How Destructive is Innovation?

Daniel Garcia-Macia¹ Chang-Tai Hsieh² Pete Klenow³

¹Stanford University

²University of Chicago and NBER

³Stanford University and NBER

January 5, 2015 — ASSA Meetings

Literature

- Polar models in the endogenous growth literature:
 - Creative destruction
 - * Grossman & Helpman (1991), Aghion & Howitt (1992)
 - Creation of new varieties
 - * Romer (1990)
 - Own-variety improvements
 - * Lucas (1988), Acemoglu (2009)

Literature

- Polar models in the endogenous growth literature:
 - Creative destruction
 - * Grossman & Helpman (1991), Aghion & Howitt (1992)
 - Creation of new varieties
 - * Romer (1990)
 - Own-variety improvements
 - * Lucas (1988), Acemoglu (2009)
- Empirical literature with accounting decompositions:
 - Baily et al. (1992), Foster et al. (2001)

Literature

- Polar models in the endogenous growth literature:
 - Creative destruction
 - * Grossman & Helpman (1991), Aghion & Howitt (1992)
 - Creation of new varieties
 - * Romer (1990)
 - Own-variety improvements
 - * Lucas (1988), Acemoglu (2009)
- Empirical literature with accounting decompositions:
 - ▶ Baily et al. (1992), Foster et al. (2001)
- We consider **all three channels** in an exogenous growth model and try to infer their contribution from **data on U.S. manufacturing plants**

Research Question

• How important is creative destruction as a proximate source of innovation?

Research Question

- How important is creative destruction as a proximate source of innovation?
- Use plant-level data to infer the contribution of these types of innovation:

	entrants	incumbents
creative destruction of existing varieties	\checkmark	\checkmark
creation of new varieties	\checkmark	\checkmark
own-variety improvements		\checkmark

Research Question

- How important is creative destruction as a proximate source of innovation?
- Use plant-level data to infer the contribution of these types of innovation:

	entrants	incumbents
creative destruction of existing varieties	\checkmark	\checkmark
creation of new varieties	\checkmark	\checkmark
own-variety improvements		\checkmark

• Why do we care?

 optimal innovation policy depends on knowledge spillovers vs. business stealing, which differ across channels.

Method

• Start from a leading model of creative destruction (Klette & Kortum 2004), then add creation of new varieties and own-variety improvements

Method

- Start from a leading model of creative destruction (Klette & Kortum 2004), then add creation of new varieties and own-variety improvements
- Data: U.S. Census of manufacturing plants (1963-2002)

Method

- Start from a leading model of creative destruction (Klette & Kortum 2004), then add creation of new varieties and own-variety improvements
- Data: U.S. Census of manufacturing plants (1963-2002)
- To infer the forces driving plant growth, match model and data moments:
 - growth rate of aggregate TFP
 - exit rate by age
 - employment by age
 - growth in the number of plants
 - exit rate by size (employment)
 - distribution of employment growth
 - distribution of employment

• In terms of their contributions to aggregate TFP growth:

- In terms of their contributions to aggregate TFP growth:
 - \bullet incumbents \gg entrants

- In terms of their contributions to aggregate TFP growth:
 - \bullet incumbents \gg entrants
 - @ quality improvements \gg new varieties

- In terms of their contributions to aggregate TFP growth:
 - \bullet incumbents \gg entrants
 - @ quality improvements \gg new varieties
 - \odot own innovation > creative destruction

• Start with discretized version of Klette & Kortum (2004):

• Start with discretized version of Klette & Kortum (2004):

► A firm owns a portfolio of varieties with different qualities q

- Start with discretized version of Klette & Kortum (2004):
 - ► A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \ge 1$ \Rightarrow endogenous exit of firms: decreasing in the number of varieties

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \ge 1$ \Rightarrow endogenous exit of firms: decreasing in the number of varieties
 - Undirected innovation by entrants and incumbents

- Start with discretized version of Klette & Kortum (2004):
 - ► A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \ge 1$ \Rightarrow endogenous exit of firms: decreasing in the number of varieties
 - Undirected innovation by entrants and incumbents
 - Only factor of production is labor

- Start with discretized version of Klette & Kortum (2004):
 - A firm owns a portfolio of varieties with different qualities q
 - Creative destruction with quality ladder multiplicative steps $s \ge 1$ \Rightarrow endogenous exit of firms: decreasing in the number of varieties
 - Undirected innovation by entrants and incumbents
 - Only factor of production is labor
 - Monopolistic competition, CES σ \Rightarrow employment, profits and revenues proportional to sum of $q^{\sigma-1}$ for a firm \Rightarrow employment growth is proportional to innovation

Model: production

• Variety-level:

$$y_j = l_j$$

Model: production

• Variety-level:

$$y_j = l_j$$

• Firm-level:

$$Y_f = \frac{\sum_{j=1}^{M_f} p_j y_j}{P}$$

Model: production

• Variety-level:

$$y_j = l_j$$

• Firm-level:

$$Y_f = \frac{\sum_{j=1}^{M_f} p_j y_j}{P}$$

• Aggregate:

$$Y = \left[\sum_{j=1}^{M} (q_j y_j)^{1-1/\sigma}\right]^{\frac{\sigma}{\sigma-1}}$$

• We add creation of new varieties and own-variety improvements:

channel	probability	step size
own-variety improvements by incumbents	λ_i	$s_\lambda \geq 1$
creative destruction by entrants	δ_e	$s_{oldsymbol{\delta}} \geq 1$
creative destruction by incumbents	δ_i	$s_{oldsymbol{\delta}} \geq 1$
new varieties from entrants	ĸ _e	S _K
new varieties from incumbents	Ki	S _K

• We add creation of new varieties and own-variety improvements:

channel	probability	step size
own-variety improvements by incumbents	λ_i	$s_\lambda \geq 1$
creative destruction by entrants	δ_e	$s_{oldsymbol{\delta}} \geq 1$
creative destruction by incumbents	δ_i	$s_{oldsymbol{\delta}} \geq 1$
new varieties from entrants	ĸ _e	S _K
new varieties from incumbents	K _i	S _K

Note 1: Exogenous innovation rates.

• We add creation of new varieties and own-variety improvements:

channel	probability	step size
own-variety improvements by incumbents	λ_i	$s_\lambda \geq 1$
creative destruction by entrants	δ_e	$s_{oldsymbol{\delta}} \geq 1$
creative destruction by incumbents	δ_i	$s_{oldsymbol{\delta}} \geq 1$
new varieties from entrants	κ _e	S _K
new varieties from incumbents	K _i	S _K

Note 1: Exogenous innovation rates.

Note 2: For stationarity, potentially directed creative destruction (ρ_i and ρ_e).

Incumbent variety: q

③ Simulate life paths for same # of plants as in the data (\simeq 350k)

- **③** Simulate life paths for same # of plants as in the data (\simeq 350k)
- In each period, probability of each type of innovation

- Simulate life paths for same # of plants as in the data (\simeq 350k)
- In each period, probability of each type of innovation
- Iterate until the size distribution converges to a steady state

- Simulate life paths for same # of plants as in the data (\simeq 350k)
- 2 In each period, probability of each type of innovation
- Iterate until the size distribution converges to a steady state
- Iterate on parameter values to minimize distance between the simulated moments and the data moments

Results: parameters

channel	probability	step size
own-variety improvements by incumbents	29.0%	1.058
creative destruction by entrants	6.2%	1.010
creative destruction by incumbents	76.6%	1.010
new varieties from entrants	0.5%	1.000
new varieties from incumbents	0.0%	1.000

Model: contributions to growth

• Aggregate Productivity:

$$Y_t / L_t = M_t^{\frac{1}{\sigma - 1}} \left[\frac{\sum_{j=1}^{M_t} q_{j,t}^{\sigma - 1}}{M_t} \right]^{\frac{1}{\sigma - 1}}$$

Model: contributions to growth

• Aggregate Productivity:

$$Y_t/L_t = M_t^{rac{1}{\sigma-1}} \left[rac{\sum_{j=1}^{M_t} q_{j,t}^{\sigma-1}}{M_t}
ight]^{rac{1}{\sigma-1}}$$

• Aggregate growth rate:

$$1 + g_{Y/L} = [(1 + \kappa_e + \kappa_i)(1 + g_q)]^{\frac{1}{\sigma-1}}$$

Model: contributions to growth

• Aggregate Productivity:

$$Y_t / L_t = M_t^{\frac{1}{\sigma - 1}} \left[\frac{\sum_{j=1}^{M_t} q_{j,t}^{\sigma - 1}}{M_t} \right]^{\frac{1}{\sigma - 1}}$$

• Aggregate growth rate:

$$1 + g_{Y/L} = [(1 + \kappa_e + \kappa_i)(1 + g_q)]^{\frac{1}{\sigma-1}}$$

where

$$1 + g_q = \frac{s_{\kappa}^{\sigma-1}\kappa_e + s_{\kappa}^{\sigma-1}\kappa_i + 1 + \left(s_q^{\sigma-1} - 1\right)\lambda_i + \left(s_q^{\sigma-1} - 1\right)\left(1 - \lambda_i\right)\left(\rho_e\delta_e + \delta_i\right)}{1 + \kappa_e + \kappa_i}$$

Results: contributions to growth

	entrants	incumbents	
creative destruction	2.6%	34.1%	36.7%
creation of new varieties	9.5%	0.0%	9.5%
own-variety improvements	-	53.8%	53.8%
· · · · · ·	12.1%	87.9%	

Simulated models

• Sequentially depart from KK to arrive at general model:

	кк	кк з	New Varieties	Own Innov.	General
σ		3	3	3	3
creative destruction by entrants		\checkmark	\checkmark	\checkmark	\checkmark
creative destruction by incumb.		\checkmark	\checkmark	\checkmark	\checkmark
new varieties from entrants			\checkmark	\checkmark	\checkmark
new varieties from incumb.			\checkmark	\checkmark	\checkmark
own-variety improvements by incumb.				\checkmark	\checkmark
(partially) directed innovation					\checkmark

parameters in other models

Model fit: fraction of firms by age

Model fit: employment share by age

Model exit rate

A firm with a single variety exits if all of these things happen:

- does not improve its own variety
- loses its own variety to another incumbent or to an entrant
- does not create a brand new variety
- does not creatively destroy another firm's variety

$$(1-\lambda_i)\left(\delta_e+\delta_i
ight)(1-\kappa_i)\left(1-\delta_i\left(1-\lambda_i
ight)
ight)$$

Model exit rate

A firm with a single variety exits if all of these things happen:

- does not improve its own variety
- loses its own variety to another incumbent or to an entrant
- does not create a brand new variety
- does not creatively destroy another firm's variety

$$(1-\lambda_i)(\delta_e+\delta_i)(1-\kappa_i)(1-\delta_i(1-\lambda_i))$$

or

• current profits go below the overhead cost

Model variety vs. size

Data: distribution of employment growth

Model fit: distribution of firm size

• In terms of their contributions to aggregate TFP growth:

- In terms of their contributions to aggregate TFP growth:
 - \bullet incumbents \gg entrants

- In terms of their contributions to aggregate TFP growth:
 - \bullet incumbents \gg entrants
 - @ quality improvements \gg new varieties

- In terms of their contributions to aggregate TFP growth:
 - \bullet incumbents \gg entrants
 - @ quality improvements \gg new varieties
 - \odot own innovation > creative destruction

Work to be done

- Measure variety using the number of product categories
 - elasticity between 0.15 and 0.40 wrt firm size. Plants?
- Robustness to different specifications
 - correlated exit of varieties for each firm?
 - adjustment costs (especially for entrants)
- Repeat the estimation with data from China and India
 - Bigger contribution from entrants? More creative destruction?
 - In China: massive entry of private firms and exit of SOEs
- Repeat the estimation with data from other U.S. sectors
 - e.g. retail trade (Wal-Mart and Amazon)

Parameter values

	КК	KK 3	New varieties	Own innovation	General
λi	-	-	-	35.5%	43.0%
δ_e	2.4%	2.3%	1.9%	3.3%	3.6%
δ_i	41%	41%	41%	41.6%	47.0%
s _q	1.058	1.057	1.051	1.035	1.032
ĸe	-	-	0.5%	0.5%	0.5%
ĸ	-	0.001%	0.001%	0.001%	0.001%
s _K	-	1	1.051	0.980	0.980

back to slide