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Abstract

We take a systemic, market based approach, stipulating that mortgage values and pay-

ments should be linked to housing prices and adjusted downward to prevent negative

equity. We advocate using Continuous Workout Mortgage (CWM), which is a two in

one product: a fixed rate home loan coupled with negative equity insurance. We show

that Continuous Workout Mortgages could be the optimal home financing instrument for

many households.

Keywords: Systemic risk, Negative equity, House price index, Continuous Workout Mort-

gage (CWM), Repayment, Insurance, Cap and floor on continuous flow.
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“Because [systemic] risk cannot be diversified away, investors demand a risk premium if they

are exposed to it. There is no magic potion that can mitigate this kind of risk: somebody must hold

this risk. Because crisis risk is endemic, it cannot be diversified away. To off-load this kind of risk,

you have to purchase insurance, that is, induce others to take the risk off your hands by paying

them a risk premium.”

Jonathan Berk (in Fabozzi, Focardi, and Jonas (2010))

1 Introduction

The ad hoc measures taken to resolve the recent crisis involved giving away handfuls

of money, yet not stopping the wave of foreclosures. Such short-term patches contra-

dict mortgage contracts thus rejecting the rational principles of finance (Roubini, Roach,

Smick, Shiller, and Baker (2009)). Moreover, volatility of house prices rose substantially

in recent years (see Figure 1). In contrast, we come up with a mortgage contract which

is robust to downturns. We demonstrate how Continuous Workout Mortgages can be of-

fered to homeowners as an ex ante solution to non-anticipated real estate price declines.

PUT FIGURE 1 ABOUT HERE

Continuous Workout Mortgage (CWM, Shiller (2008b)) is a two-in-one product: a

fixed rate home loan coupled with negative equity insurance. More importantly its pay-

ments are linked to housing prices and adjusted downward on regular basis to prevent

negative equity. CWMs eliminate the expensive workout of a defaulting rigid plain

vanilla mortgage contract. This subsequently reduces the risk exposure of financial insti-

tutions and thus the government to their bailouts. CWMs share the price risk of a home
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with the lender and thus provide automatic adjustments for changes in home prices. This

feature eliminates the rational incentive to exercise the costly option to default which is

embedded in the loan contract. Despite sharing the underlying risk, the lender contin-

ues to receive an uninterrupted stream of monthly payments. Moreover, this can occur

without multiple and costly negotiations.

Unfortunately, prior to the current crisis CWMs have rarely been considered. The aca-

demic literature, with the exception of Ambrose and Buttimer, Jr. (2012), has not discussed

its mechanics and especially its design. Shiller is the first researcher, who forcefully ar-

ticulates the exigency of its employment. CWMs were conceived in his studies1 (Shiller

(2008b) and Shiller (2009)) as an extension of the well-known Price-Level Adjusted Mort-

gages (PLAMs), where the mortgage contract adjusts to a narrow index of local home

prices instead of a broad index of consumer prices. In their recent study, Ambrose and

Buttimer, Jr. (2012) numerically investigate properties of Adjustable Balance Mortgages

which bear many similarities to CWMs. Alternatively, Duarte and McManus (2011) stip-

ulate creation of derivative instruments written on credit losses of a reference mortgage

pool. The model in Shiller, Wojakowski, Ebrahim, and Shackleton (2013) complements

the more intricate one of Ambrose and Buttimer, Jr. (2012). Unlike a numerical grid, it

relies on a methodology which allows valuation of optional continuous flows in closed

form (see e.g. Carr, Lipton, and Madan (2000) and Shackleton and Wojakowski (2007)).

Continuous workout mortgages need indicators and markets for home prices and in-

comes. These markets and instruments already exist for lenders to hedge risks. The

Chicago Mercantile Exchange (CME) for example, offers options and futures on single-

family home prices. Furthermore, reduction of moral hazard incentives requires inclu-

sion of the home-price index of the neighborhood into monthly payment formula. This

is to prevent moral hazard stemming from an individual failing to maintain or, worse,

1See also Shiller Shiller (2003) for home equity insurance.
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damaging the property just to reduce mortgage payments.

Finally, we observe that there is evidence (see Shiller (2014)) that the retirement trends

are changing. More people are planning to sell their house and consume the proceeds in

retirement. CWMs could help insure house values and preserve the welfare gain. No-

tably, the continuing care retirement community (CCRC) is a concept that is growing

rapidly around the world. After the drop in home prices there is a CCRC crisis in the

US today. CCRCs have a lot of vacancies, and this is no doubt because of the absence of

CWMs.

In our approach the homeowner can choose from a classic 30-year Fixed Rate Mort-

gage (FRM) or an CWM. We show that Continuous Workout Mortgages could be the

optimal home financing instrument for many households.

2 The contracts

2.1 The standard Fixed Rate Mortgage (FRM)

A major invention introduced during years of Great Depression were fully amortizing re-

payment mortgages. Typically, these mortgages are analysed in a discrete time setup with

12 fixed rate monthly payments per year and a T = 30 year time horizon. For our pur-

poses we need to have a continuous time representation of Fixed Rate Mortgages (FRM).

In place of the monthly payment we introduce a repayment flow rate R which is constant

in time. For simplicity we will also assume that the term structure is flat i.e. rates for all

maturities are constant and equal to r. For this repayment mortgage the mortgage balance

Q decreases so as to become zero at maturity. By definition, the mortgage balance is equal

to the amount owed to the lender at time t and can be computed as the present value of
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remaining payments

Q (R, t) =
∫ T

t
e−r(s−t)R ds =

R
r

(
1− e−r(T−t)

)
. (1)

Differentiating (1) with respect to t we obtain the dynamics of Q

dQ = −Re−r(T−t)dt = −R
(

1− Qr
R

)
dt . (2)

It is deterministic and is described by the ordinary differential equation

dQ
dt
= rQ− R (3)

with terminal condition Q (R, T) = 0. It says that the balance Q grows at rate r but is

progressively repaid by a constant mortgage payment flow R. The mortgage can be repaid

in full only if the interest flow on principal rQ is lower than the coupon flow R. In this

case the net flow is negative: rQ− R < 0 i.e. funds are “poured back” to the lender and

the mortgage is being repaid. The advantage and simplicity of FRM is that the required

repayment flow parameter R can be computed and set once and for all at the beginning,

when the loan contract is signed. To compute R we only need to know three numbers:

the initial balance Q0 = Q (R, 0) (the loan amount), the maturity T of the loan and the

discount rate r

R =
Q0

A (r, T)
, (4)

where A (r, T) is the annuity

A (r, T) =
∫ T

0
e−rtdt =

1− e−rT

r
(5)

i.e. the present value at rate r of a unit flow terminating after T years.
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The simplicity of the FRM becomes problematic when a house becomes underwater.

This was the case of many households in the US in years following the burst of the hous-

ing bubble in 2007. This is illustrated on Figure 2. A $ 500 000 property is financed for 30

years and interest rates are 5%. However, a sharp price decline puts the house in negative

equity. House values plunge well below the convex decreasing line representing the bal-

ance. In this example, although the balance in a FRM is set to be fully repaid at maturity,

the house is underwater until year 11. Problems then re-surface around years 20 and then

28. The value of the property then plunges below the initial purchase price H0.

PUT FIGURE 2 ABOUT HERE

In the next section we argue that a standard repayment FRM can be improved by

making the payment lower in bad times. This is illustrated on Figure 3. In our example

a substantial reduction, proportional to the drop in house prices, occurs up until year 11

and payments are also reduced in years 20 and 28.

PUT FIGURE 3 ABOUT HERE

2.2 The repayment Continuous Workout Mortgage (CWM)

In a repayment Continuous Workout Mortgage (CWM) the repayment flow R is no longer

a constant. Instead it is linearly scaled down when the house price index ξt decreases

R (ξt) = min {ρ, ρξt} = ρ min {1, ξt} = ρ
[
1− (1− ξt)

+
]

, (6)
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where ρ is an endogenous parameter (see Figure 4).

PUT FIGURE 4 ABOUT HERE

We assume that a house price index ξt is available2 for all t ∈ [0, T]. Without loss of

generality we also assume that this index is normalized to one initially, i.e. ξ0 = 1. If Ht

is the absolute value of the house price index at time t, we can then define ξt as

ξt =
Ht

H0
. (7)

When ξt < 1 the return on initial housing purchase is negative and the mortgage risks

negative equity if the decline in value is higher than funds repaid so far. In the limiting

case when the house price index drops to zero ξt → 0, the CWM contract automatically

produces a full workout i.e. R (ξt)→ 0. This is obvious from the shape of the payoff func-

tion illustrated on Figure 4. If the collateral becomes worthless, the homeowner should

be fully compensated and shouldn’t pay any interest or repay any principal. In other

words there is full insurance against house price declines. In more realistic, intermedi-

ate situations when prices decline but not by too much, this contract provides automatic

compensation to homeowners. Repayments of principal and the interest are reduced pro-

portionally to the index. As a consequence it is no longer possible to express the current

balance as a function of future payments. In fact, for CWMs, (1) no longer holds. Two

quantities emerge which might become numerically different:

1. The actual balance to date, which is equal to initial balance minus payments done

2Such as the Case-Shiller index in the US or the Countrywide or Halifax index in the UK.
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so far

QCWM−
t = Q0ert −

∫ t

0
R (ξs) er(t−s)ds ; (8)

2. The expected payments to occur in future

QCWM+
t = Et

[∫ T

t
R (ξs) e−r(s−t)ds

]
. (9)

The balance QCWM−
t is a path-dependent quantity, which can go up as well as down,

reflecting the history {ξs}
t
s=0 of the house price index up to time t. If we know this history

we can compute the balance as

QCWM−
t = [Q0 − ρA (r, t)] ert + ρ

∫ t

0
(1− ξs)

+ er(t−s)ds . (10)

In particular we note that

[Q0 − ρA (r, t)] ert ≤ QCWM−
t ≤ Q0ert , (11)

so for ρ > R the lower bound can become a negative number closer to maturity (see

Appendix A.1). This occurs when home prices remained high, the workout did not kick

in, the actual loan was repaid earlier and the mortgagee also collected the insurance pre-

mium over the lifetime of the contract. However, following a sharp decline in house

prices the balance can also exponentially increase, as shown by the upper bound. Because

the expected payments must decline to zero at maturity, the lender bears risk which he

was paid for to hold. The borrower have been paying a premium to compensate for this

shortfall.
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We will require that the initial balance and the expected payments are equal

QCWM−
0 = QCWM+

0 = Q0 . (12)

This equilibrium condition is necessary to compute the endogenous repayment flow ρ

of a CWM. Subsequently, the fair value of the insurance premium ρ− R embedded in a

CWM can also be obtained.

Proposition 1 The expected present value of future payments of the Continuous Workout Mort-

gage (CWM) at time t ∈ [0, T] is equal to

QCWM+
t = ρ [A (r, T − t)− P (ξt, 1, T − t, r, δ, σ)] . (13)

where P ≥ 0 is the floor (i.e. collection of put options for all maturities from t = 0 to t = T) on

continuous flow ξt capped at 1, expressed in closed form (see Appendix), and δ, σ are the service

flow and the volatility of the house price.

Proof. See Appendix.

The payment flow ρ which appears in (13) is a constant parameter which is computed

at origination (t = 0) for the duration of the contract. It should not be confused with

mortgage payment R (ξt) given by equation (6) which is a function of randomly chang-

ing adjusted house price level ξt. Mortgage payments R (ξt) decrease when home prices

decline, whilst ρ is fixed ex ante.

Proposition 2 The repayment flow of a CWM is capped by ρ, which is an endogenous parameter

and can be computed explicitly as

ρ =
Q0

A (r, T)− P (1, 1, T, r, δ, σ)
. (14)
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Proof. Set t = 0 in (13) and solve for ρ.

The endogenous parameter ρ provides the cap on repayment flow under CWM. Clearly,

if the mortgage is fairly priced, parameter ρ must be greater than R because the issuer of

the insurance must be rewarded. We can think of the difference ρ− R > 0 as equal to the

price of the insurance to be paid in good states of nature for the continuous workouts to

be automatically provided when bad states prevail. If there were no risk to be compen-

sated for (σ→ 0), the present value of insurance puts represented by the floor function P

would become zero and ρ would equal R. This is illustrated on Figure 5, where we also

consider the case of a partial guarantee which only covers for α = 1
2 of the loss. Equation

(14) is critical for potential originators of continuous workouts with repayment features.

This pricing condition helps us evaluate the maximal annual payment for this mortgage.

A broker can instantly compute this quantity on a computer screen and make an offer to

a customer.

PUT FIGURE 5 ABOUT HERE

Furthermore, it is not immediately obvious whether expected payments of a CWM are

lower or higher compared to the balance Qt of an otherwise identical, standard 30-year

FRM. Using (1) and (5) the latter can be written as

Qt = Q (R, t) = Q0
A(r, T − t)

A(r, T)
. (15)

Similarly, using (13) and (14) we can represent the expected payments of a CWM as

QCWM+
t = Q0

A(r, T − t)− P (ξt, 1, T − t, r, δ, σ)

A(r, T)− P (1, 1, T, r, δ, σ)
. (16)
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Clearly, when house prices are low ξt < 1 and t is relatively low we must have QCWM+
t ≤

Qt. This is because the insurance pays off. However, when house prices are high ξt > 1

and closer to maturity t → T, we should expect a reversal QCWM+
t ≥ Qt. In this case

the insurance puts expire out of the money but a CWM homeowner still has to pay the

insurance premia, which results in a slightly higher remaining balance. However, even

for very high values of home price index, expected payments QCWM+
t are always capped

from above by

Q̄CWM
t = Q0

A(r, T − t)
A(r, T)− P (1, 1, T, r, δ, σ)

≥ QCWM+
t , (17)

which has been computed as limξ→∞ QCWM+
t . Note that Q̄CWM

t and Qt are similarly

shaped (concave, decreasing to zero). However Q̄CWM
t always dominates Qt. The dif-

ference Q̄CWM
t − Qt > 0 is relatively small and represents a “cushion” area above the

standard repayment schedule Qt. It is in this area where the insurance premium is col-

lected in good times.

Figures 6 and 7 summarize the key differences between FRM and CWM. For FRM

there is a fixed repayment schedule. In contrast, the repayment schedule for a CWM has

a fixed upper bound. This upper bound is above (but very close to) the FRM’s schedule,

forming a “cushion” (see Figure 6). This upper bound or cushion gets quickly saturated

in good times. We could say that this extra cushion needs to be there to collect the insur-

ance premia in good times. However, in bad times, CWM’s payments outstanding can

dive well below FRM’s outstanding balance. This self adjustment mechanism is key to

remain away from negative equity, avoid the house becoming underwater and prevent

foreclosures automatically (see Figure 7).

PUT FIGURES 6 AND 7 ABOUT HERE
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We also investigate the behaviour of a CWM under alternative path scenarios. In

the first scenario (Figure 8) prices drop and stay at 40% of initial value until maturity.

In the second scenario (Figure 9) prices also drop to 40% of initial value but then jump

and stay at $600000 which represents 110% of the initial value. In both cases expected

payments evolve similarly, progressively decreasing to zero at maturity. Obviously, the

starting point QCWM+
t for the second scenario is much higher than for the first. However,

this starting point must always lie below the upper bound Q̄CWM
t , no matter how much

prices appreciate in future.

PUT FIGURES 8 AND 9 ABOUT HERE

3 Data and calibration of house price index paths

We use S&P/Case-Shiller home price index. The “10-city” composite 318 not season-

ally adjusted monthly observations starts in January 1987. We also check our estimates

against the “20-city” composite, which is a shorter series with 162 monthly observations,

starting in January 2000. Both series are normalized to 100 in January 2000 and span

the period up until July 2013. Before proceeding we check for unit roots. Before using

calibrated parameters in simulations we validate them against estimates obtained using

a much longer time series data. This series, which we short name “Shiller”, has been

originally used to produce illustrations in Irrational Exuberance (Shiller (2005)) and Sub-

prime Solution (Shiller (2008b)) books. It is regularly updated and available for download
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at www.econ.yale.edu/~shiller/data/. It has annual observations of nominal and real

home price indices from 1892 till 1952. Observations are then quarterly. Either interpolat-

ing data pre-1953 or annualizing post-1952 sample we obtain similar results. We therefore

only report results from interpolated data.

Using detailed data and tools researchers revealed inefficiencies in house prices (see

e.g. Case and Shiller (1989), Tirtiroglu (1992)), structural breaks (see Canarella, Miller,

and Pollard (2012)), market segmentation (Montañés and Olmos (2013)) and ripple ef-

fects (UK: Meen (1999) and US: Canarella, Miller, and Pollard (2012)). There is, however,

evidence in favour of unit roots in house price index capital gains. Canarella, Miller, and

Pollard (2012), for example, confirm unit roots in logarithmic differentials of seasonally

adjusted regional S&P/Case–Shiller indices for 10 US cities, including the 10-city com-

posite. If unit roots are present in these time series we must have φ = 1 in the following

regression

∆yt = α+ βt+ (φ− 1) yt−1 + εt (18)

This means that the change in the capital gain ∆yt = yt − yt−1, where yt = ln ξt, does not

depend on the capital gain at t− 1. Taking exponential gives

ξt ≈ ξt−1eα+βt+εt (19)

Therefore, as a first approximation, we could assume that the house price index is log-

normally distributed. Consequently, in a first attempt to model the random behaviour of

the house price index we calibrate a geometric Brownian motion for drift and volatility.

Also, because of a possible bias toward nonrejection of the unit root hypothesis in season-

ally adjusted data (see Ghysels and Perron (1993)), before proceeding we first check for

unit roots using non seasonally adjusted and longer time series data.

The results of our calibration are reported in Table 1.
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10-city 20-city Shiller Simulations
1987- 2000- 1890-

µ̂ 0.0395166 0.0367472 0.0310475 0.03
σ̂ 0.0325394 0.0397048 0.0404518 0.01–0.10

Table 1: S&P/Case-Shiller home price index calibration.

We set µ close to the long term trend 0.03 and we do not retain a particular value

for the volatility in our simulations. As observed from a longer perspective, volatility

is on average somewhere between 3% and 4%. However, we adopt a broader range in

our simulations. Historically, there were periods of higher and lower volatility. Using

interpolated annual data (pre 1953) and quarterly data (post 1953), a moving volatility

estimate is obtained, quarter by quarter. Each estimate is using 40 most recent quarterly

observations spanning the last 10 years. This is illustrated on figure 1.

4 Comparing Continuous Workouts with Fixed Rates

It is difficult to uniquely say what would constitute a good mortgage product. Every

household may apply different criteria so it is safer to consider a range of alternative

cases and specific situations.

To establish when a risk averse mortgagor will prefer CWM to FRM we come up with

a utility-based argument. We assume that borrowers are unable to dynamically adjust

their portfolios so as to finance their home purchase directly on financial markets. We

also assume that prospective homeowners must choose either a CWM or a FRM i.e. they

cannot use a mix of two smaller mortgages. Denote this choice by m ∈ {CWM, FRM}.
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4.1 Intertemporal utilities

Risk-averse mortgagor maximizes the intertemporal utility3

max
m

Vm = max
m

∫ T

0
e−δ(t)tu (x (t)− ym (t)) dt , (20)

where δ (t) is the subjective discount rate, x (t) are funds available and ym (t) is the mort-

gage payment at time t. Implicitly, we assume that there is no risk of default and all

mortgages are riskless. For simplicity we assume δ (t) = r and a constant wage x (t) = x.

We require x > ym (t) for all t. This is readily achieved for FRM for which yFRM (t) = R

by requiring x > R initially. Using R given by (4) we obtain

VFRM =
∫ T

0
e−rtu (x− R) dt = A (r, T) u

(
x− Q0

A (r, T)

)
. (21)

Note that because monthly payments are all constant, known in advance from the mo-

ment when the contract is signed, FRM removes all randomness. So if nothing happens

and payments continue, the instantaneous utilities are also constant. As a result there is

no need for computing any expectations in (21).

This is, however, not the case for a CWM. Payments are capped by ρ > R, but the

mortgagor doesn’t know their amounts in advance. Therefore, for the CWM we must

compute the expected utility

VCWM = E
∫ T

0
e−rtu (x− R (ξt)) dt . (22)

Note that the repayment CWM does not insure the homeowner against the loss of collat-

3Assuming the house is sold at maturity for the random terminal price H̃T , the discounted expected
utility of terminal wealth e−δ(T)EU

(
H̃T
)

is the same across the initial choice m of available mortgages.
Therefore it will not affect the result of our comparisons. Under default the termination time would be
random and the utility of final consumption would be undefined too.
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eral value. What a CWM does is dynamically aligning the outstanding loan balance to

changes in collateral value by “controlling” the repayment flow R (ξt). In other words, if

the house is sold at or after maturity for less than the original price H0, the CWM doesn’t

pay the difference.

Note that unlike expectations computed in the risk neutral world to price the CWM,

expectations in (22) require the “actual” probability P . This means we should consider

information about the actual drift µ of house prices or, equivalently, the house price risk

premium

λ =
µ− r

σ
. (23)

For simplicity we assume the following form of the utility of consumption

u (c) = U (c) =
c1−γ − 1

1− γ
, (24)

where γ is the risk aversion parameter. For γ = 0 the individual is risk-neutral, while

γ = 1 corresponds to logarithmic utility.

4.2 Simulation results

Expectations in (22) can easily be evaluated by numerical simulations. We simulate house

price paths under P . We do monthly simulations over 30 years, so one path requires

360 draws from a normal distribution. Each path determines intermediate and terminal

cash-flows of the CWM mortgage. After simulating many paths we compute sample

average utilities, and stop simulations when results stop changing significantly. We repeat

expected utility computations for different parameter values. We set the market risk-

premium λ and the available monthly wage x to constant values. The most relevant

parameters to vary are then the mortgagor relative risk-aversion γ and the subjective
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discount rate ρ.

Empirical studies have confirmed constant relative risk-aversion. Coefficient esti-

mates consistently range from 1 to 4 with average γ close to 2 (See e.g. Szpiro (1986b),

Szpiro (1986a) and Chiappori and Paiella (2011).) In our simulations we change the value

of γ in the range 0 < γ < 5.

Results are illustrated on Figures 10 to 15 for two sets of simulations. We report find-

ings for volatility levels 10%, 7.5% and 5%. Results for the historical volatility level (about

4% annually) and lower are quantitatively and qualitatively similar to those for σ = 5%.

In the first simulation (Figures 10, 12 and 14), we compute the maximal dollar welfare

gain of a CWM expressed as a percentage of FRM’s annual repayment R

I1 =
R̂CWM − RCWM

R
, (25)

where R̂CWM is the maximal annual CWM’s repayment amount the borrower is ready to

afford in good times. If I1 > 0 the borrower prefers CWM to FRM because the welfare

improves. The expected utility of a CWM with RCWM is higher than the utility4 of a FRM

with R.

PUT FIGURES 10, 12 AND 14 ABOUT HERE

In the second set of simulations (Figures 11, 13 and 15) we compute the net dollar

welfare gain, defined as

NG =
(

R− R̂
)︸ ︷︷ ︸

gain

− (RCWM − R)︸ ︷︷ ︸
cost

= 2R−
(

R̂+ RCWM
)

. (26)

4Equal to expected utility of a CWM with R̂CWM.
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The gain refers to the annual dollar amount by which the payment of a FRM should be

lowered for the borrower to enjoy the same welfare level as a holder of a CWM. The cost

equals the annual payment of a CWM minus the annual payment of an otherwise iden-

tical FRM. The actual cost is likely to be lower in bad times because automatic workouts

will be active.

PUT FIGURES 11, 13 AND 15 ABOUT HERE

5 Conclusions

This paper attempts to mitigate the fragility of the economy to fragile plain vanilla mort-

gages by advocating Continuous Workout Mortgages (CWMs). As pointed out by Shiller

(2008b), Shiller (2008a) and Shiller (2009), these are related to Price Level Adjusting Mort-

gages (PLAMs), advocated by Modigliani (1974) for high inflation regimes. CWMs share

some positive attributes with PLAMs (such as purchasing power risk) and mitigate other

negative attributes (such as default risk, interest rate risk and prepayment risk). The liq-

uidity risk can be alleviated by employing CWMs in sufficient volume to warrant their

securitization.

We evaluated the expected utility of the mortgagor by using the expected utility for-

mula (22). This captures the welfare from the demand side of loans. Our results reveal a

substantial welfare gain to creating CWMs. In our simulations CWMs appear to be more

attractive to FRMs at current volatility levels and for typical values of risk aversion. At

these levels almost all agents prefer CWMs to FRMs.

The results of our simulations are encouraging, because both measures of the welfare
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gain are positive in most cases. However, we do not advocate CWMs for everybody. As

any insurance product, CWMs may turn out to be more costly if only good times occur in

future. The embedded insurance premia will have to be paid making CWMs more costly

ex post, compared to FRMs.

Furthermore, our framework captures only the key features and simulations are very

simple. In real world an increase in volatility of house prices, for example, would nor-

mally impact the level or volatility of incomes (or vice versa). Similarly, the FRMs rates

are not dependent on volatility levels in our framework. As a result, for higher levels of

volatility in our model, the more risk-averse homeowners will, perversely, prefer not pay-

ing the insurance premia embedded in the CWM. Instead, they may prefer locking in the

comfort of the fixed monthly payments that the FRMs provide. While we are conscious

of these shortcomings, we believe that the current state of the Housing Finance should be

open to debate.
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Appendix

A Proofs

A.1 Proof of relationships (10) and (11)

Between s = 0 and s = t the dynamics of QCWM−
s is given by

dQCWM−
s
ds

= rQCWM−
s − R (ξs) (27)

For initial condition QCWM
0 = Q0 we have observed ξs up to time t > s, therefore this

ODE has solution

QCWM−
t = Q0ert −

∫ t

0
R (ξs) er(t−s) ds (28)

= Q0ert −
∫ t

0
ρ min {1, ξs} er(t−s) ds (29)

= Q0ert −
∫ t

0
ρ
[
1− (1− ξs)

+
]

er(t−s) ds (30)

= Q0ert − ρ
∫ t

0
er(t−s) ds+ ρ

∫ t

0
(1− ξs)

+ er(t−s)ds (31)

= Q0ert − ρ
ert − 1

r
+ ρ

∫ t

0
(1− ξs)

+ er(t−s)ds (32)

= [Q0 − ρA (r, t)] ert + ρ
∫ t

0
(1− ξs)

+ er(t−s)ds (33)

In particular note that considering two limiting cases ξs → 0 and ξs ≥ 1 (or ξs → +∞) for

all s ∈ [0, t] we conclude that there must be a lower and an upper bound to QCWM−
t

[Q0 − ρA (r, t)] ert ≤ QCWM−
t ≤ Q0ert .
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When ρ > R = Q0
A(r,T) and for t close to maturity T, the lower bound can become a

negative number, because of the strict inequality in

Q0 − ρA (r, t) < Q0 −
Q0

A (r, T)
A (r, t) = Q0

[
1− A (r, t)

A (r, T)

]
t→T−→ 0 . (34)

B Floor and Put formulae

Floors P on flow s with strike flow level k for finite horizon T can be computed using the

following closed-form formula (see Shackleton and Wojakowski (2007)):

P (s0, k, T, r, δ, σ) = Asa
0
(
1s0<k − N (−da)

)
− s0

δ

(
1s0<k − e−δT N (−d1)

)
(35)

+
k
r

(
1s0<k − e−rT N (−d0)

)
− Bsb

0
(
1s0<k − N (−db)

)
,

where

A =
k1−a

a− b

(
b
r
− b− 1

δ

)
, (36)

B =
k1−b

a− b

(
a
r
− a− 1

δ

)
,

and

a, b =
1
2
− r− δ

σ2 ±

√(
r− δ

σ2 −
1
2

)2

+
2r
σ2 , (37)

whereas the cumulative normal integrals N (·) are labelled with parameters dβ

dβ =
ln s0 − ln k+

(
r− δ+

(
β− 1

2

)
σ2
)

T

σ
√

T
(38)

(different to the standard textbook notation) for elasticity β which takes one of four values

β ∈ {a, b, 0, 1}.
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Standard Black and Scholes (1973) put on S with strike value of K can be computed

using

p (S0, K, T, r, δ, σ) = Ke−rT N (−d0)− S0e−δT N (−d1) (39)

where d0 and d1 can be computed using formula (38) in which values S0 and K can (for-

mally) be used in place of flows s0 and k.

Both floor (35) and put (39) formulae assume that the underlying flow s or asset S

follows the stochastic differential equation

dst

st
=

dSt

St
= (r− δ) dt+ σdZt (40)

with initial values s0 and S0, respectively. Clearly, (40) describes a geometric Brownian

motion under risk-neutral measure where Zt is the standard Brownian motion, σ is the

volatility, r is the riskless rate and δ is the service flow. We assume that (40) describes the

dynamics of the repayment flow s. Similarly, (40) also defines the dynamics of the value

S of the real estate property.
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Figure 1: House price index volatility estimates. Each quarterly observation involves 40
datapoints covering the most recent 10 years.
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Figure 2: Financing a $ 500 000 property for 30 years with a Fixed Rate Mortgage (FRM)
when interest rates are 5%. Drop in prices puts the house in negative equity.
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Figure 3: Monthly payments of a CWM are reduced in bad times.
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Figure 4: Continuous Workout Mortgage (CWM): The repayment flow R as a function of
the house price index ξt.
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Figure 5: Payment ρ as a function of risk σ. Full workout (CWM, α = 1, thick), no workout
(FRM, α = 0, dotted). T = 30, service flow rate δ = 1% (solid), 4% (dashed).
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Figure 6: The CWM’s upper bound on expected future payments v.s. FRM’s scheduled
remaining balance.
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Figure 7: Expected future payments of a CWM, QCWM+
t , as a function of the current house

price levels measured by a Home Price index ξt and Initial Price H0. The dashed line is
the CWM upper bound Q̄CWM

t .
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Figure 8: The expected future payments of a CWM when house prices decrease to 40% of
initial value and then remain at this level until term.

0 5 10 15 20 25 30
0

100000

200000

300000

400000

500000

600000

T ime years

R
em

ai
ni

ng
Ba

la
nc

e

CWM upper boundCWM

Home Price

Initial Price

Figure 9: The expected future payments of a CWM when house prices first decrease to
40% of initial value, then instantly appreciate to 110% of initial value and remain at this
level until term.
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Figure 10: CWM v.s. FRM: The maximal percentage welfare gain for σ = 5%. In red areas
CWM is preferred. In blue areas FRM is preferred.
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Figure 11: CWM v.s. FRM: The net dollar welfare gain for σ = 5%. In yellow areas CWM
is preferred. In cyan areas FRM is preferred.
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Figure 12: CWM v.s. FRM: The maximal percentage welfare gain for σ = 7.5%. In red
areas CWM is preferred. In blue areas FRM is preferred.
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Figure 13: CWM v.s. FRM: The net dollar welfare gain for σ = 7.5%. In yellow areas
CWM is preferred. In cyan areas FRM is preferred.
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Figure 14: CWM v.s. FRM: The maximal percentage welfare gain for σ = 10%. In red
areas CWM is preferred. In blue areas FRM is preferred.
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Figure 15: CWM v.s. FRM: The net dollar welfare gain for σ = 10%. In yellow areas CWM
is preferred. In cyan areas FRM is preferred.
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cost.

33


	Introduction
	The contracts
	The standard Fixed Rate Mortgage (FRM)
	The repayment Continuous Workout Mortgage (CWM)

	Data and calibration of house price index paths
	Comparing Continuous Workouts with Fixed Rates
	Intertemporal utilities
	Simulation results

	Conclusions
	Acknowledgements
	Proofs
	Proof of relationships (10) and (11)

	Floor and Put formulae
	Figures

