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Abstract

We construct an endogenous growth model with automation (the introduction

of machines which replace low-skill labor) and horizontal innovation. The economy

follows three phases. First, low-skill wages are low, which induces little automa-

tion, and income inequality and labor’s share of GDP are constant. Second, as

low-skill wages increase, automation increases which reduces the labor share, in-

creases the skill premium and may decrease future low-skill wages. Finally, the

economy moves toward a steady state, where low-skill wages grow but at a lower

rate than high-skill wages. The model is quantitatively consistent with the US

labor market experience since the 1960s.
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1 Introduction

How does the automation of production processes affect the distribution of income? By

allowing for the use of machines, automation reduces the demand for some type of labor,

particularly low-skill labor. This mechanism has received mounting empirical support

(e.g. Autor, Levy and Murnane, 2003),1 and it is often considered a major cause of the

sharp rise in income inequality in developed countries since 1970. The seemingly ever

increasing capabilities of machines only makes this concern more relevant today. Yet,

economists often argue that technological development also creates new products, which

boosts the demand for labor; and certainly, many of today’s jobs did not exist just a few

decades ago.

This paper develops an analytical framework to explore these dynamics, in which

the creation of new products and the automation of the production process interact to

drive changes in inequality and growth. Such a framework must center on the economic

incentives faced by innovators. Consequently, our framework is one of directed tech-

nical change between automation and horizontal innovation (the introduction of new

products), yet it departs from the previous literature in that it does not focus on factor-

augmenting technical change (such as Acemoglu, 1998). Contrary to that literature, our

framework is able to account for the following salient features of the evolution of the

income distribution in the last 40 years: a continuous increase in labor income inequality,

a decline in the labor share, and stagnating (possibly declining) real wages for low-skill

workers. In addition, the framework is malleable, which allows us to develop several

extensions. One such extension can account for a phase of wage polarization following

a phase of uniform increase in income inequality—consistent with the US experience.

The model can further be used quantitatively to jointly account for the evolutions of the

college premium and the labor share since the 1960s.

We consider an expanding variety growth model with low-skill and high-skill workers.

Horizontal innovation, modeled as in Romer (1990), increases the demand for both low-

and high-skill workers. Automation allows for the replacement of low-skill workers with

machines in production. It takes the form of a secondary innovation in existing product

lines, similar to secondary innovations in Aghion and Howitt (1996) (though their focus

is the interplay between applied and fundamental research, and not automation). Within

1Autor, Katz and Krueger (1998) and Autor, Levy and Murnane (2003) use cross-sectional data to
demonstrate that computerization is associated with relative shifts in demand favoring college educated
workers. Such evidence also exists at the firm level (Bartel, Ichniowski and Shaw, 2007).
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a firm, automation increases the demand for high-skill workers but reduces the demand

for low-skill workers. We refer to firms that can use machines as ‘automated’ firms. ‘Non-

automated’ firms can only produce using low-skill and high-skill labor. Once invented,

a specific machine is produced with the same technology as the consumption good.

We study the transitional dynamics of this economy and our results highlight the role

played by low-skill wages. The cost advantage of an automated over a non-automated

firm increases with the real wage of low-skill workers. As a result, an economy with an

initially low level of technology first goes through a phase where growth is mostly gen-

erated by horizontal innovation and the skill premium and the labor share are constant.

Only when low-skill wages are sufficiently high will firms invest in automation. During

this second phase, the share of automated firms increases, low-skill workers lose rela-

tively to high-skill workers and, depending on parameters, the real low-skill wage may

temporarily decrease. The total labor share decreases progressively, in line with recent

evidence (Karabarbounis and Neiman, 2013). Finally, the share of automated products

stabilizes as the entry of new, non-automated products compensates for the automation

of existing ones. In this third phase, low-skill wages grow asymptotically; intuitively,

the presence of non-automated products ensures that low-skill workers and machines are

only imperfect substitutes at the aggregate level. With an increasing quantity of ma-

chines, the relative cost of a low-skill worker and a machine, which here is also the real

wage, must grow. Yet, low-skill wages grow at a lower rate than high-skill wages, since

an increase in low-skill wages further increases the cost advantage of automated firms

and thereby the skill premium (thus the economy does not feature a balanced growth

path). The total labor share stabilizes and growth results mostly from automation.

Recent empirical work has increasingly found that workers in the middle of the income

distribution are most adversely affected by technological progress. To address this, we

extend the baseline model to include middle-skill workers as a separate skill-group. Firms

either rely on low-skill or middle-skill workers (but not both) and the two skill-groups

are symmetric except that automating to replace middle-skill workers is more costly (or

machines are less productive in middle-skill firms). This implies that the automation of

low-skill workers’ tasks happens first, with a delayed automation process for the tasks

of middle-skill workers. We show that this difference can reproduce important trends in

the United States income distribution. In a first period, there is a uniform dispersion

of the income distribution, as low-skill workers’ products are rapidly automated but

middle-skill ones are not; while in the second period there is wage polarization: low-skill
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workers’ share of automated products is stabilized, and middle-skill products are more

rapidly automated.

Finally, we extend the baseline model to include a supply response in the skill distri-

bution, and calibrate it to match the evolution of the skill premium, the skill ratio, the

labor share and GDP growth since the 60’s. This exercise demonstrates that our model

is able to replicate the trends in the data quantitatively.

There is a small theoretical literature on labor-replacing technology. In Zeira (1998),

firms have access to two technologies which differ in their capital intensity. Adoption of

the capital-intensive technology is analogous to automation in our model, and both are

encouraged by higher low-skill wages. In his model, higher low-skill wages are generated

exogenously by an increase in TFP, while in ours, low-skill wages endogenously increase

through horizontal innovation. Acemoglu (2010) shows that labor scarcity induces in-

novation (the Habbakuk hypothesis), if and only if innovation is labor-saving, that is,

if it reduces the marginal product of labor. Neither paper analyzes labor-replacing in-

novation in a fully dynamic model nor focuses on income inequality, as we do. Peretto

and Seater (2013) build a dynamic model of factor-eliminating technical change where

firms learn how to replace labor with capital, a process which bears strong similarities

with automation in our framework. They do not, however, focus on income inequality

either and since their model only features one source of growth, wages are constant so

that the incentive to automate does not change over time.

A large literature has used skill-biased technical change (SBTC) as a possible ex-

planation for the increase in the skill premium in developed countries since the 1970’s,

despite a large increase in the relative supply of skilled workers (see Hornstein, Krusell

and Violante, 2005, for a more complete literature review). One can categorize theo-

retical papers into one of three strands. The first strand emphasizes the hypothesis of

Nelson and Phelps (1966) that more skilled workers are better able to adapt to techno-

logical change, in which case a technological revolution (like the IT revolution) increases

the relative demand for skilled workers and increases income inequality. Several papers

have formalized this idea (including Aghion and Howitt, 1997; Lloyd-Ellis, 1999; Caselli,

1999; Galor and Moav, 2000, and Aghion, Howitt and Violante, 2002). However, such

theories mostly explain transitory increases in inequality whereas inequality has been in-

creasing for decades. Our model, on the contrary, introduces a mechanism that creates

permanent and widening inequality.

A second strand sees the complementarity between capital and skill as the source
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for the increase in the skill premium. Krusell, Ohanian, Ŕıos-Rull and Violante (2000)

formalize this idea by developing a framework where capital equipment and high-skill

labor are complements. To this, they add the empirically observed increase in the stock

of capital equipment, and show that their model can account for most of the variation in

the skill premium. Our model shares features with their framework: machines play an

analogous role to capital equipment in their model, since they are more complementary

with high-skill labor than with low-skill labor. The focus of our paper is different though

since we seek to explain why innovation has been directed towards automation.

Finally, a third branch of the literature, originally presented by Katz and Murphy

(1992), considers technology to be either high-skill or low-skill labor augmenting. This

approach has been used empirically within a relative supply and demand framework of

these two skill groups—typically college and non-college graduates—to infer the extent

of skill-biased technical change from changes in the relative labor supply and the skill

premium. For instance, Goldin and Katz (2008) find that in the US, technical change

has been skill-biased throughout the 20th century. On the theory side, the directed

technical change literature (most notably Acemoglu, 1998, 2002 and 2007) also uses

factor-augmenting technical change models to endogenize the bias of technical change.

Such models deliver important insights about inequality and technical change, but they

have no role for labor-replacing technology (a point emphasized in Acemoglu and Autor,

2011). In addition, even though income inequality varies, neither high-skill nor low-skill

wages can decrease in absolute terms, and their asymptotic growth rates must be the

same. The present model is also a directed technical change framework as economic in-

centives determine whether technical change takes the form of horizontal innovation or

automation, but it deviates from the assumption of factor-augmenting technologies and

explicitly allows for labor-replacing automation, generating the possibility for (tempo-

rary) absolute losses for low-skill workers, and permanently increasing income inequality.

More recently, Autor, Katz, and Kearney (2006, 2008) and Autor and Dorn (2013),

amongst others, show that whereas income inequality has continued to increase above

the median, there has been a reversal below the median. They argue that the rou-

tine tasks performed by many middle-skill workers—storing, processing and retrieving

information—are more easily done by computers than those performed by low-skill work-

ers, now predominantly working in service occupations. This ‘wage polarization’ has been

accompanied by a ‘job polarization’ as employment has followed the same pattern of de-
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creasing employment in middle-skill occupations.2 Acemoglu and Autor (2011) argue

that a task-based model where technological progress explicitly allows the replacement of

one input, e.g. labor, by another, e.g. capital, in the production of some tasks provides

a better explanation for wage and job polarization than ‘factor augmenting technical

change’ models (and in addition, allows for a decrease in the absolute level of wages).3

In the present paper, automation similarly replaces labor with machines in the produc-

tion of some goods (and one could interpret the different products as different tasks).

However, whereas the ‘tasks’ literature has considered static models, our framework is

dynamic and endogenizes the arrival of automation. In addition, it provides a unified

explanation for the relative decline of middle-skill wages since the mid-1980s and the

relative decline of low-skill wages in the period before.

Section 2 introduces the baseline model and defines the equilibrium. Section 3 de-

scribes the evolution of the economy through three phases and derives the asymptotic

steady-state. Section 4 extends the model to analyze wage polarization. Section 5 cali-

brates an extended version of the model (with an endogenous labor supply response in

the skill distribution) to the US economy since the 1960s. Section 6 concludes.

2 The Baseline Model

2.1 Preferences and production

We consider a continuous time infinite-horizon economy populated by H high-skill and

L low-skill workers. Both types of workers supply labor inelastically and have identical

preferences over a single final good of:

Uk,t =

ˆ ∞
t

e−ρ(τ−t)
C1−θ
k,τ

1− θ
dτ,

where ρ is the discount rate, θ ≥ 1 is the inverse elasticity of intertemporal substitution

and Ck,t is consumption of the final good at time t by group k ∈ {H,L}. H and L

2This phenomenon has also been observed and associated with the automation of routine tasks
in Europe (Spitz-Oener, 2006, and Goos, Manning and Salomons, 2009). Another explanation for
polarization stems from the consumption side and relates the high growth rate of wages for the least-
skilled workers with an increase in the demand for services from the most-skilled—and richest—workers,
see Mazzolari and Ragusa (2013) and Bárány and Siegel (2014).

3A related literature analyzes this non-monotonic pattern in inequality changes through the lens of
assignment models where workers of different skill levels are matched to tasks of different skill produc-
tivities (e.g. Costinot and Vogel, 2010 and Burstein, Morales and Vogel, 2014).
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are kept constant in our baseline model, but we consider the case where workers choose

occupations based on relative wages and heterogeneous skill-endowments in Section 5.1.

The final good is produced by a competitive industry combining an endogenous set

of intermediate inputs, i ∈ [0, Nt] using a CES aggregator:

Yt =

(ˆ Nt

0

yt(i)
σ−1
σ di

) σ
σ−1

,

where σ > 1 is the elasticity of substitution between these inputs and yt(i) is the use

of intermediate input i at time t. As in Romer (1990), an increase in Nt represents a

source of technological progress. We normalize the price of Yt to 1 at all points in time

and drop time subscripts when there is no ambiguity. The demand for each variety is:

y(i) = p(i)−σY, (1)

where p(i) is the price of intermediate input i and the normalization implies that the

ideal price index, [
´ Nt
0
p(i)1−σdi]1/(1−σ) equals 1.

Each intermediate input is produced by a monopolist who owns the perpetual rights

of production. She can produce the intermediate input by combining low-skill labor, l(i),

high-skill labor, h(i), and, possibly, type-i machines, x(i), using the production function:

y(i) =
[
l(i)

ε−1
ε + α(i) (ϕ̃x (i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

where α(i) ∈ {0, 1} is an indicator function for whether or not the firm has access

to an automation technology which allows for the use of machines. If the firm is not

automated (α(i) = 0), production takes place using a standard Cobb-Douglas production

function with only low-skill and high-skill labor with a low-skill factor share of β. If the

firm is automated (α(i) = 1) it can also use machines in the production process. We

assume that the elasticity of substitution between machines and low-skill workers, ε, is

strictly greater than 1 and allow for perfect substitutability, in which case ε = ∞ and

the production function is y(i) = [l(i) + α(i)ϕ̃x (i)]β h(i)1−β. The parameter ϕ̃ is the

relative productivity advantage of machines over low-skill workers. We will denote by G

the share of automated firms. It is because α(i) is not fixed, but changes over time, that

our model captures the notion that machines can replace low-skill labor in new tasks. A

model in which α(i) were fixed for each firm would only allow for machines to be used

more intensively in production, but always for the same tasks.
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Throughout the paper we will refer to x as ‘machines’, though our interpretation

also includes any form of computer inputs, algorithms, the services of cloud-providers,

etc. For simplicity, we consider that machines depreciate immediately, but Appendix

7.4 relaxes this assumption. Besides, once invented, machines of type i are produced

competitively one for one with the final good, so that the price of an existing machine

for an automated firm is always equal to 1. Though a natural starting point, this is an

important assumption and Appendix 7.3 presents a version of the model which relaxes

it. Importantly, this does not imply that our model cannot capture the notion of a

decline in the real cost of equipment: indeed, automation for firm i can equivalently be

interpreted as a decline of the price of machines i from infinity to 1.

2.2 Innovation

There are two sources of technological progress in this model: automation and hor-

izontal innovation. We assume that an automated firm remains so forever and that

becoming automated requires an investment. More specifically, a non-automated firm

which hires hAt (i) high-skill workers in automation research, becomes automated accord-

ing to a Poisson process with rate ηGκ̃
tN

κ
t h

A
t (i)κ. η > 0 denotes the productivity of the

automation technology, κ ∈ (0, 1) measures the concavity of the automation technology,

Gκ̃
t , κ̃ ∈ [0, κ], represents possible knowledge spillovers from the share of automated

products, and Nκ
t represents knowledge spillovers from the total number of intermediate

inputs (these spillovers are necessary to ensure that both automation and horizontal in-

novation can take place in the long-run).4 We define the total mass of high-skill workers

working in automation: HA
t ≡

´ Nt
0
hAt (i)di. Our set-up can be interpreted in two ways.

From one standpoint, machines are intermediate input-specific and each producer needs

to invent his own machine, which, once invented, is produced with the same technology

as the consumption good.5 From a second standpoint, machines are produced by the fi-

4An alternative way of interpreting this functional form is the following: let there be a mass 1 of firms
with Nt products (instead of assuming that each individual i is a distinct firm), then this functional
form means that when a firm hires a mass Nth

A
t of high-skill workers in automation each of its products

gets independently automated with a Poisson rate of ηGκ̃t
(
Nth

A
t

)κ
.

5Alternatively, machine-i may be invented by an outside firm and then sold to the intermediate
input producer. With such market structure the rents from automation would be divided between
the intermediate input producer and the machine producer. Except for a constant representing the
bargaining power of each party, it would not affect any of our results. Yet another alternative would
be to have entrants undertaking automation and potentially displacing the original firm. This would
not qualitatively affect the equilibrium as long as the incumbent has a positive probability of becoming
automated.
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nal good sector, and each intermediate input producer must spend resources in adapting

the machine to his product line.

Horizontal innovation occurs in a standard manner. New intermediate inputs are

developed by high-skill workers according to a linear technology with productivity γNt

(where γ > 0 measures the productivity of the horizontal innovation technology). With

HD
t high-skill workers pursuing horizontal innovation, the mass of intermediate inputs

evolves according to:

Ṅt = γNtH
D
t .

We assume that firms do not exist before their product is created. Coupled with our

assumption that automation follows a continuous Poisson process, new products must

then be born non-automated. This feature of the model is motivated by the idea that

when a task is new and unfamiliar, the flexibility and outside experiences of workers

allow them to solve unforeseen problems. As the task becomes routine and potentially

codifiable a machine (or an algorithm) can perform it (as argued by Autor, 2013). In

reality, some new tasks may be sufficiently close to older ones that no additional invest-

ment would be required to automate them immediately. As explained in section 3.7, our

results still carry through if we assume that only a share of the new products are born

non-automated or even if automation is only undertaken at the entry stage.

Define HP
t ≡

´ Nt
0
ht(i)di as the total mass of high-skill workers involved in produc-

tion. Factor markets clearing implies that

ˆ Nt

0

lt(i)di = L, HA
t +HD

t +HP
t = H. (2)

2.3 Equilibrium wages

In this subsection, we take the technological levels N , G and the mass of high-skill

workers in production HP as given and show how low-skill wages (denoted w) and high-

skill wages (denoted v) are determined in equilibrium. First, note that all automated

firms are symmetric and therefore behave in the same way. Similarly all non-automated

firms are symmetric. The unit cost of intermediate input i is given by:

c(w, v, α(i)) = β−β(1− β)−(1−β)
(
w1−ε + ϕα(i)

) β
1−ε v1−β, (3)

where ϕ ≡ ϕ̃ε. When ε <∞, c(·) is strictly increasing in both w and v and c(w, v, 1) <

c(w, v, 0) for all w, v > 0 (automation reduces costs). The monopolist charges a constant
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markup over costs such that the price is p(i) = σ/(σ − 1) · c(w, v, α(i)).

Using Shepard’s lemma and equations (1) and (3) delivers the demand for low-skill

labor of a single firm.

l(w, v, α(i)) = β
w−ε

w1−ε + ϕα(i)

(
σ − 1

σ

)σ
c(w, v, α(i))1−σY, (4)

which is decreasing in w and v. The effect of automation on demand for low-skill labor

in a given firm is generally ambiguous. This is due to the combination of a negative

substitution effect (the ability of the firm to substitute machines for low-skill workers)

and a positive scale effect (the ability of the firm to employ machines decreases overall

costs, lowers prices and increases production). Here we focus on labor-substituting

innovation and impose throughout that µ ≡ β(σ − 1)/(ε− 1) < 1 (that is the elasticity

of substitution between machines and low-skill labor is large enough), which is necessary

and sufficient for the substitution effect to dominate and ensures l(w, v, 1) < l(w, v, 0)

for all w, v > 0.

Let x (w, v) denote the use of a machines by an automated firm. The relative use of

machines and low-skill labor for such a firm is then:

x(w, v)/l(w, v, 1) = ϕwε, (5)

which is decreasing in w as the real wage is also the price of low-skill labor relative to

machines.

The iso-elastic demand (1), coupled with constant mark-up σ/(σ − 1), implies that

revenues are given by R(w, v, α(i)) = ((σ − 1) /σ)σ−1 c(w, v, α(i))1−σY and that a share

1/σ of revenues accrues to the monopolists as profits: π(w, v, α(i)) = R(w, v, α(i))/σ.

Aggregate profits are then a constant share 1/σ of output Y , since output is equal to the

aggregate revenues of intermediate inputs firms. Using (3), the relative revenues (and

profits) of non-automated and automated firms are given by:

R(w, v, 0)

R(w, v, 1)
=
π(w, v, 0)

π(w, v, 1)
=
(
1 + ϕwε−1

)−µ
, (6)

which is a decreasing function of w. Since non-automated firms rely more heavily on

low-skill labor, their relative market share drops with higher low-skill wages.

The share of revenues in a firm accruing to high-skill labor in production is the same

whether a firm is automated or not and given by νh = (1 − β)(σ − 1)/σ. Aggregating
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over all high-skill workers in production, we get that

vHP = (1− β)
σ − 1

σ
N [GR(w, v, 1) + (1−G)R(w, v, 0)] = (1− β)

σ − 1

σ
Y. (7)

Using factor demand functions, the share of revenues accruing to low-skill labor is

given by νl(w, v, α(i)) = σ−1
σ
β (1 + ϕwε−1α(i))

−1
, and is lower for automated than non-

automated firms. The aggregate revenues of low-skill workers can be obtained by sum-

ming up over all intermediate inputs:

wL = N [GR(w, v, 1)νl(w, v, 1) + (1−G)R(w, v, 0)νl(w, v, 0)] . (8)

Taking the ratio of (7) over (8) and using (6) gives the following lemma.

Lemma 1. For ε <∞, the high-skill wage premium is given by6

v

w
=

1− β
β

L

HP

G+ (1−G)(1 + ϕwε−1)−µ

G (1 + ϕwε−1)−1 + (1−G)(1 + ϕwε−1)−µ
. (9)

For given L/HP and G > 0, the skill premium is increasing in the absolute level of

low-skill wages, which means that if G is bounded above 0, low-skill wages cannot grow

at the same rate as high-skill wages in the long-run. This is the case because higher

low-skill wages both induce more substitution towards machines in automated firms (as

reflected by the term (1+ϕwε−1)−1 in equation (9)) and improve the cost-advantage and

therefore the market share of automated firms (term (1 + ϕwε−1)−µ ).

With constant mark-ups, the cost equation (3) and the price normalization give:

(
G
(
ϕ+ w1−ε)µ + (1−G)wβ(1−σ)

) 1
1−σ v1−β =

σ − 1

σ
ββ (1− β)1−β N

1
σ−1 . (10)

We label this a productivity condition, as it shows the positive relationship between real

wages and the level of technology given by N , the number of intermediate inputs, and G

the share of automated firms. Together (9) and (10) determine real wages as a function

of technology N,G and the mass of high-skill workers engaged in production HP .

Though the production function implies that, at the firm level, the elasticity of

substitution between high-skill labor and machines is equal to that between high-skill

and low-skill labor, this does not imply that the same holds at the aggregate level.

6When machines and low-skill workers are perfect substitutes, ε =∞, the skill premium is given by
v
w = 1−β

β
L
HP

if w < ϕ̃−1 such that no firm uses machines, and v
w = 1−β

β
L
HP

G+(1−G)(ϕ̃w)−1

(1−G)(ϕ̃w)−1 if w > ϕ̃−1.
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Therefore our paper is not in contradiction to Krusell et al. (2000), who argue that the

aggregate elasticity of substitution between high-skill and low-skill labor is greater than

the one between high-skill labor and machines.7

Given the amount of resources devoted to production (L,HP ), the static equilibrium

is closed by the final good market clearing condition:

Y = C +X (11)

where C = CL+CH is total consumption and X =
´ N
0
x(i)di is total use of machines. Y

differs from GDP for two reasons: it includes intermediate inputs and it does not include

R&D investments, which are done by high-skill labor. Hence, we have:

GDP = Y −X + v
(
HD +HA

)
. (12)

2.4 Innovation allocation

We now study how innovation is determined in equilibrium. We denote by V A
t the value

of an automated firm, by rt the economy-wide interest rate and by πAt ≡ π(wt, vt, 1) the

profits at time t of an automated firm. The asset pricing equation for an automated firm

is then given by

rtV
A
t = πAt + V̇ A

t . (13)

This equation states that the required return on holding an automated firm, V A
t , must

equal the instantaneous profits plus appreciation. An automated firm only maximizes

instantaneous profits and has no intertemporal investment decisions to make.

A non-automated firm has to decide how much to invest in automation. Denoting by

V N
t the value of a non-automated firm, we get the corresponding asset pricing equation:

rtV
N
t = πNt + ηGκ̃

t

(
Nth

A
t

)κ (
V A
t − V N

t

)
− vthAt + V̇ N

t , (14)

where πNt ≡ π(wt, vt, 0) and hAt is the mass of high-skill workers hired in automation

research by a single non-automated firm (so that HA
t = (1 − Gt)Nth

A
t ). This equation

has an analogous interpretation to equation (13), except that profits are augmented

7In fact, the Morishima elasticity of substitution between high-skill labor and low-skill labor is close
to 1 when low-skill wages are low and close to 1 + β(σ − 1) when they are high; while the one between
high-skill labor and machines is close to ε in the former case and to 1 in the latter, so that the ordering
is reversed as low-skill wages grow.
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by the instantaneous expected gain from innovation ηGκ̃
t

(
Nth

A
t

)κ (
V A
t − V N

t

)
net of

expenditure on automation research, vth
A
t . The first order condition for automation

innovation follows as:

κηGκ̃
tN

κ
t

(
hAt
)κ−1 (

V A
t − V N

t

)
= vt, (15)

which must hold at all points in time. The mass of high-skill workers hired in automation

increases with the difference in value between automated and non-automated firms, and

as such is increasing in current and future low-skill wages—all else equal.

Since non-automated firms get automated at Poisson rate ηGκ̃
t

(
Nth

A
t

)κ
, and since

new firms are born non-automated, the share of automated firms obeys:

Ġt = ηGκ̃
t

(
Nth

A
t

)κ
(1−Gt)−Gtg

N
t , (16)

where gNt denotes the growth rate of Nt, the number of products.

Free-entry in horizontal innovation guarantees that the value of creating a new firm

cannot be greater than its opportunity cost:

γNtV
N
t ≤ vt, (17)

with equality whenever there is strictly positive horizontal innovation (Ṅt > 0).

Finally, the low-skill and high-skill representative households’ problems are standard

and lead to Euler equations which in combination give

Ċt/Ct = (rt − ρ) /θ, (18)

with a transversality condition requiring that the present value of all time-t assets in the

economy (the aggregate value of all firms) is asymptotically zero:

limt→∞

(
exp

(
−
ˆ t

0

rsds

)
Nt

(
(1−Gt)V

N
t +GtV

A
t

))
= 0.

2.5 Equilibrium Characterization

We define a feasible allocation and an equilibrium as follows:

Definition 1. A feasible allocation is defined by time paths of stock of varieties and share

of those that are automated, [Nt, Gt]
∞
t=0, time paths of use of low-skill labor, high-skill

labor, and machines in the production of intermediate inputs [lt(i), ht(i), xt(i)]
∞
i∈[0,Nt],t=0,

12



a time path of intermediate inputs production [yt(i)]
∞
i∈[0,Nt],t=0, time paths of high-skill

workers engaged in automation [hAt (i)]∞i∈[0,Nt],t=0, and in horizontal innovation [HD
t ]∞t=0,

time paths of final good production and consumption levels [Yt, Ct]
∞
t=0 such that factor

markets clear ((2) holds) and good market clears ((11) holds).

An equilibrium is a feasible allocation, a time path of intermediate input prices

[pt(i)]
∞
i∈[0,Nt],t=0, a time path for low-skill wages, high-skill wages, interest rate and the

value of non-automated and automated firms
[
wt, vt, rt, V

N
t , V

A
t

]∞
t=0

such that [yt(i)]
∞
i∈[0,Nt],t=0

maximizes final good producer profits, [pt(i), lt(i), ht(i), xt(i)]
∞
i∈[0,Nt],t=0 maximize inter-

mediate inputs producers’ profits, [hAt (i)]∞i∈[0,Nt],t=0 maximizes the value of non-automated

firms, [HD
t ]∞t=0 is determined by free entry, [Ct]

∞
t=0 is consistent with consumer optimiza-

tion and the transversality condition is satisfied.

In order to work with a system with an asymptotic steady-state; we introduce nt ≡
N
−β/[(1−β)(1+β(σ−1))]
t and ωt ≡ w

β(1−σ)
t which both tend towards 0 as Nt and wt tend

towards infinity. We define the normalized mass of high-skill workers in automation

(ĥAt ≡ Nth
A
t ), normalized high-skill wages (v̂t = vtN

−ψ
t ), where ψ ≡ ((1− β) (σ − 1))−1

(ψ is equal to the asymptotic elasticity of GDP with respect to Nt), and the variable

χt ≡ ĉt
θ/v̂t. With positive entry in the creation of new products at all points in time,

the equilibrium can then be characterized by a system of differential equations with two

state variables nt, Gt, two control variables, ĥAt , χt and an auxiliary equation defining ωt

(see Appendix 7.1 for the derivation, in particular the system is given by equations (24),

(25), (27) and (28)). We then get:

Proposition 1. Assume that

ρ

(
1

ηκκ (1− κ)1−κ

(
ρ

γ

)1−κ

+
1

γ

)
< ψH, (19)

then the system of differential equations admits a steady-state (n∗, G∗, ĥA∗, χ∗) with n∗ =

0, G∗ > 0 and positive growth
(
gN
)∗
> 0. In such a steady-state, G∗ < 1.

Proof. See Appendix 8.1.1.

We will refer to the steady-state (n∗, G∗, ĥA∗, χ∗) as as an asymptotic steady-state

for our original system of differential equations. In addition, the assumption that θ ≥
1 ensures that the transversality condition always holds.8 For the rest of the paper

8To see the intuition behind equation (19), consider the case in which the efficiency of the automation

13



we restrict attention to parameters such that there exists a unique saddle-path stable

steady-state (n∗, G∗, ĥA∗, χ∗) with n∗ = 0, G∗ > 0. Then, for an initial pair (N0, G0) ∈
(0,∞) × [0, 1] sufficiently close to the asymptotic steady-state, the model features a

unique equilibrium converging towards the asymptotic steady-state.9 The proposition

further stipulates that G∗ < 1, which is derived from (25) with Ġt = 0 and gNt > 0.

3 The Three Phases of the Transition

This section analyzes the transitional dynamics from an initial starting point of (N0, G0)

to the asymptotic steady state. We initially briefly discuss our baseline choice of pa-

rameters. Thereafter, we show that the transitional dynamics are best considered as

consisting of three phases which we characterize through a combination of analytic and

simulation methods.10 Then, we analytically characterize the steady-state and finally,

we consider other parameter choices.

Table 1: Baseline Parameter Specification

σ ε β H L θ η κ ϕ̃ ρ κ̃ γ

3 4 2/3 1/3 2/3 2 0.2 0.5 0.25 0.02 0 0.3

Table 1 presents our baseline parameters. Section 5 employs Bayesian techniques to

estimate the parameters, but the focus of this section is theoretical and we simply choose

‘reasonable’ parameters. As our goal is to characterize the evolution of an economy which

transitions from automation playing a small to a central role, we choose an initially low

level of automation (G0 = 0.001) and an initial mass of intermediate inputs small enough

to ensure that the real wage is initially low relative to the productivity of machines. The

characterization of the equilibrium in 3 phases is robust to considering other parameter

sets with low G0 as long as N0 is sufficiently low to imply little initial incentive to

automate. More generally, in the following, we will carefully specify which features of

technology η is arbitrarily large, such that the model is arbitrarily close to a Romer model where all
firms are automated. Then equation (19) becomes ρ/γ < ψH, which mirrors the classical condition
for positive growth in a Romer model with linear innovation technology. With a smaller η the present
value of a new product is reduced such that the corresponding condition is more stringent

9Multiple asymptotic steady-states are technically possible but are not likely for reasonable parameter
values (see Appendix 8.1.2). In addition, with two state variables (nt and Gt) saddle path stability
requires exactly two eigenvalues with positive real parts. In our numerical investigation, for all parameter
combinations which satisfy the previous restrictions, this condition was always met.

10We employ the so-called “relaxation” algorithm for solving systems of discretized differential equa-
tions (Trimborn, Koch and Steger, 2008). See Appendix 8.2 for details.
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the equilibrium are specific to the set of parameters and which ones are more general.

The time unit is 1 year. Total stock of labor is 1 and we set L = 2/3 and β = 2/3 such

that absent automation and if all high-skill workers were in production the skill premium

would be 1. The initial mass of products is N0 = 1 and the productivity parameter for

machines is ϕ̃ = 0.25, which ensures that at t = 0, the cost advantage of automated

firms is very small (their profits are 0.004% higher). We set σ = 3 to capture an initial

labor share close to 2/3. The elasticity of substitution between machines and low-skill

workers in automated firms is ε = 4. The innovation parameters (γ, η, κ) are chosen

such that GDP growth is close to 2% both initially and asymptotically, and we first

consider the case where there is no externality from the share of automated products

in the automation technology, κ̃ = 0—hereafter, we will refer to this externality as the

externality in automation technology (although there is also an externality from the

total mass of products). The parameters ρ and θ are chosen such that the interest rate

is around 6% (at the beginning and at the end of the transition). For any variable at we

let gat ≡ ȧt/at denote its growth rate and for future reference we let ga∞ ≡ limt→∞ȧt/at

denote its asymptotic limit (if such exists).

3.1 Phase 1: Almost Balanced Growth

Figure 1 plots the evolution of the economy. We initially focus on the first 100 years of

the transition which we denote ‘Phase 1’. With a low initial level of Nt, low-skill wages

are low, and as shown in Panel C, the profits of an automated firm are only slightly

higher than that of a non-automated firm (equation (6)). Non-automated firms invest

little in automation and Gt remains low (Panel C). The economy behaves essentially as if

the aggregate production function were Cobb-Douglas: wages of both high- and low-skill

workers grow at the rate of GDP (Panel A) and the labor share is constant (Panel D).

Economic growth is (almost) entirely driven by the introduction of new products.11

To give further intuition, Figure 2a plots the skill-premium (9) and productivity (10)

conditions in (w, v) space. It shows how wages depend on the number of products, Nt,

the share of automated products, Gt, and the mass of high-skill workers employed in

production HP
t . For Gt close to 0, equation (9) places the skill premium just above

the straight line with slope (1 − β)L/(βHP
t ) (represented by a dotted line). During

11With a higher G0 but still a low N0, firms would still have had a low incentive to automate. As a
result Gt would initially decline with the entry of new, non-automated products so that the transitional
dynamics would quickly look similar to the present case (see Appendix 7.2.5).
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this phase, HP
t remains nearly constant (as the ratio of research expenditures to GDP

remains nearly constant). With nearly constant Gt and HP
t , the skill premium condition

barely moves. The increase in Nt pushes the productivity condition out, which increases

low-skill and high-skill wages proportionally.
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Figure 1: Transitional Dynamics for baseline parameters. Panel A shows yearly growth

rates for GDP, low-skill wages (w) and high-skill wages (v), Panel B the profit ratio of automated and

non-automated firms and the relative pay of high-skill and low-skill wages, Panel C the total spending

on horizontal innovation and automation as well as the share of products that are automated (G), and

Panel D the wage share of GDP for total wages and low-skill wages.

3.2 Phase 2: Acceleration in Automation

As low-skill wages grow, the relative profitability of automated firms rise (Panel B in

Figure 1) and the second phase of the transition is initiated around year 100. To facilitate

exposition we describe the evolution of key variables sequentially.

Innovation. The immediate effect of higher relative profitability for automated

firms, is an increase in spending on automation from an initial negligible level to around

4 per cent of GDP (Panel C). More precisely, since innovators are forward looking,

it is the increase in the relative profitability of automated firms in the future which
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affects their incentive to automate.12 In addition the share of spending on horizontal

innovation declines, particularly because new (non-automated) products will compete

with increasingly productive automated firms and therefore get a smaller initial market

share—the increase in automation spending at some point in Phase 2 is a general feature

of the model but the decrease in horizontal innovation is not. The change in innovation

spending directly increases the fraction of automated products, Gt (Panel C).
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Figure 2: Evolution of high-skill (vt) and low-skill (wt) wages across the three phases.
In Phases 1 and 3, G is (nearly) constant, only the productivity condition moves and both high- and

low-skill wages increase. During Phase 2, G changes as well, which pivots the skill-premium counter-

clockwise, and might (temporarily) reduce low-skill wages.

Labor income inequality. The increase in the share of automated products, Gt,

changes the relative growth rates of low- and high-skill wages. As shown in Panel A in

Figure 1, the growth rate of high-skill wages approaches 4%, while the growth rate of

low-skill wages goes down to around 1% (since there are no financial constraints, the

two types share a common consumption growth rate throughout, see Appendix 7.2.1).

During Phase 2 (Figure 2b), Nt continues to increase, which pushes out the pro-

ductivity condition. This increases both high-skill and low-skill wages, though the skill

premium rises as a result of the upward-bending skill-premium condition (Lemma 1).

Intuitively, the rise in the low-skill wages increases the market share of automated firms,

which rely relatively less on low-skill workers.

12Note that the cost of automation, namely high-skill wages divided by the number of products, Nt,
is also changing over time. Yet, high-skill wages and aggregate profits grow at a similar rate. Therefore
when the share of automated products, Gt, is low, high-skill wages divided by Nt and the profits of a
non-automated firm grow at similar rates, while profits of an automated firms grow faster. This is why
the increase in the cost of automation is dominated by the increase in its benefits, and therefore firms
start investing more in automation at the beginning of Phase 2.
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The increase in Gt has a positive effect on high-skill wages, but an ambiguous effect

on low-skill wages. Indeed, an increase in the share of automated products has two

opposing effects: i) an aggregate productivity effect as higher automation increases the

productive capability of the economy and pushes out the productivity condition and

ii) an aggregate substitution effect as it allows the economy to more easily substitute

away from low-skill labor which pivots the skill-premium condition counter-clockwise.

In the vocabulary of Acemoglu (2010), automation is low-skill labor saving whenever

the aggregate substitution effect dominates the aggregate productivity effect. Which

effect dominates here is generally ambiguous but when β/(1− β) < ε− 1, that is when

the elasticity of substitution between machines and low-skill workers is sufficiently high

(the case for the parameters chosen here), w is decreasing in G for low N and ‘inverse

u’-shaped in G for a large N . Intuitively, when N and therefore w is low, the productive

capabilities of the economy are not much improved by automation and the wage of low-

skill workers is always decreasing in G. With higher N , the automation of the first

products has a large productivity effect for the economy, while the substitution effect

is relatively small since most firms are still non-automated; with the reverse being true

for the automation of the last products. When β/(1− β) < ε− 1, it further holds that

a fully automated economy will give low-skill workers lower wages than a completely

non-automated one: w|G=0 > w|G=1 (proof in Appendix 8.1.3 which also considers the

case of β/(1− β) > ε− 1).

It is precisely this movement of the skill-premium curve that an alternative model

with constantG (i.e. one where the fraction of tasks that can be performed with machines

is constant) could not reproduce, and consequently such a model would not feature labor-

saving innovation. For this simulation, the increase in Gt always has a negative impact

on low-skill wages, but it is sufficiently slow relative to the increase in Nt that low-skill

wages grow at a positive rate throughout. Importantly, this is not a general result. As

shown below, there are parameters for which the growth rate of low-skill wages can be

negative during Phase 2.

In addition to the effects of changing Gt and Nt, changes in the mass of high-skill

workers in production, HP
t , affect the skill premium. As high-skill labor is the only

factor used in innovation, an increase in the mass of high-skill workers used in inno-

vation increases the skill premium. For our present simulation, HP
t decreases slightly

(when automation starts) and then increases later (when horizontal innovation declines),

though this is not a general result. These effects on the skill premium are quantitatively
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dominated by the changes in use of machines in production.

Capital and labor shares. The second important feature is the progressive drop in

the labor share of GDP . Profits are a constant share of output (because of the constant

mark-up 1/σ), but the increased use of intermediate inputs—which do not count towards

GDP—implies a decreasing GDP/Y . Since in this model, capital income corresponds

to profits, it is a growing share of GDP . Note that this happens even though machines

are not part of a capital stock in this baseline version of the model (see Appendix 7.4

for this alternative specification). For the same reason, though the low-skill labor share

drops rapidly, the high-skill labor share increases, such that the total labor share drops

only slowly over the entire period. This is consistent with recent evidence that has seen

a drop in the labor share: Karabarbounis and Neiman (2013) find a global reduction of 5

percentage points in labor’s share of corporate gross value added over the past 35 years.

Elsby, Hobijn and Sahin (2013) find similar results for the United States. Consistent

with recent trends (Piketty and Zucman, 2014, Piketty, 2014), the ratio of wealth to

GDP increases since profits are an increasing share of GDP (see Appendix 7.2.1). This

effect dominates a temporary increase in the interest rate. As with the skill premium

the total labor share is positively affected by increases in innovation as only high-skill

workers work in innovation.13

Growth decomposition. Figure 3 performs a growth decomposition exercise for

low-skill and high-skill wages by computing separately the instantaneous contribution

of each type of innovation. We do so by performing the following thought experiment:

at a given instant t, for given allocation of factors, suppose that all innovations of a

given type fail. By how much would the growth rates of w and v change? This exercise

is complementary to the one performed in Figure 2 which focuses on the impact of

technological levels instead of innovations.14 In Phase 1, there is little automation, so

wages growth for both skill-groups is driven almost entirely by horizontal innovation. In

Phase 2, automation sets in and an increasing number of firms substitute their low-skill

13Interestingly, for some parameter values, the drop in the labor share is delayed relative to the rise
in the skill premium (see Appendix 7.2.2)

14More specifically we can write wt = f(Nt, Gt, H
P
t ), using equations (9) and (10). Differentiating

with respect to time and using equation (25) gives:

gwt =

(
Nt
wt

∂f

∂N
− Gt
wt

∂f

∂G

)
γHD

t +
1

wt

∂f

∂G
ηGκ̃t (1−Gt)(ĥAt )κ +

1

wt

∂f

∂HP
ḢP
t .

Figure 3 plots the first two terms as the growth impact of expenses in horizontal innovation and au-
tomation, respectively. The third term ends up being negligible for our parameter choices. We perform
a similar decomposition for vt.
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labor with machines. From this point onwards, low-skill labor is continuously reallocated

from existing products which get automated, to new, not yet automated, products.

Consequently, the immediate impact of automation on low-skill wages is negative, while

horizontal innovation has a positive impact, as it both increases the range of available

products and decreases the share of automated products. The figure also shows that

automation plays an increasing role in explaining the growth rate of high-skill wages,

while the contribution of horizontal innovation declines. This is because new products

capture a smaller and smaller share of the market and therefore do not contribute much to

the demand for high-skill labor. Consequently, automation is skill-biased while horizontal

innovation is unskilled-biased. We stress that this growth decomposition is for changes in

the rate of automation and horizontal innovation at a given point in time. This should

not be interpreted as “automation being harmful” to low-skill workers in general. In

fact, as we demonstrate in Section 3.5, an increase in the effectiveness of the automation

technology, η, though it might have temporary negative impact on low-skill wages, will

have positive long-term consequences.
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Figure 3: Growth decomposition. Panel A: The growth rate of low-skill wages and the instanta-

neous contribution from horizontal innovation and automation, respectively. Panel B is analogous for

high-skill wages. See text for details.

Finally, a decomposition of gGDPt would look similar to the decomposition of gvt , such

that as the economy grows, automation becomes an increasingly important source of

growth. The increase in growth in Phase 2 is a result of us choosing parameters which

imply an asymptotic growth rate around the initial growth rate and is not general. Had

we chosen parameters for which asymptotic growth is slower than initial growth, the

growth rate of Phase 2 would not necessarily have been much higher than that of Phase

1 (see Appendix 7.2.3 for such a case).15

15There is an ongoing debate about the potential level of long-run growth. Jones (2002) argues
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3.3 Phase 3: Towards the Asymptotic Steady-State

Finally, we discuss the period after year 250, during which the economy approaches its

asymptotic steady state. Although the resources devoted to automation continue to

increase, eventually the growth rate in Gt slows down and Gt asymptotes a constant,

G∞(= G∗ the steady-state value), strictly below 1. The evolution of Gt results from the

difference between two terms: the automation of existing products and the introduction

of new non-automated products. As long as the automation intensity is bounded there

will always be a share of products that are non-automated (see Lemma 2 below).16

The growth rates of GDPt and high-skill wages, vt, approach the same constant, and

the labor share stabilizes at a lower level than that of Phases 1 and 2. Both high-skill

workers and capital earn a higher share of GDP than in Phases 1 and 2, while the share

going to low-skill workers asymptotes zero (Panel D in Figure 1). The wealth/GDP

ratio, not drawn here, also stabilizes at a higher level. We represent the evolution of

the economy in (w, v) space in Figure 2c. With Gt (and HP
t ) almost constant, the skill

premium condition does not move, while horizontal innovation continues to push out the

productivity condition. In a sharp contrast to Phase 2, low-skill wages cannot decrease,

and instead grow at a positive nearly constant rate lower than that of high-skill wages (see

Panel A). The skill premium grows unboundedly, though at a lower pace than in Phase

2 (Panel B). Further, note that there is no simple one-to-one link between automation

spending and rising inequality. Here, automation spending is higher in Phase 3 than in

Phase 2 (Panel C), yet the growth in the skill premium is slower.

In the following we show that the properties of the asymptotic steady-state can be

derived analytically and for a broader class of models than the baseline model.

3.4 Asymptotics for General Technological Processes

For this subsection, we consider any model where the equilibrium high-skill and low-skill

wages satisfy equations (9) and (10). That is, our analysis depends on the “static” part

of the model, but it does not rely on our particular specification for the evolution of Nt

that most of recent U.S. growth can be attributed to temporary factors such as a rise in educational
attainment. The present model cannot quantitatively speak to potential long-run growth, but shows
that a phase of increased automation can act as an additional temporary factor spurring higher growth.

16Formally, profits of an automated firm are asymptotically proportional to output Yt divided by the
mass of firms Nt. At the same time, wages of high-skill workers are asymptotically proportional to Yt,
so that the first-order condition for automation (15) implies that Nth

A
t asymptotes a constant. It then

follows from (16) that G∞ < 1.
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and Gt (for instance, it holds if the R&D input is the final good instead of high-skill

workers, if some inputs are born automated or if some products become obsolete). The

following proposition gives the asymptotic growth rates of wt, GDPt and vt.

Proposition 2. Consider three processes [Nt]
∞
t=0, [Gt]

∞
t=0 and [HP

t ]∞t=0 where (Nt, Gt, H
P
t ) ∈

(0,∞)× [0, 1]× (0, H] for all t. Assume that Gt, g
N
t and HP

t all admit strictly positive

limits. Then, the growth rates of high-skill wages and output admit limits with:

gv∞ = gGDP∞ = gN∞/ ((1− β)(σ − 1)) . (20)

Part A) If 0 < G∞ < 1 then the asymptotic growth rate of wt is given by

gw∞ = gGDP∞ / (1 + β(σ − 1)) . (21)

Part B). If G∞ = 1 and Gt converges sufficiently fast (more specifically if

limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t exists and is finite) then :

- If ε <∞ the asymptotic growth rate of wt is positive at :

gw∞ = gGDP∞ /ε, (22)

where 1 + β(σ − 1) < ε by the assumption that µ < 1.17

- If low-skill workers and machines are perfect substitutes then limt→∞wt is finite

and weakly greater than ϕ̃−1 (equal to ϕ̃−1 when limt→∞ (1−Gt)N
ψ
t = 0)

Proof. see Appendix 8.1.4.

This proposition first relates the growth rate of GDP (and high-skill wages) to the

growth rate of the number of products. Without automation GDPt would be propor-

tional to N
1/(σ−1)
t , as in a standard expanding-variety model: the higher the degree of

substitutability between inputs the lower the gain in productivity from an increase in

Nt. Here, the fact that machines, produced with the final good, are an additional in-

put creates an acceleration effect as the higher productivity also increases the supply of

machines. Asymptotically, this effect is increasing in the factor share of low-skill work-

ers/machines, β, under the conditions of Proposition 2.18 Moreover, for a given growth

17If limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t =∞ then gGDP∞ /ε ≤ gw∞ ≤ gGDP∞ / (1 + β(σ − 1)) .

18If all labor could be replaced at some point by machines, then β would effectively be 1. The economy
would then reach a “world of plenty” in finite time. In reality, one may think that natural resources
would then become the binding factor.
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rate of the number of products, the asymptotic growth rate of output is independent of

the share of automated firms, as long as it is strictly positive.

Second, this proposition shows that, when there is positive growth in Nt, mild as-

sumptions are sufficient to guarantee an asymptotic positive growth rate of wt. To

see why, first consider the case in which G∞ < 1, which includes the baseline model

studied prior to this subsection. Since automated and non-automated products are im-

perfect substitutes, then so are machines and low-skill workers at the aggregate level.

With a growing stock of machines and a fixed supply of low-skill labor, the relative

price of a worker (wt) to a machine (pxt ) must grow at a positive rate. Since machines

are produced with the same technology as the consumption good, pxt = pCt , where pCt

is the price of the consumption good (1 with our normalization), and the real wage

wt = wt/p
C
t = (wt/p

x
t )(p

x
t /p

C
t ) must also grow at a positive rate.19

The relative market share of automated firms and their reliance on machines also

increase, both of which ensure that low-skill wages grow at a lower rate than the economy

(see Lemma 1). This contrasts our paper with most of the literature which features a

balanced growth path and therefore does not have permanently increasing inequality. For

instance, in Acemoglu (1998), low-skill and high-skill workers are imperfect substitutes in

production. Yet, since the low-skill augmenting technology and the high-skill augmenting

technology grow at the same rate asymptotically, the relative stocks of effective units of

low-skill and high-skill labor is constant, leading to a constant relative wage.

For growing low-skill wages, a higher importance of low-skill workers (a higher β) or

a higher substitutability between automated and non-automated products (a higher σ)

imply a faster loss of competitiveness of the non-automated firms and a lower relative

growth rate of low-skill wages. The asymptotic growth rate of wt is independent of

the elasticity of substitution between machines and low-skill workers, ε, as the income

received by low-skill workers from automated firms becomes negligible relative to the

income earned from non-automated firms (this results from our assumption that µ < 1

such that automation reduces labor demand in a given firm).

Now, consider the case of G∞ = 1 and ε < ∞ (and let congervence satisfy the

condition in Part B of Proposition 2). Then an analogous argument demonstrates that

low-skill wages must increase asymptotically, though the growth rate relative to that of

the economy must be lower than when G∞ < 1 as all firms are automated and automated

firms more readily substitute workers for machines than the economy substitutes from

19A generalized version of Proposition 2 is presented in Appendix 7.3 which allows for asymptotic
(negative) growth in pxt /p

C
t and thereby potentially decreasing real wages for low-skill workers.
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non-automated to automated products. The more easily they substitute (the higher is

ε) the lower the growth rate of low-skill workers wages. Only in the special case in which

machines and low-skill workers are perfect substitutes in the production by automated

firms and the share of automated firms is asymptotically 1 will there be economy-wide

perfect substitution between low-skill workers and machines. In this case, wt cannot

grow asymptotically, but will still be bounded below by ϕ̃−1, since a lower wage would

imply that no firm would use machines.

In general, the processes of Nt, Gt and HP
t will depend on the rate at which new

products are introduced, the extent to which they are initially automated, and the rate

at which non-automated firms are automated. The following lemma derives condition

under which G∞ < 1, as in the baseline model, so that Part A of Proposition 2 applies

and in the long-run the economy looks like Phase 3 in our baseline model.

Lemma 2. Consider processes [Nt]
∞
t=0, [Gt]

∞
t=0 and [HP

t ]∞t=0 , such that gNt and HP
t admit

strictly positive limits. If i) the probability that a new product starts out non-automated

is bounded below away from zero and ii) the intensity at which non-automated firms are

automated is bounded above and below away from zero, then any limit of Gt must have

0 < G∞ < 1.

Proof. See Appendix 8.1.5.

Under the conditions of Lemma 2, the mass of new non-automated products is posi-

tive, so that the reallocation of low-skill workers to these products ensures that their real

wage grows in the long-run. It is only in the special case of all new products starting

out automated (or equivalently the intensity with which they are automated increases

without bounds) that G∞ may be 1. In all other cases, Part A of Proposition 2 governs

the asymptotic properties of gwt .20

In return, since the crucial element in Phase 2 of the baseline model was the increase

in Gt from a low level to a level close to the steady-state value, a model which obeys

equations (9) and (10), and satisfy the conditions of Lemma 2, will also feature a period

akin to Phase 2 as long as G0 is initially low relative to the asymptotic value G∞.

20Interestingly, the intuition given by the combination of Lemma 2 and Part A of Proposition 2 does
not rely on our assumption that new products are born identical to older products. In a model where
new products are born more productive, the growth rate of high-skill wages and low-skill wages will
obey equations (20) and (21), as long as the intensity at which non-automated firms get automated is
bounded and the economy grows at a positive but finite rate.
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3.5 Sensitivity Analysis

We now revert back to our specific baseline model, and study different scenarios. Ap-

pendix 7.2.5, carries out a more systematic comparative statics exercise.

Declining low-skill wages. Our model can accommodate declining low-skill wages

in Phase 2. An easy way to generate this pattern is to introduce the externality in

automation. Figure 4 shows the evolution of the economy when κ̃ = 0.49.21 Since the

automation technology is initially quite unproductive (as Gt is small), Phase 2 now starts

much later. Yet, it is also much more intense, partly because of the sharp increase in

the productivity of the automation technology (following the increase in Gt) and partly

because low-skill wages are higher when it starts. As a result, low-skill wages decrease

for part of Phase 2. This is both because automation is more intense and horizontal

innovation less. First, the increase in Gt is accelerated so that in Figure 2b, the skill-

premium condition pivots counter-clockwise faster (the aggregate substitution effect).

The accelerated increase in Gt also pushes out the productivity-condition (the aggregate

scale effect), which explains the high growth rates for vt and GDPt. Following our

discussion in section 3.2, the substitution effect dominates the scale effect once Gt is

large enough resulting in a drop in wt—accordingly, the drop in gwt is delayed compared

to the increase in automation. Second, horizontal innovation drops considerably, both

because new firms are less competitive than their automated counterparts, and because

the high demand for high-skill workers for automation increases the cost of inventing

a new product. Yet, the decline in wt lowers the profit ratio, which in return tends to

lower automation. This reflects a general point: just as increases in wt tend to encourage

automation; so do reductions in wt discourage the same automation and reduce pressure

on low-skill wages.

Importantly, gwt < 0 is also possible (though only for a small parameter set) without

the externality (κ̃ = 0) for other parameter choices—see Appendix 7.2.4 for an example.

This is possible because automation expenses are an upfront investment, therefore the

level of low-skill wages depends on the stock of knowledge, but only affects the flow of

knowledge, namely innovations. In contrast, a model where automation expenses take

the form of a cost to be paid every period will have a harder time generating decreasing

low-skill wages without an externality, because lower low-skill wages would reduce the

21We choose this value for κ̃ instead of 0.5, because in that case there is no horizontal innovation for
some time periods (that is (17) holds with a strict inequality). This is not an issue in principle but
simulating this case would require a different numerical approach.
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incentive to pay this cost, and thereby prevent low-skill wages from dropping.
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Figure 4: Transitional Dynamics. Note: Same as for figure 1 but with an automation externality

of κ̃ = 0.49

Innovation parameters. Figure 5 shows the impact of the innovation technology

parameters by considering the separate cases of a higher productivity for the automation

technology η=0.4 (instead of 0.2) and of a higher productivity for horizontal innovation

γ = 0.32 (instead of 0.3). For each case, Panels A-C show the value of selected outcomes

relative to the baseline case. A higher productivity for the automation technology η

initially has no impact during Phase 1, but it moves Phase 2 forward as investing in

automation technology starts being profitable for a lower level of low-skill wages. Since

automation occurs sooner, the absolute level of low-skill wages drops relative to the base-

line case (Panel B), which leads to a fast increase in the skill premium. A higher η also

leads to a higher growth-rate asymptotically: it increases the value of a new firm (for a

given innovation rate) since new firms are more likely to automate, which, in turn, leads

to a faster rate of horizontal innovation (we prove this result analytically in Appendix

8.1.6). A faster rate of horizontal innovation implies that the skill premium keeps in-

creasing relative to the baseline, but also that low-skill wages are eventually larger than

in the baseline case. Therefore, a more productive automation technology only hurts
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low-skill workers temporarily, while they benefit in the long-run. A higher productivity

for horizontal innovation implies that GDP grows faster than in the baseline (Panel A),

and with it low-skill wages (Panel B) as well as the skill premium. Therefore Phase 2

starts sooner, which explains why the skill premium jumps relative to the baseline case

before increasing smoothly.
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Figure 5: Deviations from baseline model for more productive horizontal innovation
technology (γ) and more productive automation technology (η).

3.6 Social planner problem

Here, we briefly discuss the social planner problem associated with our model (Appendix

8.3 gives more details). The social planner’s solution looks qualitatively similar to the

equilibrium we described, so that our results are not driven by the market structure

we imposed. In particular, when the economy is initially endowed with low levels of

technology N0, G0, the transitional dynamics still feature the three phases described

for the equilibrium case. There are four market imperfections that the social planner

corrects: a monopoly distortion, a positive externality in horizontal innovation from the

total number of products, a positive externality in the automation technology from the

total number of products (the term Nκ
t ) and a positive externality in the automation

technology from the share of automated products when κ̃ > 0 (which we referred so far

as the “automation externality”). The optimal allocation can be decentralized using a

subsidy to the use of intermediates inputs of 1/σ (to correct for the monopoly distortion),

a positive subsidy to horizontal innovation (to correct for the two externalities arising

from the number of products), and, if κ̃ > 0, a positive subsidy to automation (when

κ̃ = 0 there is no externality arising from automation and therefore no subsidy); all

subsidies are financed with lump-sum taxes.22

22The existence of externalities naturally leads to questions of public policy. Although, outside the
scope of the present paper, we plan to work on an extension which allows policy to address externalities
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3.7 Discussion

Automation of new products. The evolution of the economy through the three

phases does not depend on our assumption that new products are born non-automated.

To emphasize this further, we present in Appendix 8.4 an alternative model where au-

tomation can only occur at the entry stage: when a firm is born, its owner can make

it automated with probability min(η(Nth
A
t )κ, 1) by hiring hAt high-skill workers in au-

tomation. The economy goes through three phases as in the original model. As low-skill

wages increase, the benefit from automation increases as well, and while initially most

firms are born non-automated, over time more and more are born automated, until this

share stabilizes towards its asymptotic steady-state value. In this alternative model,

new firms are more likely to be automated than older ones. Since automation does not

take time, for some parameter values, all firms are eventually born automated, so that

G∞ = 1; in all cases, the asymptotic dynamics are still governed by Proposition 2.

Episodes of decreasing skill premium. Our baseline model implies an increasing

skill-premium, which has not always been the case historically. An immediate explana-

tion is a changing relative supply of skills. Goldin and Katz (2008) show that incor-

porating changes in the supply of skills into a model of skill-biased technical change

captures well the evolution of the skill premium throughout the 20th century. In some

cases though, automation itself did not aim at replacing the most unskilled workers, as

exemplified by the mechanization of the 19th century, which replaced skilled artisans

(including the Luddites), or the computerization of the last 30 years. The next section,

which introduces a group of middle-skill workers, helps us account for such events.

Episodes of decreasing capital share and capital income ratio. Similarly,

empirically, the capital share of income and the capital income ratio seem to have followed

a U-curve in the 20th century (Piketty and Zucman, 2014 and Piketty, 2014). Although

a small temporary decline in the capital share can be accounted for by the model (see

Appendix 7.2.2), such large movements cannot. Yet, the earlier decrease in the capital

share and the capital income ratio was partly due to the two World Wars and to changes

in the tax system. Besides, the transition away from the agricultural sector (and therefore

the reduced importance of land) played a crucial role, which we have not modeled.

Structural shifts. The present model imposes that all products are equally substi-

tutable with an elasticity greater than 1, implying that a firm that automates captures

a larger market share. Historically, different sectors have experienced automation at dif-

as well as inequality.
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ferent points in time. This could be captured with a nested structure with an elasticity

of substitution between broad sectors of less than 1. If these sectors differ in how easy it

is to automate their intermediate inputs, then the phases of intense automation will hap-

pen sequentially. As one broad sector experiences intense automation, spending shares

in non-automated sectors would increase (as in Acemoglu and Guerrieri, 2008) securing

a higher growth rate for low-skill wages. Besides, such an economy could replicate the

broad features of an economy switching from agriculture, to manufacturing, and then

services, and could generate interesting dynamics for the capital share.

In the rest of the paper, we present two extensions of the baseline model: the first

one includes middle-skill workers and allows the model to account for wage polarization,

the second one introduces an endogenous supply response in the skill distribution, and

is used to perform a quantitative exercise. Besides, Appendix 7.3 presents an extension

where the production technology for machines and the consumption good differ, and

Appendix 7.4 presents an extension where machines are part of a capital stock.

4 Middle-Skill Workers and Wage Polarization

As mentioned in the introduction, a recent literature (e.g. Autor et. al., 2006 and Autor

and Dorn, 2013) argue that since the 1990s, wage polarization has taken place: inequality

has kept rising in the top half of the distribution, but it has narrowed for the lower

half. They conjecture that these “middle-skill”-workers are performing cognitive routine

tasks which are the most easily automated. Our model suggests a related, but distinct

explanation: automating the tasks performed by middle-skill workers is not easier, but

more difficult and therefore happened later. Hence, before 1990 and in fact for most of the

20th century low-skill workers were in the process of being replaced by machines as semi-

automated factories, mechanical farming, household appliances etc were increasingly

used, while since the 1990s, computers are replacing middle-skill workers.23

To make this precise, we introduce a mass M of middle-skill workers into the model.

We think of these workers as being sequentially ‘ranked’ such that high-skill workers can

perform all tasks, middle-skill workers can perform middle-skill tasks and low-skill tasks,

and low-skill workers can perform only low-skill tasks. All newly introduced intermediate

products continue to be non-automated, but there is an exogenous probability δ that they

23In fact, Figure 3 in Autor and Dorn (2013) shows that low-skill workers left non-service occupa-
tions from the 70’s, which is consistent with the view that their tasks in non-service occupations were
automated before the middle-skill workers’ tasks.
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require low-skill and high-skill workers as described before, and a probability 1− δ that

they require both middle-skill and high-skill workers in an analogous manner. We refer

to the former type of products as “low-skill products” and the latter type as “middle-skill

products”. This gives the following production functions (for i ∈ [0, Nt]):

yL(i) =
[
l(i)

ε−1
ε + α(i) (ϕ̃Lx(i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

yM(i) =
[
m(i)

ε−1
ε + α(i) (ϕ̃Mx(i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

where yL(i) and yM(i) are the production of low-skill and middle-skill products, respec-

tively, and m(i) is the use of middle-skill workers by a firm of the latter type. ϕ̃L and

ϕ̃M are the productivity of machines that replace low-skill and middle-skill workers, re-

spectively. The mass of low-skill products is δN , the mass of middle-skill products is

(1 − δ)N (alternatively all products could be produced by all factors; this would make

the analysis substantially more complicated without altering the underlying argument).

The final good is still produced competitively by a CES aggregator of all intermediate

inputs, and all machines are produced one-for-one with the final good keeping a constant

price of 1. The shares of automated products, GL and GM will in general differ.

Both types of producers have access to an automation technology as before, but we al-

low the productivity to differ, such that automation happens with intensity ηLG
κ̃
L(NhAL)κ

for low-skill products and ηMG
κ̃
M(NhAM)κ for middle-skill products. The equilibrium is

defined analogously to section 2.5 and a proposition analogous to Proposition 1 exists.

To describe the equilibrium, we combine simulation methods and analytical results

as in section 3. We want to analyze a situation where low-skill and middle-skill workers

are symmetric except that middle-skill workers’ tasks are more difficult to automate.

To do this, we choose δ = 1/2 and set L = M = 1/3 and keep parameters as before

except that we choose ϕ̃M = 0.15 and ϕ̃L = 0.3, so that machines are less productive

in middle-skill products than in low-skill ones. The situation would be similar had we

chosen ϕ̃M = ϕ̃L, but ηM < ηL such that the automation technology for middle-skill

firms is less productive. Figure 6 describes the equilibrium in the presence of a large

externality in the automation technology (κ̃ = 0.5).

The overall picture is similar to that of Figure 4, but with distinct paths for low-skill

and middle-skill wages denoted w and u. One can now distinguish 4 phases. Phase 1

is analogous to Phase 1 in the previous case, and all wages grow at roughly the same

rate. From around year 200, low-skill wages become sufficiently high, that low-skill
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product firms start investing in automation and GL starts growing. Yet, since machines

are less productive in middle-skill workers’ tasks, GM stays low until around year 300.

During this second phase, inequality increases uniformly, high-skill wages grow faster

than middle-skill wages which again grow faster than low-skill wages. Middle-skill wages

do not grow as fast as GDP because automation in low-skill products increases their

market share at the expense of the middle-skill products. From around year 300, the

economy enters a third phase, where automation in middle-skill products is now intense.

As a result, the growth rate of middle-skill wages drops further, such that low-skill wages

actually grow faster than middle-skill wages (all along vt ≥ ut ≥ wt, so no group has

an incentive to be employed below its skill level).24 However, depending on parameters,

the polarization phase need not be as salient as here (for instance, there is barely any

polarization when there is no externality in automation, κ̃ = 0, but the other parameters

are kept identical, see Appendix 7.2.6 for this case).
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Figure 6: Transitional dynamics with middle-skill workers in the presence of an automa-
tion externality (κ̃ = 0.5).

Finally, in a fourth Phase (from around year 450), GL and GM are close to their

steady-state levels and the economy approaches the asymptotic steady-state, with low-

skill and middle-skill wages growing positively but at a rate lower than that of the

economy. Proposition 2 can be extended to this case. High-skill wages and GDP all

grow at the same rate which depends on the growth rate of the number of products,

while low-skill and middle-skill wages grow at a lower rate such that:

gv∞ = gGDP∞ = ψgN∞ and gw∞ = gu∞ = gGDP∞ / (1 + β(σ − 1)) .

24Empirically, the polarization looks more like a J curve than a U curve as the difference in growth
rates of wages between the bottom and the middle of the income distribution is modest. Here as well,
high-skill wages grow faster than both low-skill and middle-skill wages from the beginning of Phase 2.
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Our assumption that automation is intrinsically easier for firms hiring low-skill work-

ers than for those hiring middle-skill workers (ϕ̃M < ϕ̃L or ηM < ηL) may seem at odds

with empirical papers which argue that automation now predominantly hurts middle-skill

workers. Our model emphasizes that the intensity of automation and the technologi-

cal possibilities for automation are different concepts, since the intensity of automation

does not depend only on its cost but also on its benefit. Hence, in the third phase

of our simulation, middle-skill products get automated more intensively than low-skill

products, even though automating low-skill products is less costly. Some papers argue

that the technological opportunities for automation are today lower for low-skill than

for middle-skill workers. This is easy to reconcile with our model if we assume that for

both types of products, a common fixed share can never be automated. After the start

of Phase 2, the share of low-skill workers hired in products that can never be automated

will be larger than the corresponding share for middle-skill workers (since a higher share

of low-skill products will have been automated), and as a result, it will be on average

easier to automate a middle-skill product than a low-skill one.

Naturally, the phase of intense automation of middle-skill products may occur sooner

than that of low-skill products (for instance if the supply of middle-skill workers is low

enough to generate a large middle-skill over low-skill wage ratio). This may be what

happened in the 19th century when the tasks of (middle-skilled) artisans got automated,

as their wages were high relative to that of unskilled workers.25

5 Quantitative Exercise

In this section, we conduct a quantitative exercise to compare empirical trends for the

United States for the past 50 years with the predictions of our model using Bayesian

techniques. As argued in Goldin and Katz (2008), during this period the relative supply

of skilled workers increased dramatically so we allow workers to switch between skill-

types in response to changes in factor rewards.

25These unskilled workers were often used to operate the machines which replaced the artisans. Our
model does not currently account for this as low-skill and middle-skill workers are hired in different
firms, but it would in the simple extension where all products use the three types of workers.
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5.1 An endogenous supply response in the skill distribution

Specifically, let there be a unit mass of heterogeneous individuals, indexed by j ∈ [0, 1]

each endowed with lH̄ units of low-skill labor and Γ (j) = H̄ (1+q)
q
j1/q units of high-

skill labor (the exact distribution of high-skill ability is of no crucial importance). The

parameter q > 0 governs the shape of the ability distribution with q → ∞ implying

equal distribution of skills and q < ∞ implying a ranking of increasing endowments of

high-skill on [0, H̄(1 + q)/q]. Proposition 1 can be extended to this case and in fact the

steady state values (G∗, ĥA∗, gN∗, χ∗) are the same as in the model with a fixed high-skill

labor supply H̄. Proposition 2 also applies except that the asymptotic growth rate of

low-skill wages is higher (see Appendix 8.5):

gv∞ = gGDP∞ = ψgN∞ and gw∞ =
1 + q

1 + q + β(σ − 1)
gGDP∞ . (23)

At all points in time there exists an indifferent worker (j̄t) where wt = (1 + q)/q(j̄t)
1/qvt,

with all j ≤ j̄t working as low-skill workers and all j > j̄t working as high-skill work-

ers. This introduces an endogenous supply response as the diverging wages for low- and

high-skill workers encourage shifts from low-skill to high-skill jobs. The gradual reduc-

tion in supply dampens the relative decline in low-skill wages. Hence, besides securing

themselves a higher future wage growth, low-skill workers who switch to a high-skill

occupation also benefit the remaining low-skill workers.

Note that as all changes in the stock of labor are driven by demand-side effects, wages

and employment will move in the same direction. Extending our analysis of middle-skill

workers to allow for switches between sectors of employment would therefore reproduce

the employment patterns of ‘job polarization’ in addition to ‘wage polarization’.

5.2 Bayesian estimation

In the following we match the skill-premium and the ratio of skilled to non-skilled workers

(both calculated using the methodology of Acemoglu and Autor, 2011) as well as the

growth rate of real GDP/employment and the share of labor in total GDP (both taken

from the National Income and Products Accounts). We further associate the use of

machines with private equipment (real private non-residential equipment, ‘Table 2.2.

Chain-type Quantity Indexes’ from NIPA). All time series start in 1963 when the skill-

premium and skill-ratio are first available and until 2007 to avoid the Great Recession.
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We match the accumulated growth rate of private equipment by indexing both X and

real private equipment to 100 in 1963.26

Due to the relatively small sample size we use Bayesian techniques to estimate our

model, though little would change if we instead employed Maximum Likelihood proce-

dures (in fact since we choose a uniform prior the maximum likelihood point estimate

is equal to the mode of the Bayesian estimator). The model presented until now is not

inherently stochastic, and in order to bring it to the data, we add normally distributed

auto-correlated measurement errors. That is, we consider an economy where the un-

derlying structure is described deterministically by our model, but the econometrician

only observes variables with normally distributed auto-correlated measurement errors.

With a full parametrization of the model the parameters are not uniquely identified and

we restrict H̄ = 1 without loss of generality. Therefore, our deterministic model has 14

parameters including n0 and G0. Including two parameters (variance and correlation)

for each of the five measurement errors, this leaves us with 24 parameters.27 This gives

a joint distribution of the observed variables given parameters and, with a chosen prior,

standard Bayesian methods can be employed to find the posterior distribution (see Ap-

pendix 8.8 for a full description of the procedure as well as domain on the prior uniform

distribution). The domain of the prior is deliberately kept wide for parameters not easily

recovered from other studies such as the characteristics of the automation technology.

Table 2 shows the mode of the posterior distribution. The unconditional posterior

distribution of each parameter is shown in Figure 22 in Appendix 8.8, which demonstrates

that variance for the posterior unconditional distribution is generally small.

26The use of machines, X, has no natural units and we can therefore not match the level of X.
Alternatively, we could normalize X by GDP, but we do no think of equipment as the direct empirical
counter-part of X. First, equipment is a stock, whereas X is better thought of as a flow variable.
Second many aspects of automation might not be directly captured in equipment. Hence, equipment
is better thought of as a proxy for X that grows in proportion to X. Empirically, equipment/GDP is
about twice that of our predicted value of X/GDP .

27More specifically, for time period t = 1, ...T , let (Y t1 , ..., Y
t
M ) ∈ RM×T be a vector of M predicted

variables with time paths of Y tm = (Ym,s)
t
s=1 for m ∈ {1, ...,M} and Y t = (Y t1 , ..., Y

t
M ). Let the complete

set of parameters in the deterministic model be bP ∈ BP ⊂ RK . We can then write the predicted values
as Y Tm (bP ), for m = 1, ...M . We add normally distributed measurement errors with zero mean to get
the predicted values as Ŷ Tm = Y Tm + εTm, where εTm ∼ N(0,Σm) and Σm is the covariance matrix of the
measurement errors. The errors are independent across types, E[εT

′

m ε
T
n ] = 0, for m 6= n, but potentially

auto-correlated: the elements of Σm are such that the t, t′-element of Σm is given by σ2
mρ
|t−t′|
m , where

σ2
m > 0 and −1 < ρm < 1. Hence, σ2

m is the unconditional variance of a measurement error for variable
m and ρm is its auto-correlation. This gives a total of 2M stochastic parameters and we label the
combined set of these and bP as b ∈ B ⊂ R2M+K . This leads to a joint probability density for Ŷ T of
f(Ŷ T |b) = ΠM

m=1fm(Ŷ Tm |b) and with a uniform prior f(b|Ŷ T ) ∝ f(Ŷ T |b)
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Table 2: The mode of the posterior distribution.

σ µ β l γ κ̃ θ η κ ρ ϕ q

Mode 4.17 0.66 0.76 0.91 0.20 0.29 2.09 0.27 0.72 0.058 8.60 0.82
n0 G0 ρ1 σ2

1 ρ2 σ2
2 ρ3 σ2

3 ρ4 σ2
4 ρ5 σ2

5

Mode 0.49 0.59 0.97 0.01 0.99 0.026 0.96 0.001 0.24 0.0004 0.97 0.051

Note: (σ2
i , ρi), i = 1, ..., 5 estimate refer to skill-premium, skill-ratio, labor share of GDP,

growth rate of GDP/employment, and Real Private Equipment, respectively.

Three parameter estimates are worth noting. First, the parameter of the automation

externality, κ̃, is centered around 0.29 implying a substantial automation externality, a

force for an accelerated Phase 2. Second, G0 is centered around 0.59 implying that Phase

2 was already well underway in the early 1960s. Finally, the estimate of β—the factor

share to machines/low-skill workers— of 0.76 implies substantial room for automation.
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Figure 7: Predicted and Empirical time paths

Figure 7 further shows the predicted path of the matched data series along with

their empirical counterparts at the mode of the posterior distribution. Panel A demon-

strates that the model matches the rise in the skill-premium from the late 1970s onwards

reasonably well, but misses the flat skill-premium in the period before. As argued in

Goldin and Katz (2008), the flat skill-premium in this period is best understood as the
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consequence of a large increase in the stock of college-educated workers caused by other

factors than technological change (the Vietnam war and the increase in female college

enrollment). Correspondingly, our model, which only allows relative supply to respond

to relative factor rewards, fails to capture a substantial increase in the relative stock of

skilled labor in the 1960s and early 1970s (Panel B). More importantly, the model pre-

dicts a substantially higher drop in the labor share of GDP than what has been observed

empirically (14 versus 5 percentage points). The simple structure of the model forces

any increase in the use of machines to be reflected in a drop in the labor share of GDP.

A number of extensions would allow for more flexibility. For example, one could allow

either for physical capital such as buildings or land, for an elasticity of substitution lower

than 1 between high-skill labor and the low-skill - machines aggregate in production, or

explicitly model several sectors as discussed in Section 3.7. The model matches the aver-

age growth rate of GDP/employment, but as a long-run growth model, is obviously not

capable of matching the short-run fluctuations around trend (Panel D). Panel E shows

that the model captures the exponential growth in private equipment very well—this is

not an automatic consequence of matching the GDP/employment growth rate as equip-

ment has been growing by around 1 percentage point more than GDP since 1963. Our

exercise is qualitatively different from that of Krusell et al. (2000). While they take

time paths of factors of production as given (labor inputs, structures and equipment),

we consider them to be endogenous and restricted to obey the structure of the model.

Figure 8 plots the transitional dynamics from 1960 to 2060. Panel A shows that the

skill ratio and the skill premium are predicted to keep growing at nearly constant rates,

while the labor share is to stabilize at a slightly lower level than today. Panel B suggests

that the share of automated products today is not far from its steady-state value.
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6 Conclusion

In this paper, we introduced automation in a horizontal innovation growth model. We

showed that in such a framework, the economy will undertake a structural break. After

an initial phase with stable income inequality and stable factor shares, automation picks

up. During this second phase, the skill premium increases, low-skill wages stagnate and

possibly decline, the labor share drops—all consistent with the US experience in the

past 50 years—and growth starts relying increasingly on automation. In a third phase,

the share of automated products stabilizes, but the economy still features a constant

shift of low-skill employment from recently automated firms to as of yet non-automated

firms. With a constant and finite aggregate elasticity of substitution between low-skill

workers and machines, low-skill wages grow in the long-run. When the supply-side of

the economy is allowed to respond, similar results carry through, but the rise in the

skill premium is associated with a rise in the skill ratio which partly mitigates it. Wage

polarization can be accounted for once the model is extended to include middle-skill

workers.

The model shows that there is a long-run tendency for technical progress to displace

substitutable labor, here low-skill labor by assumption (this is a point made by Ray, 2014,

in a critique of Piketty, 2014), but this only occurs if the wages of the workers which

can be substituted for are large relative to the price of machines. This in turn can only

happen under three scenarios: either automation must itself increase the wages of these

workers (the scale effect dominates the substitution effect), or there is another source of

technological progress (here, horizontal innovation), or technological progress allows a

reduction in the price of machines relative to the consumption good. Importantly, when

machines are produced with a technology similar to the consumption good, automation

can only reduce wages temporarily, as in Figure 4: a prolonged drop in wages would end

the incentives to automate in the first place.

Fundamentally, the economy in our model undertakes an endogenous structural

change when low-skill wages become sufficiently high. This distinguishes our paper

from most of the literature, which seeks to explain changes in the distribution of income

inequality through exogenous changes: an exogenous increase in the stock of equipment

as per Krusell et al. (2000), a change in the relative supply of skills, as per Acemoglu

(1998), or the arrival of a general purpose technology as in the associated literature.

This makes our paper closer in spirit to the work of Buera and Kaboski (2012), who

argue that the increase in income inequality is linked to the increase in the demand for

37



high-skill intensive services, which results from non-homotheticities in consumption.

The present paper is a first step towards a better understanding of the links between

automation, growth and income inequality. In future research, we will extend it to

consider policy implications. The simple sensitivity analysis on the automation technol-

ogy (section 3.5) suggests that capital taxation will have non-trivial implications in this

context. Automation and technological development are also intrinsically linked to the

international economy. Our framework could be used to study the recent phenomenon

of ‘reshoring’, where US companies that had offshored their low-skill intensive activities

to China, now start repatriating their production to the US after having further auto-

mated their production process. Finally, our framework could also be used to study the

impact of automation along the business cycle: Jaimovich and Siu (2012) argue that the

destruction of the ‘routine’ jobs happens during recessions, which raises the question of

whether automation is responsible for the recent ‘jobless recovery’.
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