω)))

≤ P(t1|OR(ω))

P(t1|OR(ω))) + P((αS ∩ t1)C ∩mα|OR(ω)))

≤ P(t1|OR(ω))

P(t1|OR(ω))) + P(t2 ∩mα|OR(ω)))

≤ P(t1|OR(ω))

P(t1|OR(ω))) + P(t2 ∩ A(mα)|OR(ω)))

=
1

1 + P(A(mα)|OR(ω)))

=
1

2− p1

This implies that in order for the condition Prob(αS∩t1|mα∩OR(ω)) ≥ 11
12

to be satisfied,

it is necessary that p1 ≥ 10
11
. Hence, a necessary condition for the existence of the equilibrium

in question is that

ω ∈ Bp
R(E(mβ)) for p = 10/11. (2)

For the remainder, let p = 10/11. Let C = C0 = Bp
R(E(mβ)) and for n ≥ 1 let Cn =⋂

i∈{S,R}B
p
i (C

n−1). Suppose that for some event E it is the case that ω ∈ Bp
R(E) is required

for R to be willing to take action αR in response to message mα at ω. In order for S to be

willing to send message mα and take action αS, he must be sufficiently confident that R

responds with αR. The same calculation (slightly differently motivated) as the one that gave

us the bound on p0 shows that S must believe with at least probability 11/12 that mα induces

αR in order to be willing to take action αS in payoff state t1. Therefore for any event E with

the property that ω ∈ Bp
R(E) is required for R to be willing to take action αR in response to

message mα at ω, we need that ω ∈ Bp2

S (Bp
R(E)) for p2 ≥ 11/12. Furthermore, since for any

event Ẽ, Bp
R(Bp

R(Ẽ)) = Bp
R(Ẽ), and for any p ≤ p2, [ω ∈ Bp2

S (Bp
R(E))]⇒ [ω ∈ Bp

S(Bp
R(E))],
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we conclude that if ω ∈ Bp
R(E) is necessary for the equilibrium in question, then so is

ω ∈
⋂

i∈{S,R}

Bp
i (B

p
R(E)), for p = 10/11, (3)

from which it follows that

ω ∈ C1 (4)

is required for the postulated equilibrium. Suppose that for some n ≥ 2 we have that

ω ∈ Cn−1 is necessary for the equilibrium in question. It follows that

ω ∈ Bp
S(Cn−2) (5)

and

ω ∈ Bp
R(Cn−2) (6)

are necessary.

For any event E with the property that ω ∈ Bp
S(E) is required for S to be willing to

take action αS at ω, at every state ω′ 6∈ Bp
S(E), S strictly prefers βS regardless of the

payoff state ti, i = 1, 2. At every state ω′ that R assigns positive probability to at ω (that

is ω′ ∈ OR(ω)) the sender can induce αR with positive probability by sending message

mα. By semantic uniformity of the equilibrium, there is no state at which mβ induces αR

with positive probability. Combining these three observations, it follows that at every state

ω′ ∈ Bp
S(E)∩OR(ω) the violation of the self-signaling condition implies that in payoff state t1

the sender will send message mα and take action βS. This in turn implies that it is necessary

for the equilibrium in question that ω ∈ Bp3

R (Bp
S(E)) for p3 ≥ 11/12, and by essentially the

same argument that led to (3), we conclude that if ω ∈ Bp
S(E) is necessary for the postulated

equilibrium,then so is

ω ∈
⋂

i∈{S,R}

Bp
i (B

p
S(E)). (7)

Combining (3) with (6) it follows that

ω ∈
⋂

i∈{S,R}

Bp
i (B

p
R(Cn−2)), (8)

and combining (7) with (5) it follows that

ω ∈
⋂

i∈{S,R}

Bp
i (B

p
S(Cn−2)) (9)

39



is required. The conditions (8) and (9) imply then that ω ∈ Cn.

Hence, by induction

ω ∈ Ep(C) =
⋂
n≥1

Cn

which according to Monderer and Samet is equivalent to Bp
R(E(mβ)) being common p-

belief. �
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