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Abstract

Hurricanes are exogenous events that destroy the stock of housing in a city, al-
lowing direct tests of theories of regional dynamics. Motivated by past research on
the relation between urban decline and the elasticity of housing supply, we develop a
model of a small region with durable housing, endogenous home maintenance, and dis-
aster expectations. The model implies that declining areas (relative to growing areas)
have a less well-maintained housing stock, with associated predictions on the effects
of hurricanes. In order to isolate hurricane effects and test this theory, we propose
a factor-based method of constructing counterfactual growth scenarios for a small re-
gion. This method greatly increases the precision with which moderate-sized hurricane
effects can be estimated, increasing the power of statistical tests of the theory. Empir-
ical results from this method support theoretical predictions, and results are notably
robust to the exclusion of Hurricane Katrina in 2005.
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1 Introduction

Hurricane effects vary dramatically from storm to storm. While many destroy large quantities

of housing, reduce employment, and induce significant human migration, others appear to be

relatively benign. Figure 1 shows year-on-year changes in employment and weekly earnings

in the months following a hurricane of Category 3 or above, with percentile bands suggesting

substantial variation across events. In order to explain this variation, we develop a theoretical

model of a small, open region, with durable housing, home maintenance decisions, and

hurricane expectations. Our theory suggests that in addition to natural storm and local

geographical factors, economic factors may contribute to differences in local damage and

recovery.

Figure 1: Unconditional Post-Storm Dynamics, Direct Hit Category 3+ Hurricane
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(b) Weekly Earnings per Employee
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These figures show year-on-year log differences in (a) monthly employment and (b) quarterly wages per worker, in the
months (or quarters) that follow a hurricane strike. The lines represent the boundaries between deciles.

Unfortunately, the variation in Figure 1 is not enough to conduct empirical tests of the

theory due to confounding contemporaneous economic events. This suggests a reason why,

despite the potential usefulness of these relatively numerous, exogenous, localized shocks

to study various important topics in the broader literature on economic growth and the

geographical distribution of production, the economic research on the consequences of nat-

ural disasters remains quite limited. To overcome this measurement problem, we propose a

method of isolating effects of exogenous events on a local area. This method embeds the ap-

proximate factor structure of Chamberlain and Rothschild (1983) into a dynamic autoregres-

sive model; the factor model effectively uses information contained in the dynamic behavior
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of all counties to correct for the effects of aggregate shocks (of potentially different vari-

eties) that may have heterogeneous effects on local areas.1 By developing a “no-hurricane”

counterfactual, we are able to more precisely estimate the impacts of these events.2

Using this empirical approach, we find that hurricane recoveries are consistent with the

urban decline hypothesis (outlined below), which posits that recoveries from an exogenous,

negative supply shock depend on expected returns to investment in housing structures. In the

model, these returns are based on the location’s economic fundamentals, which differ across

areas. Declining areas are affected more by hurricanes initially, and recover less in terms

of housing stock, employment, and non-worker population. These results hold regardless of

whether hurricane Katrina is included in the data set, and robust to alternate explanations.

The key mechanism in the model is housing structure maintenance.3 In an area experi-

encing economic decline, defined as an area where housing structure values are less than the

replacement costs, there is less incentive to structurally maintain a home, making it more

vulnerable to extreme wind, rain, and flooding.4 Once destroyed, some of the housing stock

in a declining area is not reconstructed, leading to permanent effects of hurricanes. On the

other hand, in areas that are not declining, housing that is destroyed is rebuilt, and the

hurricane has no permanent effects. These model features are consistent with Glaeser and

Gyourko’s (2005) “urban decline hypothesis” and findings of Gyourko and Saiz (2004), who

estimate home maintenance to be up to 50% lower in declining areas.

Hurricane expectations is the other major factor affecting vulnerability to hurricanes.

Areas that expect to experience a hurricane in any given season with a high probability

perform maintenance on a greater share of buildings in order to mitigate hurricane risk.

Such an area that is struck by an “expected” hurricane faces less damage and no change

in steady-state size.5 On the other hand, an area in which a hurricane is not expected will

suffer greater losses due to lower levels of maintenance, and face a lower steady-state size

following the hurricane.

1An example might be the housing boom, which strongly affected certain counties, but in which many
counties were largely unaffected. Another example is oil shocks, which affect areas that are involved in
refining and production more than other areas.

2This approach is similar to the synthetic control method of Abadie and Gardeazabal (2003), Abadie,
Diamond, and Hainmueller (2010), and Cavallo et al. (2013).

3In this paper, the concept of “housing maintenance” applies only to the soundness of the structure and
does not include any activities that generate amenity or consumption value.

4This is found by Fronstin and Holtmann (1994) to be true in the case of Hurricane Andrew in 1992.
Lower valued homes had a greater probability of becoming uninhabitable or destroyed in the hurricane.

5See Yezer (2010) for discussion on disasters that change expectations versus those that do not. We
examine the historical incidence of hurricane activity later in the paper, and use this as a measure of
hurricane expectations.

3



In order to test these predictions, we construct a new, high-frequency dataset of county-

level labor and housing market indicators, along with information on the incidence and

severity of cyclone strikes, similar to Belasen and Polachek (2008, 2009), but with additional

storm surge data. Our incorporation of storm surge data into the analysis is new in the

literature. Previous studies such as Belasen and Polachek (2008, 2009) and Hsiang and

Jina (2014) only consider wind speed. Our findings suggest that it is actually the storm

surges that do much of the damage, and this damage is worse the lower the elevation of

the housing stock in the county. Because wind and storm surge height are correlated, when

surge information is absent from empirical specifications, parameters on wind are estimated

to be too large due to omitted variable bias.

The predictions from the theoretical model are tested by estimating the effects as a

function of an index of regional decline. In both growing and declining counties, large

hurricanes that hit the county directly, hit a neighboring county, or induces a large storm

surge, are predicted to cause substantial damage. When a storm surge is present, the fraction

of households in a county below 9 feet in elevation serves as a predictor of severe damage.

Absent these characteristics, a hurricane is not statistically likely to affect the outcomes under

consideration. For each of these storm damage predictors, housing stock, employment, and

non-worker population losses are all more severe in declining areas. Consistent with Figure

1, average earnings rise more in harder-hit areas, which is symptomatic of both fewer low-

wage workers (composition effect) and higher wages and hours worked (more cleanup and

reconstruction). Recoveries present a similar overall story —regions that were previously

declining see less of a rebound in housing stock, measured both directly and through the

issuance of housing permits. Similarly, employment and non-worker population outcomes

are worse in previously declining areas versus growing ones. Critically, all of these results

are robust to the exclusion of direct-hit counties during Hurricane Katrina in 2005.6 When

these counties are included in the estimates, statistical tests strengthen.

This research makes contributions in several key areas. The first is the literature on urban

decline, which has existed as a theory for quite some time. Housing is easily constructed

but decays only slowly, which when combined with a housing market clearing assumption

implies that cities decline slowly due to the durability of the housing stock. In a declining

city, the current value of many homes is less than the construction cost, attracting households

who demand low price housing. This concept was first established by Thompson (1965) as

6St. Bernard, New Orleans, Plaquemines, and St. Tammany Parishes in Louisiana, and Hancock and
Harrison Counties in Mississippi.
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an “urban size ratchet,” and later investigated in detail by Glaeser and Gyourko (2005).

Since Glaeser and Gyourko (2005), other researchers have sought to investigate dynamics of

declining cities. Most empirical models consist of subjecting an area to a demand shock and

observing how prices and quantities evolve over time in growing versus declining cities, and

inferring the supply response based on these observations (see Larson, 2011 and Notowidigdo,

2013). In the present paper, hurricanes present an easily identifiable natural experiment of

a housing supply shock. We test many implications of the urban decline hypothesis, lending

support to this concept of urban dynamics.

In addition, the findings here are interesting when viewed in light of the research on

large-scale disasters and location-based fundamentals, including Cronon (1991) and Davis

and Weinstein (2002). Cronon (1991) examines the effects of the great Chicago fire of 1871,

which destroyed 1/3rd of the city’s housing stock. Chicago has since fully rebuilt. Similarly,

Davis and Weinstein (2002) show that Hiroshima and Nagasaki fully recovered from the

1945 nuclear strikes by 1955, and caught up to their pre-war trend extrapolation by 1975. In

general, location-based fundamentals are known to play an important role in the recovery of

regions affected by negative supply shocks. However, we know that fundamentals can change

over time, and city size may not always reflect fundamentals on account of the durable nature

of the housing stock. By relaxing the assumption of static location-based fundamentals, and

allowing them to vary based on hurricane expectations and other factors, it is possible

to expand the economic geography concepts of Henderson (1974) and Krugman (1991) to

better model periods following supply shocks. We argue that natural disasters may affect

area dynamics in two primary ways: 1) by destroying housing, speeding the adjustment to

a smaller steady-state size previously governed by a slow decay process, and 2) altering the

steady-state size itself by affecting future disaster expectations. In this regard, the durable

housing model developed in this paper is perhaps generalizable to any massive shock to

the housing stock, such as those associated with wars or other natural disasters, including

tornadoes, earthquakes, fires and tsunamis, and can be used to explore local damage and

recovery dynamics.7

Also related to this work is work on estimating the impact of climate change through

its effect on hurricanes. Nordhaus (2010) and Hsiang and Jina (2014) find that hurricanes

have substantial impacts on economic activity. Our paper provides evidence on the effects

7There is also a multidisciplinary literature on disaster “resilience,” in the sense that regions can be more
or less prepared for a disaster, and have or lack characteristics that enable recovery. For example, see Rose
and Liao (2005) for a CGE model of water service interruptions, and Simmie and Martin (2010) for a useful
taxonomy of disaster recovery types.
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of hurricanes in the short and medium term, and additional insight into why some areas are

affected differently from others.

Finally, this paper helps to bring together many of the numerous event-studies of hurri-

canes and their effects into a unifying, general framework. For instance, a series of excellent

Monthly Labor Review articles, including Garber et al. (2006) and Brown et al. (2006), exam-

ine the labor market effects of Hurricane Katrina and document the extreme damage caused

by the storm. Similarly, West and Lenze (1994) present Hurricane Andrew as an application

of a regional spatial model. Basker and Miranda (2014) study the effects of Hurricane Kat-

rina on businesses using establishment-level data, and find that small businesses and those

facing credit constraints failed to rebuild as fully in the wake of the hurricane. Other event

studies exist for virtually every hurricane with substantial damage. We view our work as

complimenting these studies which are typically based on only one hurricane, but often at a

finer geographical detail.

The remainder of the paper is presented as follows. In Section 2, we describe the storm

data and present several new stylized facts which motivate the remainder of the paper. Next,

in Section 3, we develop a model of hurricane damage and recovery. Section 4 describes the

empirical models used to test the predictions in Section 3. Section 5 presents the results of

these tests and Section 6 concludes.

2 Background on Tropical Cyclones

A tropical cyclone is a large, spiraling storm that is characterized by having a low-pressure

center, strong winds and rain, and usually forms over warm ocean water. Each cyclone

in the North Atlantic basin is given a name unique to the year in which it occurs, and

is assigned an ordinal classification based on the Saffir-Simpson hurricane wind scale. A

cyclone with a 1-minute sustained wind speed at or above 74 miles per hour is called a

hurricane. The National Oceanic and Atmospheric Administration’s (NOAA) International

Best Track Archive for Climate Stewardship (IBTrACS) dataset contains wind, air pressure,

and latitude and longitude measurements at the center of each known tropical cyclone in the

world since 1848. Table 1 shows the frequency of each storm classifications between 1990
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and 2012 in the Atlantic basin.8 There were 386 large cyclones in the period, 157 of which

were hurricanes, for an average of 12.0 cyclones (4.9 hurricanes) per year.

Table 1: Saffir-Simpson Cyclone Classifications

Frequency

Cyclone Classification Wind Speed (mph) (1990-2012)

Tropical Depression 0 to 38 53

Tropical Storm 39 to 73 176

Hurricane, Category 1 74 to 95 45

Hurricane, Category 2 96 to 110 35

Hurricane, Category 3 111 to 129 29

Hurricane, Category 4 130 to 156 38

Hurricane, Category 5 157 + 10

Total 386

Each hurricane making landfall may affect many counties. Figure 5 shows the Category 5

hurricane “Andrew” from August 16th-August 28th of that year.9 The line in the figure gives

the track of the center of the hurricane, with adjacent layers of counties given different color

designations. Hurricane Andrew began over the Bahamas, made its way over the southern

tip of Florida as a Category 4 hurricane, picked up wind speed in the Gulf of Mexico, made

landfall again in Louisiana, then made its way inland before dissipating. Table 2 shows that

from 1990-2012, there were 386 storms directly hitting counties for a total of 2,569 county-

months (these counties are classified as A0 counties), but also affecting 4,259 A1 counties,

defined as adjacent to the center path counties, 4,280 A2 counties that were adjacent to A1

counties, and 4,255 A3 counties that are adjacent to A2 counties. Counties are assigned to

a particular storm type based on the wind speed at the A0 county.10

8In this table, and for the remainder of the analysis, 1-minute sustained wind speeds will be used according
to the conversion factor W1min = W10min/0.88. According to the IBTrACS data description, different
weather services measure wind speed sustained over 1, 2, and 10 minutes, depending on the agency. To
construct a globally consistent dataset, all winds reported are over 10 minutes. This necessitated NOAA
adjusting all of the North American basin wind speeds, which were measured over 1 minute, to 10 minute
speeds using the following conversion factor: W10min = 0.88×W1min. Conversion back to W1min is therefore
trivial and can be done without error.

9This figure mimics the map of hurricane tracks in Czajkowski, Simmons, and Sutter (2011), who examine
the effects of hurricanes on fatalities.

10Values of A0-A3 add up to 1, meaning that counties are first assigned to A0 if directly hit in a month,
then A1 if not directly hit, and then A2 if not A0 nor A1, and so on.
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2.1 Storm Surges

A storm surge is a rise in water level associated with a particular storm, and is caused by

two main factors: 1) the relatively low pressure of the storm pulling the water up, and 2)

the wind pushing water away from the center of the storm. While the wind speed defines

the hurricane classification, storm surges associated with hurricanes are potentially far more

damaging. Storm surge data are from Western Carolina University’s National Storm Surge

Database and Louisiana State University’s SurgeDat database. We identify 73 storm surge-

county-months since 1990 that are in the direct path of a tropical cyclone, 30 of which are 9

feet or greater. Similarly, there are 189 storm surge surge-county-months one county away

from the storm, 264 two counties away, and 307 three counties away.

The effects of storm surges vary based on geological features. Coastal counties with low

elevation have been observed to be particularly vulnerable to storm surges. Therefore, we

construct a variable measuring the fraction of households in a county who live less than 9

feet above sea level.11

One complication is that storm surge data are subject to censoring. Historically, only

the severest storm surges were measured, reducing the probability of measurement for small

surges. Based on this issue, we create a variable to represent a “big surge,” or a storm surge

9 feet or greater. This eliminates the censoring issue and also is the same altitude as the

housing unit elevation measure.

2.2 Stylized Facts

Stylized facts about tropical cyclones begin with Belasen and Polachek (2008, 2009), who

are the first to construct a county-level dataset of employment, earnings, and hurricane

strikes, and generalize the result that high hurricane winds are associated with housing

destruction, population displacement, reduction in employment, and an increase in earnings

per worker. Additionally, counties adjacent to the storm are also affected, and while bearing

some damage, adjacent counties often benefit by contributing to cleanup and reconstruction

efforts in the hardest-hit areas.

We reconstruct and update Belasen and Polachek’s (2008, 2009) county-level storm

database using NOAA and QCEW data, extend it to all areas in the United States, and

11A list of coastal counties identified by NOAA is used to determine if a county is coastal or not. Then, a
population density map is spatially merged with an elevation shapefile in order to determine the number of
households less than 9 feet above sea level.

8



uncover several additional stylized facts.12 The first is, while wind speed certainly con-

tributes to hurricane damage, there is vast unexplained variation in the dynamics of areas in

response to hurricanes. The second fact is that while winds are correlated with damage, so

are storm surges. Surges are important to consider because different areas exhibit different

levels of vulnerability to storm surges depending on the elevation at which housing in an

area is constructed.

Figure 7 shows four panels. The first three echo the results in Belasen and Polachek

(2008, 2009), and the fourth shows that storm surges are also associated with severe hurri-

cane damage. These figures suggest that the effects of storm attributes are highly nonlinear.

The effects of winds up to about 110 miles per hour (below Category 3) appear to be small

compared to the effects of winds above 110 mph (Category 3 and above). The average

employment loss from a Category 3 hurricane is 5%, unconditional on any other variables.

The recovery appears to begin in earnest around month 7, accelerating through month 14,

and tapering off over the next year. Earnings effects are more pronounced than employment

effects. While hurricanes below Category 3 appear to affect employment very little, a hur-

ricane of any strength (Categories 1, 2, or 3+) positively affects earnings per worker. Most

of the damage is in center-path counties. However, adjacent counties also suffer substantial

damage. By the time a county is two away from the center path, damage appears to be

minimal. The storm surge panel suggests minimal effects of small storm surges, but large

and nonlinear effects of large ones. 12 feet appears to be the point of inflection, below which

surges have low expected damage, and above which risks are substantially higher. Figure

7, along with Figure 1 in the Introduction, demonstrates the rich variability in hurricane

damage and recovery, which we employ to test theories of hurricane damage and recovery in

later sections.

12The source for labor market data is the Bureau of Labor Statistics’ (BLS) Quarterly Census of Em-
ployment and Wages (QCEW), which provides monthly employment and quarterly wage and establishment
figures by county from 1990-2012. The QCEW employment counts are from a quarterly establishment-level
census. Unfortunately, this measure double-counts people who hold multiple jobs and omits self-employed,
agricultural workers on small farms, members of the armed forces, and some other smaller categories. While
employment is an imperfect measure of storm damage, as employment changes can be due to business in-
terruption (see Burrus et al., 2002), structural damage to businesses, or loss to labor supply, we estimate
initial employment and non-worker population effects of hurricanes to be similar in Section 5, suggesting
that employment losses from hurricanes reflect supply shocks.
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3 Model

The purpose of this section is to develop a model able to explain some sources of variation

described in the prior section and shown in Figures 1 and 7. The model adapts Glaeser and

Gyourko’s (2005) model of urban decline, incorporating three new features: (1) endogenous

dwelling maintenance performed by an infinitely lived, risk neutral lot owner, (2) hurricane

damage that is a function of a particular structure’s level of maintenance, and (3) the effects

of hurricane expectations on maintenance decisions.13 We will initially assume that all

hurricanes are unanticipated, but will later relax the assumption. This model yields rich

predictions of employment, wage, and construction dynamics when different types of areas

are struck by an equivalent hurricane.

Housing Demand

Following the regional equilibrium literature beginning with Rosen (1979) and Roback (1982),

Glaeser and Gyourko (2005) assume that households can costlessly change locations and

receive an interregional reservation utility Ū , consisting of area-specific wages (Wi) and

amenities (Ai), and a lot-specific disamenity of dij with a rental price of rij . On each lot,

one house is constructed with a fixed flow of housing services. The lot-specific disamenity

reflects the lot’s “ranking” compared with other lots, and embodies the implicit assumption

that all renters agree on which lots are preferred to others.14 Initially, we assume that all

individuals that reside in a location are workers and therefore earn both the area-specific

amenity and wage, and implying that population, housing, and employment are equivalent.

This gives rise to the equilibrium condition

Ū = Ai +Wi − dij − rij . (1)

Normalizing utility to zero and defining θi ≡ Ai+Wi gives the rental price of every house-lot

bundle, and thus the housing demand schedule, as

rij = θi − dij . (2)

13The following discussion refers to an area as a “city” but the concept is generalizable to any area,
including rural areas.

14The lot-specific disamenity can represent distance from a central business district in the monocentric
standard urban model of Alonso (1964), Mills (1967), and Muth (1969), or some other representation such
as disaster risk (Frame, 1998) or proximity to a consumption amenity as in Brueckner, Thisse, and Zenou
(1999).
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Lot quality is uniformly distributed above d = 0 with density N .15

Housing Supply

We assume housing producers are infinitely lived and risk neutral with a discount rate β.

For now, assume that there are no shocks. Timing within a period is as follows: Each lot

begins the period as either vacant or with a structure that is unmaintained. A maintenance

decision is made, which can upgrade the unit to maintained for the period, at a cost of m.

Then, each unmaintained home has a probability δ of collapse. Maintenance serves only

to affect the durability of the unit and does not alter the flow of housing services the unit

provides. At this point, new houses may be built on vacant lots (or lots in which the home

has recently collapsed) at a cost of c. Finally, a dweller receives flow utility from the unit

and pays rent.16

An owner will develop a lot if the present discounted flow of rents is greater than the

cost of the structure. With discount rate β, the flow cost associated with the construction

cost is c(1 − β). The flow cost of maintenance is βm (maintenance is not required in the

initial period). Thus, as long as the owner plans on continuously maintaining the unit, the

last unit constructed is with rent r

r > r ≡ c(1− β) +mβ (3)

Note that r depends only on parameters of the model (c, β, m, and δ) and not on the

location-specific amenity θi. This quantity summarizes the supply of housing, which at this

point is constant across locations both within and across areas.

Because in reality, structural maintenance occurs in every city17, we initially assume that

m < δc with a strict inequality, such that unmaintained buildings will not exist in cities that

have reached a steady-state level of housing. Later on we will relax this assumption, such

that some maintenance will occur every city but owners will not maintain all structures in

any city.

15We assume shocks to θi are unanticipated.
16This set-up is equivalent to Glaeser and Gyourko (2005), but with a maintenance mechanism as opposed

to exogenous collapse as in the case of their paper.
17This can include roof and window repair, beam maintenance, submersible pump installation, and nu-

merous other recurring expenditures.
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Equilibrium city size

We define the location-specific housing market equilibrium quantities di = θi−r to represent

maximal lot-specific disamenities under which construction (with maintenance) would occur.

Figure 2 shows di, the intersection of the supply curve and the demand curve (equations 2

and 3). All units are maintained and construction will occur on all lots with disamenity

below di.

Figure 2: Housing market equilibrium

Rent

Disamenity

θi

θid

r

Housing demand (bid-rent curve)

Housing supply

In a steady-state city, the number of housing units Pi, is determined by di. The number

of houses built is given by the density of housing at each lot disamenity level, N , multiplied

by the range of disamenities of lots on which housing is built, with city size increasing in

amenities and wages and decreasing in construction and maintenance costs.

Pi = Ndi = N [θi − (c(1− β) +mβ)] . (4)

3.1 Growing Area

Now suppose there is an unanticipated shock to θ equal to Δ > 0, so now housing demand is

given by ri,j = θ − di,j +Δ. Lot owners adjust their optimal maintenance and construction

plans accordingly. Housing is constructed on all lots with disamenity less than θ+Δ, which

is greater than the previous highest disamenity level. New construction is treated as being
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maintained, so there will be no unmaintained structures. City size rises by ΔN .

3.2 Declining Area

Instead, suppose Δ < 0. Houses on lots having disamenity levels between di−Δ ≡ d
′
i and di

would no longer be rebuilt were they to be destroyed. However, some lots in this range will

still be maintained, since the building cost c is sunk. The cutoff for maintaining is given by

r̃ ≡ m(1 − β(1− δ))

βδ
. (5)

It can be shown that r̃ < r for normal parameter values. We define d̃i ≡ r̃ − (θi −Δ) (the

point at which the new housing demand curve crosses r̃). For lot disamenities between d
′
i

and d̃i, structures are maintained but not rebuilt if destroyed. For lot disamenities between

d̃i and di, structures are not maintained. Thus, in the period of the shock,
(
di − d̃i

)
Nδ will

be destroyed due to lack of maintenance. The population falls by the number of homes that

are destroyed.18 In this simple version of our model, unmaintained dwellings are found only

in declining areas. This is consistent with the empirical findings of Gyourko and Saiz (2004),

who show that home maintenance is perhaps 50% lower in declining cities. The dynamics of

housing supply in the declining city would play out as the destruction of a proportion δ of

(a decreasing number of) unmaintained dwellings with disamenities between d̃i and di until

a new steady-state city size is reached in the long run. This new steady-state city size is

larger than the size of a “new” city with θ = θi −Δ, as there are some lots that would not

have been built at the new local amenity level, but are maintained because the building cost

is sunk. Figure 3 shows the first period of decline after a change in θ of Δ.

18Note that a growing city’s employment changes by ΔN . This gives the asymmetric employment response
to a demand shock identified by many in the urban decline literature, including Glaeser and Gyourko (2005).
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Figure 3: Decay in a Declining Area

Rent

Disamenity
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3
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Not maintained, destroyed
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3.3 Hurricane Strike

Suppose then, that a hurricane strikes each area at the end of the period, after initial

housing maintenance and construction decisions. We assume that the hurricane strike is

unanticipated. The hurricane destroys maintained units at a rate φ and unmaintained units

at a rate λ̂φ, where λ̂(1 − δ) > 1.19 This reflects the notion that dwellings that are not

properly maintained are structurally less resilient to wind, rain, and flooding. In a growing

area, Δφ units are destroyed and then rebuilt, with no permanent effects. To simplify

notation, we define λ = λ̂(1− δ).

In a declining area, the inner fraction of units that are maintained suffers destruction at

a rate of φ and is rebuilt for lots with dij < d
′
i. A proportion φ of lots for which d

′
i < dij < d̃i

is destroyed, and not rebuilt. In the unmaintained range, dij > d̃i, housing is destroyed

at a rate λφ. These homes are not rebuilt. In the declining case, the hurricane causes a

permanent drop in the stock of housing among unmaintained and low-rent maintained units,

and a temporary drop in maintained units.

19The (1 − δ) term reflects the fact that δ unmaintained units would have been destroyed in the absence
of the hurricane.
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Implications

This model gives rise to several empirically testable predictions. These cover a range of

concepts, which include the initial damage to the housing stock, the ensuing recovery (or

lack thereof), and the changing skill and wage distributions in the area as a result of the

hurricane.

The first prediction considers the relative damage in a growing versus a declining area.

Prediction 1. Destruction of the housing stock, employment, and population is more severe

in a declining area than in a growing area.

By “more severe,” we mean that the total proportion of housing destroyed is greater when

comparing two cities of initially equal sizes. In a steady-state or growing city, there are no

unmaintained housing units. This means that a hurricane destroys a fraction of housing units

equal to φ. On the other hand, we have defined a declining city as one that has experienced

a reduction in θi equal to Δ. Recall that as a fraction of housing units, φ maintained and

λφ unmaintained units are destroyed as a result of the hurricane. In a declining city, we see

some unmaintained units, which are more vulnerable.

Prediction 2. A declining area rebuilds less housing relative to a growing area, with asso-

ciated lower recoveries in employment and population

This prediction arises because in a growing city, all houses are rebuilt. However, in a

declining city, unmaintained and some maintained houses that end up destroyed are not

rebuilt, as they have disamenities that are above the maximal disamenity. Because housing,

population, and employment are all equivalent, housing drives differential recoveries in both

housing and employment as well.

At this point, we introduce two separate generalizations of the model as it has been

presented up to now. These generalizations are not needed to generate the predictions

discussed in this section (and they do not reverse them, either), but they are needed to

produce other predictions that are important to the overall story we tell about the effects of

hurricanes. The first generalization introduces stochastic maintenance requirements, while

the second introduces heterogeneous worker skill. The first allows us to discuss the impact

of hurricane expectations on maintenance decisions, while the second allows us to explore

the effects of hurricanes on wages.
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3.4 Effects of Hurricane Expectations

Up to now, we have assumed that the cost of maintenance is fixed at each point in time.

This is sufficient to generate a number of predictions regarding the effects of hurricane

strikes in growing and declining areas. However, this assumption allows maintenance to

vary only along the extensive margin (certain houses’ amenity levels in declining areas are

maintained, and changes to costs and benefits change the levels of disamenity at which

maintenance occurs). We feel that such a case is too rigid for exploring the effect that

hurricane expectations have on maintenance decisions. In order to do so, we first assume that

maintenance requirements are no longer constant, but arrive at random to each unit in each

time period.20 For maintenance requirements above a certain threshold, it is optimal to not

maintain a unit, even in a growing area. This threshold is affected by hurricane expectations,

thus generating an incentive for greater maintenance when hurricanes are expected due to the

greater probability of an adverse event. However, this increased maintenance and probability

of structure destruction is costly, shifting up the area housing supply curve and reducing

equilibrium size.

Stochastic maintenance requirements

Maintenance costs arrive according to an iid process, Mijkt ∼ FM(m), where ijkt indexes

the specific housing unit k ∈ [0, 1] located at dij at time t. For convenience, we suppose that

M is distributed according to an exponential distribution with parameter η, having support

[0,∞). Its CDF is denoted FM(m) = exp{−ηm}. At the time at which a unit is built,

nothing is known about future maintenance needs except the distribution.

We write the value function of the property owner as

V = r + βmax [V −m, V − δc, V (1− δ)] (6)

In the case of a degenerate M distribution and V ≥ c, we get r = V (1 − β) + βδc or

r = V (1 − β) + βm (i.e., one builds if and only if c ≤ V ). If the distribution of M is

nondegenerate, the problem splits into two cases, V ≥ c, in which case the β(V − δc) term

dominates, and V < c, in which case the βV (1 − δ) term dominates. The former of these

cases represents rent levels for which new housing would be constructed were there room

20For example, sometimes a home needs only to have a broken window fixed in a year. In others, the
roof needs to be replaced. Both render the house vulnerable to hurricanes, but have much different costs of
restoration.
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to do so; the latter represent areas in which new housing is not constructed but in which

housing currently exists—a situation only occurring in declining areas.

Growing or stable areas

We start by assuming that V ≥ c, which is the case in the entirety of a steady-state area,

and in the inner region of a declining area. Then the decision to maintain depends on the

size of M relative to δc, and from here on out, V will represent EV , its ex ante expectation

before the current draw of M . V can be expressed as

V = r + βE [V −M |M < δc ] + βE [V − δc |M ≥ δc ] . (7)

It is relatively straightforward to derive V ,

V =
r − (β/η)FM(δc)

1− β
. (8)

Let V (r) express the asset value of a home as a function of the rent, r. This equation

states that the asset value of a home that rents at r depends on r and the expected level of

maintenance required—but maintenance is capped at δc. In this case, there will be a single

r for which V (r)=c (the point at which developers are indifferent). As before, we can derive

the highest disamenity lot on which a new home would be built in a city with local amenity

θ,

di(c, θ) = θ − c(1− β)− β

η
FM (δc). (9)

As before, any changes in θ induce one-for-one changes in di.

Declining areas

Suppose a downward shift θi → θ′i = θi −Δ, as previously considered. This causes V < c in

a portion of the area, initiating a decay process. Instead of Equation 8, we get

V = r + βE [V −M |M < δV ] + βE [V (1− δ) |M ≥ δV ] (10)

It can be shown that each value of r admits a unique value of V , which we denote V (r),

and that ∂V (r)/∂r > 0. Intuitively, below the V = c cutoff point (that is, for values of dij

above di), houses that are destroyed by lack of maintenance are not rebuilt. This makes it

so that the maintenance decision depends not on whether M > δc but whether M > δV (r).
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If r > r′, then a unit renting at r is more likely to be maintained than one renting at r′.

Any houses built on lots with disamenities above di will not be rebuilt if destroyed. In

each period, a fraction of them are destroyed equal to δ(1 − FM(δV (r))). For values dij ∈(
di(c, θi −Δ), di(c, θi)

]
, N (1− δ(1− FM(δV (r))))t units remain after t time periods from

the shift in θ. Of these, a fraction FM(δV (r)) are maintained. The amount of maintenance

in these areas depends positively on the rent, the number of structures in these areas declines

geometrically, and lower-rent areas experience faster rates of decline.

Hurricane Expectations

We also relax the assumption of zero hurricane expectations. We assume hurricanes only

destroy housing and have no other effects, implying that hurricanes only affect the decision

surrounding home construction and maintenance. A higher chance of a hurricane affecting

a location increases the discounted costs associated with owning a home in that location,

and thus reduce housing supply. Because hurricanes are more likely to destroy unmaintained

units, the maintenance decision will therefore also change with hurricane expectations, with

a higher proportion maintained units.

Suppose that a hurricane strikes a location with probability q, destroying a unit with

probability φ and an unmaintained unit with probability λφ where λ > 1. Then if we define

p = qφ, we have the following analog to Equation 7:

V = r − βpc+ βmax {V −m, V − c(δ + (λ− 1)p)c} . (11)

The analog to Equation 8 is similarly

V =
r − βpc− β

η
FM((δ + (λ− 1)p)c)

1− β
(12)

Prediction 3. An increase in hurricane expectations reduces the steady-state area size

We know this because λ > 1 and ∂FM (m)/∂m > 0. Increasing the probability of a

hurricane affecting a city thus causes an upward shift in the housing supply curve. This

increases equilibrium rents and decreases equilibrium city size.

In addition, we derive the following prediction:

Prediction 4. An increase hurricane expectations increases average maintenance levels,

reducing hurricane damage
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This prediction follows from the fact that the maintenance cutoff increases with p, or

equivalently, (δ − (λ− 1) p) c > δc.

3.5 Effects on Skill Mix

The final model generalization considers the introduction of a second income group. This

generates predictions regarding skill mix changes following hurricane strikes as well as the

concentration of workers versus non-workers in an area. Following Glaeser and Gyourko

(2005), suppose low human capital workers receive wage W , but high human capital workers

receive wages equal to (1 + γ)W , γ > 0. Additionally, both area- and lot-specific amenities

and earnings are complements such that the utility received from amenities is (1+ γ)(A−d)

for high human capital workers and A − d for low human capital workers. High human

capital workers receive a reservation utility U versus the normalized reservation utility for

low human capital workers of zero.

Then, low human capital workers are willing to pay W + A− d and high human capital

workers are willing to pay (1 + γ)(W +A− d)− U . This creates an equilibrium where high

human capital workers outbid low human capital workers for high-rent units (or perhaps for

all units, if construction costs are sufficient). In equilibrium, high-ability workers will suffer

at most a disamenity level of

d
m,h

i = θi − mβ + c(1− β) + U

1− γ
(13)

whereas low-ability workers will suffer at most a disamenity of

d
m,l

i = θi − [mβ + c(1− β)] . (14)

Figure 4 shows the two bid-rent curves meeting at d∗i = θi − U/γ. Thus, both types of

workers will be present only if both dm,h
i > d∗i and d

m,h

i > d∗i , in which case we will see

d
m,l

i > d
m,h

i .
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Figure 4: Variation in Amenity Preference
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These additions to the model yields two additional predictions.

Prediction 5. A hurricane increases the average skill level in a declining area, increasing

the average wage rate.

To see this, we start by assuming that both skill types are present. A negative shock

to θi will cause the bid-rent curves of both types of shift equally to the left. All housing

in the declining region will be consumed only by low-skilled workers, since the new d∗i has

shifted to the left by θi and so low-skilled workers out-bid high-skilled workers for units with

rents below replacement cost. Since unmaintained units are destroyed in larger proportion

than maintained units, and are occupied solely by low-skilled workers, hurricanes increase

the average skill level in declining cities.21

Prediction 6. A hurricane increases the employment-population ratio.

If one instead characterizes the two groups as employed and non-employed, then a hurri-

cane will reduce the number of non-employed households in the area while not reducing the

number of employed households.

21This is important to distinguish from a change in the price level of labor. Instead, the model instead
suggests that wages will rise due to the human capital composition of households.
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4 Methods

This section designs tests of each of the six predictions from Section 3. The most straight-

forward way to test these predictions is to first estimate hurricane effects as the difference

between actual outcomes following hurricanes and no-hurricane counterfactuals. These hur-

ricane effects can then be modeled as a function of natural and economic factors, including

hypothesized determinants in the preceding section.

4.1 Estimating Hurricane Counterfactuals

In an OLS regression, the counterfactual is implied by controlling for any non-hurricane

variation using additional explanatory variables. However, because of the orthogonality of

hurricanes with respect to other potential explanatory variables, it is relatively straight-

forward to capture the residuals from an auxiliary regression, and use these as unbiased

hurricane effect estimates. These hurricane effect estimates are then usable in a variety of

applications.

Our approach is influenced by the literature on synthetic controls developed by Abadie

and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010), and used to in

the context of large natural disasters by Cavallo et al. (2013). However, their approach

is mainly applied to single or small numbers of isolated, rare treatments with long pre-

periods, whereas hurricanes occur frequently and with varying magnitudes. The method

provides little guidance for hypothesis testing when pooling the effects of these disasters and

comparing them across classes of locations. This method also requires solving a two-level

nested non-linear programming problem for each disaster in question, which with thousands

of hurricane hits would prove to be computationally prohibitive. For these reasons, rather

than adopting the particular synthetic controls approach of Abadie and Gardeazabal (2003),

we use the approximate factor structure (Chamberlain and Rothschild, 1983) to model the

effects of shocks and trends common across areas in the absence of a hurricane.

For an arbitrary scalar Yit, the standard linear factor model is of the form

Yit = D′
iFt + eit. (15)

Here, Yit is some variable of interest, Ft is an r × 1 vector of “common factors,” and Di is

a vector of “factor loadings.” The factors capture the sources of pervasive covariation in

the panel, including macroeconomic events (recessions and expansions), lags and leads in
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these events, and region or industry specific factors (coastal areas, oil producing, automobile

manufacturing, etc.). The loadings Di represent the responsiveness of the cross-section to

the factors, thus permitting cross-sectionally heterogeneous effects of aggregate shocks.22

Factors are unobserved, but can be estimated using principal components analysis following

Bai (2003) and Greenaway-McGrevy, Han, and Sul (2012).

A standard panel model is complicated by two attributes of the problem at hand. First,

we would like to allow dynamics to be different across areas, rather than pooling across

areas. Second, because the purpose of the analysis is to estimate a hurricane counterfactual,

observations affected by hurricanes must be removed from estimation. This necessitates the

creation of a highly unbalanced panel. Guided by Greenaway-McGrevy, Han, and Sul (2012),

we estimate a large panel, projecting the dependent and independent variables onto the

factor loadings estimated from a principal components analysis procedure. This procedure

is applied only to the H = 0 sample. We then estimate the following regression, where i, t,

and k indicate the area, time period, and factor, respectively:

Yit = Ci(L)Yit +
r∑

k=1

FktDik + eit (16)

In this case, Ci(L) and the Fkt are treated as parameters. This method allows different

dynamic behavior in response to aggregate and local shocks, as suggested by Greenaway-

McGrevy and Hood (2014).23

Once the parameters from this model are estimated using the H = 0 sample, they can be

applied to periods of hurricane strikes and recovery to produce counterfactual values of Y as

if no hurricane occurred, Y ∗
it,H=0 = Ŷit,H=0. Substituting into Equation 16 and rearranging

gives the estimate for Hit

Hit = Yit − Y ∗
it + eit (17)

Rather than identifying H , this approach identifies Ĥ = Yit − Y ∗
it . In this specification, H

is measured with error that is distributed the same as the model for Y in the estimation

sample. Figures 8a-8c shows hurricane damage and recovery in employment and earnings

in the same manner as Davis and Weinstein’s (2002) depiction of the population recovery

of Japanese cities following World War II. The horizontal axis is the measurement of H one

22This approach encompasses a “common time effect” specification, as well as many others.
23There is an information constraint that is imposed on C(L) based on the number of time periods between

an observation and the needed counterfactual. For instance, for a 1-period counterfactual (i.e. hurricane
damage), C(L) may begin with the first lag. However, using monthly data, a 13 month counterfactual (i.e.
the recovery after a hurricane) prohibits the use of any lag less than 13.
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month after a “large” hurricane, and the vertical axis is the 13-month value of H which

corresponds to the 12-month recovery after the initial shock. This figure depicts a negative

relationship between the initial damage and ensuing recovery in both employment and wages.

In the employment figure, the slope of the line is -0.71, suggesting that the recovery is 71%

complete, on average, 1 year after the hurricane, though there is clearly large variation in

recoveries. Interestingly, there seems to be no relationship between the initial non-worker

population shock and subsequent growth, suggesting that this population leaves and never

returns.

4.2 Initial Hurricane Damage

Having identified H , it is now possible to estimate the effects of storm and area characteristics

on Y . The two most important storm characteristics are the wind speed and the size of the

storm surge generated. Area characteristics serve to mitigate or exacerbate storm damage,

as hypothesized in Predictions 1 and 4, which suggest that area decline and cyclone strike

probability, respectively, are two key determinants of storm damage. Additionally, areas

of low elevation have historically suffered more from hurricanes, so an elevation variable is

interacted with the storm surge variable. These attributes give rise to the following stochastic

specification.

Hit = γ1 + γ2windit + γ3windit × declinei + γ4windit × past hurricanesi+

+ γ5surgeit + γ6surgeit × declinei + γ7surgeit × past hurricanesi+ (18)

+ γ8surgeit × elevationi + vit

The variable wind is then defined as equal to 1 if the hurricane is category 3+, and zero

otherwise. Similarly, the variable surge is defined as 1 if the storm surge is greater than 9

feet, and zero otherwise, and elevation is defined as the fraction of households in a county

with an elevation of 9 feet or below. Under these variable definitions, the hypotheses, γ3 < 0,

γ6 < 0, and the joint hypothesis γ3 + γ6 < 0 each serve as tests of Proposition 1. Similarly

the hypotheses, γ4 > 0, γ7 > 0, and the joint hypothesis γ4 + γ7 > 0 each serve as tests of

Prediction 4
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4.3 Hurricane Recovery

A model of hurricane recovery can be estimated structurally, as in Equation 18, or reduced-

form by taking hurricane damage as given, and modeling the recovery as a function of

the initial damage following Davis and Weinstein (2002). The reduced-form model can be

expressed as follows, where time is normalized such that t = 0 corresponds to the time of

the hurricane and t+ h as the h period recovery.

Hit+h = δ1 + δ2declinei + δ3Hit + δ4Hit × declinei + εit+h (19)

An estimate of δ3 = −1 corresponds to a complete recovery after 1 year– the damage from

Hit affects growth by an equal and opposite amount. By similar logic, if decline mutes

recoveries, then δ4 > 0, a hypothesis which serves as a test of Prediction 2.

4.4 Measuring Decline

The ideal decline measure is presented in Glaeser and Gyourko (2005) as the fraction of

housing units in a city with values less than replacement costs. However, this measure is

calculated using micro data available only in large cities. What is needed at present is a

county-level of measure, so we instead apply the decline index of Larson (2011), which proxies

for Glaeser and Gyourko’s (2005) measure using change in the total value of the housing stock

over a period of time. This acts as a measure of decline on the basis that increases in demand

for housing manifest themselves through housing construction, house price increases, or both,

and that value increases captures both of these effects. The persistence of decline is key to

identification, as lagged decline is both unrelated to current shocks, yet is highly correlated

to current decline.

Given the high correlation with Glaeser and Gyourko’s measure, and the persistence

of decline, the change-in-value approach is used here.24 The decline index presented in

this paper is the log-difference in the value of the housing stock from the 1970 to the 1990

Decennial Census. This is standardized such that the decline index is mean 0 and variance 1,

and positive values represent greater decline. This index has the additional benefit of being

a continuous measure, as submarkets within a city can exist in different states of decline.25

24Other measures are also correlated with decline, including population changes. However, population
measures are inaccurate measures of decline if the area is housing supply constrained, for instance through
topographic constraints or housing and land use regulations (Saiz, 2010).

25See Guerrieri, Hartley, and Hurst, 2012, for more discussion on decline within submarkets.
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Figure 9 shows a map of the decline index by county for the United States. This map

shows that growth between 1970 and 1990 is primarily in coastal counties and in the south-

west. Decline is mostly in the midwest and Great Plains. Suburban counties appear to

have experienced greater demand increases than center-city counties, especially the suburbs

surrounding Minneapolis-St. Paul, Chicago, and Dallas.

5 Results

In general, results support general intuition and the theoretical predictions in Section 3.

Natural forces explain some of the variance in storm damage, as do the predicted economic

determinants, decline and disaster expectations. Modeling recoveries is more difficult due

to the need for multi-period counterfactuals (counterfactuals in this case must be based on

information that comes from further in the past). Despite this fact, there is evidence that

recovery is less complete in declining areas. These estimates are robust to different areas

of effect (direct hit versus one county away), exclusion of particular hurricanes, including

Katrina in 2005, different decline proxies, and “big” storm surge cutoffs.

5.1 Hurricane Damage

Ex ante, one would expect hurricane damage to be highest in areas struck by high wind speeds

and/or storm surges.26 Because estimated hurricane effects include the counterfactual error,

we limit the sample of observations in the damage regressions to areas either directly hit by

or adjacent to hurricane-class wind speeds or a storm surge with a height of 9+ feet.

Table 3 presents condensed estimates of Equation 18. The specification also includes

strikes one-county-away and weaker hurricanes. Full results are available in the appendix. It

is important to pool observations of various storm strength because in many cases, a county

is some distance away from the center of a storm, yet is hit by a surge. In this specification,

the “baseline” result is an adjacent county affected by a weak hurricane and no storm surge.

A direct strike by a Category 3+ hurricane is estimated to reduce employment by 9.2%

in the period after the strike, non-worker population by 1.4%, increase earnings of those

remaining by 6.0%, and reduce the housing stock by 3.7%. An area with double the prior

number of strikes experiences about half of these damage impacts. Wind speed appears to

affect growing and declining areas similarly, though wind and storm surges are correlated. A

26Were this able to explain the entirety of the damage caused by a hurricane, the hurricane attributes
themselves could be used as a supply shock.
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large storm surge when 100% of an area is beneath the height of the surge (such as is nearly

the case in many Louisiana counties) results in a further employment loss of approximately

18%. Over all, county decline appears to affect the hurricane response of the non-worker

population more than it affects the response of employment, but in general it amplifies the

effect of a hurricane strike.

Viewed together, these estimates provide a substantial degree of evidence for the model.

Consistent with Belasen and Polachek (2008, 2009), hurricanes reduce employment and in-

crease earnings in direct-hit counties. Positive hurricane expectations, measured using an

area’s history of hurricanes, affect resilience to hurricanes and storm surges, and area decline

exacerbates storm impacts. What is also remarkable about this series of estimates is that

these are not simply statistically significant estimates; they are also economically extremely

large and meaningful. They suggest that while hurricanes have highly variable effects, several

factors can predict a wide range of outcomes. For example, suppose a Category 3 hurricane

with a 15 foot storm surge strikes an area, and that area has no history of hurricanes, is 100%

below 10 feet, and has a decline index value of 1. Then that hurricane would be expected to

reduce employment by about 32%. Now, consider if that same hurricane had struck an area

with 3 hurricanes in the last 100 years (the log of which is approximately 1), was growing (a

decline index of -1), and was at high elevation (0% below 10 feet). Then the same hurricane

that caused a 1/3 drop in employment in the first area would cause almost no damage in

the second.

5.2 Hurricane Recovery

Having established some key determinants of hurricane damage, the question now turns to

the determinants of recovery. Recovery is inherently more difficult to model for two reasons.

The first is the difficulty of establishing a reliable counterfactual. A reliable no-hurricane

counterfactual is relatively difficult to establish because it involves developing a multi-period

conditional forecast of an area’s economy, whereas estimating initial damage requires only

a one-period-ahead conditional forecast. This additional forecast error has the potential

to introduce random noise and thus attenuate any recovery estimates. The second is the

complicated milieu of expectations, incentives, and constraints facing areas as they rebuild:

while damage is a relatively simple reaction to a large, exogenous event, recovery takes into

expectations of the future, changes in those expectations, policy constraints, and returns to

investment of different types. Despite these issues, we provide some evidence of differential

recoveries in growing versus declining areas that are largely consistent with our theory.
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The noisiness of the counterfactual necessitates restricting the estimation sample of the

recovery models. In order to maintain a useful signal-to-noise ratio, we employ two different

specifications. Our preferred estimator involves weighting observations by the severity of the

initial damage under the belief that the signal-to-noise ratio of the observation is higher,

making the observation more reliable. We also perform a robustness exercise which includes

unweighted observations, but with a more censored sample in order to eliminate observations

with very small effects and comparatively large counterfactual errors.

Table 4 presents results from Equation 19. This table shows the one-year recovery from

a hurricane strike.27 The parameter on the initial effect of the hurricane is -0.59, suggesting

that about 59% of the initial employment loss is restored one year after the hurricane. The

interacted coefficient is +0.17, indicating that a declining area faces a slower recovery; an

area with a decline index of 1 only recovers 45% of its loss in employment growth.

At first glance, the earnings estimates appear to run counter to the theory presented in

the paper. The interacted coefficient is negative, suggesting declining areas experience faster

adjustment than growing areas. We postulate that this discrepancy is due to the treatment

of labor demand as exogenous in our theory. The empirical result, rather, suggests a fall

in labor demand, as both earnings and employment fall in a declining area. This evidence

is consistent with the notion that some amount of local employment is endogenous, with

higher population increasing demand for locally-produced goods. Substantial relocation of

the non-worker population and a slow recovery in employment may cause local demand for

basic goods and services to relocate as well. It follows that once the population leaves in

a declining area after a hurricane, labor demand eventually falls as well, causing wages to

return to pre-hurricane levels despite the lower labor supply. We leave further expansion of

our theoretical model to incorporate endogenous labor demand as an area for future research.

Interestingly, non-worker population growth continues to fall by 32.4% of the initial

hurricane shock amount. There is also modest evidence that this persistence in the effect

of the shock is actually higher in growing areas as opposed to declining ones, as indicated

by the negative parameter estimate on the interacted variable. This makes sense when one

considers that growth rates in declining areas are already near zero, but growth rates in

growing areas often begin quite high and are still large even following the hurricane. We

cautiously interpret this non-worker population result as a change in disaster expectations

on the basis of Prediction 4, which states that non-working populations are more reactive to

27The dependent variable is a growth rate, meaning that estimates should be interpreted as changes in
growth rates, not changes in levels. This is important because the model considers the question of whether
an area returns to its pre-hurricane trend.
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natural disasters. The high growth rates in growing cities suggest higher amenity levels, a

fall in which is consistent with a change in disaster expectations.

There are two pieces of evidence in favor of Prediction 5, which states that low-income

households are more likely to leave in the event of a hurricane. First, an employment

recovery in absence of a non-worker population recovery implies it is low-income households

that do not return. Second, the earnings persistence result combined with the relatively

faster employment recovery suggests that high earnings households are more likely to return

than low earning households. These are both consistent with the proposition that marginal

housing is destroyed but not rebuilt in the case of a hurricane, and the low-(or no-)income

households that reside in these units are unlikely to return. Also, whereas Cutter and Emrich

(2006) argue that social vulnerability plays a role in hurricane damage, we present a more

benign explanation, that it is due to the low returns from rebuilding that they do not return.

Hurricane Recovery and Housing Permits

When looking at the effect of hurricanes on the subsequent issuance of housing permits, we

must use a somewhat different approach to the recovery regressions above. Because permits

themselves represent a planned change in the housing stock, rather than a level, and because

in some areas housing permits can be quite small or quite volatile, it is difficult to observe a

pattern in percent changes in the permitting variable. In addition, permits do not have to be

used once issued, and builders must apply for them in advance. This means that hurricanes

do not appear to have a substantial effect on the issuance of permits in the year of the strike.

We take note of the fact that hurricane strikes reduce the housing stock, and to rebuild,

permits, which are measured with the same units as houses, must be issued. Thus, we look

at permit issuance as a response to housing stock destruction. We regress the log of the

change in permits in the year following a hurricane on the log of the negative of the change

in housing stock (if the change is less than -100 units). Implicitly, we are restricting our

analysis to hurricanes which destroyed housing, and for which some permitting increased the

following year.

Results are shown in table 5. For a county that is neither growing nor declining, approx-

imately one new permit is issued for each housing unit destroyed. Declining counties issue

fewer permits per destroyed unit, while growing counties issue more. These results present

additional evidence that recoveries are stronger in growing areas, and that housing loss is an

important channel through which hurricanes affect the labor market.
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Hurricane Recovery and Fiscal Assistance

One consideration for any analysis of natural disasters is the policy response. In the United

States, for example, the Federal Emergency Management Agency (FEMA) is responsible for

the first wave of post-disaster reconstruction funding. When a tropical cyclone damages an

area, a governor or tribal leader can request a federal disaster declaration. In most cases,

a preliminary damage assessment is then undertaken to determine if the disaster is severe

enough to warrant federal funding. Then, the President may declare the area a “disaster

area,” which makes it eligible for disaster funding. Funding is then based on a number of

factors, including the type and severity of damage, the unique capabilities of the federal

government, the frequency of disasters in the area, levels of assistance from other sources,

and other factors (FEMA, 2013).

Unfortunately, measuring the effect of the FEMA response is problematic. If FEMA

funding goes only to areas struck by hurricanes that are having difficulty recovering in an

unobservable way, it could even appear that FEMA worsens recoveries. Data are quite

sparse–to the knowledge of the authors, county-level FEMA funding data are available only

beginning in 1998. More than half the funding goes to the top ten counties-month obser-

vations, of which seven are Katrina-related. This calls into question the generalizability of

any estimates.28 Therefore, we leave the exploration of the effects of fiscal assistance on

hurricane recoveries to further research.

5.3 Damage and Recovery to Housing Submarkets within a City

Another interesting question to consider is if different housing submarkets within an area are

affected differently in terms of damage and recovery. We approach this question using the

average earnings in NAICS industry sectors, excluding those directly related to hurricanes,

as a proxy for housing structure quality and interpret changes in high versus low wage

industry employment as differential effects on homes.29 The logic behind this proxy strategy

in terms of our theory is that low wage workers have lower housing expenditures, and thus

occupy lower amenity lots. It therefore follows that differential hurricane-related changes

28In a prior version of the paper, we estimated a model similar to those reported in Table 4, showing
that results were robust, and that FEMA spending slightly improved recoveries. However, while robustness
of other estimates to inclusion of FEMA in the regression models still holds, we did not feel comfortable
reporting the FEMA coefficients themselves. Thus, in this version, we simply note that inclusion of FEMA
spending in the above equations does not substantially change in the results.

29These include NAICS codes 23, 52, and 56, or Construction, Finance and Insurance, and Waste Man-
agement and Remediation, respectively.
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to employment of workers in high versus low wage sectors may be interpreted as evidence

that different housing submarkets within an area are affected differently by a hurricane.

In concrete terms, the model asserts that the average wage effects observed in Table 3 is

due to a composition effect as opposed to an increase to the wage rate; that is, hurricanes

cause average wage rates to rise in part due to a higher share of high wage workers, and not

necessarily due to supply-induced wage increases.

As in the recovery models above, employment data contain substantial noise not related

to hurricane strikes. To minimize the impact of this noise, we look only at counties that have

been struck by hurricanes and experience overall employment losses of at least 0.5%, relative

to a no-hurricane counterfactual. Thus, we consider whether the patterns in industry-level

employment losses are predictable as a function of industry wages, in counties struck by

hurricanes that lost at least 0.5% of their employment. We are interested in the coefficient

on industry employment of lagged earnings per worker interacted with overall employment

growth, the latter proxying for the magnitude of the effect of the hurricane. The model

includes year and area fixed effects.

Results confirm model predictions. First, consider the first two columns which present

models of employment changes in the period directly following a hurricane. The positive

parameter on the lagged industry wage suggests higher earnings are associated with higher

employment growth. To control for larger employment change dispersion in hurricanes with

greater damage, the average area damage is interacted with the earnings variable. This inter-

action coefficient suggests that high-wage industries are associated with smaller employment

impacts relative to the average.

The third and fourth columns present models of employment recovery. These both suggest

greater employment growth for low-wage industries in periods following a hurricane. One

comparison that is useful to consider is the first vs the third columns. The wage and constant

term parameters in the damage regression is greater in magnitude and opposite in sign to

the one in the recovery regression, suggesting that the recovery in low wage industries is less

complete than in high wage industries.

6 Conclusions

In this paper, we derive and empirically test a model of hurricane destruction and recovery.

This is important for two main reasons. First, the determinants of hurricane damage are

useful and interesting in their own right; second, in order to treat hurricanes as exogenous
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supply shocks, it is necessary to understand how hurricane attributes translate to damage.

Natural factors such as storm wind speed, storm surge height, and the elevation of an affected

county each help to predict the damage done by a hurricane. Perhaps more interestingly, we

also predict and then demonstrate that there are economic factors that determine an area’s

vulnerability to hurricane strikes. Areas with expectations of hurricane strikes invest in home

maintenance and hurricane mitigation strategies that limit damage. On the other hand, in

declining areas, where home values are less than the replacement costs of the units, low levels

of structural maintenance result in greater damage from hurricane strikes. We find empirical

support for each of these predictions, and show results to be robust to the exclusion of

counties struck by Hurricane Katrina in 2005, and much stronger when all Katrina counties

are included.

Regions also recover differently from one another. In the model that we develop, a declin-

ing area will rebuild less than a growing one because some fraction of the destroyed housing

stock was of lower value before the hurricane than the cost of rebuilding. Similarly, regions

facing unanticipated hurricane strikes will adjust their hurricane expectations upwards, in-

creasing maintenance preferences and costs, and reducing equilibrium city size. Growing

regions appear to recover employment faster than declining ones. This suggests that non-

employed and low-skilled workers leave areas and do not return, which supports a model of

segmented housing markets where there simultaneously exists growing and declining markets

within an area–declining housing is destroyed but not rebuilt, whereas destroyed housing in

growing segments is rebuilt. Our model is not quite rich enough to explain the earnings

corrections observed in the data, which suggest endogenous local demand for labor in de-

clining areas, whereas we assume exogenous local demand. Nevertheless, we leave relaxing

this particular simplification for future research.

This paper presents a direct test of the urban decline hypothesis, that areas with housing

that is priced below replacement cost have a lower elasticity of housing supply. Identification

of supply shocks is direct because hurricanes are exogenous with respect to local economic

activity. This is in contrast to much of the literature on urban dynamics which infers supply

responses using time series or shift-share identification of demand shocks.

Our results can also be used to weigh in on the jobs versus workers debate. Just as

Partridge and Rickman (2003), we find evidence both that workers follow jobs and that

jobs follow workers depending on the location. In growing cities, a more complete recovery

suggests that the economic fundamentals are driving availability of jobs in the location, and

that workers are following jobs to these places. On the other hand, rapid population loss
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and rapid loss of the temporary wage gains seen in declining areas suggest that jobs may

follow workers, as well.

The model in this paper, despite its specific structure, has many general implications. It

can be applied to any sort of housing supply shock, including large-scale fires, earthquakes,

tornadoes, or other disasters. The model also encompasses much of the prior research on

hurricanes, and can potentially be used to predict the effects of future ones. Some extensions

may include the estimation of effects of hurricanes on local area GDP, and the development

of a regional economy hurricane simulation model.

Finally, the model suggests that a failure to recover following a hurricane may be efficient

and not due to any market failure, calling into question the necessity of fiscal assistance to

damaged areas. Due to data limitations, this theory cannot be directly tested empirically,

but is instead inferred by our model.
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Figure 5: Counties Affected by Hurricane Andrew (1992)
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Figure 6: Direct Category 1+ Hurricane Strikes, 1900-1990
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Figure 7: Employment and Earnings by Hurricane Dimension
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Figure 8: Damage and Recovery, All Storms 1990-2012
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Table 3: Initial Hurricane Effects

Dependent variable: year on year change in orthogonalized variable

Variable Employment Weekly Earnings Non-Worker Pop. Housing Stock
(monthly) (quarterly) (annual) (annual)

Category 3+ Hurricane -0.0920*** 0.0598*** -0.0144 -0.0374**
(0.0128) (0.0142) (0.0137) (0.0135)

Category 3+ × County Decline 0.00276 -0.00596 0.00483 -0.00846**
(0.00945) (0.00640) (0.00566) (0.00342)

Category 3+ × Past Strikes 0.0506*** -0.0261** 0.00498 -0.0101
(0.0128) (0.0117) (0.0181) (0.0167)

Big Storm Surge [> 9 Feet] -0.0309 0.0394* -0.0237 -0.0450
(0.0192) (0.0191) (0.0266) (0.0305)

Big Surge × County Decline -0.0136** 0.0188** -0.0291** -0.0341*
(0.00565) (0.00854) (0.0135) (0.0168)

Big Surge × Past Strikes 0.0327** -0.0210 0.0184* 0.0189
(0.0124) (0.0124) (0.0101) (0.0120)

Big Surge × Low Elevation -0.179*** 0.0790** -0.125** -0.153***
(0.0170) (0.0343) (0.0468) (0.0254)

Observations 331 312 271 160
R-squared 0.367 0.145 0.109 0.451

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
Dependent variables are hurricane effects, estimated as the counterfactual value minus the actual.
The sample excludes St. Bernard and New Orleans Parishes due to their highly idiosyncratic
attributes. For sake of brevity, table omits results for category 1 hurricanes, category 2 hurricanes,
and estimates for adjacent counties. For the full table of estimates and robustness exercises, see
the Appendix.
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Table 4: Hurricane Recovery

Dependent variable: year on year change in orthogonalized variable

Variable Employment Weekly Earnings Non-Worker Pop. Housing Stock
(monthly) (quarterly) (annual) (annual)

Initial Effect of Hurricane -0.590*** -0.684*** 0.324* -0.165***
(0.0175) (0.179) (0.180) (0.00952)

Initial Effect × County Decline 0.172*** -0.241** 0.542*** 0.116***
(0.0274) (0.0900) (0.114) (0.0158)

County Decline -0.000193 0.0105* 0.0238*** 0.00196
(0.00402) (0.00552) (0.00409) (0.00262)

Constant -0.0110** 0.0179* 0.0199** 0.00461*
(0.00455) (0.00890) (0.00787) (0.00248)

Observations 2,049 2,705 2,017 572
R-squared 0.503 0.386 0.174 0.794

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01, ** p < 0.05, * p <
0.1. Dependent variables are hurricane effects, estimated as the counterfactual value minus the
actual. The sample includes all recoveries where the initial hurricane effect is 0.5% or greater. The
sample excludes St. Bernard and New Orleans Parishes due to their highly idiosyncratic attributes.
Observations with larger initial hurricane effects are given greater weight due to higher signal-noise
ratio in the estimated effect. For tables of robustness exercises, see the Appendix.
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Table 5: Hurricane Recovery-Housing Permits

Dependent variable: log Δ housing permits

Sample All Counties No Outliers No Katrina

Initial Effect on Housing Stock 0.899*** 1.048*** 1.118***
(0.199) (0.127) (0.105)

Initial Effect × County Decline -0.0786*** -0.0747*** -0.0788***
(0.0183) (0.0178) (0.0167)

Fixed Effects by Year yes yes yes

Observations 183 181 178
R-squared 0.333 0.362 0.355

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1. The sample includes all recoveries where the prior housing
stock change is lower than -100 homes in the time of the hurricane. The “All
Counties” sample includes all counties experiencing a direct or adjacent strike
of wind speed category 1+ or a measured storm surge. The “No Outliers”
sample excludes St. Bernard and New Orleans Parishes due to their highly
idiosyncratic attributes. The “No Katrina” sample omits all counties directly
hit by hurricane Katrina.
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Table 6: Industry-Employment Results

Dependent variable: year on year change in
industry employment

Variable Damage Models Recovery Models

Earnings per worker (lag) 0.326*** -0.0129* -0.179*** -0.0239*
(0.0677) (0.00727) (0.0516) (0.0126)

Area Employment growth -1.633***
× Earnings per worker (lag) (0.216)

Constant -0.264*** -0.0444*** 0.179*** 0.0509***
(0.00124) (0.000245) (0.000917) (0.000493)

Observation Weighting Yes No Yes No
Fixed Effects by Year Yes Yes Yes Yes
Fixed Effects by Area Yes Yes Yes Yes

Observations 1,002 1,002 939 939
R-squared 0.657 0.621 0.286 0.305

Notes: Clustered standard errors (by year× area) in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1. Dependent variable is year-on-year log-difference
in 2-digit NAICS employment, excluding industries that often benefit from
hurricane recovery (NAICS 23, 52, and 56; Construction, Finance and Insur-
ance, and Waste Management and Remediation, respectively), estimated as
the counterfactual value minus the actual. The sample includes all recoveries
where the initial hurricane effect is 0.5% or greater. The sample excludes St.
Bernard and New Orleans Parishes due to their highly idiosyncratic attributes.
In weighted models, observations with larger initial hurricane effects are given
greater weight due to higher signal-noise ratio in the estimated effect. Earn-
ings are normalized within each year/area combination. The squared term is
omitted from recovery model with no weights because it model-encompasses
the model with a squared term.
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A-1 Appendix

Table A-1: Initial Hurricane Effects–Employment

Sample All Counties No Outliers No Katrina
Direct Hit Counties
Category 3+ Hurricane -0.189*** -0.0920*** -0.0178

(0.0400) (0.0128) (0.0269)
Category 3+ × County Decline -0.0118 0.00276 0.00104

(0.0225) (0.00945) (0.00771)
Category 3+ × Past Strikes 0.0846*** 0.0506*** 0.0102

(0.0222) (0.0128) (0.0203)
Big Storm Surge [> 9 Feet] -0.0686** -0.0309 -0.0195

(0.0273) (0.0192) (0.0142)
Big Surge × County Decline -0.0528*** -0.0136** -0.0149

(0.00799) (0.00565) (0.00940)
Big Surge × Past Strikes 0.0699*** 0.0327** 0.0266**

(0.0175) (0.0124) (0.0109)
Big Surge × Low Elevation -0.375*** -0.179*** -0.162***

(0.0265) (0.0170) (0.0384)

Adjacent Counties
Category 3+ Hurricane -0.0589* -0.0372* -0.0278*

(0.0282) (0.0181) (0.0139)
Category 3+ × County Decline -0.0312 -0.0173 -0.0132

(0.0232) (0.0148) (0.0120)
Category 3+ × Past Strikes -0.00151 0.00118 0.00176

(0.0290) (0.0202) (0.0169)
Big Storm Surge [> 9 Feet] -0.00672 -0.00780 -0.00550

(0.00841) (0.00857) (0.00840)
Big Surge × County Decline -0.00298 -9.53e-05 0.00146

(0.00613) (0.00596) (0.00523)
Big Surge × Past Strikes 0.0158 0.0118 0.0142

(0.0121) (0.00950) (0.00863)
Big Surge × Low Elevation -0.164*** -0.104*** -0.110***

(0.0235) (0.0122) (0.0125)

Constant 0.00420 0.00242 0.00124
(0.00294) (0.00265) (0.00257)

Observations 335 331 324
R-squared 0.522 0.367 0.270

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1. Dependent variables are hurricane effects,
estimated as the counterfactual value minus the actual. The “All Coun-
ties” sample includes all counties experiencing a direct or adjacent strike
of wind speed category 3+ or a 9 foot+ storm surge. The “No Out-
liers” sample excludes St. Bernard and New Orleans Parishes due to
their highly idiosyncratic attributes. The “No Katrina” sample omits
all counties directly hit by hurricane Katrina.
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Table A-2: Initial Hurricane Effects–Earnings

Sample All Counties No Outliers No Katrina
Direct Hit Counties
Category 3+ Hurricane 0.0802*** 0.0598*** 0.0411**

(0.0179) (0.0142) (0.0156)
Category 3+ × County Decline -0.00289 -0.00596 -0.00755

(0.0101) (0.00640) (0.00434)
Category 3+ × Past Strikes -0.0333** -0.0261** -0.0190

(0.0118) (0.0117) (0.0113)
Big Storm Surge [> 9 Feet] 0.0472** 0.0394* 0.0353*

(0.0203) (0.0191) (0.0197)
Big Surge × County Decline 0.0270** 0.0188** 0.0165*

(0.00919) (0.00854) (0.00907)
Big Surge × Past Strikes -0.0286** -0.0210 -0.0209

(0.0122) (0.0124) (0.0133)
Big Surge × Low Elevation 0.120*** 0.0790** 0.0745

(0.0316) (0.0343) (0.0443)

Adjacent Counties
Category 3+ Hurricane 0.0255*** 0.0202** 0.0162**

(0.00773) (0.00703) (0.00674)
Category 3+ × County Decline 0.0151* 0.0116* 0.00971*

(0.00724) (0.00565) (0.00501)
Category 3+ × Past Strikes 0.00917 0.00847 0.00815

(0.0107) (0.00903) (0.00779)
Big Storm Surge [> 9 Feet] 0.0159** 0.0161* 0.0152*

(0.00707) (0.00764) (0.00736)
Big Surge × County Decline 0.00915*** 0.00865*** 0.00781***

(0.00203) (0.00234) (0.00200)
Big Surge × Past Strikes -0.00744* -0.00644** -0.00756***

(0.00349) (0.00291) (0.00217)
Big Surge × Low Elevation 0.0630*** 0.0486** 0.0512***

(0.0131) (0.0186) (0.0167)

Constant 0.00647 0.00692* 0.00727*
(0.00370) (0.00389) (0.00407)

Observations 316 312 305
R-squared 0.257 0.145 0.092

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1. Dependent variables are hurricane effects,
estimated as the counterfactual value minus the actual. The “All Coun-
ties” sample includes all counties experiencing a direct or adjacent strike
of wind speed category 3+ or a 9 foot+ storm surge. The “No Out-
liers” sample excludes St. Bernard and New Orleans Parishes due to
their highly idiosyncratic attributes. The “No Katrina” sample omits
all counties directly hit by hurricane Katrina.
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Table A-3: Initial Hurricane Effects–Non-worker Population

Sample All Counties No Outliers No Katrina
Direct Hit Counties
Category 3+ Hurricane -0.190*** -0.0144 -0.00431

(0.0592) (0.0137) (0.0213)
Category 3+ × County Decline -0.0374 0.00483 0.00779

(0.0583) (0.00566) (0.00612)
Category 3+ × Past Strikes 0.0394 0.00498 0.00382

(0.0729) (0.0181) (0.0195)
Big Storm Surge [> 9 Feet] -0.127** -0.0237 -0.0248

(0.0441) (0.0266) (0.0289)
Big Surge × County Decline -0.127*** -0.0291** -0.0280**

(0.0364) (0.0135) (0.0107)
Big Surge × Past Strikes 0.113*** 0.0184* 0.0219

(0.0224) (0.0101) (0.0134)
Big Surge × Low Elevation -0.613*** -0.125** -0.129**

(0.0565) (0.0468) (0.0490)

Adjacent Counties
Category 3+ Hurricane -0.0491** 0.00682 0.00969

(0.0225) (0.0107) (0.0129)
Category 3+ × County Decline -0.0433* -0.00684 -0.00537

(0.0227) (0.00468) (0.00628)
Category 3+ × Past Strikes -0.0182 -0.0129** -0.0126**

(0.0262) (0.00509) (0.00470)
Big Storm Surge [> 9 Feet] 0.00766 0.00552 0.00659

(0.0162) (0.00414) (0.00419)
Big Surge × County Decline 0.00182 0.00536** 0.00574**

(0.00723) (0.00244) (0.00238)
Big Surge × Past Strikes 0.0222*** 0.00407*** 0.00477**

(0.00692) (0.00134) (0.00160)
Big Surge × Low Elevation -0.199*** -0.00549 -0.00724

(0.0531) (0.00413) (0.00605)

Constant 0.00630 -0.000153 -0.000489
(0.00444) (0.00317) (0.00327)

Observations 275 271 266
R-squared 0.437 0.109 0.112

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1. Dependent variables are hurricane effects,
estimated as the counterfactual value minus the actual. The “All Coun-
ties” sample includes all counties experiencing a direct or adjacent strike
of wind speed category 3+ or a 9 foot+ storm surge. The “No Out-
liers” sample excludes St. Bernard and New Orleans Parishes due to
their highly idiosyncratic attributes. The “No Katrina” sample omits
all counties directly hit by hurricane Katrina.
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Table A-4: Initial Hurricane Effects–Housing Stock

Sample All Counties No Outliers No Katrina
Direct Hit Counties
Category 3+ Hurricane -0.0727** -0.0374** 0.0379***

(0.0253) (0.0135) (0.00792)
Category 3+ × County Decline -0.0189* -0.00846** 0.00348

(0.00862) (0.00342) (0.00900)
Category 3+ × Past Strikes -0.00450 -0.0101 -0.0339**

(0.0208) (0.0167) (0.0113)
Big Storm Surge [> 9 Feet] -0.0661 -0.0450 -0.0160

(0.0398) (0.0305) (0.0157)
Big Surge × County Decline -0.0535** -0.0341* -0.0296*

(0.0205) (0.0168) (0.0144)
Big Surge × Past Strikes 0.0278 0.0189 0.00995

(0.0144) (0.0120) (0.0123)
Big Surge × Low Elevation -0.198*** -0.153*** -0.128***

(0.0496) (0.0254) (0.0264)

Adjacent Counties
Category 3+ Hurricane -0.000272 0.00796 0.0178

(0.00335) (0.00471) (0.0102)
Category 3+ × County Decline -0.0194 -0.00988 0.000265

(0.0108) (0.00596) (0.00298)
Category 3+ × Past Strikes -0.0301 -0.0239 -0.0154**

(0.0181) (0.0146) (0.00596)
Big Storm Surge [> 9 Feet] -0.00104 -0.00350 0.00287

(0.00836) (0.00439) (0.00661)
Big Surge × County Decline -0.00526 -0.00521 -0.00253

(0.00458) (0.00342) (0.00227)
Big Surge × Past Strikes 0.000343 7.12e-05 0.00593

(0.0101) (0.00863) (0.00323)
Big Surge × Low Elevation -0.0553*** -0.0255*** -0.0391*

(0.00996) (0.00595) (0.0177)

Constant 0.00525** 0.00400** 0.00156
(0.00196) (0.00156) (0.00163)

Observations 162 160 156
R-squared 0.625 0.451 0.348

Notes: Clustered standard errors (by year) in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1. Dependent variables are hurricane effects,
estimated as the counterfactual value minus the actual. The “All Coun-
ties” sample includes all counties experiencing a direct or adjacent strike
of wind speed category 3+ or a 9 foot+ storm surge. The “No Out-
liers” sample excludes St. Bernard and New Orleans Parishes due to
their highly idiosyncratic attributes. The “No Katrina” sample omits
all counties directly hit by hurricane Katrina.
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