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Abstract

We present a structural model of life-cycle human capital accumulation to isolate the direct
effect of parents’ human capital on children’s human capital. Identification of this spillover
term comes from the model delivering a relationship between parental human capital, and
both the schooling and earnings of the child. We demonstrate identification is achieved by com-
paring the earnings levels of individuals with the same schooling level but different parental
schooling levels. A generalized version of the model with taste shocks for schooling is esti-
mated using HRS data, and we find substantial evidence of strong parental spillover effects.
We conduct a policy experiment to examine the impact of compulsory schooling laws. These
laws have been used as an instrument to isolate the causal effect parental schooling on chil-
dren’s schooling. We find that a large parental spillover term is consistent with both a large
OLS coefficient from regressing child schooling on parent schooling, as well as a (close to)
zero IV coefficient. Nonetheless, the reform has a positive impact on earnings. This is because
much of schooling variation is explained by taste shocks, and higher parental human capital
has a level effect, reducing the need for children to spend more time in school. Contrary to
some recent debates that put less emphasis on nurture, we conclude that parental spillovers
can explain more than half of the human capital transmission from parents to children.

∗We thank Steven Durlauf, Jim Heckman and Chris Taber for very helpful conversations. Junjie Guo and Wei Song
provided outstanding research assistance.
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1 Introduction

Parents have a large influence on their children’s outcomes. The correlation between parent and
child schooling is as high as 0.5, and even after controlling for the child’s schooling, parental
schooling or earning levels have a positively significant effect on children’s earnings. Does this
merely represent correlation in unobserved heterogeneity across generations (selection)? Or does
it also partly reflect human capital spillovers from parent to child? These are important questions
from the perspective of education policy. After all, if intergenerational correlations merely reflect
selection, government subsidies aimed at improving human capital would only impact one gener-
ation. On the other hand, in the presence of intergenerational externalities, the returns from such
public investments are reaped by all succeeding members of a dynasty, resulting in long-lasting
effects. Redistributive education policies may also go beyond reducing inequality within a single
generation and have positive impacts on intergenerational mobility.

Furthermore, intergenerational spillovers form an integral part of models of human capital ac-
cumulation such as Becker and Tomes (1986). Being able to identify and estimate the magnitude of
these spillovers is consequently important not just for better understanding the effects of socioeco-
nomic policy, but also to gain a better understanding of the mechanics through which inequality is
formed and persists over generations. How important is nature (transmission of unobserved pre-
natal conditions) as opposed to nurture (postnatal transmission of human capital) in determining
the next generation’s economic status?1 Do forced increases in the schooling of parents affect the
schooling of children? These are the questions we seek to answer in this paper.

We begin with a very simple life-cycle model of human capital accumulation owing to Ben-
Porath (1967), which encompasses both schooling and learning on-the-job. In this model, individ-
ual earning profiles are determined by their initial level of human capital, and the speed, or innate
learning ability, at which the individual accumulates human capital.2 We augment this model in
several aspects. First, we posit that an individual’s initial level of human capital when he begins
schooling at age 6 is also a function of his parental human capital, which is what represents the
parental spillover effect in our model. Second, we assume that the initial level of human capital
is also affected by innate ability, i.e., the speed at which human capital is accumulated after age
6. Thus, the initial level and speed of human capital accumulation are affected by his own ability,
which is unobserved but correlated across generations, while parental human capital, which is
observed, only has a direct effect on the child early on in life.

The simple model delivers an analytical expression for the schooling and earnings of a child
as a function of parental human capital. The resulting schooling and earnings equations closely
resemble those that have been estimated in the empirical literature. In particular, we demonstrate

1The purpose of our paper is to measure the size of spillovers, and we estimate the correlation between the observed
parental human capital of an individual and the unobserved prenatal conditions. While such prenatal conditions need
not necessarily reflect the biological transfer of genes, in this paper we will refer to such conditions as innate abilities
or nature.

2The Mincer regression is a special case of this set-up when post-schooling time allocation declines linearly until
retirement.
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that the identification problem of separating nature from nurture may be rectified by using in-
formation on earnings and schooling jointly. Intuitively, since schooling and earnings are both
functions of parental human capital but the direct spillover occurs early on in life, the magnitude
of the spillover can be identified once we know the structural relationship between own school-
ing and own earnings. Since this is precisely what the Ben-Porath model delivers, we are able to
separately identify nurture as opposed to the previous literature that focuses on either the child’s
schooling or earnings as the outcome variable, but not both simultaneously. The solution to the
model also gives us insights into the identification problem—depending on how we control for
own schooling in a Mincer regression, the coefficient on parental variables can reveal nature or
nurture depending on the underlying relationship between own schooling and earnings.

In the model, all else equal, children with high human capital parents spend less time in school.
This is because there is less need to accumulate additional human capital before entering the labor
market. It is still the case that these children ultimately attain higher levels of human capital and
hence higher earnings, but it takes them less time to reach that level so that they have shorter
schooling periods. Since in the data, these children in fact spend more time in school, it must be
that high human capital parents, who also tend to have high innate abilities, also pass on their
abilities, which overcomes the negative level effect. Now, suppose that we observe two individ-
uals with the same schooling level but different levels of parental human capital and earnings.
Through the lens of our model, this reveals the relative magnitudes of their innate abilities as a
function of the relative magnitudes of their parents’ human capital. Then, the earnings differ-
ences between these two individuals can be completely accounted for by parental human capital
differences, from which we can recover the size of parental spillovers. Once this is done, the con-
tribution of nature is identified by simply observing how children’s schooling levels vary across
different parental schooling levels.

This identification scheme relies on parental human capital spillovers having a constant effect
over the children’s life-cycle earnings, as well as schooling levels. Is such an assumption empir-
ically reasonable? Reduced form evidence suggests that children who attain the same years of
schooling, but whose moms have different years of schooling, have parallel earning profiles with
a constant gap. The parallel gap points toward the existence of a parental spillover that only af-
fects how much human capital the child accumulates before entering the labor market (schooling),
and then remaining constant once controlling for the child’s schooling level. Moreover, this gap
is indeed similar across different child schooling levels. We show analytically that the spillover
is precisely picking up this gap, which is quantitatively large. If our model were true, educating
a mom for an extra year is equivalent to having a mom with an extra year of education—i.e., the
treatment and selection effects are similar. Furthermore, five extra years of mom’s education has
the same reduced form effect as one additional year of own schooling, suggesting that 20% of
parental human capital spills over to child’s earnings.

Of course, because schooling is also endogenous, this does not tell us the exact magnitude
of parental human capital on children’s earnings is. To bring our model closer to the data and
quantify the magnitude of nature (the fact that high ability parents have high ability children)
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and nurture (parental spillovers), we extend the basic model and estimate it to data on individ-
ual schooling and earnings, and parental schooling. We explicitly account for three sources of
heterogeneity—unobserved innate ability and a taste for schooling, and observed parental human
capital. We let both ability and taste be correlated with parental human capital. This is to capture
the fact that high human capital parents can have high human capital children both because they
pass on their high ability, or because of intergenerational human capital spillovers, which was al-
ready present in the simpler model. By letting tastes for schooling also be correlated with parental
human capital, we let the relationship between schooling and parents freely vary from the rela-
tionship between earnings and parents. For example, highly educated parents may send their
children to school longer for reasons unrelated to higher future earnings, or simply motivate the
children to emulate their parents regardless of future economic outcomes. In fact, our estimates
suggest that most of schooling differences can be explained by this preference heterogeneity, and
more importantly, that nurture can explain approximately 55-60% of intergenerational earnings
transmissions.

By no means are we the first to estimate the contribution of nature and nurture in the trans-
mission of socioeconomic status across generations. The general consensus in the literature is that
genetics play a large role, consistently above 50% in the determination of children’s schooling or
IQ. Some notable works include Behrman and Taubman (1989), who use data on twin parents and
extended family relationships to decompose the variance of observed years of schooling into the
variance of genetic and environmental variables, and Behrman and Rosenzweig (2002) who, also
using data on twin parents, finds that mothers’ education has a zero or even marginally negative
impact on children’s schooling. More recently, Plug and Vijverberg (2003), using data on biological
and adopted children to separately identify the coefficient on genetic variables, find a larger role
for nurture, although it is still significantly below 50%. In contrast, Black et al. (2005) using ad-
ministrative data from Norway and using compulsory schooling reforms as an instrument, again
find a near-zero IV coefficient of parental schooling on children’s schooling.3

Underlying these studies is the idea that both nature and nurture effects from the parent should
increase schooling. As we have already emphasized, however, it may well be that large spillovers
(a large nurture effect) decrease schooling, while increasing earnings. Since we in fact do observe
that children of higher human parents stay longer in school, this means that previous studies
that do not allow for such a negative relationship underestimate both the effect of nature and
spillovers. The goal of our paper is to compare these nature-nurture effects when taking account
of this relationship.

In our model, the level effect is a reduced-form representation of all parental effects before
the child reaches age 6. This is related to the large literature initiated by Cunha and Heckman
(2007), who also emphasizes that the early childhood environment is hard to separate from pre-
natal and/or genetic transmissions. At the same time, however, it is puzzling that the early child-
hood literature finds large nurture effects, while the earlier literature finds only little. Since this

3See Sacerdote (2011) for an extensive review.
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literature predominantly takes children’s schooling outcomes as the dependent variable, it is intu-
itive that in the process of doing so, they miss the level effect and consequently attribute a larger
role to nature. We emphasize that it is important to compare both earnings and schooling out-
comes to recover this effect, which is a contribution of our model over previous studies that rely
on a single measure for child outcomes.4

A related literature uses compulsory schooling reforms as a natural experiment. Black et al.
(2005) find that the fact that some parents were forced to go to school for one or two more addi-
tional years in Norway had almost no impact on the schooling of their children. They interpret
this as evidence suggesting that “the apple does not fall far”—that is, most of the correlation in
schooling across generations is due to selection (correlation in innate abilities across generations).
We argue that such experiments also miss the spillover effect by using only one measure of chil-
dren’s outcomes. Even when the intergenerational schooling response is zero or even negative,
we may observe a significant effect on the next generation’s earnings. In addition, since we also
find that heterogeneous tastes for schooling can account for a large amount of schooling outcome
variations, the intergenerational effects on schooling outcomes are even more dampened unless
they also alter the distribution of taste heterogeneity. To be precise, we use our model economy
to conduct a similar thought experiment in which we were to force all parents to go to school
for a compulsory number of years. The model is consistent with a high OLS estimate of parents’
schooling on children’s schooling as well as a near zero IV estimate, despite significant parental
spillovers on the child’s earnings.

The rest of the paper is organized as follows. Section 2 posits a simple model of human capital
accumulation and adds to it a parental spillover. The solution to this model is derived analyti-
cally and the quantitative implications of this model explored. In section 3 we describe the HRS
data and argue that our model assumptions are consistent with the empirical evidence. Section 4
presents a more comprehensive model which features multiple sources of heterogeneity which is
estimated to the data. We discuss how we use data on parent and child schooling as well as child
earnings to estimate the parental spillover term. Section 5 examines counterfactual predictions of
the model including a hypothetical compulsory schooling reform. Section 6 concludes.

2 A Simple Model with Parental Spillovers

In this section, we lay out a simpler version of the model than is later to be estimated, and char-
acterize its solution to gain intuition on how the parameters are identified. The model is a simple
variant of a life-cycle human capital accumulation model owing to Ben-Porath (1967). The objec-
tive of an individual is to maximize present-value discounted lifetime earnings. This model is the

4Our structural model has implications not only for schooling outcomes but also earnings, which is what allows
us to identify the level effect. Conversely, the level effect would also be identified if we had a measure of children’s
human capital at age 6. However, such measures (young children’s cognitive test scores, vocabulary, etc.) are hard
to link to their later economic ability earn. Nonetheless, although we are looking at two cognitive outcomes and not
any non-cognitive outcomes, our argument that the childhood environment can have different impacts on different
outcome variables are in line with Cunha et al. (2010).
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workhorse for modern labor economics and has been used widely in various contexts—the effects
of rising skill premia, cross country income differences, the study of inequality within a country
and so forth. For completeness, we first present the model without intergenerational spillovers.
Then we alter it to incorporate parental effects of which solution is compared with Mincer regres-
sions in section 3.

An individual begins life at age 6, retires at age R > 6 and dies at age T ≥ R, all exogenous
to the individual. At age 6, an individual is described by the state vector (h0, z), which denotes
his initial stock of human capital and (learning) ability, respectively. At every age a ∈ [6, R), he
makes time and good investments (n(a), m(a)) into human capital accumulation to maximize the
present discounted value of net income. His problem is

max
n(a),m(a)

{∫ R

6
e−r(a−6) [wh(a)(1− n(a))−m(a)] da

}
subject to

ḣ(a) = z[n(a)h(a)]α1 m(a)α2 , a ∈ [6, R),

n(a) ∈ [0, 1], m(a) ≥ 0,

h(6) = h0

where α1 and α2 are the returns to time and good investments, respectively. The market wage
w and discount rate r are constant and taken as given by the individual. Since the market wage
multiplies human capital to generate earnings, human capital is understood as an individual’s
“earning abilities" as opposed to z, the learning ability.

In this framework, the time path of n(a) decreases with age n(a) (Ben-Porath, 1967). Assuming
decreasing returns to scale, i.e. α1 + α2 < 1, if the initial stock of human capital is low enough,
the time allocation decision is constrained at 1 for a few years and then declines. The period of
time that n equals 1 is typically labeled the schooling period. All else equal, individuals with
higher ability levels (z) make more human capital investments and stay longer in school, while
individuals with a higher initial stock of human capital (h0) stay less time in school.

The above decision problem is a finite horizon problem. When the individual retires, his stock
of human capital depreciates completely. There is no transmission of human capital from one
generation to the next. The above framework cannot generate the correlation in schooling across
generations without resorting to exogenous transmission in abilities, z. Furthermore, if each sub-
sequent cohort begins life with the same initial stock of human capital, parents do not have any
influence on the earnings profiles of children. This leads us to think further about intergenera-
tional linkages. Clearly, parents have an influence on both the learning ability of the child (z) as
well as the amount of learning that happens before school entry (h0).

We now augment the model with spillovers from parents to children. We do this in the sim-
plest possible manner—we assume that initial human capital is a function of one’s own learning
ability z and the parent’s human capital hP. By assuming that abilities are correlated with hP, we
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face the identification problem of whether the child’s schooling or earnings are correlated with the
parent because of z, which is nature, or hP, which is nurture. We further assume that individuals
do not internalize this externality.5 Consequently, we are simply solving a life-cycle decision prob-
lem in which parental human capital is taken as given by the child as an exogenous state variable.
We do this primarily to gain insight into the precise mechanisms at work and understand how
the model parameters can be recovered from the data. Relaxing this assumption can be accom-
plished easily by adding parental preferences over the utility or human capital of their children.
Given that the bulk of investments are made early in life and markets are assumed to be complete,
the incorporation of dynastic utility does not have much of a qualitative impact on the decision
problem.

2.1 The Individual’s Problem

We include intergenerational spillovers into the Ben-Porath framework. As above, individuals
maximize their present discounted value of net income. All that we change is the initial condition:

h(6) = zλhν
P (1)

with parental human capital, hP, given. This is simply a relabeling of the initial stock of human
capital h0 ≡ zλhν

P. Then the individual state is still (h0, z), and can be solved using exactly the
same tools used to solve the standard model. To be clear, while the standard framework takes the
initial stock of human capital as parameters, we want to estimate how it interacts with learning
ability and parental human capital.

The parameter λ relates own learning ability to the initial stock of human capital—while z
determines the speed of learning after age 6, we expect it to also affect learning prior to age 6,
the extent of which is what this parameter is intended to capture. In other words, while z is
transmitted across generations prenatally, λ captures the postnatal effect of the transmission. The
intergenerational spillover is captured by ν, the degree to which a higher human capital parent
transmits more human capital to her child during the formative first 6 years of life. This is a rather
standard assumption in the literature on intergenerational transmission, for instance Becker and
Tomes (1986), and can be considered a reduced form characterization of the importance of early
childhood.

Let V(a, h) denote the value function for an individual of age a and human capital level h. The
problem faced by an individual at age 6 given h(6) = h0 can be written

V(6, h0) = max
{n(a),m(a)}

{∫ R

6
e−r(a−6)g (h(a); n(a), m(a)) da

}
ḣ(a) = f (h(a); n(a), m(a)) , n(a) ∈ [0, 1], m(a) > 0.

5In other words, individuals do not invest more in their own human capital in anticipation of that investment
spilling over to subsequent generations. If they do, nurture would have even a larger effect.
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where the objective function and law of motion are given as

g(h; n, m) = −whn−m

f (h; n, m) = z(nh)α1 mα2 .

This is a continuous time deterministic control problem with state h and controls (n, m). The
terminal time is fixed at R but the terminal state h(R) must be chosen. Since the objective function
is linear, the constraint set strictly convex, and the law of motion strictly positive and concave
(since α ≡ α1 + α2 < 1), the optimization problem is well-defined and the solution is unique. The
Hamilton-Jacobi-Bellman equation is

rV(a, h)− ∂V(a, h)
∂a

= max
n,m

{
g(h; n, m) +

∂V(a, h)
∂h

f (h; n, m)

}
.

As usual, the HJB equation can be interpreted as a no-arbitrage condition. The left-hand side is
the instantaneous cost of holding a human capital level of h at age a, while the the right-hand side
is the instantaneous return. The first order conditions for the controls are

whn ≤ α1z(nh)α1 mα2 ·Vh, with equality if n < 1 (2)

m = α2z(nh)α1 mα2 ·Vh, (3)

where Vh is the partial of V(a, h) with respect to h. These conditions simply state that the marginal
cost of investment, on the left-hand side, is equal to the marginal return. The envelope condition
gives (at the optimum)

r ·Vh −Vah = w(1− n) +
α1z(nh)α1 mα2

h
·Vh + z(nh)α1 mα2 ·Vhh, (4)

where Vxh is the partial of Vh with respect to x ∈ {a, h}. This “Euler equation” states that at the
optimum, the marginal cost of increasing human capital must be equal to the marginal return.
Equations (2), (3) and (4) along with the law of motion

ḣ = z(nh)α1 mα2 (5)

characterize the complete solution, given the initial state h(6) = h0 and terminal condition Vh = 0,
the appropriate transversality condition for a fixed terminal time problem. We solve this problem
in Appendix A and here only present the important results.

PROPOSITION 1: OPTIMAL SCHOOLING CHOICE Define α ≡ α1 + α2 and

F(s)−1 =
α1−α2

1 (α2w)α2

r
·
[

1− (1− α1)(1− α2)

α1α2
· 1− e−

α2rs
1−α2

1− e−r(R−6−s)

] 1−α
1−α1

·
(

1− e−r(R−6−s)
)

.
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The optimal choice of schooling S is uniquely determined by

F′(S) > 0, F(S) ≥ z1−λ(1−α)h−ν(1−α)
P (6)

with equality if S > 0.

Proof. See Appendix A.

The higher the innate ability z of an individual, the higher the optimal choice of his schooling (as
long as λ(1− α) < 1). The effect of parental human capital hP depends on its spillover to the initial
stock of human capital (ν) and correlation with z. In particular, note that the spillover effect on
schooling is negative. This implies that, even if we were to observe that increasing parental human
capital had no effect on children’s schooling, it would not imply that there are no spillovers, but
that the spillover countervails the correlation between z and hP.

PROPOSITION 2: POST-SCHOOLING HUMAN CAPITAL For any S, human capital at the end of
schooling, hS, satisfies

whS = C1(S) · z
1

1−α

where

C1(s) =

[
α1−α2

1 αα2
2 w1−α1

r
·
(

1− e−r(R−s)
)] 1

1−α

.

Proof. See Appendix A.

The above proposition tells us that, once the length of schooling is known, the human capital level
of a child is affected only by his own learning ability z. In other words, the parental effects of ν

is subsumed in the length of schooling. His initial stock of human capital, h0, has no effect on the
amount of human capital accumulated except through the length of schooling, S.

Using Proposition 2, we can also describe the dependence of children’s earnings profiles on
parental human capital. Assume that a fraction πn of time investments n, and πm of goods in-
vestments m, are subtracted from the value of the human capital to obtain measured earnings. In
other words, we are assuming that the individual pays for the job training costs in the form of
lower contemporaneous wages.

COROLLARY 1: EVOLUTION OF EARNINGS PROFILES For an individual who attains S years of
schooling, for all a ∈ [6 + S, R),

e(a) = wh(a) [1− πnn(a)]− πmm(a) = [C1(S) + C2(a; S)] · z 1
1−α
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for any (πn, πm) ∈ [0, 1]2, where

C2(a; s) =

(
αα1

1 αα2
2 w1−α1

r

) 1
1−α

·
{

r
[∫ a

6+s
q(x)

α
1−α dx

]
− (α1πn + α2πm)

(
1− e−r(R−a)

)}

for a ≥ s− 6.

Proof. See Appendix A.

By virtue of Corollary 1, what fraction of job training costs are paid for by the firm only depends
on age, as long as it is assumed to be constant. More importantly, Proposition 1 and Corollary
1 imply that both λ and the correlation between parental human capital and a child’s learning
abilities are identified once we have data on schooling, earnings and parental human capital.

COROLLARY 2: IDENTIFYING NATURE EFFECTS 1. Suppose we observe children with the same
level of parental human capital hP = ĥP. Then for any a ∈ [6 + S, R),

e(a|hP = ĥP) ∝ [C1(S) + C2(a; S)] · F(S)
1

(1−α)[[1−λ(1−α)] (7)

so if α is known, λ is recovered from a Mincer regression controlling for parental human capital.

2. Suppose that log z = ρzhP log hP + η, and that we have a large, representative sample for same aged
individuals in which we observe (hP, S, e) (but not z). If we run the regressions

log F(S) = a0 + a1 log hP + εs

log e(a) = b0 + b1 log [C1(S) + C2(a; S)] + b2 log hP + εe, (8)

we recover the estimates

â1 = ρzhP [1− λ(1− α)]− ν(1− α), b̂2 =
ρzhP

1− α
.

Proof. Suppose we observe two individuals with different levels of schooling and age a earnings
but identical levels of parental human capital, denoted by (S1, S2), (e1, e2), and (hP1 , hP2), respec-
tively. Let (z1, z2) denote their unobserved innate abilities. Then by Corollary 1,

e1

e2
=

[C1(S1) + C2(a; S1)]

[C1(S2) + C2(a; S2)]
·
(

z1

z2

) 1
1−α

,

so ability differences are identified by earnings differences and schooling differences. Furthermore
by Proposition 1

F(S1)

F(S2)
=

(
z1

z2

)1−λ(1−α)

⇒ e1

e2
=

[C1(S1) + C2(a; S1)]

[C1(S2) + C2(a; S2)]
·
[

F(S1)

F(S2)

] 1
(1−α)[1−λ(1−α)]
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so λ is identified. The second part of the Corollary follows trivially from Proposition 1 and ?? after
plugging in the assumed relationship between z and hP.

Put simply, earnings and schooling differences identify ability differences and hence the mag-
nitude of λ, conditional on parental human capital. This is because ν has no role to play in identifying
nature’s effect on initial human capital, λ. However, even when λ is known, however, regressing
children’s schooling on parental outcomes does not identify whether the child-parent relationship
reflects selection of spillovers when ν is large. On the other hand, a Mincer regression that con-
trols for schooling linearly (because the functions (C1, C2) are close to exponential, their logarithm
is close to linear), and age, would reveal that the coefficient on parental human capital captures
only nature and completely miss nurture.

Despite the fact that we are working with a stylized model, the result that we can simply con-
sider the Mincer coefficient on parental human capital as nature may be surprising, since it does
not pose any identification problems at all.6 We will see in Proposition 3, however, that conditional
on schooling—not linearly—it is the difference in earnings profiles across individuals that identifies
ν from the data, even though ν has no impact on earnings once the length of schooling period is
determined for any given individual. In other words, identifying nature and/or nurture effects
depends on how we control for the relationship between own schooling and earnings.

2.2 Recovering Parental Spillovers

One of the advantages of our framework is that it is possible to measure the parental spillover by
using data on individual earnings, own schooling and parental human capital.7 A robust find-
ing in empirical studies is that even after controlling for observables, mothers’ education has a
statistically significant relationship (not causation) with children’s schooling and earnings. Our
spillovers are a structural representation of this. In this section, we demonstrate that our theory
generates clear-cut predictions from which we can estimate the spillover terms ν using micro data.

Recall from Proposition 1 that learning ability z has a positive influence on schooling as long
as λ(1− α) < 1. Controlling for ability (which is unobserved), i.e., the fact that children of higher
parental human capital will tend to have higher learning abilities (through correlation of z across
generations), a higher parental human capital level implies a higher initial stock of human capital
for the child (though ν), which decreases schooling. We now argue that one can use information
on individual earnings, schooling and parental human capital (inferred from parental schooling)
to estimate the relative importance of ν relative to θ.

6In an environment in which z is transmitted intergenerationally, ρzhP is positive only to the extent that high ability
parents who tend to have high human capital also have high ability children.

7In the data, we observe parental schooling, but not earnings. On the other hand, we do observe earnings for the
parent generation. To estimate the model, we link parental earnings to schooling using a separate Mincer regression on
the parent generation to capture the parental human capital distribution.
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COROLLARY 3 Suppose we observe children with the same level of schooling, S 6= 0. Then for any
a ∈ [6 + S, R), earnings depend only on parental human capital through ν and not on innate abilities, i.e.

e(a|S = Ŝ) ∝ h
ν

1−λ(1−α)

P (9)

so if α is known and since λ can be identified from Corollary 2, ν can be identified from regressing earnings
on parental human capital, controlling for own schooling.

Proof. Suppose we observe two individuals with the same level of schooling and age a earnings
but different levels of parental human capital, denoted by (S1, S2), (e1, e2), and (hP1 , hP2), respec-
tively. Denote the ability of these two individuals by (z1, z2). Since the years of schooling are the
same for these two individuals, by Proposition 1 we must have

(
z1

z2

)1−λ(1−α)

=

(
hP1

hP2

)ν(1−α)

⇒ z1

z2
=

(
hP1

hP2

) ν(1−α)
1−λ(1−α)

⇒ e1

e2
=

(
hP1

hP2

) ν
1−λ(1−α)

where the last relationship follows from Corollary 1. So ν is identified.

Corollary 3 shows that our model has clear implications for the level and steepness of the
age-earnings profiles of two individuals with the same years of schooling but parents with dif-
ferent levels of human capital: the steepness of the profiles should be identical while parental
human capital differences manifest as level differences. Given that we have already shown that λ

is identified, the earnings differentials between individuals with the same years of schooling but
different parental human capital identifies ν. If there is no earnings differential whatsoever across
these individuals, ν = 0. On the other hand, sizable earnings differentials across such individuals
will be associated with large values for ν.

The next natural questions are whether such level differences are empirically reasonable, and
how to control for age and schooling in the data to separately identify ρzhP from ν, i.e., the nature
and nurture effects. In section 3 we present evidence that justifies our assumptions and present
raw evidence on the magnitude of ν, and in section 4 we present a generalized model with taste
shocks so that we do not overestimate the structural effects from the stylized model. Before this,
however, we compare our model with previous studies.

2.3 Comparison to Previous Studies

By Proposition 1, for S ∈ [6, R− 6) we can write

log F(S) = [1− λ(1− α)] · log z− ν(1− α) · log hP.

Now suppose that F(S) can be approximated by

F(S) = exp [ã1(S− ã0)] .
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Then assuming α is a known parameter, we can write

S = −ã0 +
1− λ(1− α)

ã1
· log z− ν(1− α)

ã1
· log hP

⇒ S = a0 + a1(λ) · log z + a2(ν) · log hP. (10)

If log z is observable, (10) is a testable equation given data on (S, log hP) for a cross section of
individuals. The classical challenge with running such a regression, of course, is that log z is
unobserved and correlated with log hP, which creates an endogeneity problem.

In this section, we use equation (10) to compare our model with the previous empirical lit-
erature which will highlight what we gain from a structural estimation. Most previous studies
overcome the endogeneity problem by using special datasets: i) twins and families, ii) adopted vs
biological children, and iii) compulsory schooling reforms as natural experiments. The problem is
that all previous studies look at a unidimensional child outcome as a dependent variable, which
is usually schooling. Our structural model points to the fact that more information may be gained
by looking at the joint distribution of schooling and earnings of the child.8

Twins and Extended Families Given (10), we can write a variance decomposition similar to
traditional twin studies9 as

V [S] = [a1(λ)]
2

V [log z] + [a2(ν)]
2

V [log hP] + 2a1(λ)a2(ν)C [log z, log hP]

= [a1(λ)]
2 σ2

z + [a2(ν)]
2 σ2

hP
+ 2a1(λ)a2(ν)ρzhP σzσhP ,

where σz is the standard deviation of abilities, σhP the standard deviation of parental human capital
and ρzhP the correlation between children’s innate abilities and parental human capital. The more
recent literature has already pointed out the drawbacks to such a decomposition, one being that
even if it were to work perfectly, relative contributions to the total R2 does not in fact tell us how
nature and nurture affect children’s outcomes (unless there is an underlying structure, as in our
model).10 Another concern is that they impose ρzhP = 0, while especially for twins and families,
this correlation is potentially high, making it hard to interpret the decomposition. Such studies
infer the unobserved variation in parental ability from the observed variation in child and parent
outcomes, typically schooling. Hence any observed variation in child outcomes unexplained by
observed variations in parental outcomes can be biased toward being attributed to unobserved
genetic variation.

Adopted vs Biological Children The earnings equation (10) resembles the reduced form mod-
els studied in Plug and Vijverberg (2003) or Björklund et al. (2006). The main challenge for, and

8Some studies, of course, do use the child’s earnings or income as the dependent variable, but then they do not use
this jointly with information on the child’s schooling.

9 E.g., Behrman et al. (1977). Behrman and Taubman (1989) extends this to account for relatives.
10In virtually all the non-twin study papers we cite, i.e. Plug and Vijverberg (2003); Black et al. (2005); etc.
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usually, also the main contribution of such studies, is how to control for nature, which is unobserv-
able. The former study exploits the difference between adopted and biological children, while the
latter uses information on twin parents. In contrast to such studies, we instead posit a structural
relationship between own schooling and earnings, and exploit data on both to obtain estimates
for ν separately (Proposition 3). To clarify why our approach is desirable, suppose that all log
variables are centered at zero and that

log z = ρz log zP + ηz (11a)

log hP = ρP log zP + ηP. (11b)

Equation (10) becomes

S = a0 + a1(λ)ρz log zP︸ ︷︷ ︸
(a)

+ a2(ν)ρP log zP︸ ︷︷ ︸
(b)

+ a2(ν)ηP︸ ︷︷ ︸
(c)

+a1(λ)ηz. (12)

In this equation, both (a) and (b) come from the parent’s genetic ability, but (a) represents how
much of the child’s schooling can be explained by genetic persistence (nature), while (b) represents
how much of human capital spillovers (nurture) can be explained by the parent’s genetic ability.
Similarly, both (b) and (c) are nurture, but (c) is the part of nurture that cannot be explained
by parental ability alone. In other words, (a) is purely prenatal and (c) postnatal, but (b) is an
interaction of both.

The basic idea in the adoption literature is to capture the pure nature effect by exploiting the
fact that for adopted children, ρz must be zero, or at least smaller than for biological children.
For example, Plug and Vijverberg (2003), proxy for parental ability using IQ test scores (zP in our
model). Then the difference in the coefficients on parental IQ between biological and adopted chil-
dren identifies nature. But the empirical counterpart to hP in their framework is parental income.
To obtain a measure for εP, they purge parental income of the parent’s own ability,11 which they
use in the estimation. The nature-nurture gap (the ratio between the coefficients for biological and
adopted children, or a1 in the above equation) drops by half once parental income is purged as
opposed to when it is not. This indicates that not appropriately accounting for the effect of the
parent’s ability on parental income produces upwardly biased estimates of nature, which is ap-
parent from the above equation because otherwise (b) would be incorrectly attributed to nature
while in fact it is nurture.

We further argue that IQ is only a noisy measure of nature which should partially be cate-
gorized as nurture, which would also bias the estimate upward.12 Relatedly, note that a2 is also
nurture, but is ignored because they cannot separate whether it comes from parental ability or hu-
man capital. The presence of an interaction such as (b) highlights how sensitive a nature-nurture

11This is achieved by regressing parental income on parental IQ, parental schooling and grandparent’s schooling. In
our context, this means they are also controlling for the human capital component of income, so what they actually get
can be interpreted as random shocks to parental human capital.

12Also emphasized in Sacerdote (2002).
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decomposition can be depending on what measures for parental nature or nurture effects are
taken. Indeed, a linear decomposition may not be possible to begin with. For example, Björklund
et al. (2006) explicitly match adopted children to their biological parent which allows them to ex-
plicitly account for (a) and (b) separately, and find not only a larger effect for nurture, but that the
interactive component (b) is significant.

Compulsory Schooling Reforms as a Natural Experiment Finally, our structure can yield large
values for nurture as measured by ν while remaining consistent with studies that find that in-
creased parental schooling following the advent of compulsory schooling laws had no effect on
the next generation’s schooling, such as Black et al. (2005).13 In the context of our model, previous
studies that use compulsory schooling laws as a natural experiment run a Two Stage Least Squares
(2SLS) of the form

S = b0 + b1 · log hP + b2 · [X XP]
′ + ε

log hP = bP
0 + bP

1 · REFORM + bP
2 · [X XP]

′ + υ,

where S is the child’s years of schooling, log hP is parental human capital, and REFORM is a
dummy that equals 1 after implementation of the law, and 0 before. The vectors [X, XP] are in-
dividual characteristics of the child and parent, respectively. The 2SLS structure is supposed to
take REFORM as an instrument for log hP. If this is a valid instrument, we can recover parental
spillovers from the estimates of (b1, bP

1 ) by looking at the changes in (S, log hP) after the reform.
Assuming that the reform increases parental schooling by ∆SP years, children’s schooling should
increase by ∆S years according to

∆ log hP = bP
1 ∆SP ⇒ ∆S = b1 · ∆ log hP = b1bP

1 ∆SP . (13)

Hence b1bP
1 is an estimate of a parental spillovers terms of years of schooling.

We already saw in the previous subsection that the fact that increasing parental education has
no effect on children’s education may be an outcome of the nature and nurture countervailing each
other, so that the estimated b1 need not be large. At the same time, individual schooling decisions
are not only affected by economic earnings abilities (z), so that a weak response in children’s
schooling does not necessarily translate into parental human capital having no effect on their
children. Indeed, in our counterfactual analysis, we find that much of schooling variation can be
explained by preference heterogeneity. For these reasons, we also find that a large OLS coefficient
is consistent with a small IV coefficient even when the structural spillover parameter ν is large.
Most importantly, the effect of the counterfactual reform is found in the children’s counterfactual
earnings, not schooling.

13In contrast to Norway, Oreopoulos and Page (2006) find a significant effect in the U.S.. But their dependent variable
is whether children younger than 15 repeat a grade, which is difficult to compare to our model.
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3 Data Analysis

We showed above that it is possible to measure parental spillovers by using individuals’ earnings
and schooling data. A robust finding in empirical studies is that even after controlling for observ-
ables, a mother’s education has a significant impact on children’s schooling and earnings.14 In
the previous section we argued that such a significant coefficient can be capturing either nature
or nurture, depending on how the relationship between schooling and earnings are controlled for,
even when the structural spillover is large. This section presents the data we use to estimate the
model along with a preliminary empirical analysis to compare the predictions of the simple model
with available empirical evidence. This sheds light on how the spillover parameter is identified in
the estimated model of section 2.

3.1 Data

The Health and Retirement Study (HRS) is sponsored by the National Institute of Aging and con-
ducted by the University of Michigan with supplemental support from the Social Security Ad-
ministration. The HRS is a national panel study with a sample (in 1992) of 12,652 persons in 7,702
households. It over-samples blacks, Hispanics, and residents of Florida. The sample is nation-
ally representative of the American population 50 years old and above. The baseline 1992 study
consisted of in-home, face-to-face interviews of the 1931-41 birth cohort and their spouses, if they
were married. Follow up interviews have continued every two years after 1992. As the HRS has
matured, new cohorts have been added.

A large fraction of HRS respondents gave permission for researchers to gain access, under
tightly restricted conditions, to their social security earnings records. Combined with self reported
earnings in HRS, these earnings records, although top-coded in some cases, provide almost the
entire history of earnings for most of the HRS respondents. We impute earnings histories for
those individuals with missing or top-coded earnings records assuming the following individual
log-earnings process

log w∗i,0 = x′i,tβ0 + ε i,0

log w∗i,t = ρ log w∗i,t−1 + x′i,tβx + ε i,t, t ∈ {1, 2, ..., T}
ε i,t = αi + ui,t

where w∗i,t is the latent earnings of individual i at time t in 2008 dollars, xi,t is the vector of char-
acteristics at time t, and the error term ε i,t includes an individual specific component αi, which
is constant over time, and an unanticipated white noise component ui,t. We employed random-
effect assumptions with homoskedastic errors to estimate above model separately for men with
and without a college degree. Scholz et al. (2006) gives details of the above earnings model and
its coefficient estimates, along with a description of the procedure used to impute earnings for

14One exception is Behrman and Rosenzweig (2005), once they control for twin parents.
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Table 1: Summary Statistics by Years of Schooling

HSG CLG All

Schooling 12.00 16.00 12.21
(3.27)

Mother’s schooling 9.38 10.95 9.45
(2.87) (3.07) (3.42)

Father’s schooling 8.76 10.82 8.96
(3.29) (3.58) (3.85)

% White 86.66 90.99 84.39
% Black 11.14 6.46 13.04
Earnings at age 30 36.55 37.84 33.73

(17.03) (18.22) (17.55)
Earnings at age 40 48.28 56.13 47.30

(22.04) (28.89) (24.27)
Earnings at age 50 46.68 69.35 50.69

(30.11) (53.51) (42.51)

Sample size 1823 588 5677
- HSG=12, CLG=16 years of schooling.
- Standard deviations in parentheses.
- Earnings inflated to 2008, measured in $1000.

individuals who refuse to release or who have top-coded social security earnings histories.
For the purpose of this paper, we start with 30,548 individuals in the RAND HRS Version J

(RAND, June 2010). We keep 6967 male respondents born between 1924 and 1941. We drop 32
individuals with missing information on years of schooling. Another 127 individuals are dropped
because we can not get any of their earnings histories between age 25 and age 55 even with the
above model. We drop another 1131 observations for whom we have no earnings data either
between 24 and 26 or between 49 and 51, the trough and peak of average earning profiles. This
leaves us with 5677 observations. Table 1 describes this sample by years of schooling, and Table 9
in the appendix describes it by lifetime earnings, which is defined to be the sum of earnings from
age 25 to age 55.15

3.2 Mincer Regression

We first augment a standard Mincer regression with parental schooling. We estimate the regres-
sion model

log wi = β0 + β1Si + β2SP,i + f (EXPi) + βXXi + εi (14)

15We use the HRS because it gives us the longest information on individuals’ earnings histories while still providing
information on parental schooling, and also because these older individuals and their parents were less affected by
compulsory schooling. However, the evidence we present here is also consistent with available data from the PSID or
NLSY79.
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Table 2: Mincer Regressions
(1) (2) (3) (4) (5) (6) (7)

S (EDUC) 0.0657∗∗∗ 0.0599∗∗∗ 0.0609∗∗∗ 0.0592∗∗∗ 0.0591∗∗∗ 0.0869∗∗∗ 0.0600∗∗∗

(113.27) (86.57) (86.44) (79.90) (79.87) (46.15) (78.15)
Mother SP 0.0127∗∗∗ 0.0116∗∗∗ 0.0157∗∗∗ 0.0130∗∗∗

(21.63) (15.55) (10.83) (20.12)
Father SP 0.0092∗∗∗ 0.0026∗∗∗

(17.03) (3.93)
Parental SP 0.0068∗∗∗

(20.73)
EXP 0.116∗∗∗

(64.90)
EXP2 -0.0018∗∗∗

(-74.38)
EXP×S -0.0013∗∗∗

(-17.34)
EXP×Mother SP -0.0001

(-1.95)

Observations 171194 150684 146077 140380 140380 150684 127666
R2 0.156 0.154 0.151 0.151 0.152 0.152 0.133
- OLS regressions of (log) earnings on years of schooling and years of schooling of the parents

controlling for potential experience, race and cohort effects. t-stats shown in parentheses.
- Age 25-55, cohort born 1926-1941, Male, earnings below first percentile are trimmed.

where f (·) is a flexible function we specify in various different ways below, and wi, Si, SP,i, and
EXPi denote, respectively, earnings, years of education of individual i, years of education of indi-
vidual i’s parents, and potential experience (age). The vector Xi is a vector of demographic control
variables (race and cohort dummies) and εi is an error term. We estimate different specifications
of (14) using data from the HRS, and tabulate the results in Table 2.

We consider three measures for SP,i: mother’s years of education, father’s years of education,
and the sum of both parent years of schooling. Our theory is silent on which of these measures
is more appropriate. However, many studies have found that parental inputs have its strongest
impact on children’s human capital early on (the ν effect), e.g. Del Boca et al. (2012), who also find
that mothers spend more time with their children at an early age. This leads us to suspect mothers
should play the dominant role, which is confirmed in our results in Table 2.

The first specification (1) is a standard Mincer regression and uses dummies for each potential
experience level observed in the data. The return to schooling is estimated to be 6.57%. This is in
the lower range of the estimated returns to schooling for more recent cohorts, which is in line with
the increased return to education over the last century (see Goldin and Katz (2007)). The returns
slightly decrease to 5.99% when we include mother’s years of schooling in the regression (column
2). The coefficient on mother’s education is 1.27% and is statistically significant. This suggests
that an additional year of schooling for the child has about the same effect on earnings as would
being born to a mother with five additional years of schooling.

The results are quite similar when we measure parental human capital with the father’s year of
education (column 3) but with an attenuated coefficient. The rate of return of paternal education
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Figure 1: Evidence of Spillovers.
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Figure 10: Earnings Profiles of High School Graduates by Mother’s Schooling Level: 1926-

1941 Birth Cohort

38

Earnings profiles of high school graduates (12 years of schooling) by mother’s schooling level: 1926-1941 birth cohort.
The y-axis is annual earnings in 2008 USD.

is 0.92% and is statistically significant. The coefficient drops further when we measure parental
human capital as the sum of the schooling of both parents (column 4). If we include both (column
5), mother’s education is very slightly reduced from 1.27% to 1.16% while the coefficient on fathers
drop significantly from 0.93% to 0.26%. In column (6) we replaced the experience dummies with a
quadratic in experience, and also added two interactions terms: one between parental education
and experience and another between education and experience. The interaction between parental
education and experience is insignificant. The results are quite stable when the sample is restricted
to white males only (column 7).

Overall, we find that mothers have a stronger impact on sons than fathers and that the es-
timated effect of parental education, or β2, is about 1.5%. These results are in line with those
reported by previous empirical work on this topic (e.g. Card (1999)). The question is, does this
represent intergenerational persistence of abilities or spillovers?

Nature in our model indicates would be captured by the β2 coefficient (Corollary 2). To cap-
ture nurture, we should not assume a log-linear relationship between the child’s earnings and
schooling but condition completely on the child’s schooling level. Figure 2 depicts the average
age-earnings profile for male high school graduates controlling for cohort effects. We split in-
dividuals into two subsamples depending on whether or not the mother has more than 6 years
of schooling. The estimated profiles support the importance of parental human capital since we
observe higher earnings for individuals with more educated mothers. It appears essentially as a
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Table 3: Auxiliary Parameters

Schooling Educational Average Earnings at age

Mom SP Own S S Attainment (%) 23-27 28-32 33-37 38-42

≤5
≤11 6.35 60.04 1.00 1.41 1.71 1.85
≥12 13.12 39.96 1.26 1.91 2.32 2.51

6-7
≤11 8.02 42.48 1.10 1.66 1.98 2.11
≥12 13.53 57.52 1.27 1.91 2.37 2.65

8
≤12 10.72 66.23 1.35 1.99 2.42 2.62
≥13 15.21 33.77 1.31 2.12 2.71 2.99

9-11
≤12 11.00 63.73 1.37 1.98 2.38 2.57
≥13 15.24 36.27 1.30 2.15 2.65 2.96

12
≤12 11.21 45.41 1.52 2.24 2.62 2.77
≥13 15.38 54.59 1.36 2.29 2.87 3.34

≥13
≤12 11.41 19.56 1.39 1.96 2.33 2.49
≥13 15.83 80.44 1.30 2.23 2.82 3.27

Note that for mom’s with low SP (the first four rows), we divide whether the child’s educational attainment was low
or high by whether or not he graduated from high school, while for the rest by whether he advanced beyond high
school. In the third column, S̄ denotes the average years of schooling attained in each category. All average earnings
are normalized by the average earnings from 23-27 of the group with less than 12 years of schooling whose moms
attained 5 years or less of schooling.

permanent level effect that persists throughout an individual’s career with no evidence of increas-
ing steepness of the age-earnings profile.

It is precisely this gap that captures parental spillovers in our model. To justify our assumption
of a constant spillover, we further need to examine whether this gap remains stable across different
levels of children’s schooling. Furthermore, this hinges on the gap actually capturing something
different from the previous Mincer regression coefficients. To see if this is true, we need to examine
whether or not the earnings-schooling relationship for children is in fact log-linear, evidence of
which we present next.

3.3 Evidence of Spillovers

To understand the empirical evidence in relation to the model we estimate, we drop more observa-
tions and focus on the exact data we use for the estimation. Specifically, we drop those individuals
for whom we cannot construct average earnings for ages 25,30,35 and 40, which are in turn com-
puted by simply averaging an individual’s earnings from ages 23-27, 28-32, and so forth. This
still leaves us with 4317 individual observations and 86340 annual earnings observations. The
auxiliary parameters used in the estimation are tabulated in Table 3.

In Figure 2, we plot the average earnings profiles of individuals, now in logs, divided by their
own education levels and mothers’ education levels. In the left panel, we compare the profiles

20



Figure 2: Identifying Spillovers
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(a) Children with 12 vs. less than 12 years of schooling.
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(b) Children with 12 vs. 16 or more years of schooling.

Earnings profiles of children of different schooling levels by mother’s schooling level: 1926-1941 birth cohort. The y-
axis is average log annual earnings in 2008 USD. Mothers’ schooling levels are divided by 8 years or below, and more
than 8 years.

of children with 12 years of schooling split by whether or not their mothers attained 8 years or
schooling, against the same profiles but of children with less than 12 years of schooling. In the
right, we compare the profiles of children with 12 years of schooling against those with 16 or more
years of schooling (college).

There are several things to note. First, note that the average log earnings profiles of children
with the same education level but different mother’s schooling levels are not only nearly paral-
lel, but more or less constant across all three categories of the children’s educational attainment.
This is further evidence of a constant parental spillover parameter ν that affects children’s earn-
ings with constant log-level effect. Second, the profiles of children with different education levels
but the same mother’s schooling levels are neither parallel nor do the gaps look similar across
children’s education levels. This is consistent with equation (7) in Corollary 2, since the earning
differences are increasing in age (through the function C2); and also (6) in Proposition 1, since the
relationship between log z (which governs earnings) and S are non-linear through the function
F(s) . Nonetheless, these gaps are what would intuitively identify λ, the early nature effect.

Put together, while it does seem that parental schooling is linearly related to children’s earnings
controlling for children’s schooling, the converse is not true—in fact, it seems almost as if earnings
are increasing in a concave matter in schooling, once controlling for mom’s schooling. If our
simple model were true, these differences are picking up the selection effects in the determination
of an individual’s optimal schooling decision, which is non-linear in log earnings. Then by forcing
the earnings-schooling relationship to be log-linear as in a Mincer regression, parental spillovers
would be soaked into the coefficient on own schooling and the coefficient on mother’s schooling
would instead reflect the selection, as in equation (8) in Corollary 2.
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Table 4: Augmented Mincer Regressions

(1) (2) (3) (4)

S 0.076∗∗∗ 0.109∗∗∗ 0.107∗∗∗

(74.08) (39.42) (36.78)
Mom SP 0.017∗∗∗ 0.017∗∗∗ 0.022∗∗∗ 0.022∗∗∗

(19.62) (20.15) (10.67) (25.60)
EXP×S -0.002∗∗∗ -0.002∗∗∗

(-12.70) (-10.97)
EXP×SP -0.000

(-2.37)
S < 12 -0.375∗∗∗

(-50.71)
S ∈ (12, 16) 0.048∗∗∗

(6.42)
S ≥ 16 0.196∗∗∗

(23.85)

R2 0.1843 0.1860 0.1861 0.1792

OLS regressions of log earnings on different controls, t-stats shown in paranthesis. All regressions also include a linear
and quadratic term for potential experience EXP, not reported in the table but all significant at the 1% level. The
magnitudes of the coefficients on EXP and EXP2 are similar to Table 2, and also statistically equal to each other for
specifications (1) and (4), and (2) and (3), respectively.

Equipped with this intuition, we rerun several augmented Mincer regressions to gain a sense
of the magnitudes of selection (ρzhP ) and spillovers (ν) in our model. All the regressions in Table 4
includes a linear and quadratic term for potential experience, as well as race and cohort dummies.
The magnitudes of the coefficients are similar to what was found in Table 2, but with slightly larger
coefficients on both S and SP which we suspect is due to dropping noisier earnings observations
at later stages of the lifecycle.

In column (1), we run the standard Mincer regression with own and mother’s schooling S and
SP; according to our model, the coefficient on SP here is explained more by nature than nurture. In
columns (2)-(4), we control for S in a way that our model tells us that the coefficient on SP would
instead reveal nurture. In column (2), we include an interaction term for experience and S. Since
from Figure 2, a potential reason that the profiles would not reveal nurture was their different
slopes by S, controlling for this should bring us closer to recovering ν from the coefficient on SP.
For robustness, in column (3) we also include an interaction between experience and SP, which is
insignificant and hence in line with our intuition.16

Note that although the coefficients on SP are all similar across different specifications, the inter-
action between EXP and S in (2) and (3), and the coefficients on the three education level dummies
in (4) all point toward a non-linear relationship between education and earnings. Hence, according
to our model, this should rather be interpreted as the implied magnitudes of nature and nurture

16This coefficient was also insignificant in Table 2.
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being similar, with each having approximately one-fifth an effect on earnings as own schooling.
Of course, without knowing the magnitudes of the rest of the parameters in the model, and

in particular α, which governs the returns to human capital accumulation, and λ, the early nature
effect, we cannot recover any point estimates. Furthermore, since schooling is also a function of
nature and parental human capital, a single earnings equation even if controlling for schooling
does not reveal the causal effect of nature or spillovers on schooling nor earnings. As we em-
phasized in the introduction, we need to be able to exploit both pieces of information, which is
what our model does for us. To estimate the exact values of the spillover and its causal effect, we
generalize the simple model of section 2 to bring it closer to the data.

4 Estimation

The exercise above suggests a novel way of estimating intergenerational parental human capital
spillovers. The model has stark implications for the impact of parental schooling on children’s
outcomes, and by conditioning on the schooling of the child, we are able to get around some
of the selection issues commonly encountered in empirical work. The goal of the generalized
model we estimate in this section is to retain the simplicity of the framework presented in section
2 and empirical intuition from section 3, and yet be able to obtain realistic predictions on the
transmission of human capital and schooling across generations.

The underlying environment is one in which innate ability z is transmitted across generations.
However, our framework does not require us to make specific assumptions on this transmission
process per se. The magnitude of the spillover is determined only the state of the child, which
consists of his or her innate ability z and the human capital level of the parent hP. Hence, for our
purposes all that is required is the estimation of ρzhP , the correlation between z and hP. Since an
overriding objective is to fit the distribution of schooling, we will also include a taste for schooling
in the objective function. Many previous studies find that psychic costs, in addition to innate
ability (selection), play an important role in rationalizing schooling decisions.

We show in our counterfactual experiments that the coefficient on parental human capital in
a Mincer regression captures nature, in the sense that when ρzhP is set to zero, the counterfactual
coefficient is also close to zero. We also show that the coefficient barely changes even if we set
ν = 0, indicating that our structural model is consistent with the difficulty of identifying nurture
in the data. Nonetheless, we show that a counterfactual increase in parental human capital leads
to a XX% increase in children’s earnings even controlling for selection, while selection accounts
for XX%. Furthermore, this happens without increasing the children’s schooling. Part of this
is explained by the heterogeneity in tastes for schooling. Given this, we conduct a hypothetical
schooling reform counterfactual which shows that a large OLS coefficient when regressing child’s
schooling outcomes on parent’s schooling is consistent with a near-zero IV coefficient, but has a
XX% effect on earnings.
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4.1 A Generalized Model of Parental Spillovers

The generalized model we estimate assumes different laws of motion during schooling and on the
job. We also assume that a non-pecuniary benefit from schooling which varies across individuals.
The problem faced by an individual at age 6 can be written as

V(6, h0) = max
{n(a),m(a),S}

{∫ 6+S

6
e−r(a−6) [ε−m(a)] da +

∫ R

6+S
e−r(a−6)h(a) [1− n(a)] da

}
subject to

ḣ(a) =

zh(a)α1 m(a)α2 , for a ∈ [6, S),

z[n(a)h(a)]αW , for a ∈ [S, R),

h(6) = h0 = bzλhν
P. (15)

The variable ε represents a non-pecuniary benefit from schooling (but measured in pecuniary
units) that varies across individuals but stays constant throughout the life-cycle. Since ε only
affects an individual’s desire to remain (or not) in school while having no direct effect on earnings,
the inclusion of taste heterogeneity allows the model to flexibly account for schooling-earnings
relationships that do not solely rely on economic factors (parental human capital and learning
ability). This not only helps to account for the data but also ties our hands to not label everything
as nature or nurture.

The only changes we have made in addition to the taste shock is to explicitly split the schooling
and working phase, during which the human capital accumulation technology differs. Schooling
only involves goods inputs while OJT only involves time inputs. The technology in the schooling
phase is identical to the simple model with n(a) = 1, while the working phase is identical to the
the simple model with α2 = 0. We also allow αW , the returns to human capital investments during
the working phase, differ from the schooling phase. The parameter b that multiplies initial human
capital captures the overall level of human capital in the model, while we have dropped the wage
rate w since it is not separately identified from b in our partial equilibrium setup (i.e., it is not
separately identified from units of human capital without modeling the demand for labor).

At age 6, an individual is completely characterized by (hP, z, ε), and while we cannot derive
closed form solutions for schooling and earnings as in the simple model,17 the optimal schooling
and resulting level of earnings can be characterized using similar methods. In Appendix B, we
characterize the equations governing optimal schooling and earnings given an individual state
(hP, z, ε), and describe how a solution is found numerically in Appendix C.

17This is primarily because in general, the supply of labor, 1− n(a), jumps from 0 to a strictly positive amount once
an individual begins to work, unlike in the simple model where it increases continuously over time.

24



4.2 Indirect Inference

Our dataset contains information on parental schooling, children’s schooling as well as complete
earnings profiles of children. Since we only have information on the schooling of he parent, we
approximate the parental human capital, or earnings, of the parent by a standard Mincerian equa-
tion relating parental schooling to earnings, hP = a exp(βSP). The only usage of β is to gain a
statistical relationship over the initial conditions for the children. The coefficient a is ignored since
it is not separately identified from b in the child’s initial human capital (15).

We also make assumptions on the population distribution of (hP, z, ε). We assume that both(
log hp, log z

)
and (log hP, ε) are joint normal, but that log z and ε are independent conditional on

hP. Specifically, we assume that log hP

log z
ε

 ∼ N

 µh

µz

µε

 ,

 σ2
h 0 0

ρzhP σhσz σ2
z 0

ρεhP σhσε 0 σ2
ε


 .

Given the relationship hP = exp(βSP), we have the grid points for hP once we know SP. To get
the grid points for z and ε, notice that our distributional assumptions imply

log z| log hP ∼ N
(

µz + ρzhP

σz

σh
(log hP − µh) , σ2

z
(
1− ρ2

zhP

))
ε| log hP ∼ N

(
µε + ρεhP

σε

σh
(log hP − µh) , σ2

ε

(
1− ρ2

εhP

))
.

For each grid point of hP, we discretize these two conditional distributions to get the grid points
for z and ε according to Kennan (2006).

For each combination of (hP, z, ε), we solve the model numerically as described in Appendix
C. This induces the optimal choice of schooling and life-cycle earnings for any given initial con-
dition. The relevant model moments, Ψ (Θ), are computed by integrating over the population
distribution of this vector.

The full set of structural parameters is the vector Θ. We partition this vector into two vectors,
i.e. Θ =

[
Θp, Θe

]
, where Θp = [a, w, β, r, R, µh, σh] includes parameters that are set a priori. The

rest of the parameters, Θe = [b, λ, ν, α1, α2, αW , µz, σz, ρzhP , µε, σε, ρεhP ], are estimated by indirect
inference.

Parameters Set a Priori As already explained above, the parameters a (the constant of from
running a Mincer regression of oldest cohorts earnings) and w (the wage rate) are normalized to 1,
because they are not separately identified from b (the constant multiplying initial human capital).
Since human capital in our model is essentially efficiency wage units, without a demand side for
human capital we cannot separate the average level of human capital from the wage.

The coefficient β is recovered from running Mincer regressions similar to (14) for the earliest
cohorts in our sample, only without parental schooling, which is mostly unobserved for this small
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sample (513 men and 603 women). Furthermore, the β coefficient is quite stable across cohorts,
ranging from approximately 0.04 to 0.06 for men and 0.05 to 0.09 for women; we fix β = 0.06 in our
model. Note that this value is also in a similar range as the coefficients we recover from the pool
of later cohorts in Tables 2 and 4, which includes more controls; our estimates are not sensitive to
different values of β within this range.

Given hP = exp (βSP), we have log hP = βSP. Thus µhP = βESP and σhP = βσSP . We take the
mean and variance of mother’s schooling, ESP and σSP , directly from their sample analogs in the
data, so the only assumption we are imposing is on the correlation structure. These values are 9.26
and 3.52, respectively. We then get µhP = 0.556 and σhP = 0.211.

The interest rate r and retirement age R are fixed at 5% and 65, respectively.

Estimated Parameters We are left with 12 parameters to be estimated. Indirect inference works
by selecting a set of statistics of interest, which the model is asked to reproduce.18 These statistics
are called sample auxiliary parameters Ψ̂ (or target moments). For an arbitrary value of θe, we use
the structural model to compute auxiliary parameters Ψ(θe). The parameter estimate θ̂e is then
derived by searching over the parameter space to find the parameter vector which minimizes the
criterion function:

Θ̂e = arg min
θe∈Θe

(
Ψ̂−Ψ(θe)

)′W (
Ψ̂−Ψ(θe)

)
where W is a weighting matrix and Θe the estimated parameters space. This procedure generates a
consistent estimate of θe. We use the inverse of the variance-covariance matrix of the data moments
Ψ̂ as weighting matrix. Following Hall and Horowitz (1996), it is estimated by bootstrap.

The minimization is performed using Nelder-Mead simplex algorithm. While this method
does not guarantee global optima , we used more than a million different starting values to nu-
merically search over a wide range of parameter values (for which most have natural boundaries).

The standard errors are obtained using 500 bootstrap repetitions. In each bootstrap repetition,
a new set of data is produced by randomly selecting blocks of observations.19 In the bth boostrap
repetition, auxiliary parameters Ψ̂b are calculated using the new set of data. An estimator θ̂b

e is
found by minimizing the weighted distance between the recentered bootstrap auxiliary parame-
ters

(
Ψ̂b − Ψ̂

)
and the recentered simulated auxiliary parameters

(
Ψ(θb

e )−Ψ(θ̂e)
)
:

θ̂b
e = arg min

θb
e∈Θe

((
Ψ̂b − Ψ̂

)
−
(

Ψ(θb
e )−Ψ(θ̂e)

))′
W
((

Ψ̂b − Ψ̂
)
−
(

Ψ(θb
e )−Ψ(θ̂e)

))
.

In all cases, the auxiliary parameters Ψ̂ include all moments tabulated in Table 3 years of schooling,
except of course one of the child’s educational attainment share conditional on mom’s schooling
(since they add up to 1) and the average earnings from 23-27 of the group with less than 12 years

18See Gourieroux et al. (1993) for a general discussion of indirect inference.
19See Hall and Horowitz (1996) for more details on the Block-Bootstrap. The sampling is random across households

but is done in block over the time dimension.
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Table 5: Parameter Estimates
Spillover/Childhood HCapital Production
b 2.307 α1 0.185
λ 1.641 α2 0.368
ν 0.964 αW 0.422

Ability dist Taste dist
µz -0.624 µε 8.056
σz 0.049 σε 5.439
ρzhP 0.348 ρεhP 0.730

of schooling whose moms attained 5 years or less of schooling, since it is normalized to 1. We also
include five additional auxiliary parameters in Ψ̂: the Mincer regression coefficients on S and SP

from specification (1) of Table 4, the correlation between S and SP, the OLS regression coefficient
from regressing S on SP, and the aggregate level of log earnings. The first four moments are
included to capture the earnings and schooling gradients in the data we may miss by targeting
aggregated moments, while the last moment is included to discipline b, the initial level of human
capital that is identical for all individuals. In sum, we have 70 auxiliary parameters to match with
12 model parameters.

5 Results

Table 5 reports the 12 estimated parameters and standard errors (COMING SOON). The parame-
ters that govern human capital production, (α1, α2, αW) are in the lower range of estimates found
in the literature that use comparable Ben-Porath human capital models, e.g. Huggett et al. (2011)
use an estimate of αW = 0.6 for post-schooling human capital production.

There are a few things to note. First, the returns to human capital investment is slightly larger
during schooling (α1 + α2 = 0.553) than on the job (αW , and since wages are normalized to 1).
This means that for purposes of human capital accumulation, an individual would prefer to stay
in school rather than work. Second, the magnitudes of λ and ν indicate that both abilities and
spillovers are important during early childhood. As a precautionary note, that λ > 1 should not
be taken as an anomaly—since learning ability units are normalized to the unobserved individual
productivity of human capital production after age 6, this merely means that learning ability is
relatively important before age 6. (In other words, we could have set h0 = zhθ

P and ḣ = zλ̃hα1 mα2

instead, with λ̃ = 1/λ.)
Most importantly, the spillover parameter ν is quite large; indicating that parental human cap-

ital influences a child’s initial level of human capital almost one for one. However, note that by
construction of the model, this is the only way that the parent can influence the child’s education
(besides correlation through abilities and tastes). Since we proxy hP by parental earnings, ν en-
compasses any input that influences the child’s human capital that can be explained by parental
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earnings. For example, if the child’s human capital is sensitive to early childhood investments as
in Cunha and Heckman (2007), it would imply a large ν since we abstracted from dynamic in-
vestments from the parent. Relatedly, since parental inputs likely matter not only before but also
after age 6, it may be that ν is capturing parental influence that in fact occurs over a longer time
horizon.

A large ν may also indicate a large degree of intergenerational altruism. Although we have
abstracted from individuals internalizing the spillover, in an environment where it is internal-
ized it would incentivize individuals (of all generations) to invest more in their own human cap-
ital beyond maximizing their own life-cycle income. Then, ν would be capturing a composite of
spillovers (how much parental human capital matters for children) and altruism (how much par-
ents care about their children). For our purposes, however, we would still correctly capture the
elasticity of initial human capital in response to parental human capital (which is what ν measures)
as long as altruism does not vary much across the population.

One may also question that we recover a large estimate because we have assumed that parental
human capital has only a level effect. However, if parental human capital also had a slope effect
(i.e., by augmenting z), the level effect would have be even larger (since the level and slope effects
have opposite effects on the length of schooling) while the slope effect would push the contribu-
tion of nature downward. Hence, by only assuming a level effect for parental human capital while
assuming both for unobserved abilities, we are taking a conservative stance on the magnitude of
parental spillovers on earnings.

Lastly, it may seem that the preference shock is an order of magnitude larger than abilities; this
is not the case since we assumed that z is distributed log-normal but ε normal.

5.1 Interpreting the Parameters

To get a first impression of how these parameters affect the model, we elucidate the quantitative
importance of each by shutting down the spillover and correlation parameters. Table 6 tabulates
the counterfactual changes in the correlation between children’s and parent’s schooling levels, and
also the Mincer coefficient β2 on mom’s schooling from running regression (1) in Table 4.

Note that shutting down ν does little to affect either moment; as expected, β2 is mostly affected
by ρzhP than anything else. This is in line with our intuition from section 2 that β2 captures nature
more than nurture, which pervades also into our general model. Also, note that the schooling
correlation is explained by countervailing forces between λ and ρεhP —neither of which are of
primary interest in our goal of separating spillovers from ability transmission. When λ = 0,
the ability level affect disappears, inducing high ability individuals (whose parents tend to have
higher levels of schooling) to increase their length of schooling, which in turn increases correlation
of schooling across generations. When ρεhP = 0, children of high human capital parents (who
tend to have higher levels of schooling) no longer have a desire to remain in school longer, and
the correlation drops to being negative. The negativity comes from the early childhood effect:
children with high z and hP, all else equal, spend less time in school in the absence of the taste
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Table 6: Counterfactual Effect of Spillover and Correlation Parameters.

ρ(SP, S) β2

Data 0.478 0.017
Model 0.458 0.017

Spillovers
ν = 0 0.458 0.013
λ = 0 0.625 0.017
ν = λ = 0 0.644 0.009

Correlations
ρzhP = 0 0.425 0.008
ρεhP = 0 -0.121 0.014
ρzhP = ρεhP = 0 -0.121 0.004

shock. Hence, in order to recover the positive relationship observed in the data, the ρεhP must be
high.

Some caution is required when interpreting ρzhP . The innate ability of the parent affects his
or her human capital stock (higher ability parents invest more in themselves), in the same why
that high ability children have high human capital. This can be represented by a correlation ρP.
They also tend to have high ability children (the nature effect), which can be represented by a
correlation paramater ρz. Then the structural interaction between nature and nurture is captured
by the the correlation parameter ρzhP = ρzρP, i.e., the only way children’s ability can be correlated
with parental human capital is through the parent’s own ability. To the extent that Proposition 2
suggests a high ρP and our structural model likely does not capture everything, ρzhP becomes a
lower-bound estimate of ρz, the share of children’s human capital explained by solely by parental
innate ability.

The correlation between parental human capital and own abilities, ρzhP , is approximately 0.348.
To understand what this means, suppose we were to assume that tastes are uncorrelated with
abilities except through own human capital (as in equation (11)), and that the correlation structure
of (h, z, ε) remains stable across generations. We can then obtain a sense of the magnitude of
ρP by imposing ρ, the correlation between (h, z) of the children in our model, on the parents.
Using lifetime income as a proxy for h, our model implies a correlation of ρ = 0.603 between the
children’s h and z. The implied correlation of abilities across generations in our model is then

ρz =
ρzhP

ρP
≈ ρzhP

ρ
= 0.578.

As we have posited in section 2.3, the consideration of a parental level effect not only implies large
spillovers (a large ν), but also a larger value of unobserved ability correlation across generations
than what has been assumed in some previous studies (e.g., Restuccia and Urrutia (2004)).
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Table 7: Aggregate Effect of 1 Year Increase in Mom’s Schooling.

spillover ability tastes RF

Schooling -0.099 -0.111 0.529 0.503
(log) Earnings 0.011 0.021 -0.001 0.009

“(log) Earnings" denotes the cross section average of the present discounted value of lifetime earnings, in logarithims.
The first column holds abilities and tastes constant, while the next two columns let ability or taste also vary according
to their estimated correlations with hP. The column RF is when we allow for both selection on abilities and tastes.
Schooling OLS in data and estimated model is 0.458 and 0.478, respectively.

We also argued in section 2.3 that Plug and Vijverberg (2003), by proxying for abilities by
parental IQ, may understate the contribution of nurture. Hence, we proceed in the opposite direc-
tion. It is helpful to restate equation (10) along with the correlations (11) as

S = a0 + a1

[
ρz

ρP
(log hP − ηP) + ηz

]
+ a2 log hP = a0 +

[
a1ρz

ρP
+ a2

]
· hP + η, (16)

where (ηz, ηP, η) are i.i.d. shocks. Since the identification problem comes from the correlation
structure, instead of varying parental zP as in Plug and Vijverberg (2003), we can vary parental
human capital hP to isolate the spillover. (The identification problem in the presence of the taste
shock can be interpreted in a similar fashion.) This can be done by decomposing the effect of
a marginal increase in hP while holding (z, ε) constant, and then letting (z, ε) vary as would be
dictated by the correlations (ρzhP , ρεhP). This not only isolates the spillover but also contrasts it
against ability and taste selection.

5.2 Decomposing the Parental Spillover

Given the individual state (hP, z, ε) at age 6, we conduct the following experiment to isolate the
schooling and earnings effects of spillovers. We increase SP by 1 year, which translates into an
increase of β units of hP in logarithms, in four ways.20 First, we hold constant the individual’s
(z, ε), which isolates the pure effect coming only from parental human capital. Next, we let either
z or ε vary with hP as dictated by the estimated correlations (ρzhP , ρεhP); this separately captures the
selection effects from each. Finally, we let both z and ε vary together, which we label a “reduced-
form" effect—i.e., this is what would be captured in an OLS regression not controlling for any
selection on unobservables.

The average reponse is tabulated in Table 7. As expected, the spillover has a negative effect
on schooling. What may be slightly surprising is that allowing for selection abilities has an even

20Since we assumed a statistical relationship between SP and hP in our estimation, we have also tried assuming a
life-cycle structure for the parents, and forcing them to choose an additional year of schooling than would be optimal;
this captures endogenous life-cycle effects since the increase in human capital from a forced additional year of school-
ing would be countervailed by cutting back on human capital accumulation later in the life. However, the resulting
endogenous effects do not differ much from β, although there are small differences depending on the level of hP.
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Figure 3: Lifecycle Effect of 1 Year Increase in Mom’s Schooling.
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stronger negative effect: this means that in the cross-section, the ability level effect dominates its
slope effect. As was implied from the previous counterfactual of setting ρεhP = 0, only when we
allow for selection on tastes do we see a positive effect of increasing parental schooling on child’s
schooling.

In contrast, the spillover has an approximately 1.1 percent positive effect on lifetime earnings,
while abilities have a 1 percent effect. We conclude that independently of preference shocks, na-
ture and nurture have a similar impact on lifetime earnings, with nurture playing a slightly larger
role. From the table, it seems that tastes have a negative average impact: lifetime earnings drops
by 1.2 percent once we allow for selection. This is because by inducing children who already
earn above a certain threshold to stay in school longer, the higher earnings they earn later in life
(through more human capital accumulation by staying in school) is dominated by the foregone
earnings later in life. Such life-cycle effects are depicted in Figure 3.

However, this is merely an average effect. The cross-sectional impact of spillovers, abilities
and tastes, in response to a one year increase in mom’s schooling, is depicted in figure 4; the top
panel is for schooling and the bottom panel for earnings. In both graphs, the sample is separated
by levels of mom’s schooling. The structural impact of spillovers is always negative on schooling
and positive on earnings, taste selection always has a positive impact on schooling, and ability
selection a positive impact on earnings. However, the effect of ability selection on schooling and
taste selection on earnings depends on the level of mom’s schooling, due to the two-dimensional
heterogeneity between these two unobservables. Note that, high abilities has a negative effect on
schooling for those individuals that the level effect dominates the slope effect, and high tastes for
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schooling may have a positive effect on earnings depending on whether the foregone earnings
by increased schooling is dominated by future higher earnings, since by staying in school longer,
individuals can also take advantage of the higher return human capital technology.

5.3 Counterfactual Schooling Reform

Having understood the marginal effects of increasing a parental schooling by 1 year, we now
conduct a counterfactual experiment by imposing a minimum schooling requirement, which is
intended to mimic compulsory schooling reforms that took place in many countries throughout
the 20th century. A minimum schooling requirement has heterogeneous affects across the pop-
ulation since it only affects those parents who would otherwise not attain the required level of
schooling, and even within this group, the additional number of years that is attained will vary.
The goal of the exercise is to examine whether our intuition from above, that children’s schooling
responses are anemic despite increases in lifetime earnings, remains quantitatively valid, and also
to gain a sense of the quantitative magnitudes such a reform may have (on life-cycle earnings).

The benchmark exercise is a simple one in which we simply impose a minimum 9 years of
schooling for all parents, i.e. now the initial level of human capital in the economy is set to

h0 = bzλhν
P = bzλ exp [νβ max {SP, 9}] .

One reason we choose 9 years as the hypothetical schooling requirement is because to make it
comparable to the study by Black et al. (2005), who use the increase in the compulsory schooling
requirement from 7 to 9 years in Norway in the 1960s. Of course, while the location and timing
differs (the parents in our data would have been in school at turn of the 20th century), because the
U.S. was a forerunner of public schooling (Goldin and Katz (2007)), the average years of schooling
are quite similar in both settings (10.5 years vs 9.3 years; the medians are also similar). The reason
we do not use, say, 8 years, is because in fact many states already had compulsory schooling
requirements of 8 years in the U.S. at the time, so that imposing this requirement would only
affect a very small number of parents in our sample.

Specifically, we combine the simulated outcomes of two regimes: one without the minimum
requirement (our benchmark model) and one imposing the requirement. Then we run both and
OLS and IV regression on the merged simulated data, using the different regimes as an instrument.
We repeat this exercise for four cases, as we did above: without controlling for any selection, and
then controlling for selection on abilities and/or tastes. Table 8 shows the regression results for all
cases.

Without allowing for selection on tastes, the IV coefficient is close to zero or even negative.
Hence, a zero IV can be interpreted as the presence of a parental spillover, since a forceful increase
in schooling is perhaps unlikely to change unobserved parental heterogeneity that is unrelated to
economic outcomes, at least in the short run. However, the isolated spillover effect on lifetime
earnings is 3.5%, in contrast to a 1.9–2.5% effect from ability selection. Hence, for children of low
human capital parents, the spillover matters even more. Interestingly, taste selection also has a
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Figure 4: Cross-section Effects of 1 Year Increase in Mom’s Schooling
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Table 8: Counterfactual Schooling Reform

spillover ability tastes RF

Schooling
a1,OLS 0.496 0.494 0.453 0.453
a1,IV -0.090 -0.054 0.516 0.507

(log) Earnings 0.035 0.054 0.070 0.095

“(log) Earnings" denotes the cross section average of the present discounted value of lifetime earnings, in logarithims,
for only those individuals affected by the reform. The first column holds abilities and tastes constant, while the next
two columns let ability or taste also vary according to their estimated correlations with hP. The column RF is when
we allow for both selection on abilities and tastes. Schooling OLS in data and estimated model is 0.458 and 0.478,
respectively. Schooling OLS in data and estimated model is 0.458 and 0.478, respectively.

large, positive effect on earnings (3.5%), in contrast to the negative effect it had on average when
we increased parental schooling by one year. This also indicates that for children of low human
capital parents, the future returns from additional schooling dominates the foregone returns from
staying in school (which is perhaps expected, since these children have very low years of schooling
to begin with.) The average life-cycle effect on earnings is depicted in figure 5.

6 Conclusion

COMING SOON.
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Figure 5: Lifecycle Impact of Reform
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Appendices

A Proofs to Propositions 1, 2, and Corollary 1.

The proof requires a complete characterization of the income maximization problem. While we
can use standard methods to obtain the solution, we do this elsewhere and in what follows simply
guess and verify the value function. For notational convenience, we drop the age argument a
unless necessary. We separately characterize the solutions before and after the constraint n ≤ 1 is
binding in Lemmas 1 and 2. Then schooling time S is characterized as the solution to an optimal
stopping time problem in Lemma 3. To this end, we further assume that

V(a, h) = q2(a)h + CW(a), for a ∈ [6 + S, R),

V(a, h) = q1(a) · h1−α1

1− α1
+ e−r(6+S−a)C(S, hS), for a ∈ [6, 6 + S), if S > 0,

where

C(S, hS) = q2(6 + S)hS + CW(6 + S)− q1(6 + S) ·
h1−α1

S
1− α1

,

for which the length of schooling S and level of human capital at age 6 + S, hS, are given, and CW

is some redundant function of age. Given the forms of g(·) and f (·), these are the appropriate
guesses for the solution, and the transversality condition becomes q(R) = 0. Given the structure
of the problem, we first characterize the working phase.

LEMMA 1: WORKING PHASE Assume that the solution to the income maximization problem is such
that n(a) = 1 for a ≤ 6 + S for some S ∈ [0, R − 6). Then given h(6 + S) ≡ hS and q(R) = 0, the
solution satisfies, for a ∈ [6 + S, R),

q2(a) =
w
r
· q(a) (17)

m(a) = α2 [κq(a)z]
1

1−α (18)

h(a) = hS +
r
w
·
[∫ a

6+S
q(x)

α
1−α dx

]
· (κz)

1
1−α (19)

and

wh(a)n(a)
α1

=
m(a)

α2
, (20)
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where

q(a) ≡
[
1− e−r(R−a)

]
κ ≡

αα1
1 αα2

2 w1−α1

r
.

Proof. Given that equation (2) holds at equality, dividing by (3) leads to equation (20), so once we
know the optimal path of h(a) and m(a), n(a) can be expressed explicitly. Plugging (2) and the
guess for the value function into equation (4), we obtain the linear, non-homogeneous first order
differential equation

q̇2(a) = rq2(a)− w,

to which (17) is the solution. Using this result in (2)-(3) yields the solution for m, (18). Substituting
(17), (18) and (20) into equation (5) trivially leads to (19).

If S = 0 (which must be determined), the previous lemma gives the unique solution to the income
maximization problem. If S > 0, what follows solves the rest of the problem, beginning with the
next lemma describing the solution during the schooling period.

LEMMA 2: SCHOOLING PHASE Assume that the solution to the income maximization problem is such
that n(a) = 1 for a ∈ [6, 6 + S) for some S ∈ (0, R− 6). Then given h(6) = h0 and q1(6) = q0, the
solution satisfies, for a ∈ [6, 6 + S),

q1(a) = er(a−6)q0 (21)

m(a)1−α2 = α2er(a−6) · q0z (22)

h(a)1−α1 = h1−α1
0 +

(1− α1)(1− α2)

rα2
·
[

e
α2r(a−6)

1−α2 − 1
]
· (α2q0)

α2
1−α2 z

1
1−α2 . (23)

Proof. Since n(a) = 1 during the schooling phase, using the guess for the value function in (4) we
have

q̇1(a) = rq1(a),

to which solution is (21). Then equation (22) follows directly from (3), and using this in (5) yields
the first order ordinary differential equation

ḣ(a) = h(a)α1 [α2q1(a)]
α2

1−α2 z
1

1−α2 ,

to which (23) is the solution.

The only two remaining unknowns in the problem are the age-dependent component of the value
function at age 6, q0, and human capital level at age 6+ S, hS. This naturally pins down the length
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of the schooling phase, S. The solution is solved for as a standard stopping time problem.

LEMMA 3: VALUE MATCHING AND SMOOTH PASTING Assume S > 0 is optimal. Then (q0, hS),
are given by

q0 =
e−rS

αα2
2
·
(
[κq(6 + S)]1−α2 zα1

) 1
1−α

(24)

hS =
α1

w
· [κq(6 + S)z]

1
1−α . (25)

Proof. The value matching for this problem boils down to setting n(6 + S) = 1 in the working
phase, which yields (25).21 The smooth pasting condition for this problem is

lim
a↑6+S

∂V(a, h)
∂h

= lim
a↓6+S

∂V(a, h)
∂h

.

Using the guesses for the value functions, we have

q1(6 + S)h−α1
S = q2(6 + S) ⇔ hα1

S =
r
w
· erS

q(6 + S)
· q0,

and by replacing hS with (25) we obtain (24).

The fact that hS ∝ z1/(1−α), along with the solution for h(a) in the working phase in Lemma 1,
proves Proposition 2. Then the solutions for n(a)h(a) and m(a) proves Corollary 1. We must still
show Proposition 1.

Proof of Proposition 1. The length of the schooling period can be determined by plugging equations
(24)-(25) into (23) evaluated at age 6 + S:

(α1

w
· [κq(6 + S)z]

1
1−α

)1−α1

≤ h1−α1
0 +

(1− α1)(1− α2)

rα1−α2
2

·
(

1− e−
α2rS
1−α2

)
·
(
[κq(6 + S)]α2 z1−α1

) 1
1−α

,

with equality if S > 0. All this equation implies is that human capital accumulation must be
positive in schooling, which is guaranteed by the law of motion for human capital. Rearranging
terms,

h0 ≥
α1

w
·

1− (1− α1)(1− α2)

α1α2
· 1− e−

α2rS
1−α2

q(6 + S)

 1
1−α1

· [κq(6 + S)z]
1

1−α ,

21This means that there are no jumps in the controls. When the controls may jump at age 6 + S, we need the entire
value matching condition.
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or now replacing h0 ≡ zλhν
P,

z1−λ(1−α)h−ν(1−α)
P ≤ F(S), (26)

F(S)−1 ≡ κ
(α1

w

)1−α
·

1− (1− α1)(1− α2)

α1α2
· 1− e−

α2rS
1−α2

q(6 + S)

 1−α
1−α1

· q(6 + S)

which is the equation in the proposition. Define S̄ as the solution to

α1α2q(6 + S̄) = (1− α1)(1− α2)

(
1− e−

α2rS̄
1−α2

)
,

i.e. the zero of the term in the square brackets. Clearly, S̄ < R− 6, F′(S) > 0 on S ∈ [0, S̄), and
limS→S̄ F(S) = ∞. An interior solution (S > 0) requires that

F(0) < z1−λ(1−α)h−ν(1−α)
P ⇔ z1−λ(1−α)h−ν(1−α)

P >
r

α1−α2
1 (α2w)α2 · q(6)

,

and S is determined by (26) at equality. The full solution is given by Lemmas 1-3 and we obtain
Proposition 2 and Corollary 1. Otherwise S = 0 and the solution is given by Lemma 1.

B Analytical Characterization of the Generalized Model

The solution to the schooling phase is identical to Lemma 2. In the working phase, there can
potentially be a region where n(a) = 1 for a ∈ 6 + [S, S + J), and n(a) < 1 for a ∈ [6 + S +

J, R), so we can characterize the “full-time OJT” duration, J, following Appendix A. Although we
normalize w = 1 in the estimation, we keep it here for analytical completeness.

LEMMA 4: WORKING PHASE, GENERALIZED Assume that the solution to the income maximization
problem is such that n(a) = 1 for a ∈ [6 + S, 6 + S + J) for some J ∈ [0, R − 6 − S). Then given
hS ≡ h(6 + S), the value function for a ∈ [6 + S + J, R) can be written as

V(a, h) =
w
r
· q(a)h + DW(a) (27)

and the solution is characterized by

n(a)h(a) =
[αW

r
· q(a)z

] 1
1−αW (28)

h(a) = hJ +
(αW

r

) αW
1−αW ·

[∫ a

6+S+J
q(x)

αW
1−αW dx

]
· z

1
1−αW , (29)

where hJ ≡ h(6+ S + J) is the level of human capital upon ending full-time OJT. If J = 0, there is nothing
further to consider. If J > 0, the value function in the full-time OJT phase, i.e. a ∈ [6 + S, 6 + S + J) can
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be written as

V(a, h) = er(a−6−S)qS ·
h1−αW

1− αW
+ e−r(6+S+J−a)D(J, hJ) (30)

where

D(J, hJ) =
w
r
· q(6 + S + J)hJ + DW(6 + S + J)− erJqS ·

h1−αW
J

1− αW

while human capital evolves as

h(a)1−αW = h1−αW
S + (1− αW)(a− 6− S)z. (31)

If J > 0, the age-dependent component of value function at age 6 + S, qS, and age 6 + S + J level of
human capital, hJ , are determined by

qS = we−rJ ·
[

ααW
W
r
· q(6 + S + J)zαW

] 1
1−αW

(32)

hJ =
[αW

r
· q(6 + S + J)z

] 1
1−αW . (33)

The previous Lemma follows from applying the proof in Appendix A. The solution for J is also
obtained in a similar way we obtained S. Since human capital accumulation must be positive
during the full-time OJT phase,

αW

r
· q(6 + S + J)z ≤ h1−αW

S + (1− αW)Jz,

with equality if J > 0. Rearranging terms,

z

h1−αW
S

≤ G(J) ≡
[αW

r
· q(6 + S + J)− (1− αW)J

]−1
. (34)

Define J̄ as the zero to the term in the square brackets, then clearly J̄ < R− S− 6, G′(J) > 0 on
J ∈ [0, J̄), and limJ→ J̄ G(J) = ∞. Hence an interior solution J > 0 requires that

G(0) <
z

h1−αW
S

⇔ r
αWq(6 + S)

<
z

h1−αW
S

, (35)

and J is determined by (34) at equality. Otherwise J = 0.
We now consider the schooling phase and optimal schooling time. Since the schooling phase

solution is identical to Lemma 2, and we only need consider new value matching and smooth
pasting conditions.

LEMMA 5: SCHOOLING PHASE, GENERALIZED The length of schooling, S, and level of human capital
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at age 6 + S, hS, are determined by

1. if J = 0,

ε + (1− α2)

[
αα2

2 w
r
· q(6 + S)zhα1

S

] 1
1−α2

= w ·

hS + (1− αW)

[
ααW

W
r
· q(6 + S)z

] 1
1−αW


(36)

h1−α1
S ≤ h1−α1

0 +
(1− α1)(1− α2)

rα2
·
(

1− e−
α2rS
1−α2

)
·
[α2w

r
· q(6 + S)hα1

S

] α2
1−α2 z

1
1−α2 (37)

with equality if S > 0. In an interior solution S ∈ (0, R− 6), the age-dependent component of the
value function at age 6, q0 is determined by

q0 =
we−rS

r
· q(6 + S)hα1

S . (38)

2. if J > 0,

ε + (1− α2)

αα2
2 we−rJ

[
ααW

W
r
· q(6 + S + J)z

] 1
1−αW
· hα1−αW

S

 1
1−α2

= we−rJ
[

ααW
W
r
· q(6 + S + J)z

] 1
1−αW

(39)

h1−α1
S ≤ h1−α1

0 +
(1− α1)(1− α2)

rα2
·
(

1− e−
α2rS
1−α2

)
(40)

·

α2we−rJ
[

ααW
W
r
· q(6 + S + J)zαW

] 1
1−αW

hα1−αW
S


α2

1−α2

· z
1

1−α2

with equality if S > 0. In an interior solution S ∈ (0, R− 6), the age-dependent component of the
value function at age 6, q0 is determined by

q0 = we−r(S+J) ·
[

ααW
W
r
· q(6 + S + J)zαW

] 1
1−αW
· hα1−αW

S . (41)

Proof. Suppose S ∈ (0, R − 6). The value matching and smooth pasting conditions when J = 0
are, respectively,

ε−m(6 + S) + erSq0zm(6 + S)α2 = whS [1− n(6 + S)] +
w
r
· q(6 + S)z [n(6 + S)hS]

αW

erSq0h−α1
S =

w
r
· q(6 + S).

Hence (38) follows from the smooth pasting condition. Likewise, (36) follow from plugging n(6 +
S), m(6 + S) from Lemmas 2 and 4 and q0 from (38) in the value matching condition. Lastly, (37)
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merely states that the optimal hS must be consistent with optimal accumulation in the schooling
phase, h(6 + S).

The LHS of the value matching and smooth pasting conditions when J > 0 are identical to
when J = 0, and only the RHS changes:

ε−m(6 + S) + erSq0zm(6 + S)α2 = qSz

erSq0h−α1
S = qSh−αW

S .

Hence (41) follows from plugging qS and hS from (32)-(33) in the smooth pasting condition. Like-
wise, (39) follow from plugging n(6 + S) = 1, m(6 + S) from Lemma 2, and q0 from (41) in the
value matching condition. Again, (40) requires consistency between hS and h(6 + S).

For each case where we assume J = 0 or J > 0, it must also be the case that condition (35) does
not or does hold.

C Numerical Algorithm

Note that there is always a solution to (37) or (40)—i.e., we can always define a function hS(S) as
a function of S. This is seen by you rearranging the equations as (bold-face for emphasis)

1 =

(
h0

hS

)1−α1

+
(1− α1)(1− α2)

rα2
·
(

1− e−
α2rS
1−α2

)
·
[α2w

r
· q(6 + S)

] α2
1−α2 z

1
1−α2 · hS

− 1−α
1−α2 (42)

1 =

(
h0

hS

)1−α1

+
(1− α1)(1− α2)

rα2
·
(

1− e−
α2rS
1−α2

)
(43)

·

α2we−rJ
[

ααW
W
r
· q(6 + S + J)zαW

] 1
1−αW


α2

1−α2

· z
1

1−α2 · hS
− 1−α+α2αW

1−α2 ,

respectively. Hence, for any given value of S, both RHS’s begin at or above 1 at hS = h0, goes to 0
as hS → ∞, and is strictly decreasing in hS. The solution hS(S) to both (42) and (43) are such that

1. hS = h0 when S = 0 or S + J = R− 6

2. hS(S) is hump-shaped in S (i.e., there ∃S s.t. hS reaches a maximum).

Given a solution, we can solve equations (36) or (39), to which a solution may or may not exist
depending on the parameters. Since we want to search over a large parameter region, we employ
the following algorithm to handle any combination of possible solutions.

C.1 S ∈ (0, R− 6), J = 0

1. Set J = 0. Get hS(S) from (42), this is well defined.
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2. Now rearrange (36) as

ε = w ·

hS(S) + (1− αW)

[
ααW

W
r
· q(6 + S)z

] 1
1−αW

− (1− α2)

[
αα2

2 w
r
· q(6 + S)zhS(S)α1

] 1
1−α2

≡ T0(S)

If ε < T0(0), it must be that S = 0. Otherwise, find the smallest solution to ε = T0(S).

At this point, we may or may not have a candidate solution (including S = 0). If there is a
candidate solution, check condition (35); if it is consistent with J = 0, save the solution as S1.

C.2 S ∈ (0, R− 6), J > 0

1. For any value of J > 0, hS(S; J) is well defined from (43).

2. This has to be consistent with (34):

hS(S; J) = hSJ(S, J) ≡
(

z ·
[αW

r
· q(6 + S + J)− (1− αW)J

]) 1
1−αW . (44)

For given S, we can always find (hS, J) from (34) if hSJ(S, 0) > h0. In fact, if hSJ(0, 0) < h0,
we can stop since J cannot be interior. Otherwise, find S s.t. hSJ(S, 0) = h0.

3. Now we can just repeat step C.1 above, but only up to the point that an interior solution for
J exists. Rearrange (39) as

ε = we−rJ(S)
[

ααW
W
r
· q(6 + S + J(S))z

] 1
1−αW

− (1− α2)

αα2
2 we−rJ(S)

[
ααW

W
r
· q(6 + S + J(S))z

] 1
1−αW
· hS(S; J(S))α1−αW

 1
1−α2

≡ T1(S)

If ε < T1(0), it must be that S = 0. Otherwise, find the smallest solution to ε = T0(S).

Again, we may or may not have a candidate solution. If there is a candidate solution, check
condition (35); if it is consistent with J > 0, save the solution as S2.

C.3 Final Solution

At this point, we are in one of three cases:

1. If there is only one solution, it is the solution.

2. No solution from either section: S = R− 6 is the solution.
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3. Both have solutions: compare the two value functions at age 6 given the solutions (S1, J1 =

0) and (S2, J2 > 0) from steps C.1-C.2 using the fact that the function DW in (27) can be
written

DW(6 + S + J)

=w
(αW

r

) αW
1−αW

{∫ R

6+S+J
e−r(a−6−S−J)

[∫ a

6+S+J
q(x)

αW
1−αW dx− αW

r
· q(a)

1
1−αW

]
da
}
· z

1
1−αW

and

V(6, h0) =
∫ 6+S

6
e−r(a−6) [ε−m(a)] da + e−rSV(6 + S, hS)

=
1− e−rS

r
· ε− 1− α2

rα2
· (α2zq0)

1
1−α2

(
e

rα2S
1−α2 − 1

)
+ e−rSV(6 + S, hS).

The candidate solution that yields the larger value is the solution.

D Tables

Table 9: Summary Statistics by Lifetime Earnings Decile

Lifetime Earnings Years of Schooling Earnings growth
Mean Median Respondent Mother Father Mean Median

Lowest 409.45 439.14 10.36 8.19 7.62 3.99 1.01
Second 720.76 725.79 10.35 8.36 7.93 3.11 1.65
Third 888.49 889.85 11.19 8.62 7.93 3.57 2.11
Fourth 1013.96 1015.04 12.14 9.25 8.65 3.00 2.26
Middle 1127.57 1123.96 12.46 9.40 8.84 3.75 2.16
Sixth 1289.67 1288.40 12.58 9.59 9.24 4.06 2.22
Seventh 1490.83 1493.82 12.65 9.73 9.34 5.17 2.10
Eighth 1701.22 1697.35 12.72 10.05 9.39 5.33 2.21
Ninth 1934.17 1932.52 13.33 9.91 9.48 6.13 2.41
Highest 2562.82 2330.27 14.36 10.96 10.67 8.29 3.02
-Lifetime earnings is calculated as the sum of earnings from age 25 to age 55, where
-earnings in each age is adjusted to 2008 dollars and measured in $1000.
-Earnings growth is measured as the ratio of average earnings between age 49 and
-age 51 to the average earnings between age 24 and age 26.
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