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Abstract

This paper studies the links between housing policies and aggregate
energy use in the U.S. I connect two strands of literature on cities–that
cities vary in their per capita energy use and in terms of housing supply
elasticity–to measure the e↵ects of location choice and housing consump-
tion on aggregate energy use. I build a dynamic spatial equilibrium model
of U.S. metropolitan areas, accounting for local heterogeneity in housing
demand and supply. Importantly, I decompose the supply restrictions into
those naturally-occurring and those policy-induced. After matching the
model to data on housing prices, construction activity, and building den-
sity, I conduct policy simulations to quantify the e↵ect of various housing
policies on energy use. Results indicate that removing the federal tax sub-
sidy for housing would result in a lower aggregate energy use, as would
increasing land use regulations in high energy use locations. The primary
channel is reducing the amount of housing consumed per person, and the
secondary channel is in reallocating population from ine�cient to more
e�cient locations.

Keywords. land use, energy use, housing supply, dynamic spatial equi-
librium

JEL codes: R11, R52, Q54, R31

1 Introduction

Carbon emissions may cause significant social harm through climate change.
Energy use in the home and in personal transportation, a major source of carbon
output, varies significantly over space, suggesting that the nature and location
of housing consumption impacts carbon output. This paper studies the links
between housing policies and aggregate energy use in the U.S.
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thank Jim Alm, Pat Bayer, Bill Gentry, John Gibson, Christian Hilber, Erin Mansur, and Juan
Moreno-Cruz for helpful discussions. Taha Kasim and Bret Hewett have provided excellent
research assistance. Errors are my own. Comments are welcome.
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To do so, I connect two strands of the literature on cities. Glaeser and Kahn
(2010) demonstrate that an individual’s main contributions of carbon emissions,
household and transportation energy use, can vary significantly by metropoli-
tan area of residence. Di↵erences between metropolitan areas in climate, trans-
portation infrastructure, and housing services consumption drive much of the
dispersion in energy use across cities.

Cities also vary in housing supply elasticity, a topic studied by Saiz (2010),
among others. In some locations, the quantity of housing can expand with little
impediment; others are more constrained by natural and artificial restrictions
to building. Natural restrictions include geographic barriers such as mountains
and water, while artificial barriers include land use regulations such as permit
requirements, lot size restrictions, and environmental studies. Thus, at least a
portion of the constraints is policy-relevant.

There are reasons to suspect that housing stock expansion in the U.S. has not
been optimal with regard to reducing energy use. First, home sizes have been
increasing in the postwar U.S. There is a relationship between housing services
and energy usage, as larger homes consume more energy and less dense con-
struction increases usage of gasoline. Second, many “easy-building” locations
where the stock has expanded are high average energy-use locations.

Regardless of what construction patterns have been, the work of Glaeser
and Kahn (2010) suggests what I will call “The Reallocation Hypothesis;” that
the movement of population from a high carbon cities to low carbon cities
could result in a lower aggregate carbon output.1 Implicitly, this could happen
without any change in a household’s behavior within the city, simply because
of the more e�cient composition of the national average.

This paper quantifies the connection between energy use and the geographic
distribution of housing supply. I measure the extent to which housing policies,
local or national, a↵ect the amount of housing consumption and the regional
allocation of population, which in turn a↵ect aggregate energy use.

The analysis is conducted through a dynamic spatial equilibrium model with
an emphasis on housing construction. Through counterfactual policy simula-
tions, I measure the e↵ect of housing policies on the amount of housing con-
structed and consumed over time in the large metropolitan areas of the U.S.
and the resultant energy use and carbon output. This equilibrium-model ap-
proach recognizes that altering the housing stock of a city may not only a↵ect
the amount consumed per person, but also the number of people who choose
to live in that city, and to where they might relocate. The general equilibrium
e↵ects may be important because carbon footprints are heterogeneous across
space, as Glaeser and Kahn (2010) have shown.

In the model, cities are endowed with amenities and income opportunities,
and demand for the location comes from its attractiveness relative to other cities
in the economy. Identical workers trade o↵ utility from consumption goods,

1Glaeser and Kahn write in their conclusion, “If the urban population lived at higher
population density levels closer to city centers in regions of the country with warmer winters
and cooler summers in areas whose electric utilities used less coal for producing power, then
household greenhouse gas production would be lower” (p. 416).
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location amenities, and housing services. Housing prices, population size, and
housing services per person are determined endogenously by the standard spatial
equilibrium condition that utility must be equalized across space.

In each city, an infinitely lived housing services provider makes housing
construction decisions. The builder’s decision is dynamic because the stock
is durable, thus future prices are a↵ected by past construction decisions, and
because land acquisition costs may increase as the land in a city is increasingly
employed in construction. Furthermore, the builder accounts for competition
from other cities in determining the spatial equilibrium price of housing. The
dynamic equilibrium specification is important because I estimate primitive im-
plied costs; failing to account for di↵erences in the option value of land would
misstate these costs. This paper relates to recent work (Murphy, 2013, and Pa-
ciorek, 2013) on modeling construction as a dynamic decision problem a↵ected
by the option value of land.2

The dynamic model carries a large state space, complicated exponentially by
the spatial equilibrium specification. Much like dynamic games, dynamic spatial
equilibrium models are limited by the curse of dimensionality introduced by the
number of distinct locations. The technical contribution of the paper is its
demonstration of a implementation method for a dynamic equilibrium model of
heterogeneous local markets.

The model is implemented empirically using data on local construction ac-
tivity, housing consumption, housing density, labor and materials cost, and local
populations and incomes. Notably, I introduce rich spatially- and temporally-
varying housing intensity measures, utilizing detailed tax assessor data on the
home and lot sizes by location and time of construction. I am able to leverage
variation in amount of construction, its density, and its relationship to changes
in demand to identify the primitive cost parameters. Cost parameters are city-
specific, and the last step of estimation is to regress these cost primitives on
land availability (from Saiz, 2010) and measures of land use regulation (from
Gyourko, Saiz, and Summers, 2008). This allows me to decompose the policy-
relevant contribution to costs.3

Building on the existing descriptive literature, the model’s usefulness comes
from its ability to predict counterfactual scenarios: the population distribu-
tion, housing consumption, and aggregate energy usage under unobserved policy
regimes. Using data on household and transportation energy use, I can predict
the path of energy use for a given policy regime. Counterfactual experiments
study alternative local regulatory regimes and nationwide housing subsidies, and
the eventual pass-through e↵ects to aggregate energy use.

2Murphy (2013) models individual and owner’s decisions to develop, whereas I am modeling
the evolution of the city’s entire stock. Paciorek (2013) models the stock evolution, but
through a dynamic discrete choice model that requires an assumption about the total number
of possible units in a city. My flexible continuous stock specification needs no such assumption,
and can model the intensive margin of housing consumption as well.

3My approach is similar to that of Albouy and Ehrlich (2012) in that I use spatial variation
housing market outcomes to identify the average a↵ect of regulation. However, my elasticity
measures are identified o↵ of within-city variation over time in the quantity of construction
activity, whereas Albouy and Ehrlich (2012) use cross sectional variation in prices.
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I find that policies a↵ecting the amount of housing consumed are principally
important, and there are second order e↵ects in determining whether the housing
is consumed in energy e�cient or ine�cient locations. Thus, the Reallocation
Hypothesis is not rejected, but the intensive margin of housing and its density
are the major drivers of carbon savings.4

Estimates indicate that the preferential tax treatment of housing (the federal
income tax deductions for mortgage interest and property taxes) has increased
annual carbon emissions by about 2.7 percent annually, and almost 4.5 percent
in new construction, primarily by increasing the amount of housing per person.5

The federal tax deduction also subsidizes population growth in high per capita
housing locations, such as Atlanta, Las Vegas, and Phoenix, many of which are
high carbon output locations. Imposing stricter land use regulations in high
carbon output cities would decrease the aggregate amount of carbon output
by about 1.7 percent (2.7 percent in new construction), again mostly through
decreasing the housing consumed per person and secondarily by moving pop-
ulation to low carbon cities. Relaxing regulations in low carbon output cities
would have slightly positive net e↵ects on carbon output, as increased housing
consumption mitigates reductions from population reallocation.

The rest of the paper proceeds as follows. Section 2 highlights some moti-
vating patterns between construction activity, housing consumption, land use
restrictions, and energy use. Section 3 describes the model in detail. Section 4
describes the data and empirical strategy. Section 5 discusses estimation and
simulation results. Section 6 concludes.

2 Motivation

2.1 Home Size, Energy Use

I start by discussing some motivating stylized facts (the data on which these
figures are based are described in section 4.2 below). First, home sizes and
the amount of housing consumed per person have been trending upward since
1980, as shown in Figure 1.6 The figure shows that the average size of of newly
constructed homes has risen steadily until leveling in the most recent recession.
Consequently, housing stock growth has outpaced population growth, and the
amount of housing stock per person has grown. The density of new construction
(not pictured) fell in the 1980s and 1990s, before becoming somewhat more dense
again in the 2000s.

4Note that Glaeser and Kahn’s (2010) statement suggesting the Reallocation Hypothesis
includes, explicitly or implicitly, the intensive margin of housing, population density, and the
fuel source of electricity generation (which varies over regions). Each of these dimensions is
included in the model and energy calculations below.

5For context, the U.S. State Department’s energy policy goal for carbon reduction from
2005 to 2020 is 17 percent annually. According to the U.S. Environmental Protection Agency,
forested land in the U.S. removes about 18 percent of annual carbon flow. Urban tree cover
removes 1.6 percent.

6The figure focuses on the estimation period, but the trends predate 1980 as well.
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Figure 1: Housing Construction and Consumption, 1980-2011
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Notes: The series are the weighted averages for the named cities in the estimation sample
below. The 1980 data point includes all housing constructed before 1980.

Figure 2 displays some of the relationships between energy use, housing,
and population growth. In the top panel are figures plotting metropolitan area
population growth from 1980 to 2011 to per capita gasoline (left) and electricity
usage (right), with each dot representing a metro area. The plots show a positive
correlation, indicating that quickly growing cities tend to use more energy per
person than slowly-growing cities.

The bottom panel of Figure 2 plots per capita energy use to features of the
housing stock in the location. The bottom left plot shows that gasoline use per
capita is negatively related to housing density. The bottom right plot shows
that higher electricity use per capita is in part due to a more intensive use
of housing; cities with more housing area per person use more electricity per
person.

Taken together, these figures suggest that energy use can be a↵ected through
the extensive and intensive margins. That is, because cities di↵er in their per
capita usage rates, the spatial distribution of population can a↵ect aggregated
energy use. At the same time, the characteristics of the housing stock are
relevant. A more intensive use of housing will, all else equal, lead to more in-
home energy use, and less densely packed housing a↵ects driving patterns and
gasoline consumption.

Has the spatial pattern of population growth resulted in higher aggregate
carbon output? Figure 3 shows the evidence is mixed. While growth has oc-
curred in higher energy use locations, lower carbon pass-through (due to lower
carbon fuel sources for electricity generation) mitigates this to an extent, and
the correlation between carbon and population growth is actually slightly neg-
ative (though some high carbon locations have grown substantially).7 Thus, it

7Glaeser and Kahn (2010) found virtually no correlation between housing stock growth
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Figure 2: Relationship of Energy Use to Population Growth, Housing Density,
and Housing Consumption
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is important to keep in mind that many sources of spatial heterogeneity are at
work.

Table 1 provides a joint summary of the contributors to variation across cities
in carbon output per person. Housing per person is a major contributor, even
after controlling for population density, climate, and the carbon content of the
region’s fuel source of electricity (represented by the variable “NERC factor”).
All of these contributors are addressed in Glaeser and Kahn (2010), with the
exception of housing per person; this component was intentionally ignored in
their household-level analysis. In my accounting, I apply energy use rates per
unit of housing in order to study the e↵ects of the intensive margin.

2.2 Restrictions to Building

What is the impact of construction barriers, whether naturally occurring or in-
duced by policy? Figure 4 displays scatterplots of population growth, housing
per person, and population density against regulatory and natural barriers to
construction. Each form of barrier shows a slight negative association with popu-
lation growth. The associations are stronger with housing per person (negative),
and population density (positive). Thus, construction barriers are associated to
the nature of the housing stock as much or more than the location.

Finally, Figure (5) shows the correlation between the regulation and land
availability of the metro areas. While there is a positive relationship between
natural impediments and regulatory barriers, it is far from a perfect correlation.
Thus there is variation between the two that I will seek to leverage in identifying

and per capita carbon output.
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Table 1: Carbon Output Per Person Across Cities
(1) (2)

Housing per person (sqft) 16.86*** 16.46***
(4.493) (4.410)

Population density (pop/sqmi) -0.180 -0.181
(0.121) (0.115)

NERC factor 2,662*** 2,555***
(529.2) (478.9)

Log Population -67.29 -57.76
(404.6) (396.7)

Mean July Hi Temp (deg F) 63.49
(45.27)

Mean January Lo Temp (deg F) 16.27
(27.89)

Cooling degree-days (1000s) 699.5**
(340.3)

Heating degree-days (1000s) 100.3
(174.3)

Constant -2,119 2,445
(7,190) (6,686)

Observations 49 49
R-squared 0.702 0.715

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: The dependent variable is metro area average of annual carbon output
per person. Mean carbon per person is 14,628 lbs per year. See also Table 3.
Mean housing per person is 584 sq ft. The NERC factor is the rate at which a
kilowatt hour of electricity generation produces a pound of carbon; its mean is
1.32.
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Figure 3: Population Growth and Per Capita Carbon Output
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their impact of housing construction costs.
With these stylized facts as background, I proceed to develop a model of

housing construction in spatial equilibrium, which will yield predictions for the
extensive and intensive margins of housing consumption across space.

3 Model

3.1 Setting

This section describes a dynamic spatial equilibrium model of location and hous-
ing consumption choices. Time is discrete and the horizon is infinite. The econ-
omy is a closed system of a finite number J of distinct locations. These locations
are allowed to be heterogeneous in amenities, labor markets, and housing sup-
ply. National population at time t is given by Pt, and workers are freely mobile
across cities.

In each location, housing is produced by a single agent whom I call the
builder.8 The construction decision is a stock-and-flow problem in which the
builder faces a continuous choice of how much housing to build, and at what
density. Construction is durable and irreversible. There is a one period lag
between the decision to construct new housing and its arrival in the livable
housing stock.

I note from the outset that agents receive no direct utility impact of energy
use or carbon output. That is, energy use is completely an externality with
no internal cost, simply a byproduct of housing services, density, and location

8In reality, the construction sector has many firms. This is the planner’s solution to a
decentralized model, as described in Ljungvist and Sargent (2001).

8



Figure 4: Population Growth, Housing Stock Characteristics, and Barriers to
Construction

choices. Thus I focus my model on the latter two choices, but return to apply
the model’s predictions on housing to energy usage.

3.2 Housing Demand

Housing demand comes from a spatial equilibrium in the demand for locations.
I assume a resident of the the economy has the following utility function over
consumption and housing services:9

u(c, h) = log(c) + �log(h)

where � governs the elasticity of substitution of housing and consumption (nu-
meraire) goods.

For each unit of housing services, the resident pays price r. Incomes in
each location are taken to be exogenous. The agent’s budget constraint in each
location is

c+ rjh = yj

The first-order condition for optimization yields h = c �
rj
. Using the first-

order condition for optimization and the budget constraint, we have the indi-
vidual’s inverse demand equation for housing services:

9Note that this is a Cobb-Douglas utility function in natural logs. Davis and Ortalo-Magne
(2011) argue for a Cobb-Douglas utility function based on the temporal and spatial consistency
of the expenditure share of housing.
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Figure 5: Land Availability and Local Land Use Regulation
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3.3 Housing Supply and Equilibrium

The housing supply in period t, Ht, is the result of past construction decisions
by the builder. I describe the housing supply decision in more detail below, but
for the purpose of determining equilibrium rents and population in period t, it
is predetermined.

Within an arbitrary city, two conditions must hold. First, the residents must
be at their optimal tradeo↵ of housing services and the consumption good, given
by (1). Second, the housing market must clear: the housing services per resident
sum to the total stock of housing in the city.

pop h = H (2)

Equations (1) and (2) can be combined to obtain the city-wide demand curve

rj = y
�

1 + �

pop

H
(3)

That is, ceteris paribus, rents rise in income and population, but fall with
the supply of housing stock.

It is not necessarily the case, however, that the price elasticity of housing
is unity, because the population term is determined endogenously by a spatial
equilibrium, and therefore it depends on the housing stocks and incomes of all
locations. Between cities, full mobility implies zero arbitrage in utility: residents
must be indi↵erent between any two arbitrary cities (Roback [1982])

uj(cj , hj , µj) = log(yj � rjhj) + �log(hj) + log(µj

p⌫
j
) =

log(yk � rkhk) + �log(hk) + log(µk

p⌫
k
) = uk(ck, hk, µj)

(4)
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where µj is the flow utility from location j-specific amenities. The amenity
congests in population at rate ⌫.

A spatial equilibrium obtains when (3) and (4) hold for all cities j, k. For
an economy of J cities, there are 2J endogenous variables, the rents rj and the
population sizes popj . These are determined by the 2J equilibrium conditions:
J “within city” conditions (3), J �1 relative “between city” conditions (4), and

1 adding-up constraint on the national population,
PJ

j popj = Pt.

3.4 The Builder’s Problem

The previous subsection described the equilibrium conditional on housing stock.
I now describe how the builder chooses the housing stock.

The builder is endowed with ownership of all vacant land in the city. On his
land, he can produce a continuous and divisible stock of housing; the housing
stock is built atop land At, the current stock of land employed. Constructed
housing, and the land that it is built upon, is sold to a risk neutral middleman
at the price of the net present value of the current rent rate in perpetuity.10

The builder’s revenue is

bt = vtit =
1

1� ��
rtit (5)

where it is the new construction.
The builder can decide to add to housing stock, but cannot intentionally

remove it. Housing and land stock depreciate at rate �, and depreciated land
returns to ownership of the builder.11 The evolution of the land and housing
stock is then

Ht = (1� �)Ht�1 + it
At = (1� �)At�1 + at

(6)

s.t. it, at � 0

The builder decides in t how much housing stock to build, sold at a contract
price determined in t, but the new stock does not become available for consump-
tion until t + 1. This delay is meant to reflect the considerable time involved
in constructing housing, obtaining permits, and the like.12 The density of new
construction is it

at
, and the density of the stock is Ht

At
.

10This essentially reverses a user-cost rental calculation back to a value.
11It is a simplification to assume that the land employed decays at the same rate of housing

depreciation; that is, the housing stock depreciates equally at all densities.
12The assumption that the contract price is determined in t simplifies the solution of the

spatial equilibrium price vector. Prices are determined by current states (i.e. the history
of construction decisions in all locations), not simultaneously determined by all current con-
struction policy functions. Future prices will however be a↵ected by decisions today, and the
builder will take this into account in his dynamic decision problem.
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3.4.1 Production Function for Housing

New housing it is constructed using land a and capital k; when producing an
addition to the housing stock it, the builder decides the factor intensities. Cap-
ital is the combination of the physical materials (wood, brick, drywall, etc), and
the labor and equipment used to install them, which are perfect complements:
k = min{materials, labor, equipment}. The production function for housing is
given by a constant returns to scale Cobb-Douglas specification.13

i = �jk
1�↵a↵ (7)

The total factor productivity of the housing production function, �j is spe-
cific to the location, as are the costs of the inputs. I denote the cost of land as cj
and capital as ccj .14 The first-order conditions of an expenditure minimization
problem of

mink,a[cck + ca] s.t. i = ī

yield the demand function for capital: k = 1�↵
↵

cj
ccj

a. Substituting for k gives

the production to be

i = �j(
1� ↵

↵

cj
ccj

)1�↵a (8)

Thus, the density of housing construction, i
a , is determined by the productivity

parameters �,↵ and the relative costs of land and capital.

3.4.2 Costs

As mentioned, the capital costs are the costs of materials, labor and installation.
The land cost is the expense of the technology of converting vacant land into
plots suitable for construction. I specify the cost of land to be cj = c1jAt to
reflect a finite amount of land available to the builder. That is, the marginal cost
of new land may increase as more land is occupied by housing. The dynamic
nature of the land cost is meant to reflect that presumably the best (lowest
cost) land was developed first, and more di�cult land (forested, steeply sloped,
swamp, etc) is only developed later.15

Additionally, new housing comes at a convex cost of c2ji2. That is, an infinite
amount of housing cannot be added in a single period. This is intended to reflect
anything inelastically supplied in the city (a limited supply of contractor labor,
backlog at the permit o�ce, local opposition to “excessive” new building).16

13Recent work on the topic has found that a constant returns to scale Cobb-Douglas function
to be a good approximation to the production function for housing. See Ahlfeldt and McMIllan
(2014) and Epple, Gordon, and Sieg (2010).

14The cost of capital implicitly includes the labor cost of installing materials as well. My
data source for construction costs reports values for “materials” and “labor and installation.”

15When assuming a uniform price for the city, this cost could also represent that additional
land is at the city edge and is therefore less valuable.

16The finding of the literature, and in my data, is that materials and labor are elastically
supplied, as material and wage costs do not seem to move with the amount of construction
activity. See Wheaton and Simonton (2007), Gyourko and Saiz (2006).
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Figure 6: Comparing Housing Supply Curves
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Together, these costs form the housing supply curve, as illustrated in Figure
6. Given the current state of the economy, the marginal revenue unit of i is v.
The parameter c2 governs the slope of the supply curve. City A has a flatter
slope (i.e. more price elastic, a lower c2) than B or C; for a given demand
shock, quantities will increase more in A than B. In a given time period, the
land and capital costs, {c1, cc}, form the intercept to the supply curve. City
C has a higher intercept than A or B; relative to B, a higher price will result
at each quantity. The line “City A, at time t+s” illustrates how the supply
curve may shift as the stock of available land diminishes (i.e. as At increases).
Thus, these supply curves illustrate the marginal cost at a point in time, which
may shift. Furthermore, the slope of the supply curve at time t will reflect
the option value of land–the builder’s interest in withholding land for future
use–so that the shape of the supply curve also depends on the amount of land
employed, the demand states, their expected transitions, the stock of housing
in other locations, and so on. Static specifications of the housing supply curve
may attribute all of this to a slope parameter like c2, when it may actually be
a combination of within-period costs and dynamic considerations.

3.4.3 The Return Function

Resulting from the two previous subsections, the per-period payo↵ function is
then

⇡t = vtit � ccjkt � c1jAtat � c2ji
2 (9)
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3.4.4 Dynamic Decision Problem

The housing supplier’s decision problem is dynamic because both revenues and
costs are a↵ected by state variables, as construction is durable and irreversible.
The builder’s control state variables, which result directly from previous choices,
are the current stock of housing, Ht (which includes the lagged construction
about to come online, it�1), and land employed in the provision of housing
services, At. With the optimal substitution of capital and land in (8), this
reduces to a single control in At.The exogenous demand state is the income of
the location, yt, and the national population. The other determinant of rt, the
local population, popt is determined by spatial equilibrium, a function of the
builder’s and other locations’ states.

The builder’s problem is written recursively as

V (H,A, y,X) = maxa[⇡(H,A, y,X) + �EV (H 0, A0, y0, X 0|a, i(a))] (10)

where H, y,A are the state variables in the city, and X are state variables in
other cities. The builder’s cost component of ⇡(H,A, y,X) depends on how
much housing stock he adds today and how much new land he employs to do it,
with the land cost depending on the current state of land employed in housing.
The builder’s revenue component of ⇡(H,A, y,X) depends on the housing stock
carried over from previous periods, and the level of demand for the location.
The notation X is used to represent the states of demand and housing stock for
other cities in the economy. The states of other cities are relevant for revenue
because the population and rent are determined by the spatial equilibrium.

The builder also factors in the expected continuation value, EV (·), the value
of acting optimally in the future. Choices today a↵ect the transitions to future
states, so the “shadow value” of these choices in factored into the dynamic
decision problem; for example, optimally waiting for a higher expected output
price is such a dynamic consideration. The builder’s choice of a will determine
the next period’s values ofH and A, and he forms expectations over the demand-
determining states y and X.

With many locations in the economy, the state space represented byX will be
very large. This is the “system of cities” problem which makes dynamic spatial
equilibrium models extremely di�cult to analyze and implement. I discuss in
the next section how I approach this problem.

4 Empirical Implementation

4.1 Model Solution

With the large state space of the problem in (10), solving the model to yield
a policy function is not a trivial task. Because the demand for any one city is
determined by a spatial equilibrium, it is a↵ected by the income, amenity, and
housing supply conditions of all the other cities in the economy. With K state
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variables for each location, the full state space is of size KJ , meaning that under
standard value function iteration methods, the curse of dimensionality bites
very quickly. For any interesting number of cities, standard solution methods
are infeasible.

4.1.1 Aggregation

In accounting for even basic features of local heterogeneity in dynamic spa-
tial equilibrium models, one encounters this “system of cites” dimensionality
problem similar to the solution of dynamic games.17 My approach here will be
similar to my earlier work (Mangum [2012]), which was inspired by the work
of Krusell and Smith (1998) and Weintraub, Benkard, and Van Roy (2008).
The equilibrium concept is an approximated rational expectations equilibrium.
Instead of literally accounting for every other state in the economy, I approxi-
mate the full solution by assuming that a local agent accounts for his own state
variables, and a summary of the “elsewhere” states. This makes the state space
Klocal +Kother << KJ with large J . The point is to use an aggregate state as
a proxy for the conditions of the economy, without the combinatorial explosion
created by separate treatment of other locations.

State aggregation is computationally convenient, but it has an appealing
“bounded rationality” intuition as well–a builder factors in demand in his city
relative to others, but is not competing with other cities individually like an
oligopoly market. In a sense, the mathematical solution to the model is di�cult
for artificial reasons, and the approximated solution may well be closer to reality
anyway. Section A in the appendix elaborates the argument for the aggregate
state simplification.

The summary states I use are the average per capita income (y�j) and
aggregate housing stock (H�j) of the rest of the economy, in addition to the
national population. The approximated problem is now

Vj(Hj , Aj , yj , P,H�j , y�j) = maxh,a[⇡(H,A, y, P,H�j , y�j

�EVj(H
0
j , A

0
j , y

0
j , P

0, H 0
�j , y

0
�j |Hj , Aj , yj , P,H�j , y�j ; !(y�j), ⇢(S); h, a)] (11)

I preserve the local heterogeneity by solving each agent’s dynamic problem
separately (note the index of j on the value function itself). That is, while I
may be summarizing the “elsewhere” states similarly for each agent, the impact
those states have on one’s value function varies across agents, as the value of
the “elsewhere” states depends on what policies the states imply for the other
agents in the economy.

The future value term �EV (·) depends on the expected next-period value of
the summarized states, Y 0

�j , H
0
�j . Thus the summarized states need their own

laws of motion, represented respectively by !(y�j) and ⇢(S), which a↵ect the
value function. Because local incomes are taken to be exogenous, the expected

17For early work on this topic in the games literature, see Pakes and McGuire (1994)
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“other income” term E(y0�j |y�j) = !(y�j) is simple to find using the individual
cities’ transition laws for y and the joint distribution of the error terms. In
practice, I use a Monte Carlo procedure. The other aggregate state, H 0

�j , is
the summarized outcome of the individual cities’ choices. Consistent with the
approximated rational expectations equilibrium, I assume the agent expectsH�j

to follow the law of motionH 0
�j = (1��)H�j+i�j , where the construction policy

rule i�j = ⇢j(S) is a parameterized policy rule in the states.18 In practice, a
log-linear specification of ⇢(S) = ⇢0+⇢1Y�j+⇢2H�j+⇢3P fits the construction
activity in the data quite well, yielding R2 terms around 0.90.19

Note that ⇢j(S) is merely an aggregation of individual builders’ optimal de-
cision rules, and as such is an outcome of the costs that the cities face. When
simulating the model for counterfactual values of parameters, the policy rule
needs to be updated for the new cost regime. To do this, I simulate the con-
struction choices of each city’s builder at the hypothetical new cost parameters,
but at the original policy rule, ⇢0j (S). I then use the simulated choices to de-
termine a new guess of the policy rule, ⇢1j (S), which I then use to simulate the
city’s builders’ choices again. I iterate on this process until all builder’s policy
functions have converged, at which point the aggregated policy update rule will
converge as well. The algorithm is:

1. Solve (11) using new parameter values of {c01, c02}, and a guess of the policy
rule ⇢0j (S). This yields the policy rules for each city:
ij(Hj , Aj , yj , P,H�j , y�j ; ⇢0j (S); c

0
1, c

0
2).

2. Use ij(·) to update the expected “other cities” policy rule, ⇢1j (S).

3. Solve step 1 again using ⇢1j (S) instead of ⇢0j (S)).

4. Repeat 1-3 until convergence in ij(·), ⇢j(S) 8j.

4.1.2 Acceleration

Aggregation reduces the problem to six states, regardless of the size of J . While
the reduced problem is now feasible, it is still not a trivial problem to solve,
so I use acceleration or further approximation techniques to speed convergence.
In practice, I speed the solution algorithm by using a projection method, ap-
proximating the value function as a linear-in-parameters function of the states,
V (S) ⇡

P
k �kg(Sk) at a sampling of possible points in the state space of the

economy.20 By choosing a “good basis” of functions g(Sk), one can achieve an
arbitrarily good approximation of the true function.21 After much specification

18Note that the policy rule is indexed by j; that is, it may have di↵erent parameters de-
pending on which cities make of the “other cities” in �j.

19The rule’s fit is worst in the recent recession, where housing construction fell o↵ much
more than income. The rule fits extremely well in the first 25-26 years of data.

20For more on projection methods, see Judd (1998), ch. 11 and Miranda and Fackler (2002),
ch. 6.

21Projection methods behave particularly well in smooth continuous state problems such as
this. See Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006).
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testing, I settled on first-order terms, second order interactions, and a quadratic
in local incomes.

4.2 Data

In the empirical implementation, the “city” level of geography is the metropoli-
tan area as defined by Core-Based Statistical Area (CBSA). I focus on the 49
largest CBSAs and aggregate all others into a single “outside option.”22 Data
is limited for rural areas, so these are ignored. The data comes from several
sources enumerated below.

4.2.1 Local Housing Demand

Determinants of housing demand include local income and population sizes. I
use annual county population estimates from the Census, and per-capita income
from the regional economic accounts data by the Bureau of Economic Analysis.
County-level data is aggregated to the CBSA level.

4.2.2 Housing Stock and Construction

For housing stock, I focus on the total living area occupied by single family
units (detached and attached). This is for data availability reasons: the size
and density data are not available for multi-unit buildings, and construction
activity data for single family homes are more precise. Population sizes are
scaled to be the fraction living in single-family homes by metropolitan area,
taken from the 5 percent subsample of the decennial census (Ruggles et all
[2010]).23

I use housing units by county from the decennial Censuses of 1980, 1990,
2000, and 2010, aggregated to the CBSA level. For intercensal years, I allocate
the decadal change in the housing stock by the level of building permit activity
in the CBSA, as collected by the Census and provided by Housing and Urban
Development’s State of the Cities Database (SOCD). I use permitting activity
as an index because building permits are a noisy estimate of building activity,
and do not simply sum to the change in housing stock. Some permits may
be abandoned, while other construction may exceed the o�cially permitted
level. Further, I allocate the permits to their expected arrival in the inventory
of housing, which may vary spatially and temporally, using annual regional
summaries of permit-to-completion rates and times from the Census.

I scale the units by living area and lot size using detailed county tax assessor
records, provided by real estate data firm Dataquick. The tax assessor records
are collected in 2012 (2011 in some cities), but contain year of construction.
Thus, I can subset the data by year of construction to find the average living

22IIdentifieid cities comprise approximately two-thirds the national urban population, with
the outside option the remaining third. The three smallest specified cities in my data are Salt
Lake CIty, UT (49), Rochester, NY (48), and Birmingham, AL (47).

23The share of population in single family homes varies substantially between cities, but
negligibly within a city over time. I use the simple average proportion.
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area and lot size of units constructed in a particular year in the county. Thus my
measure of housing density is the actual flooring area ratio (FAR), living area

lot area ,
and not a proxy such as population or housing units per square mile. To my
knowledge, this level of detail at such a wide geographic coverage is unique to
this paper. This allows me to implement the model using construction densities
and the intensive margin of housing services consumption.

4.2.3 Rents and Costs

Rents are found using the user cost method of Poterba (1992), applied to home
value data. The implied rent is r = uc · v, where uc is the user cost and v is
the house value. Poterba suggests the user cost formula uc = [(1� t)(m+ ⌧) +
� +  ] � ⇡, where t is the income tax rate, m is the nominal mortgage rate,
⌧ is the property tax rate, � is maintenance cost and depreciation,  is the
risk premium associated with housing, and ⇡ is expected inflation. Following
Poterba, I set ⌧ = 0.025,� = .04, = .04. I use Albouy’s (2009) calibration of
t = 0.251. I take m as the average 30-year fixed mortgage rate from 1980-2011,
using Freddie Mac’s Primary Mortgage Market Survey (PMMS). Finally, ⇡ is
the CBSA’s average nominal house value appreciation rate.

Because I am considering the value of newly constructed housing, home
values per square foot are obtained from averaging transaction prices from 2004
and 2005 sales of new homes in Dataquick transaction registers. In counties
for which no transactions data were available, I used median value for homes
built 2005 or later in the 2008-2010 American Community Survey (ACS). The
values were converted to 2000 dollars, and averaged across CBSA using housing
units by county as weights. The values were then pegged to the Federal Housing
Finance Administration’s (FHFA) all-transactions housing price index for the
CBSA.

The capital component of construction costs is obtained from the RS Means
Company. The RS Means data provide the cost per square foot of several
typical categories of homes, annually by city, for 1988-2013. The construction
costs include materials and installation, which means labor and equipment. I
use the construction costs per square foot for an average quality, 2000-square
foot home.

4.2.4 Land Use Restrictions

For local land use restrictions, I take the land availability measure published in
Saiz (2010). The land availability measure is based on GIS analysis of a 50 mile
radius from the city center, quantifying the degree to which land is unsuitable
for building. This accounts for coastal and inland water and terrain too steeply
sloped for building.

The Wharton Residential Land Use Regulatory Index (WRLURI, or WRI) is
a survey of the practices of local building authorities assembled and published by
Gyourko, Saiz, and Summers (2008). It contains several sub-surveys related to
types of land use regulation, such as permitting and project approval practices,
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zoning, lot size restrictions, open space requirements, and the like. Gyourko et al
(2008) note that the subindices tend to be highly correlated.24 The subindices
rate the propensity of a community to impede building, yet one subindex in
particular stands out in the context of the current paper: minimum lot size
restrictions. While these are in a sense an impediment to building, conditional
on a unit being built, these increase the amount land employed. To account
for this, I build an aggregate regulation index absent the lot size indices, using
the factor loadings reported by Gyourko et al (2008).25 The modified index is
rescaled to have a mean of 0 and standard deviation of 1 across communities,
and then I take the metro-level average using the community sampling weights
provided.26

4.2.5 Energy Use

To relate housing stock to energy use, I want to predict the energy usage for
a typical household, controlling for location, amount of housing consumed, and
housing stock age (since newer homes are typically more energy e�cient). The
assumption is that there is no permanent individual heterogeneity–a relocating
resident will become the type of energy user that the destination city already
hosts. For this reason, many possible “controls” are intentionally omitted and
subsumed in the averages, including price of the energy. That is, I ignore sorting
between cities based on energy use preferences.I focus on personal energy use
most directly related to housing stock decisions: in-home electricity and home
heating fuels, and gasoline used by personal cars. For household surveys of
energy use, I follow and expand upon Glaeser and Kahn (2010).27

Detailed gasoline consumption for households is collected by the National
Highway Transportation Survey (NHTS) in survey years 1983, 1990, 1995, 2001,
and 2009. The data include household attributes such as number of drivers, vehi-
cle attributes (detail varies by survey year), and self-reports of gallons consumed
and expenditures per year. I limited analysis to unleaded gasoline vehicles. The
NHTS includes specific metropolitan area location for the large cities used in my
data. To find average usage per resident, I pool the data and run a regression
of gasoline usage on location and time dummies.

In-home energy use is collected by the Residential Energy Consumption Sur-
vey (RECS) for survey years 1987, 1990, 1993, 1997, 2001, 2005, and 2009. The

24From p. 695 of Gyourko et al.: “[T]here is a strong positive correlation across the compo-
nent indexes that make up the aggregate WRLURI....Thus, there is little evidence of targeted
regulation at the local level. The data are more consistent with communities deciding on the
degree of regulation they want and then imposing that desire across the board.”

25I also omit the “Local Assembly” subindex (LAI), representing the degree of direct democ-
racy (e.g. town hall meeting votes) in project approval. This is peculiar to New England and
may not be well represented in the index. (Gyourko et al note that this subindex was not part
of the survey questions, but information was volunteered by some communities.) Inclusion of
the LAI makes Boston and Providence in particular notable outliers, though even without the
LAI, Boston and Providence are some of the most highly regulated markets.

26The metro level index for the large cities in my sample has a mean near 0 but a standard
deviation of 0.59.

27I thank Erin Mansour for additional guidance on these data sources.
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data include household attributes such as number of members, and importantly,
the size of the living area. The data include self-reports of in-home utility usage
(electricity, natural gas), as well as home heating fuels such as oil, propane, and
kerosene. I limit analysis to the common utilities: electricity, natural gas, and
fuel oil. I find the average usage per square foot of housing for each energy type.
Geographic detail is more limited in RECS than NHTS, as the survey reports
only metropolitan status (an indicator) and census region or, in the 2009 survey,
sub-region. To assign metro-level energy usage rates, I assign the metro areas
to their respective census sub-regions, using the sub-region means in 2009 to
infer di↵erences in within-region means in earlier survey years.

4.3 Estimation

Given data on local income and national population, the model predicts the
endogenous level of construction, land employed, rents, and population shares
by city. I fit the parameters of the model to these data moments.

4.3.1 First-Stage Parameters

Many model parameters are found in a first stage, without simulation of the
model. These include state transitions, local construction costs, and structural
parameters calibrated a priori.

First, I find the transition process by which income evolves for each location.
This is done through fitting an AR(1) time series process on local per-capita
income. Next, I calibrate the housing demand elasticity parameter � using the
average housing expenditure from my calculation of user costs and incomes. I
find a value of � = 0.238, e↵ectively the same as the Davis and Ortalo-Magne’s
(2011) calibration of 0.24.

Then using the actual data on rents, income, housing services consumed,
population size, and the calibrated �, I back out the local amenity fixed e↵ect
parameters µ and its associated congestion term, ⌫, from condition (4). I do
this through an iterative routine. For a guess of ⌫, I run a fixed e↵ects regres-
sion of the spatial equilibrium condition (4), subject to a normalization of the
outside option µ0 = 0; this yields the amenity terms best implied by the spatial
equilibrium condition under a calibration of ⌫. I then update the guess of ⌫
to find the value which yields the lowest mean-squared error in the regression.
There is some tradeo↵ in matching rents or population shares, but because I am
interested in the revenues of the builder’s problem, I use the ⌫ which fits rents
the best. I find ⌫ = 0.47.

I find the deprecation rate of the housing stock � from a regression of (6)
using the national housing stock time series and construction activity (which is
far less noisy than the local permit data). I find � = .012.28

In the construction cost data from RS Means, there is significant spatial
heterogeneity but virtually no evidence that these fluctuated with the level of

28Note that this is physical depreciation, not value depreciation. That is, � governs how
quickly housing decays and falls out of the stock, not how buildings may lose value with age.
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building activity. That construction labor and materials are elastically supplied
is not an uncommon finding in the literature.29 But because the costs are largely
a↵ected by construction sector wages, the costs do seem to trend with income. I
run a regression of construction costs on incomes, pooling the data across cities
and including city fixed e↵ects. Doing so yields city-specific intercepts and a
wage coe�cient: ccjt = cc0,j + cc1yjt, for which I find cc1 = 1.36.

Finally, I set the builder’s discount rate to � = 0.95.

4.3.2 Second Stage Parameter Estimation

I find the structural parameters ✓ = {c1, c2,�} via the method of simulated
moments (MSM) for each city (i.e. for each agent/builder). That is, I choose
parameters that yield a policy function as near as possible to the data. The
moments to match are the choice variables i, a, so the moment conditions are

M = E

✓
ît(✓)
ât(✓)

◆
�
✓
i
a

◆�
= 0 (12)

The objective function is then L = min✓{ 1
2tM

0M}, and the estimates are
c1, c2� = argmin✓L. The admissible set of values is constrained to the non-
negative real numbers.

The intuition for identification is to use observed temporal variation in quan-
tities of housing and its density relative to prices to infer parameter values.
Essentially, the model asks, given the revenues available to the builder, why
does he build as much as he does? Conditional on prices, the average amount
of building and the degree to which this changes with the stock of land identi-
fies the land cost parameter c1j . The parameter �j is identified by the density
of construction, conditioning on cost parameters (since the builder optimally
choose the factor intensities, these are a↵ected by c1). The extent to which
building activity fluctuates with demand (i.e. the supply elasticity) identifies
the convexity cost parameter c2j . All of this is done controlling for di↵erences
between cities in physical construction (capital) costs, cc.30

MSM requires many evaluations of the value function in (11). Even after
the acceleration methods, a large J still makes the problem di�cult since all
the individual housing suppliers’ value functions are solved separately but must
converge jointly in equilibrium. Therefore, it is very useful to make an addi-
tional simplification in the process of estimation. I estimate the policy function
H�j,t+1 = ⇢(Pt, H�j,t, y�j,t) directly from the data. That is, I use the “else-
where” state transitions in the data, rather than jointly solving the dynamic
spatial equilibrium for each guess of parameters for all cities. This allows me to
estimate the model separately for each city as a single agent problem, a major

29See Wheaton and Simonton (2007), Gyourko and Saiz (2006). Discussions with data
engineers at RS Means confirmed the finding.

30Technically, the parameters are jointly identified, so it is a bit casual to discuss piece-
meal identification, but the discussion should illuminate how moments of the data inform the
parameter selection.
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savings in computational time as well as a way to break the correlation of er-
rors between the parameters for di↵erent cities. In counterfactual simulations,
I cannot make this simplification.

4.3.3 E↵ect of Land Use Restrictions

Given estimates of the structural parameters on construction costs, {c1, c2} and
productivity � for each city j, the next task in estimation is to relate these to the
land use restrictions: land availability and local regulation indices. My simple
approach is to treat the structural parameters as outcome variables caused by
land availability and regulation. For parameter ✓n, I assume

✓nj = f(LAj ,WRIj , ✏nj) (13)

where LA is the Saiz land availability measure and WRI is the Wharton Reg-
ulation Index in j, and the term ✏nj is the unexplained component of the cost
parameter for city j. This specification leverages spatial variation in the struc-
tural parameter estimates to identify the average impact of land use restrictions
on the residual costs. In practice, I run linear regressions.

Policy simulations input counterfactual values of WRI to yield counterfac-
tual values of {c1, c2,�} and simulate the model under these. The projections
of counterfactual cost parameters retain the city’s unique cost heterogeneity
through the residual ✏nj . Because the model finds the equilibrium population
distribution and housing services consumed under each counterfactual simula-
tion, this can be done for one, several, or all locations at a time, making for a
very flexible policy simulator.

5 Results

5.1 Energy Use

Before discussing the structural cost estimates and model simulations, I report
the results for spatial di↵erences in energy use. The discussion is brief because
the analysis mostly replicates Glaeser and Kahn (2010).

Table (2) reports the results for in-home energy use, as a usage rate per
square foot of housing. The findings are in line with Glaeser and Kahn (2010).
Warmer climates tend to use more electricity but less heating fuel. Newer
construction tends to be more energy e�cient. The last column reports the
average gasoline consumption per household in 2009, estimated from the NHTS
sample. Housholds in cities in the south (and Detroit, MI) tend to use the most
gasoline, roughly 30 percent more than low use cities.

It is useful to consolidate the energy usage information into a single index of
carbon output, as in Glaeser and Kahn (2010), to summarize the net impact of
di↵erent forms of energy use and their intensity. This requires a “carbon factor”
which converts a unit of energy usage to the amount of carbon its consumption
adds to the atmosphere. I use the factors of Glaeser and Kahn (2010) for gasoline

22



Table 2: Energy Use by Residential Location
MSA Electricity(kWh) Natural gas (100cuft) Fuel Oil Gasoline

(old constr.) (new constr) (old constr) (new constr) (gal) (gal/hhld)
New York NY NJ 3.12 3.09 0.42 0.27 0.35 1,053
Los Angeles CA 3.24 3.35 0.34 0.28 0.18 1,159
Chicago Gary IL 4.50 3.55 0.67 0.41 0.28 1,072
Philadelphia PA 4.18 4.14 0.41 0.26 0.35 1,023
Dallas FW TX 7.36 6.79 0.39 0.25 0.00 1,237
Miami FL 7.01 6.10 0.18 0.13 0.24 1,038
Washington DC 5.58 4.86 0.51 0.38 0.24 1,346
Houston TX 7.36 6.79 0.39 0.25 0.00 1,249
Detroit MI 3.85 3.04 0.72 0.44 0.28 1,225
Boston MA 2.91 2.87 0.33 0.36 0.34 1,170
Atlanta GA 5.29 4.60 0.44 0.33 0.24 1,245
San Francisco CA 3.24 3.35 0.34 0.28 0.18 1,046
Riverside SB CA 3.24 3.35 0.34 0.28 0.18 1,089
Phoenix AZ 7.18 5.67 0.21 0.15 0.02 1,058
Seattle WA 6.77 7.00 0.53 0.43 0.18 1,099
Minneapolis MN 3.59 3.26 0.53 0.32 0.19 1,190
San Diego CA 3.24 3.35 0.34 0.28 0.18 1,196
St Louis MO 4.95 4.49 0.39 0.23 0.19 1,149
Baltimore MD 5.58 4.86 0.51 0.38 0.24 1,162
Pittsburgh PA 4.18 4.14 0.41 0.26 0.35 920
Tampa St Pete FL 7.01 6.10 0.18 0.13 0.24 991
Denver Boulder CO 3.67 2.90 0.64 0.45 0.02 1,154
Cleveland OH 4.40 3.48 0.42 0.26 0.28 1,060
Cincinnati OH 4.40 3.48 0.42 0.26 0.28 1,197
Portland OR 6.77 7.00 0.53 0.43 0.18 1,021
Kansas City MO 4.96 4.50 0.54 0.33 0.19 1,148
Sacramento CA 3.24 3.35 0.34 0.28 0.18 1,092
San Jose CA 2.92 3.02 0.49 0.39 0.18 1,092
San Antonio TX 7.36 6.79 0.39 0.25 0.00 1,197
Orlando FL 7.01 6.10 0.18 0.13 0.24 1,132
Columbus OH 4.40 3.48 0.42 0.26 0.28 1,100
Providence RI 2.93 2.89 0.38 0.41 0.34 1,048
Norfolk VA Bch VA 5.49 4.77 0.40 0.30 0.24 1,188
Indianapolis IN 4.40 3.48 0.42 0.26 0.28 1,154
Milwaukee WI 2.85 2.26 0.38 0.23 0.28 1,152
Las Vegas NV 5.54 4.38 0.41 0.29 0.02 1,014
Charlotte NC 6.96 6.06 0.39 0.29 0.24 1,257
Nashville TN 7.58 6.01 0.34 0.20 0.06 1,307
Austin TX 7.36 6.79 0.39 0.25 0.00 1,204
Memphis TN 7.58 6.01 0.34 0.20 0.06 1,238
Bu↵alo Niagara NY 3.12 3.09 0.42 0.27 0.35 966
Louisville KY 6.98 5.53 0.47 0.28 0.06 1,170
Hartford Bristol CT 2.93 2.89 0.38 0.41 0.34 1,117
Jacksonville FL 7.01 6.10 0.18 0.13 0.24 1,155
Richmond VA 5.49 4.77 0.40 0.30 0.24 1,126
Oklahoma City OK 9.09 8.39 0.63 0.40 0.00 1,187
Birmingham AL 6.98 5.53 0.47 0.28 0.06 1,115
Rochester NY 3.12 3.09 0.42 0.27 0.35 1,068
Salt Lake City UT 4.13 3.26 0.49 0.35 0.02 1,068
Other/OO 4.96 4.56 0.45 0.30 0.33 1,176

Notes: Usage rates are annual per square foot of housing, except gasoline, which is in gallons per
year per household.
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(23.47 lbs per gallon), natural gas (14.47 lbs per 100cu ft), and fuel oil (26.86 lbs
per gallon). The carbon output per kilowatt hour of electricity depends on how
the electricity is generated, which varies by region. The U.S. Environmental
Protection Agency reports the North American Electric Reliability Corporation
(NERC) state-by-state conversion factors, which convert the electricity drawn
from the grid to emissions from its typical source of generation. Glaeser and
Kahn (2010) use a similar conversion; the only di↵erence is that the geographic
detail reported is somewhat finer than what was available to those authors.

Table 3 reports my calculation of the carbon output of a typical resident
of each city, ranked from lowest to highest. The results are quite comparable
to Glaeser and Kahn (2010). I find that California cites, with temperate cli-
mate and relatively clean electricity generation, tend to produce less carbon.
High carbon use cities are a mixture of southern cities with high gasoline and
air-conditioning use, and northern cities with more home heating and dirtier
electricity generation, but they tend to be inland cities, not coastal.

The motivation for the Reallocation Hypothesis is clear from a review of
Table 3. There are substantial di↵erences in carbon output per person, with
the high carbon cities contributing twice as much per person as the low carbon
cities.

5.1.1 Gasoline Usage and Population Density

Gasoline usage is largely due to city structure, including size, shape, density, and
the nature of the transportation infrastructure. While many of these attributes
are outside the scope of the current model, population density is one of the
central features. It will be useful to have an estimate of the e↵ect of population
density on gasoline consumption while controlling for the un-modeled features
of the cities. The literature contains detailed treatments of the relationship be-
tween city structure and gasoline use. Brownstone and Golob (2009) is the most
relevant.31 They use 2001 NHTS data for California to estimate an endogenous
three equation model of home location (in dense or nondense areas), vehicle
ownership, and gasoline usage.32 Unfortunately, in their reported results, the
density measure is the housing units per square mile of the respondent’s home
census block group, which is not directly comparable to the density measured
predicted by the current model, the average population density of the city in
residential areas.33 Thus, I resort to my own analysis of a proportional e↵ect: if
the city were to become X% more or less dense, how would gasoline consumption
be a↵ected?

31See also Bento et al (2005), who develop a multi-step model of transportation mode
choice, vehicle ownership, vehicle miles traveled (VMT), and gasoline usage, which they relate
to many features of city structure. They find population density to a↵ect the decision to drive
or not, but do not find a significant e↵ect of density on VMT, conditional on driving, after
controlling for several other features correlated with city density.

32One of Brownstone and Golob’s concerns is the selection of “car people” into suburban
neighborhoods, hence the specification of a multi-equation model of endogenous variables.

33Brownstone and Golob (2009) also limit their analysis to the state of California in 2001
instead of a nationwide sample.

24



Table 3: Annual Carbon Output Per Person, by Metro Area
(units are annual 1000 lbs. per person)

Rank Metro Carbon Rank Metro Carbon
1 San Jose CA 8.61 26 Norfolk VA Bch VA 13.80
2 Riverside SB CA 8.70 27 Pittsburgh PA 14.24
3 Los Angeles CA 8.84 28 Washington DC 14.28
4 San Francisco CA 9.27 29 Tampa St Pete FL 14.32
5 Sacramento CA 10.08 30 Detroit MI 14.45
6 San Diego CA 10.15 31 San Antonio TX 14.77
7 New York NY NJ 10.67 32 Orlando FL 14.82
8 Bu↵alo Niagara NY 11.06 33 Atlanta GA 15.09
9 Rochester NY 11.31 34 Jacksonville FL 15.10

10 Salt Lake City UT 11.57 35 St Louis MO 15.15
11 Baltimore MD 11.59 36 Birmingham AL 15.29
12 Philadelphia PA 11.66 37 Houston TX 15.72
13 Portland OR 12.06 38 Columbus OH 15.99
14 Miami FL 12.43 39 Austin TX 16.01
15 Seattle WA 12.45 40 Dallas FW TX 16.09
16 Milwaukee WI 12.46 41 Phoenix AZ 16.26
17 Boston MA 12.74 42 Charlotte NC 16.43
18 Hartford Bristol CT 12.80 43 Memphis TN 16.46
19 Minneapolis MN 12.83 44 Cleveland OH 16.66
20 Providence RI 12.86 45 Kansas City MO 17.52
21 Chicago Gary IL 12.89 46 Nashville TN 17.79
22 Other Cities 13.45 47 Cincinnati OH 17.93
23 Denver Boulder CO 13.51 48 Indianapolis IN 18.09
24 Richmond VA 13.77 49 Louisville KY 18.67
25 Las Vegas NV 13.79 50 Oklahoma City OK 19.09

25



Table 4: Gasoline Use and Population Density
Coef. (1) (2) (3) (4) (5)

Log(density) -0.092*** -0.082*** -0.083*** -0.078*** -0.058***
(0.002) (0.002) (0.002) (0.002) (0.001)

MSA FE X X X X X
Year X X X X X
Race X X X X
Number of adults X X X X
Number of children X X X X
Income X X X
Number of drivers X X
Number of vehicles X
Number of workers X X

Notes: The outcome variable is the log of gallons of gasoline consumed per household per
year. Controls are categorical dummies.

Table 4 addresses this issue; a full table of results is in the appendix (Ta-
ble 12). Using the full sample of NHTS data, I regress the log of reported
annual gallons per household on the log of respondent’s neighborhood density,
year dummies, and importantly, metro area dummies to pick unobserved city
attributes that may otherwise be correlated with density. Each specification
progressively adds more controls, following Brownstone and Golob (2009). Note
that as indicated above, in doing energy use predictions, I am not interested in
the controls per se, but acknowledge that omitted variables may bias the point
estimate on density.

The initial estimate is that 100 log point di↵erence in density results in 9
log points less gasoline used.34 In column 2, adding controls for “permanent”
household attributes, such as race, number of children and adults, (i.e. things
unlikely to change were the household to be relocated) reduces this only slightly.
Controlling for household income (column 3) changes the point estimate little.
Columns 4 and 5 add, respectively, controls for number of drivers and number
of vehicles; the latter especially attenuating the estimate on density. I will
use the -.058 estimate from column 5 as the proportional e↵ect of density on
gasoline use. I do this in the interest of being conservative, but reluctantly so,
as the choice to drive and to own vehicles may be endogenous to city structure,
including density, and so the “control” for number of vehicles may be biasing
downward the e↵ect of interest in the present task.

5.2 Cost Estimates

Table 5 reports the estimates for the model’s structural parameters, with the
average capital cost component, cc, for reference. The interpretations of the
parameters are straightforward: (1) higher c1 means more costly land, and

34Brownstone and Golob’s (2009) estimate of the impact of density was 64.7 gallons per
1000 housing units per mile. The mean usage for a California household in 2001 is about 1400
gallons per household.
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hence less building, though the construction e↵ect is mitigated somewhat by
construction occurring at a higher density; (2) c2 means less construction occurs
as prices rise; and (3) higher values of � mean more building per unit of land,
all else equal.

Table 6 relates the cost estimates to measures of building restrictions well-
known to the literature on housing supply. There is a panel each for c1 and
c2.35 The specifications for c2 include a measure of the metro area size (“Pop
rank”) to control for the fact that the model is estimated in levels, and as such,
there is a clear negative relationship between initial city size and the parameter
estimate; this control is important for the elasticity parameter (c2) more so than
the land cost (c1). The regulation index I use is a modified version of the index
published by Gyourko et al (2008), as discussed above, which excludes the lot
size restriction index.

Both panels show a similar pattern. The regulation index shows a positive
and significant correlation with the cost estimates. Adding the Saiz land avail-
ability metric–itself positively associated with the cost parameters–causes the
regulation index estimate to fall and lose significance. However, adding a sepa-
rate control for lot size restrictions (column 3) is important. This is intuitive:
lot size restrictions themselves increase land usage and are negatively related
to cost parameter estimates, but are also correlated with other restrictions, so
failure to control for this attenuates the point estimate on the regulation index.
The last column of panel A shows the slight e↵ect of population size controls
on the the land cost (c1). The last column in panel B shows the e↵ect of drop-
ping one particular outlier, Baltimore, Maryland, from the elasticity estimate
regression; Baltimore has a relatively high regulation index (1.04), yet one of
the smallest c2 point estimates.

Column 4 of panel A and column 3 of panel B, the specifications control-
ling for land availability, lot size, and population size, are my preferred point
estimates which I use in simulations below.

5.3 Model Fit

In this section, I briefly discuss the fit of the baseline simulation of the model
to the data. I report the model’s predictions from the estimation and from a
baseline simulation. The di↵erence between the two is the assumption on the
“other cities” strategy function ⇢(S). In the estimation’s predictions, I use the
⇢(S) function derived from the data; essentially, this is a partial equilibrium
simulation, and it displays the predicted moments on which the estimation rou-
tine is based. The baseline simulation updates ⇢(S) based on predicted other
cities’ policy functions until convergence to the approximated rational expecta-
tions equilibrium. This is the baseline simulation to which the counterfactual
simulations are compared.

Figure 7 displays the model’s predicted housing stock added versus the actual
figures from the data. (Figure 12 in the appendix does the same for land stock.)

35No clear relationships were found between � and the land use restrictions, so analysis of
� is omitted.
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Table 5: Parameter Estimates
Metro Avg CC c1 c2(1000s) �
New York Nor NY 123.85 0.40 1.31 1.58
Los Angeles CA 102.40 1.32 1.30 1.57
Chicago Gary IL 105.00 0.33 1.31 1.40
Philadelphia PA 105.62 1.62 1.26 0.62
Dallas Fort TX 81.49 0.25 1.50 1.64
Miami Hialea FL 79.96 0.97 3.49 1.58
Washington DC 87.54 0.11 4.02 1.49
Houston Braz TX 81.20 0.47 1.69 1.63
Detroit MI 99.69 0.20 2.79 1.04
Boston MA 109.58 0.08 2.81 1.48
Atlanta GA 79.69 0.05 1.52 1.58
San Francisc CA 114.30 1.82 2.18 1.64
Riverside Sa CA 103.36 0.51 2.85 1.64
Phoenix AZ 84.31 0.47 1.95 1.84
Seattle Ever WA 93.46 0.29 4.24 1.32
Minneapolis MN 104.39 0.27 2.79 0.47
San Diego CA 101.17 0.42 3.03 0.48
St Louis MO 93.30 0.51 2.24 0.49
Baltimore MD 85.55 0.87 0.83 0.65
Pittsburgh B PA 94.67 0.09 4.30 1.52
Tampa St Pe FL 80.43 0.55 1.50 1.14
Denver Bould CO 89.40 0.40 5.37 1.15
Cleveland OH 99.58 0.11 4.64 1.61
Cincinnati OH 90.44 0.10 3.35 1.07
Portland Van OR 130.58 1.99 4.34 0.76
Kansas City MO 94.55 0.22 2.23 1.55
Sacramento CA 104.17 0.39 4.84 1.54
San Jose CA 113.39 1.98 5.05 1.60
San Antonio TX 76.18 0.11 4.25 1.64
Orlando FL 81.31 0.30 4.06 1.60
Columbus OH 89.76 0.18 4.26 0.91
Providence F RI 97.05 0.61 2.78 0.48
Norfolk VA B VA 80.81 0.17 3.06 1.51
Indianapolis IN 89.77 0.21 5.40 1.25
Milwaukee WI 95.63 0.86 7.70 1.01
Las Vegas NV 97.97 1.16 5.67 1.84
Charlotte Ga NC 73.49 0.11 4.66 1.64
Nashville TN 78.43 0.07 5.93 1.00
Austin TX 75.30 0.16 4.72 1.64
Memphis TN 79.16 0.38 6.32 0.52
Bu↵alo Niag NY 99.05 0.07 11.84 1.06
Louisville KY 86.07 0.01 6.25 1.10
Hartford Bri CT 98.21 0.52 4.19 0.45
Jacksonville FL 77.74 0.65 7.29 1.13
Richmond Pet VA 82.81 0.04 4.31 1.02
Oklahoma Cit OK 76.08 0.05 4.97 1.36
Birmingham AL 79.03 0.17 5.51 0.47
Rochester NY 92.59 0.04 13.38 1.07
Salt Lake Ci UT 80.62 0.97 14.06 1.02
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Table 6: Relationship of Cost Estimates to Land Use Barriers

Panel A: ln(c1)
(1) (2) (3) (4)

Reg Index 0.749*** 0.395 0.567* 0.522
(0.255) (0.269) (0.309) (0.328)

Land Availability (Saiz) 2.087*** 1.608* 1.623*
(0.743) (0.855) (0.863)

Lot Size Restr -1.061 -1.017
(0.943) (0.957)

Pop Size -0.00489
(0.0111)

Constant -1.208*** -1.811*** -1.442*** -1.372***
(0.147) (0.254) (0.415) (0.448)

Observations 49 49 49 49
R-squared 0.155 0.279 0.299 0.302

Panel B: ln(c2)
(1) (2) (3) (4)

Reg Index 0.161* 0.109 0.197* 0.256**
(0.0900) (0.1000) (0.114) (0.109)

Land Availability (Saiz) 0.309 0.0770 -0.0377
(0.263) (0.299) (0.284)

Lot Size Restr -0.514 -0.618*
(0.332) (0.314)

Pop Size 0.0413*** 0.0413*** 0.0420*** 0.0427***
(0.00391) (0.00390) (0.00386) (0.00364)

Constant 7.191*** 7.101*** 7.269*** 7.317***
(0.0826) (0.113) (0.155) (0.147)

Observations 49 49 49 48
R-squared 0.714 0.723 0.737 0.768

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: All specifications include an unreported constant. Specifications with 48 observations
exclude Baltimore, MD.

29



Figure 7: Actual and Predicted Construction of Housing, by Location
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Each point represents the total stock added for a city for the period 1981-2011.
The model, in estimation and in the baseline equilibrium simulation, does quite
well at matching the spatial heterogeneity in housing and land stock growth in
the last three decades, with the points fitting very nearly along the 45-degree
line. The average predicted densities, reported in Figure 8 also match quite well.
However, the model’s exact timing of the stock additions is imperfect. Figure 9
is year-by-year plot of predicted housing added to actual housing added. While
the points still line up reasonably well along the 45-degree line, there are a few
instances of significant prediction error. The model’s stock-and-flow structure
does contain a self-correcting mechanism, however; for instance, if it predicts
too low a stock in period t for whatever reason, the model will try to “catch up”
with demand in later periods. I note that this year-over-year prediction error is
most serious in cities with large population growth and construction volatility
that dwarfs income volatility, such as Las Vegas and Phoenix.

Figure 10 compares predicted end of simulation population to the data.
Again, the model overall does well at matching the spatial variation in city size.
Under-prediction happens in cities where the housing stock prediction is worst;
notably, Phoenix and Las Vegas. Note that unlike housing prices or construction
quantities, population is not a targeted moment of the estimation routine, yet
the model does well at recovering this moment.

5.4 Counterfactual Simulations

I now turn to counterfactual simulations which will alter housing policies in var-
ious ways, predicting the housing construction, population distribution, density,
and resultant energy use under each counterfactual. First, I highlight what is
and what is not permitted to change in these simulations.

In the experiments below, I am altering the level of local regulation, which
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Figure 8: Actual and Predicted Construction Density, by Location
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Figure 9: Actual and Predicted Construction of Housing, by Location and Year
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Figure 10: Actual and Predicted Construction of Housing, by Location
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manifests in an alternative values of parameter {c1, c2} for the cities a↵ected.
Another experiment is to remove the federal tax subsidy for housing, the mort-
gage interest and property tax deductions. Each experiment a↵ects the equi-
librium supply of housing across locations, and as a consequence, the spatial
distribution of population.

I assume that there are no changes to national population, local income, or
local amenities; only the spatial distribution of housing supply, and in response,
population, are changing. Note that this means there is not a perfectly elastic
supply of population–any one city is still “competing” with other cities for
residents who are o↵ered income, amenities, and housing in other locations, and
there is an “adding up” constraint from the national population being fixed.

I apply the energy usage rates in the data. This assumes that energy con-
sumption behavior does not change, except through the margins a↵ected by the
simulation (housing location, housing consumption, population density). This
assumes, for example, that in-home technology adoption is una↵ected, local
governments o↵er the same transportation infrastructure, consumers buy the
same types of vehicles conditional on location, and so on. Furthermore, because
energy consumption is driven to large degree by climate, housing consumption,
and transportation infrastructure, I assume there are no preferences in energy
consumption that are portable across cities. For instance, a counterfactual Los
Angeles resident will consume energy like an observed Los Angeles resident, and
does not bring, say, “Chicago habits” with her.

The spatial equilibrium model presented does not contain a governmental
sector. Thus, I am assuming government policies do not change beyond the
imposed policy counterfactual. I ignore, for example, possible changes in gov-
ernment spending when federal tax deductions change, local changes in property
taxes when regulations tighten or relax, and the like.

All of the above may be interesting avenues for study in future research, but
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each would require direct treatment in the model, and they are simply beyond
the scope of the current paper.

Finally, I note that a household’s expenditure share of housing will remain
constant across scenarios. As the supply of housing changes and its price
changes, households adjust through the quantity of housing consumed to main-
tain constant expenditure. This in turn means the numeraire consumption is
unchanged, and therefore I ignore carbon output from tradables. The constancy
of expenditure share is a result of the Cobb-Douglas functional form for utility.
This functional form was not chosen lightly, however: there is direct empirical
support for it in the literature (Davis and Ortalo-Magne, 2011).

5.4.1 Energy Use Accounting

For each simulation, I calculate the amount of each type of energy consumed
and the resulting carbon output using the location’s usage rates from Tables 4
and 2 in each year of the simulation. Because housing is highly durable, even
large changes to the construction flow can have small impacts on the aggregate
stock. To get a sense of the impact, I report separately for end-of-simulation
and cumulative sums, where the former compares the energy flow given by the
housing stock in year 2011 across simulations, and the latter totals the energy
use flows of each period’s stock. I also separately report the energy coming from
new construction, defined as housing not pre-existing in 1980 but constructed
during the simulation period (1981-2011).

Energy e�ciency may have changed over time. To account for this, I sep-
arately calculate the energy use per square foot of housing for each of four
vintages of housing in the RECS data: pre-1980, 1980s, 1990s, and 2000 and
following. The stock of each vintage evolves according to depreciation rate �
and the amount of addition to stock in a given year.

Gasoline calculations use the metropolitan specific average, accounting for
time e↵ects. I scale the average gallons per household by the metropolitan-
specific probability of owning at least one car,36 and the average number of
persons in a household, obtained from the 5 percent public use samples of the
census (Ruggles et al [2010])

Finally, I multiply the city’s total energy usage by its respective carbon
factor to calculate total carbon output, as in Table 3. Gasoline and natural gas
use carbon factors are taken from Glaeser and Kahn (2010), while electricity
is weighted by NERC factors reflecting the carbon output of the transmission
source. Home fuel oil is a small share of energy usage, and is virtually never
present in new construction during the study period, so it is not reported, though
the total carbon number includes it.

36In doing so, I am e↵ectively assuming that the probability of owning zero cars is unchanged
in the counterfactual simulations. That is, the e↵ects of a counterfactual (such as a change in
density) on gasoline consumed must come through changes in vehicle miles traveled, mileage
per vehicle, or in the number of vehicles, conditional on owning at least one. The share of
households in single family homes without any cars is small in all metro areas, from 1.6% in
Salt Lake City, UT to 10% in Philadelphia, PA, and under 6% for all but two of the cities
considered here.
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Table 7: Baseline Simulation: Housing, Population, and Energy Use Totals
Housing Density Electricity Nat. Gas Gasoline In-home Total
Stock Carbon Carbon
(bil sf) (FAR) (bil kwh) (100 bl cuft) (bil gal) (tril lbs) (tril lbs)

Housing Stock and Energy Flow Use at End of Simulation (2011) (“Snapshot”)
National 104.769 0.090 494.724 24.361 55.792 0.978 2.297
ID’ed Cities 69.918 0.091 326.574 16.353 35.380 0.644 1.481
High Carbon Use 33.505 0.076 183.108 7.596 16.361 0.383 0.768
Low Carbon Use 36.414 0.106 143.467 8.757 19.020 0.261 0.714

Construction Flow and Accumulated Energy Use over Simulation (1981-2011) (“Summary”)
(bil sf) (FAR) (tril kwh) (100 bl cuft) (bil gal) (tril lbs) (tril lbs)

National 79.060 0.092 12.245 755.317 1,479.840 26.434 61.536
ID’ed Cities 52.162 0.093 8.089 507.325 944.777 17.452 39.896
High Carbon Use 26.572 0.077 4.541 233.876 438.245 10.156 20.477
Low Carbon Use 25.590 0.109 3.548 273.450 506.532 7.297 19.419

Table 7 reports the statistics from the baseline simulation: populations,
housing stock, construction, stock density, energy use and carbon output. The
first panel–the “snapshot”–reports population stocks and energy use flows for
the last year of the simulation, 2011. The second panel–the “summary”–reports
total construction flows, the density of new construction, and accumulated en-
ergy use over the entire simulation (all years 1981-2011). Counterfactual exper-
iments will later be reported as relative to the baseline simulation, viewing the
di↵erences in percentage terms.

As a benchmark for scale in what follows, consider some facts from U.S.
government reports on carbon output and climate change.

• The U.S. State Department’s Climate Action Report calls for a 17 percent
reduction in emissions from 2005 levels by 2020.37 The report focuses on
technological improvements to energy production and e�ciency improve-
ments in consumption.

• From the U.S. Environmental Protection Agency’s (EPA) “Inventory of
U.S. Greenhouse Gas Emissions and Sinks: 1990-2012”38

– Total carbon output from all sources in 2011: 5,592 million metric
tons, or 12.33 trillion pounds. About 94% of this is from fossil fuels.
Smaller contribution sources include, by way of example, natural
gas distribution systems, 35.1 metric tons, or 77.38 billion pounds in
2011; and, trash incineration, 12.1 metric tons, or 26.7 billion pounds
in 2011.

– Of fossil fuel consumption sources, transportation accounts for about
34%, of which about 62% is passenger cars and light trucks/SUVs. Of
in-home energy use, electricity accounts for about 14% of all carbon
emissions, and direct use of fossil fuels account for 5.7%. Combined,

37See http://www.state.gov/e/oes/rls/rpts/car6/219259.htm
38http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html
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personal vehicles plus in-home energy use accounts for about 41% of
emissions.

– Carbon sinks, such as forested land, remove 979 metric tons per year,
about 18% of carbon emissions. Of this forest, 9% consists of urban
trees. So, urban trees remove about 1.64% of annual total carbon
flow.

5.4.2 Changes to Land Use Regulations

The first set of experiments make changes to regulations in all or in subsets of
cities. The first of this set removes heterogeneity between cities in regulation;
e↵ectively, this is testing whether high carbon output results as an unintended
consequence of the spatial distribution of local land use restrictions. The corre-
lation between the regulation index and carbon per person is -0.61, indicating
that less regulated cities have larger footprints. If all cities were equally regu-
lated, would aggregate carbon output be reduced?

To operationalize this, I set the WRI at the scaled mean of zero. The pa-
rameters are reset to c

0

1j = c1j � 0.522 ⇤WRIj , c
0

2j = c2j � .197 ⇤WRIj , using
the parameter from specifications in Table 6, which projects the costs under
new levels of regulation, while retaining unobserved cost di↵erences unique to
the city. Table 8 displays the city-by-city results from this simulation in terms
of housing stock and population change. The cities in Table 8 are sorted by
size of the housing stock/population change relative to the baseline simulation.
Unsurprisingly, the population “winners” are the cities with high regulation,
and the “losers” are those with low regulation, as the degree of change is largest
in these. But note that the correlation is not perfect, as the equilibrium model
makes this less than a mechanical relationship: some cities may be more de-
sirable for labor or amenity reasons, and the level of regulation is a binding
constraint. Also note the changes in the nature of consumption of housing: (1)
the increase in housing construction is larger than the response of population,
as housing consumed per person increases, and (2) density varies inversely to
population.

As the last column of Table 8 shows, any decrease in carbon in one location
is o↵set by an increase in another. The Reallocation Hypothesis is that the
aggregate carbon output can be reduced through more e�cient composition
of population over space. This regulation experiment reallocates housing and
population over space, but the e↵ects on the housing consumption patterns
mean that this experiment shows no net reduction in energy use.

This is shown in Table 9, which displays the percentage changes in the
aggregate energy accounting–the experiments relative to Table 7. The first row
of each panel shows the di↵erence relative to the “snapshot” at the end of the
simulation period (2011), and the second row shows the di↵erence relative to
the accumulated totals (1981-2011). The third row shows energy use in new
(post-1980) construction only, ignoring stock put in place before the simulation
period. Finally, the fourth row of each panel shows an energy accounting that
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would result had only population been reallocated according to the experiment,
and the intensity and density of housing consumption is as in the baseline.

Panel 1, marked “Same Regulations” displays the results for this first ex-
periment. The net e↵ect on aggregate carbon output is essentially zero. There
are two broad reasons for this null result. First, as alluded to, there is an in-
tensive margin response in cities that relax constraints: not only are the cities
bigger than the baseline in terms of population share, but each resident con-
sumes a larger home. Any reallocation from high energy use locations to low is
overwhelmed by the increase in the intensity of consumption or the decrease in
density. The last row of the “Same Regulations” panel displays the energy ac-
counting without the intensive margin response; that is, the accounting assumes
the same housing per person and density as the baseline, but uses the popu-
lation allocation of the counterfactual. While electricity and natural gas usage
would decline after the reallocation without the intensive margin response, the
net carbon savings would still only be about one half of one percent.

This finding highlights the second reason. Even with substantial di↵erences
in carbon output rates in Table 3, very large population changes would be
necessary to “move the needle” for aggregate carbon output. This consideration
should be kept in mind for other experiments as well. Using the figures of Table
3, even if all residents of Oklahoma City (the highest carbon city) were moved
to San Jose (the lowest), the aggregate carbon savings would be a mere 0.8
percent.

The results indicate that high carbon output is not a mere accident of the
web of land use regulations. But can such regulations still be used as an en-
vironmental policy tool? The next three panels of Table 9 display the energy
accounting from three experiments to this point. The first of these, in panel
2, labeled “Low Carbon City Reg Subsidy,” simulates an economy in which
the lowest carbon cities have more lax regulations. Specifically, I remove one
standard deviation of regulation (i.e. a change in WRI of 1) from cities below
the median carbon output per person, altering their {c1, c2} parameters accord-
ingly. The results from Table 9 show that this experiment “backfires,” actually
raising carbon output by 1.35%, as the intensive margin response overwhelms
any carbon savings from reallocation of population. While population is real-
located somewhat from high carbon cities to low, the low carbon cities have
greater housing stock and use more energy. Furthermore, the last row of the
panel indicates that even without the intensive margin response carbon savings
would be slight.

The next experiment, in panel 3, marked “High Carbon City Reg Tax,” I
do the opposite: I add one standard deviation of regulation (i.e. a change in
WRI of 1) from cities above the median carbon output per person, altering their
{c1, c2} parameters accordingly. This “stick” approach instead of the “carrot” is
more e↵ective in reducing carbon output, with a 1.66 percent in the simulation
(2.69% in new construction). Much of this is due to the decrease in the intensity
of housing consumption and increase in density: had these remained the same,
carbon savings would have been 0.72%.

The last regulation experiment, in panel 4, marked “Carbon-proportional
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reg tax/subsidy,” I use a continuous measure of carbon intensity. I impose a
change to the {c1, c2} parameters relative to the carbon output per person as
in Table 3. The story is much as before: population reallocation would make a
small change to carbon output, but even this is mitigated by associated intensive
margin responses.

In summary, despite the obvious intuition of it, the Reallocation Hypoth-
esis seems of relatively small consequence, though not entirely rejected. The
foregoing experiments have, however, highlighted the importance of the nature
of housing consumption: the intensive margin matters. The next experiment
explores a national policy impacting the intensive margin of housing.

5.4.3 The Federal Tax Treatment of Housing

In the U.S., payments for mortgage interest and local property tax are deductible
from federal income taxes, reducing the tax burden for homeowners and e↵ec-
tively subsidizing payments for housing. Given the importance of the intensive
margin of housing consumption in the previous experiments, I now ask, what
would happen if this subsidy were removed?

In the following experiment, I modify the economy by removing the tax
subsidy for housing. The tax treatment of housing increases demand for housing
services, ceteris paribus, by decreasing the user cost of housing. While this is a
national policy, the e↵ect of the subsidy may not be homogenous across markets,
a point emphasized by Hilber and Turner (2013). In the model, no city is either
perfectly elastic or inelastic. Increased demand for housing is passed through to
developers, to which they respond by adding supply at degrees that vary with
the magnitude of the cost parameters and the housing stocks and attributes of
the other cities in the economy. Absent the subsidy, the developers add less
housing. This experiment measures the e↵ect of housing stocks, populations,
and consequently, carbon output across markets.

The user cost calculation accounts for the federal tax deductions for mort-
gage interest and property tax. I operationalize a removal of this subsidy by
making an adjustment to the e↵ective rent, changing the consumer’s budget
constraint to

y = c+ rh

where  is the ratio of the user cost formula without the tax subsidy to the
formula with tax subsidy. Based on the implementation parameters described
in section 4.2.3, I use  = 1.17. (The exact magnitude is debatable, and I
conduct sensitivity analyses with respect to subsidy size.) The change becomes
e↵ective at the start of the simulation in 1980.

rj =
1



y

h

�

1 + �

Table 10 shows the winners and losers of population in the no-tax-subsidy
regime. The population losers tend to be cities that would had the most ex-
pansion in housing supply and the higher per capita consumption of housing in
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Table 8: Same Regulations in All Cities: Simulation Results For Each City

City WRI % � Hsf % � Pop % � Hsf pp % � Pop Density % � Carbon
Providence RI 1.375 10.62 3.19 7.19 -3.37 6.61
Baltimore MD 1.042 10.30 3.05 7.04 -2.28 5.64
Seattle WA 0.993 9.43 2.85 6.40 -1.24 5.63
Denver Boulder CO 0.738 7.06 2.11 4.85 -1.68 4.53
Miami FL 0.707 6.84 2.03 4.71 -1.35 4.83
Phoenix AZ 0.589 5.90 1.74 4.09 -1.31 4.43
San Diego CA 0.555 5.40 1.57 3.78 -1.53 3.01
Memphis TN 0.577 4.63 1.33 3.25 -0.13 3.05
Boston MA 0.751 3.78 1.04 2.71 -1.63 2.25
Philadelphia PA 0.767 3.73 1.03 2.68 -1.42 2.57
Riverside SB CA 0.365 3.59 0.99 2.57 -0.74 2.10
Sacramento CA 0.367 3.39 0.93 2.43 -0.77 1.93
Washington DC 0.338 3.11 0.84 2.25 -0.79 1.92
New York NY NJ 0.456 2.55 0.64 1.89 -0.88 1.60
San Francisco CA 0.909 2.53 0.62 1.89 -1.29 1.60
Portland OR 0.312 2.30 0.58 1.72 -0.14 1.35
Los Angeles CA 0.464 2.03 0.48 1.55 -0.72 1.16
Orlando FL 0.181 1.76 0.39 1.36 -0.41 1.22
Minneapolis MN 0.190 1.27 0.23 1.04 -0.50 0.72
Milwaukee WI 0.229 1.05 0.16 0.89 -0.41 0.57
San Jose CA 0.177 0.71 0.05 0.67 -0.24 0.29
Hartford Bristol CT 0.068 0.23 -0.11 0.34 -0.17 0.04
Other/OO 0.000 0.00 -0.19 0.19 -0.02 -0.10
Detroit MI -0.044 -0.31 -0.29 -0.02 0.08 -0.31
Chicago Gary IL -0.077 -0.37 -0.31 -0.06 0.13 -0.35
Austin TX -0.048 -0.51 -0.36 -0.16 0.09 -0.45
Columbus OH -0.119 -0.54 -0.36 -0.18 0.23 -0.48
Norfolk VA Bch VA -0.100 -0.74 -0.43 -0.31 0.18 -0.60
Pittsburgh PA -0.118 -0.78 -0.44 -0.34 0.22 -0.65
Tampa St Pete FL -0.306 -0.89 -0.48 -0.41 0.51 -0.78
Cleveland OH -0.328 -1.64 -0.73 -0.92 0.61 -1.26
Atlanta GA -0.169 -1.66 -0.74 -0.93 0.40 -1.28
Jacksonville FL -0.176 -1.76 -0.77 -0.99 0.34 -1.33
Birmingham AL -0.487 -1.95 -0.83 -1.13 0.94 -1.53
Salt Lake City UT -0.212 -2.12 -0.89 -1.24 0.41 -1.51
Richmond VA -0.438 -2.28 -0.95 -1.35 1.03 -1.72
Bu↵alo Niagara NY -0.435 -2.45 -0.99 -1.47 0.93 -1.78
Louisville KY -0.806 -2.56 -1.04 -1.54 1.53 -2.12
Rochester NY -0.507 -2.81 -1.12 -1.71 1.10 -1.96
Oklahoma City OK -0.713 -3.08 -1.22 -1.89 1.40 -2.39
Kansas City MO -1.002 -3.16 -1.24 -1.94 1.70 -2.52
San Antonio TX -0.392 -3.77 -1.45 -2.35 0.88 -2.73
Cincinnati OH -0.835 -3.94 -1.50 -2.47 1.76 -2.97
Dallas FW TX -0.499 -4.80 -1.80 -3.05 1.09 -3.55
Charlotte NC -0.604 -5.51 -2.05 -3.53 1.15 -4.05
St Louis MO -0.939 -5.53 -2.04 -3.56 1.99 -3.91
Houston TX -0.608 -5.71 -2.12 -3.67 1.17 -4.12
Nashville TN -0.748 -6.81 -2.50 -4.42 1.64 -5.00
Las Vegas NV -0.784 -7.25 -2.66 -4.72 1.57 -5.56
Indianapolis IN -0.988 -8.91 -3.23 -5.87 1.87 -6.48
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the baseline. That is, “big house” cities such as Las Vegas, Phoenix, Orlando,
Atlanta and Dallas lose residents, and housing per person falls substantially in
these locations. (The correlation between population change and initial hous-
ing per person is -0.66.) Housing per person falls everywhere, and population
densities increase.

Table 9, in panel 5, labeled “Without Federal Tax Subsidy for Housing,”
reports the energy statistics for the no tax subsidy experiment. Removing the
tax subsidy has substantial e↵ects on the amount of construction and housing
stock as of 2011, reducing them by 9.35% and 5.77%, respectively. In-home
energy use decreases in proportion with the decline in housing per person, and
gasoline consumption–the stickiest needle in previous experiments–declines due
to increased population density. The result is carbon output that is 2.7% lower
in 2011, or 4.26% lower in newer construction. (Recall that construction before
1980 would not be a↵ected.) Interestingly, the population reallocation e↵ect
in this experiment (a 0.57% reduction) is nearly as large as those experiments
targeting low or high carbon cities.

These results used a particular value of the subsidy according to my cal-
ibration. The actual user cost impact of the mortgage interest and property
tax deductions for any particular housing consumer will depend upon her per-
sonal income and marginal tax rates, as well as (endogenous) decisions such
as whether she owns or rents, how much of the home is financed, and whether
deductions are itemized, all of which are beyond the scope of this paper. The
use of a single parameter is a way to simply incorporate the aggregate e↵ect of
the tax subsidy on housing demand, but the exact magnitude is debatable.

To address this concern, I treat the user cost adjustment parametrically in
multiple simulations. This exercise is both sensitivity check and a demonstration
of the functional relationship between the magnitude of the housing subsidy
and the carbon impact. Figure 11 plots the estimated total and in-home carbon
changes (in Table 9, final two columns, first line of each panel) as I vary the
size of the subsidy removed (the center point, 17% was used for the results of
Tables 9 and 10 above). Unsurprisingly, there is a clear monotonic (and slightly
concave) relationship: less subsidy means less carbon.

5.4.4 Summary of Simulation Findings

Back-of-the-envelope calculations help to put the figures in context. The 2.70%
reduction in experiment 5 would be about one-sixth of the U.S. State Depart-
ment goal for 2020, and the 4.32% reduction on new housing would be over
one-quarter the goal. The 48 billion pounds in carbon savings (from the 49
named cities alone) is roughly twice the amount of carbon contributed nation-
wide by trash incineration. Or consider that urban tree cover absorbs 1.64% of
carbon emissions; with slightly less than half of emissions represented in this
experiment, the reduction is roughly equivalent to absorption of urban trees.
That is, the entirety of urban tree cover is needed to o↵set the increase in ad-
ditional emissions imposed by the federal tax subsidy for housing. Simulation
3, increasing regulations in high carbon output cities, would have similar but
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Table 10: Removal of Federal Tax Subsidy: Simulation Results For Each City
City Hsf pp % Stock Growth % � Hsf % � Pop % � Hsf pp % � Pop % � Carbon

(baseline) Density
San Jose CA 440 62 -2.090 1.130 -3.180 0.270 0.290
San Francisco CA 486 65 -2.770 0.900 -3.640 0.320 -0.170
Norfolk VA Bch VA 548 76 -3.130 0.780 -3.880 0.400 -0.820
Baltimore MD 348 76 -3.130 0.760 -3.860 0.360 -0.630
Tampa St Pete FL 601 74 -3.640 0.610 -4.220 0.420 -1.630
Louisville KY 585 64 -3.730 0.580 -4.290 0.570 -1.890
Philadelphia PA 382 69 -4.120 0.430 -4.530 0.450 -1.680
Boston MA 561 63 -4.230 0.410 -4.620 0.570 -1.200
Milwaukee WI 509 63 -4.300 0.380 -4.670 0.480 -1.310
Oklahoma City OK 583 72 -4.520 0.300 -4.810 0.560 -2.310
Los Angeles CA 512 62 -4.780 0.220 -4.990 0.470 -1.270
Richmond VA 688 80 -4.750 0.220 -4.960 0.600 -2.030
Birmingham AL 573 65 -4.950 0.160 -5.110 0.620 -2.320
Pittsburgh PA 500 56 -5.020 0.150 -5.160 0.650 -2.460
Other/OO 549 77 -5.000 0.130 -5.120 0.020 0.070
Cleveland OH 606 64 -5.040 0.130 -5.170 0.610 -2.550
Chicago Gary IL 552 71 -5.070 0.120 -5.180 0.550 -2.280
New York NY NJ 530 60 -5.130 0.110 -5.230 0.590 -2.010
Bu↵alo Niagara NY 518 58 -5.260 0.070 -5.330 0.740 -2.070
Cincinnati OH 632 73 -5.240 0.060 -5.300 0.630 -2.680
Rochester NY 498 65 -5.370 0.020 -5.390 0.700 -1.950
Detroit MI 597 63 -5.430 0.000 -5.430 0.700 -2.360
Columbus OH 623 75 -5.510 -0.030 -5.480 0.620 -2.870
Kansas City MO 688 74 -5.510 -0.040 -5.470 0.550 -2.920
Providence RI 627 65 -5.900 -0.180 -5.730 0.710 -2.530
St Louis MO 565 67 -5.960 -0.190 -5.780 0.710 -2.800
Minneapolis MN 550 75 -6.120 -0.250 -5.880 0.720 -2.530
Hartford Bristol CT 672 69 -6.110 -0.250 -5.870 0.720 -2.420
Seattle WA 602 76 -6.630 -0.430 -6.230 0.600 -2.890
Washington DC 504 83 -6.740 -0.470 -6.290 0.610 -3.010
Indianapolis IN 719 79 -6.720 -0.470 -6.280 0.580 -3.900
Nashville TN 687 81 -6.740 -0.470 -6.290 0.630 -3.720
Miami FL 595 76 -6.800 -0.490 -6.340 0.530 -3.860
Charlotte NC 811 88 -6.800 -0.500 -6.330 0.530 -3.830
San Diego CA 528 74 -6.840 -0.510 -6.360 0.790 -2.290
Denver Boulder CO 625 82 -6.930 -0.540 -6.430 0.610 -3.240
Sacramento CA 678 86 -6.900 -0.540 -6.400 0.540 -2.640
Houston TX 675 83 -6.980 -0.560 -6.450 0.550 -3.850
San Antonio TX 620 86 -7.000 -0.570 -6.470 0.620 -3.790
Memphis TN 667 76 -7.060 -0.590 -6.510 0.720 -4.020
Jacksonville FL 637 86 -7.050 -0.590 -6.490 0.550 -3.810
Salt Lake City UT 468 80 -7.080 -0.590 -6.520 0.570 -3.490
Dallas FW TX 774 86 -7.090 -0.600 -6.530 0.610 -4.100
Atlanta GA 897 92 -7.080 -0.600 -6.510 0.630 -4.000
Austin TX 797 95 -7.050 -0.600 -6.490 0.580 -4.120
Riverside SB CA 691 89 -7.230 -0.650 -6.620 0.520 -3.040
Orlando FL 775 92 -7.300 -0.680 -6.670 0.570 -4.370
Las Vegas NV 870 103 -7.370 -0.700 -6.710 0.500 -4.550
Phoenix AZ 808 95 -7.580 -0.780 -6.850 0.560 -4.910
Portland OR 651 73 -7.690 -0.810 -6.930 0.640 -3.890
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Figure 11: Change in Carbon Output As Function of Tax Subsidy Size
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slightly smaller e↵ects than the no tax subsidy experiment.
In summary, policies a↵ecting the intensive margin of housing–the amount

consumed per person–are the drivers of carbon savings. Reallocation of popula-
tion results in some carbon savings, but the equilibrium e↵ects are complicated,
with decreases in one location o↵set by increases elsewhere. The results suggest
that had the general equilibrium e↵ects been ignored, carbon savings may have
been overstated.

6 Conclusion

This paper has designed and implemented a dynamic spatial equilibrium model
of housing construction and consumption, and the growth of population across
metropolitan areas. The estimation yields residual costs for housing construc-
tion and the intensity of land use, after controlling for the option value of a local
builder and the competitive e↵ects between cities. These residual costs are then
related to land use regulation as measured by the Wharton Regulation Index.

Counterfactual simulations a↵ect local land use regulation, projecting the
equilibrium outcomes for housing construction, the spatial distribution of pop-
ulation, and ultimately, the implications for energy use. I find there is some
scope for reducing energy use by targeting high energy use cities with increased
regulation. The carbon savings come primarily by reducing housing consumed,
and secondarily by reallocating population from ine�cient locations to more
e�cient locations. I find that the federal tax treatment of housing has added a
nontrivial amount of carbon output by increasing housing consumption.

My results indicate that the Reallocation Hypothesis is not false, but is not
large. Despite apparent large di↵erences between cities in carbon per person,
simply moving population from one location to another without any changes to
within-city housing consumption patterns has limited scope for reducing car-
bon output. An implication is that because significant carbon savings require
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changes in consumption patterns, carbon reductions are likely to come at some
utility cost. However, I note that I have conducted simulation and accounting
exercises and not welfare calculations. True welfare analyses, which would likely
have to address the complicated issue of the utility impacts of carbon output,
are left for future work.

Finally, the energy accounting of this study is short of a full accounting. Fu-
ture work could incorporate the carbon footprint of consumption goods, whether
tradable or nontradeable across markets, and the impacts of energy use by firms
commercial and industrial, and how the spatial distribution of employment con-
tributes. Water use is also a growing environmental concern, and a model of
this type may be useful in analyzing the e�ciency of water allocation.
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A Examining the Aggregate State Simplifica-
tion

How dangerous is the aggregate state assumption? A direct comparison of the
full solution to the approximated solution would be desirable, but the very
problem is the inability to calculate the full solution in finite time, so the true
answer is e↵ectively unknowable. However, consideration of the structure of the
problem can shed light on the question.

I argue that, especially under the structure of the utility function and the
spatial equilibrium, this is a relatively innocuous simplification. Consider the
payo↵ function to the builder and how it is a↵ected by states through the spatial
equilibrium. First, notice that the impact of own-city income yj on rents is
first order, a↵ecting rent directly and through population (see equation (3) and
(4)), while the e↵ect of another city’s income is second order, a↵ecting rents
only indirectly through population. The derivatives of (4) are cumbersome, but
Table 11, panel A shows the numerical calculations of the population and rent
elasticities evaluated at the means of income, housing stock, and population
in the data. I show this for cities of di↵erent size: the (second) largest in
my data, New York City,39 the median, Cincinnati, OH, and the smallest in
my data, Salt Lake City, UT. The own-income elasticities of population and
housing price (column 1 of panel A) are orders of magnitude larger than the
cross-income elasticities (column 2). The same is true for own-housing stock
elasticity of population and rent (column 3) versus cross-city elasticity with
respect to housing stock (column 4). Panel A suggests that while other city’s
states may matter for demand conditions in a city, they are far less important
than local demand and supply conditions.

Note that cross-city elasticities are symmetric. That is, New York’s e↵ect
on Cincinnati and Salt Lake City, as well as Chicago, Los Angles, Baltimore,
etc, is the same.40 A one percent increase in income in New York will decrease
populations and rent in other cities by 0.0076 percent. The size of the city
matters, however: New York City’s income has a larger e↵ect on other cities
than does Salt Lake City’s.

Thus, a true examination of the approximation assumption asks how the spa-
tial distribution of the states a↵ects the payo↵. After all, the model is designed
to allow heterogeneous locations to interact in a spatial equilibrium, whereas
the state aggregation assumption is, for the dynamic decision maker, throwing
away the detailed heterogeneity and taking an average. One might worry that
the payo↵ to the builder might be a↵ected by the exact location of the averaged
state; whether, e.g. there are two cities with average income, or one with high
and another with low, and which is which. Panel A’s elasticities do little to
address this concern. Panel B of Table 11 investigates this concern more di-

39New York is the second-largest because an aggregate of all smaller cities, the “outside-
option,” is the largest.

40The symmetry result is also aided by the spatial equilibrium holding in a Cobb-Douglas
functional form for utility. Cobb-Douglas is not merely common and convenient, but also has
empirical support in the literature. See Davis and Ortalo-Magne (2011).
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Table 11: Relative Importance of Own, Cross, and Aggregated States for Pop-
ulation and Rent

A: Elasticities of Own- and Cross-City States
dlogPj

dlogyj

dlogPj

dlogyk

dlogPj

dlogHj

dlogPj

dlogHk

(2) New York 0.1328 -0.0076 0.0317 -0.0018
(25) Cincinnati 0.1391 -0.0014 0.0331 -0.0003
(50) Salt Lake City 0.1398 -0.0007 0.0333 -0.0002

dlogrj
dlogyj

dlogrj
dlogyk

dlogrj
dlogHj

dlogrj
dlogHk

(2) New York 0.2328 -0.0076 -0.0683 -0.0018
(25) Cincinnati 0.2391 -0.0014 -0.0669 -0.0003
(50) Salt Lake City 0.2398 -0.0007 -0.0667 -0.0002

B: Variation with Respect to Location Dispersion Within Aggregated States

CV of Rent or Pop Income y Housing Stock H
Perturbation size: 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20
(2) New York 0.0004 0.0021 0.0040 0.0082 <0.0001 0.0002 0.0005 0.0010
(25) Cincinnati 0.0006 0.0028 0.0057 0.0120 <0.0001 0.0003 0.0005 0.0011
(50) Salt Lake City 0.0006 0.0029 0.0060 0.0118 <0.0001 0.0003 0.0005 0.0011

Notes: Panel A reports the empirical elasticities of population and rent at the mean
values of income, housing stock, and population. Panel B reports for the city listed
the coe�cient of variation (CV) over 1000 simulations of the spatial equilibrium in
which the distribution of the aggregate state is varied by perturbing by the given size
the local values of income and housing stock. Rents and populations have the same
CV, so they are reported in the same table.

rectly. In panel B, I have simulated at the mean values of the states alternative
spatial dispersions of the aggregate states, holding the summary statistic fixed,
and solved the spatial equilibrium to find populations and rents for the example
cities. That is, for a fixed y�j , I randomly draw whether city k has a 1% higher
or lower value of yk, whether city l has a 1% higher or lower value of yl, and
so on. The perturbation sizes vary and are listed separately. Panel B then re-
ports the coe�cient of variation (the CV, standard deviation divided by mean)
for the payo↵-relevant variables over the simulations. This exercise is meant to
illustrate the degree to which imprecision regarding the spatial distribution of
the aggregate state matters for the payo↵.

The CVs show variation orders of magnitude smaller than the perturbations.
Even when the agent in New York is systematically 20% wrong (a large error)
about each city’s level of income, but knows the economy-wide average, his
rent varies by a mere 0.82%. This is slightly more severe for smaller cities, but
still an error small relative to the degree of information thrown away. Thus,
the aggregate state assumption, despite its massive simplification in terms of
computational solution, seems relatively innocuous.
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Figure 12: Actual and Predicted Land Employed in Housing Construction, by
Location
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Table 12: Gasoline Use Regressions
Coef. (1) (2) (3) (4) (5)
Log(density) -0.092*** -0.082*** -0.083*** -0.078*** -0.058***

(0.002) (0.002) (0.002) (0.002) (0.001)
MSA FE X X X X X
New York 0.017 -0.075*** -0.189*** -0.168*** -0.100***
Los Angeles 0.180*** 0.102*** 0.013 0.023* 0.013
Chicago 0.065*** 0.002 -0.069*** -0.051** -0.015
Phoenix 0.023 -0.016 -0.060*** -0.058*** -0.015
Dallas 0.173*** 0.135*** 0.061*** 0.062*** 0.082***
Miami 0.058*** -0.003 -0.048** -0.043** -0.013
Washington 0.210*** 0.129*** -0.009 -0.002 -0.001
Houston 0.207*** 0.153*** 0.068*** 0.070*** 0.104***
Detroit 0.190*** 0.149*** 0.084*** 0.080*** 0.098***
Boston 0.142*** 0.061*** -0.025 -0.017 0.031*
Atlanta 0.167*** 0.129*** 0.056** 0.059*** 0.056***
San Francisco 0.049*** 0.018 -0.106*** -0.093*** -0.097***
Rochester -0.020 -0.062** -0.010*** -0.097*** -0.048**
Pittsburgh -0.178*** -0.181*** -0.178*** -0.165*** -0.122***
Seattle 0.058* -0.001 -0.079*** -0.074*** -0.103***
Minneapolis 0.152*** 0.109*** 0.031 0.033 0.027
San Diego 0.189*** 0.123*** 0.033** 0.038*** 0.028**
Tampa -0.053** -0.039* -0.40** -0.037* 0.029
Baltimore 0.151*** 0.093*** -0.028 -0.024 -0.005
Portland 0.052 0.007 -0.58 -0.062 -0.89**
VA Beach 0.120*** 0.087*** 0.023 0.028* 0.013
Denver 0.106** 0.096** -0.025 -0.024 -0.055
Cleveland 0.033 -0.012 -0.045 -0.039 -0.046
Cincinnati 0.080 0.010 0.003 0.016 -0.001
Providence -0.038 -0.116** -0.143*** -0.136*** -0.106**
Kansas City 0.111** 0.071* 0.023 0.010 0.017
St. Louis 0.063 0.056 0.023 0.022 0.040
San Jose 0.049*** 0.018 -0.106*** -0.093*** -0.097***
San Antonio 0.129*** 0.107*** 0.064*** 0.072*** 0.101***
Philadelphia -0.023 -0.077*** -0.170*** -0.016*** -0.105***
Columbus 0.021 0.009 -0.055 -0.054 -0.055
Richmond 0.045*** 0.041*** 0.005 0.008 -0.003
Oklahoma 0.186*** 0.195*** 0.187*** 0.173*** 0.154***
Indianapolis 0.092*** 0.076*** 0.031 0.033 0.022
Milwaukee 0.084** 0.007 -0.070** -0.071** -0.060*
Las Vegas 0.077 0.033 -0.037 -0.030 -0.018
Charlotte 0.109*** 0.078** 0.047 0.048 0.026
Nashville 0.180*** 0.180*** 0.121*** 0.121*** 0.104***
Austin 0.104*** 0.084*** 0.004 0.010 0.038**
Memphis 0.136*** 0.131*** 0.078* 0.084** 0.075*
Buffalo -0.107*** -0.117*** -0.128*** -0.120*** -0.069***
Louisville 0.044 0.079 0.053 0.061 0.008
Hartford 0.067 0.041 -0.083** -0.074* -0.050
Jacksonville 0.059* 0.049* -0.009 -0.004 0.030
Riverside 0.028 0.001 -0.022 -0.011 -0.016
Orlando 0.056* 0.030 0.009 0.009 0.050**
Birmingham -0.102** -0.024 -0.018 -0.017 -0.013
Sacramento 0.067** 0.045** -0.043* -0.037 -0.044**
Salt Lake 0.129*** -0.020 -0.033 -0.037 -0.065
Year
1995 -0.342*** -0.237*** -0.323*** -0.394*** -0.341***
2001 0.096*** 0.227*** 0.081*** 0.009 0.044***
2009 0.017* 0.198*** -0.011 -0.078*** 0.016**
Race
African-American -0.148*** -0.042*** -0.015 -0.019**
Asian -0.134*** -0.114*** -0.090*** -0.080***
Other -0.092*** 0.027*** 0.046*** 0.028***
Number of adults
2 0.748*** 0.536*** 0.183*** 0.061***
3 or more 1.064*** 0.854*** 0.327*** 0.101***
Number of children
1 0.356*** 0.277*** 0.217*** 0.135***
2 0.398*** 0.300*** 0.242*** 0.173***
3 or more 0.427*** 0.367*** 0.304*** 0.236***
Income
5000-9999 0.091*** 0.080*** 0.043***
10000-19999 0.299*** 0.269*** 0.162***
20000-29999 0.460*** 0.413*** 0.237***
30000-39999 0.584*** 0.524*** 0.297***
40000-49999 0.668*** 0.600*** 0.341***
50000-74999 0.727*** 0.652*** 0.362***
75000-99999 0.757*** 0.679*** 0.371***
10000 or more 0.872*** 0.782*** 0.432***
Number of drivers
1 0.041 -0.021
2 0.460*** 0.045
3 or more 0.700*** 0.095**
Number of vehicles
2 0.612***
3 or more 0.937***
Number of workers
1 0.270***
2 0.348***
3 or more 0.391***
Constant 7.356*** 6.361*** 6.170*** 6.192*** 5.890***

Notes: The outcome variable is the log of gallons of gasoline consumed per household per year. Controls are
categorical dummies. Standard errors are omitted, but parameter significance is flagged as: *** p<0.01, **
p<0.05, * p<0.1. 49


