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Abstract

October is National Breast Cancer Awareness Month. Using a 5% sample of Medicare
claims data we find that October (and November) are associated with a 25% increase in the
utilization of mammograms relative to the “average” month. We find that the “October” cohort
is less likely to be diagnosed with breast cancer, somewhat more likely to be diagnosed with
Stage 0 breast cancer conditional upon diagnosis, but have similar 1, 2 and 3 year mortality and
similar late stage diagnosis, both conditional upon diagnosis. A model of a policy intervention
to increase mammography rates suggests that among women with breast cancer who do not
receive regular mammograms there is a two percentage point increase in 5-year survival. The
proposed policy intervention is associated with an increase of $1,000 in expected total medical
expenditure per breast cancer patient over 5 years.
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1 Introduction

National Breast Cancer Awareness Month (NBCAM) was founded in 1985. The goal was to

bring together many organizations to help raise awareness of breast cancer, and in particular,

raise awareness of the value of screening including mammography, self-exams and clinical

breast exams [Miller, 1998]. NBCAM now has a dozen collaborating organizations, including

the American Cancer Society, American College of Obstetricians and Gynecologists, major

fundraising organizations, such as the Komen Foundation, as well as a non-profit group

affiliated with AstraZeneca. NBCAM has sponsorships with the NFL,1 which features pink

on-field apparel during October, and numerous charity races and walks across the United

States.

Not surprisingly, the intensity of this public health awareness campaign has consequences.

As has been found previously [Jacobsen and Jacobsen, 2011, McBean, 2012], NBCAM co-

incides with a large spike in the number of mammograms. Consequently, the number of

women diagnosed with breast cancer increases with NBCAM. However, what is not known,

and we measure for the first time, is whether rate of diagnosis per mammogram varies with

NBCAM, and if the staging and treatment patterns vary with it as well. Because the use

of mammograms as a diagnostic tool for screening is controversial (as we discuss below),

changes in the selection into mammograms associated with NBCAM may have consequences

for the efficacy and efficiency of those mammograms, and, thusly, NBCAM itself.

Using the 5% Sample of Outpatient Claims from Medicare for 2005-10, we measure the

patterns of diagnoses and care associated with mammograms that occur during and just

after NBCAM. We find, consistent with previous work, that the number of mammograms

performed in October and November increase roughly twenty-five percent, relative to other

months. This increase in screening appears to be associated with a decrease in the risk faced

by women. Women who receive mammograms in these months are ten percent less likely

to be subsequently diagnosed with breast cancer. This difference in diagnosis is pronounced

among women with no other risk factors for breast cancer. This differential screening is not

associated with the subsequent mortality of women, whether diagnosed with breast cancer or

not. While women who receive mammograms in the peak months of October and November

are more likely to be initially diagnosed with early-stage breast cancer, they are just as likely

to be eventually staged with later stages.

This paper uses changes in mammography rates and initial staging conditional upon

diagnoses associated with NBCAM to identify and estimate the impact of a policy that

1Tellingly, the NFL’s website for its work with NBCAM has the tag line “A Crucial Catch: Annual
Screening Saves Lives”
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increases mammography rates among women who do not receive regular mammograms.

Initial estimates suggest that such a policy intervention will increase 5-year survival rates

among such women with breast cancer by two percentage points. An increase from 90.5%

to 92.4%. The policy would be associated with an increase in total medical expenditure per

woman with breast cancer of $1,000 over a five year period. A women with breast cancer

who is induced to have a mammogram will expect to have $73,268 in medical expenditures

accounting over the next five years in net present value terms. Where these expenditures

include both those paid by Medicare and her out-of-pocket expenses. If the same women with

breast cancer, is not induced to have a mammogram then her expected medical expenditures

will be $72,320. The results suggest that a policy intervention that increases mammography

rates in this way is cost effective if the value of a life-year is greater than $47,000 per year.

Each year approximately 210,000 women (mostly) are diagnosed with breast cancer and

every year approximately 40,000 women die of the disease.2 Today the US Preventative

Services Task Force recommends that all women aged 50 to 75 get regular mammograms

every two years.[U.S. Preventive Services Task Force, 2009] Approximately three quarters

of women in this age group actually follow the USPSTF’s recommendations. [Centers for

Disease Control and Prevention, 2012]

The USPSTF’s recommendations are based on various studies including a large and

long randomized control trial conducted in Sweden. In the early 80s over 130,000 women

aged 40 to 74 from two Swedish counties were randomized into two treatments. The first

treatment group received an invitation to have regular mammography screening, while the

other treatment group received usual care. The trial lasted approximately seven years. For

every 10 women that died of breast cancer in the usual care group, 7 women died of breast

cancer in the mammography invitation group [Tabár et al., 2011]. Despite these findings

screening remains controversial.

Critiques of general mammography screening have raised two major concerns. First, au-

thors point out that while mammography is associated with large increases in early stage

diagnosis rates it is not associated with similarly large decreases in late stage diagnosis rates

[Kalager et al., 2012, Bleyer and Welch, 2012]. Breast cancer is generally diagnosed by mam-

mograms or self-exams. In a small portion of cases it is diagnosed by doctor administered

exams.3 By definition, mammography, which uses an X-ray image, can detect the tumor

when it is smaller and thus is more likely to be an early stage of disease. The question is

whether cancers diagnosed earlier would have led to harmful disease or death if they were

2Approximate 2009 statistics from the CDC, http://www.cdc.gov/cancer/breast/statistics/ (last accessed
8/2/13).

3Personal communication with Judith Malmgren, Department of Epidemiology, University of Washington.
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never detected.

The second major critique of general mammography screening is that the number of

people needed to be screened is too large relative to the number of lives saved. For example,

the USPSTF cited the number of 1904 women needed be invited to mammogram screening

per life saved in reversing its recommendation that all women aged 40 to 49 receive regular

mammograms [Nelson et al., 2009]. Relatedly, it is argued that the number of false positives

is too large relative to the number of lives saved. While the Nelson et al. [2009] study

reported results from computer models showing that increasing the age of mammography

from 40 to 50 would increase breast cancer mortality by 3% such a change would also be

associated with a decrease of 2250 false positives per 10,000 screenings.

This paper considers a policy that will increase the screening rates among women who

do not get regular mammograms. That is, women who do not get at least one screening

mammogram every two years. Our empirical analysis of the “October” cohort of mammo-

grams suggest that women who are moved to get a mammogram by the advertising blitz are

systematically different from women who get mammograms in other months of the year. If

this group is disproportionately consists of women who do not get regular mammograms then

the effects of a policy that increases screening among these women will have fundamentally

different effects than a policy than a policy that increases (or decreases) screening rates for

the “average” women.

The policy question is whether changes to incentives to get mammography screening

increase survival and are cost-effective. Tabár et al. [2011] consider random assignment of

“invitations” among a population that was much less likely to get regular mammograms

than the current US population. Kalager et al. [2012] consider quasi-random assignment of

screening invitations based on the staggered introduction of county wide programs over a

number of years in a population with much lower usage of mammography. Thornton [2008]

consider random assignment of actual monetary payments and distance to screening services

to determine the impact of changes in HIV screening rates on sexual behavior in Africa. Here

we use the advertising blitz associated with NBCAM to identify changes in the likelihood of

getting screened and the impact of changes in screening rates on survival.

Although 25% of the study population do not follow the USPSTF guidelines, we do

not analyze the “rationality” of this behavior. Oster et al. [2013] presumes the value of

screening, and attempts to use behavioral models to understand the limited utilization of

the screening. The paper considers the case of Huntington’s disease, whose incidence is

strongly genetic, and lacks effective treatment, with limited palliative care options. While

broadly useful for understanding the advantages and limitations of behavioral (i.e., non-

neoclassical) modeling, we focus on a more traditional balancing of costs and benefits. The
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debate regarding screening mammograms, and cancer screening more generally, has turned

on the possibility of, and value of, early detection. Unlike for Huntington’s Disease, early

detection may save lives and reduce costs, effects which we aim to measure.

The paper proceeds as follows. Section 2 presents results of the empirical analysis of the

relative diagnosis rates, cancer staging and survival of the October cohort of women. Section

3 considers the costs and effects of a policy that increases mammography rates. Section 4

concludes.

2 Data Analysis

We use a 5% Sample of the Medicare population for our study. The Medicare population

is, to some degree, a sample of convenience: beneficiary and claims data for individuals on

Medicare are made available by CMS. Focusing on this population does mitigate some of the

many issues that may be present if we were to study women under 65. Medicare provides

universal coverage for women over 65 in the US. If we were to study insured women, we

might worry that our estimates were non-representitive due to the endogeneity of private

coverage. Also, as the USPSTF guidelines suggest, older women are at a greater risk for

breast cancer, while the guidelines for women over 75 have varied over time.

The sample is drawn from all Medicare beneficiaries from 2005-10. The Master Benefi-

ciary Summary File has one observation per beneficiary per year, and includes basic demo-

graphic information, including date of birth, sex, race, and monthly entitlement indicators

(for Medicare Parts A, B and D). We also have access to the National Death Index (NDI)

segment, which states the date of death, so long as it occured during the period of study,

2005-10.

Claims and diagnosis data come from three separate files. First, the Outpatient Claims

File collects the claims made by hospital-based outpatient care (Part B) providers. It lists

the ICD-9 codes for diagnoses and treatment associated with the visit, as well as the HCPCS

(CPT-equivalent procedure code), and APC (bundled payment group), and payment infor-

mation (who paid and how much). We also have the MedPAR, which reports the ICD-9 codes

and bundled payment codes (DRGs) for all inpatient visits to a hospital and skilled-nursing

facility. We have the annual measures of spending and visits, by visit type. Importantly,

we do not presently have access to the Carrier files, which house the claims for all Part B

claims made in a physician practice, or other non-hospital, setting. For example, visits to

ambulatory surgical centers or specialty imaging centers are not avaible in the sample we are

considering at this time. Because of this, as suggested by McBean [2012], we only have the

claims for one-third of the screening mammograms paid for by Medicare. However, we can
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measure the annual spending on and number of of those visits by beneficiary-year by using

the annual utilization file.

Finally, we use the Chronic Condition Files constructed by CMS. The Condition Files

report the conditions (breast cancer, lung cancer, heart disease, etc.), based upon all of

the claims sent to CMS. Thus, while we do not have access to the claim associated with a

treatment received at ambulatory surgical center, we do know if a beneficiary received such

treatment at all, either by July 1st of the year (a semi-annual measure) or by December 31

(the annual measure). It is important to note that this, and all of the diagnoses reported

below, rely upon the claims data, and do not reflect the assessment of an independent

practitioner. In some instances, diagnosis-by-claim may be unreliable [Taylor Jr et al.,

2002]; also, we will be unable to separate “true positives” from “false positives.” With those

caveats noted, we begin our discussion of mammograms in the Outpatient Claims data.

2.1 Pink October (and November)

In the Medicare claims data, doctors or other medical professionals code the reason for the

visit. In the case of screening mammograms,4 this corresponds to one of the two procedure

codes: V76.12 for ordinary screening mammograms, and V76.11 for screening mammograms

of women with risk factors. The records also indicate whether there are other indications for

concern, such as an irregularity in the breast or nipple.5 For either screening mammogram

code, women in this sample are not responsible for a co-pay, though they are for diagnostic

mammograms.

Figure 1 plots the daily number of screening mammograms from the five percent sample

of Medicare, and the seasonality is immediately evident. On the left is the daily count of

mammograms without risk factors (V76.12) and the daily count for mammograms with risk

factors (V76.11) is on the right. Every fall, October and November in particular, there is an

increase in the frequency of screening mammograms. The daily frequency increases, roughly

speaking, from an out-of-season average of six-hundred to an in-season peak of over eight-

hundred. A similar, if less evident, trend is evident in the mammograms with risk factors,

though this trend appear later in the sample.6 This provides some initial evidence that

not only are mammograms seasonal in October and November, but that the mammograms

4Diagnostic mammograms, which take occur after breast cancer has been diagnosed is coded and reim-
bursed differently according to Medicare rules. An inspection of diagnostic mammograms, not reported here,
does not indicate a similar seasonal pattern.

5The data do not appear to systematically differentiate between a high-risk coding and other ICD-9 codes.
Ordinary screening mammograms frequently have secondary ICD-9 codes.

6There is also evidence of a change in billing practice in early 2005, with the jump in mammograms with
risk factors. For reasons besides this, we separate out these two types of mammograms in the results below,
and the general trends stand.
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(a) Mammograms without risk factors (V76.12)
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(b) Mammograms with risk factors (V76.11)

Figure 1: Daily counts of screening mammograms in a hospital-based outpatient setting
among 5% Sample Medicare Population, by whether the mammogram is coded with other
risk factors.

without risk factors are particularly so. This suggests that mammograms in October and

November are more likely to be taken of women less likely to have a strong prior concern

for breast cancer. Further evidence of this can be found by separating mammograms with

other ICD 9 codes from those without. Such a graph can be found in Figure 2. Again, the

seasonality of mammograms is primarily among those mammograms without other (coded)

evidence of breast irregularity.
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Figure 2: Daily counts of screening mammograms in a hospital-based outpatient setting
among 5% Sample Medicare Population, by whether the mammogram is coded with other
conditions, such as breast or nipple disfiguration.

2.2 Patterns in Diagnosis and Staging

We investigate the patterns of care and diagnosis associated with mammograms using a 5%

sample of Medicare beneficiaries, from 2005-10. The sample draws from the entire population

of those eligible and enrolled in Medicare Parts A and B over this six-year period.7 The

sample starts with an annual baseline files, that includes monthly measures of enrollment,

race, date of birth and a ZIP+4 code from a billing address. We also have the mortality

files, which lists date of death if it occurred in the six year period.

The data present two different ways to discern whether a woman was diagnosed with

breast cancer subsequent to a mammogram. The first way uses the Chronic Conditions File,

which reports whether a Medicare enrollee’s claims data indicate a diagnosis of one of many

different diseases, of which breast cancer is one. We can also superficially duplicate this,

by reviewing the Outpatient and MedPar (Inpatient and Skilled Nursing Facility) for ICD-9

codes that indicate breast cancer. We limit the matching of breast-cancer related claims to

mammograms to be within one year of each other. Both measures have limitations, and so

we employ both.

We first consider the Chronic Conditions File. The Chronic Conditions File reports three

measures of breast cancer: starting January 1, are there claims suggesting breast cancer by

July 1st, by the end of the year, and the date of first diagnosis of breast cancer in the

7Enrollees in Medicare Part C (Advantage) HMOs does not have their claims reported into the Medicare
claims file, and are thus excluded from the sampling procedure.
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patient’s medical history, whenever it may have occurred.

The timing of these measures is imperfect for this exercise, as there may be censoring of

a diagnosis. E.g., if a women has a mammogram that indicates breast cancer on December

31st, she is unlikely to be coded as having been diagnosed with breast cancer that calendar

year. Because the months of interest are sufficiently close to the end of the calendar year, we

investigate the potential bias associated with this censoring. First, we measure the difference

in diagnosis rates for mammograms that occur near the July 1st condition measure. If those

mammograms are not similarly seasonal in their frequency or the risk factors of women who

seek mammograms in those months, then such measures should indicate the magnitude of the

censoring effects. Second, we look to the July 1st measure of diagnosis of the subsequent year.

This limits our sample, as mammograms in 2010 do not have chronic condition indicators

for the following July.

We measure the monthly rate of diagnosis using a regression of the following form:

Dm =
∑

8≤t≤12

Im∈tβt + εm, (1)

where a unit of observation, m, is a screening mammogram. Because the data is panel,

women may have multiple screening mammograms while they are in the data, and we pool

over this. The indicators Im∈t = 1 when the mammogram took place in a particular month.

The coefficients βt are the different in diagnosis rate, relative to the diagnosis rate in some

baseline month or set of months.

Table 1 reports the most generic version of this specification, with separate dummies

for each month. The table reports the baseline diagnosis rate (January), and the difference

in diagnosis rate for each of the successive months. The diagnosis rate for November is

four-tenths of a percentage point less than that of January; this is a ten percent decrease

in the diagnosis relative to the baseline, and is statistically significant at the 99 percent

confidence level. The other large coefficient is December, which is nearly twice as large and

statistically significant, but may suffer from censoring bias. October mammograms appear

to be diagnosed at a similar rate to that of January, and the only other months that have

coefficients with some statistical significance (May and July) have coefficients half that of

November.

The second columns of Table 1 report the point estimates for the same specification,

only lagging the date of the mammogram by 14 days. Women who are “induced” to get

a mammogram by NBCAM publicity may not get a mammogram that day. Thus, the lag

attempts to capture a typical waiting period between when a women attempts to sign up

for a mammogram and ultimately has one. The difference between the diagnosis rates of
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Table 1: Month-of-mammogram Diagnosis Rate Patterns

January 0.0436*** July 0.00207** 0.00118
(0.000637) (0.000907) (0.000889)

February 0.000679 0.000172 August -0.000470 -0.000687
(0.000927) (0.000917) (0.000878) (0.000878)

March 0.000403 0.000784 September -0.00108 -0.000413
(0.000888) (0.000885) (0.000880) (0.000863)

April 0.000432 0.00181** October -0.000191 -0.00188**
(0.000891) (0.000891) (0.000851) (0.000835)

May 0.00200** 0.00105 November -0.00356*** -0.00525***
(0.000897) (0.000889) (0.000851) (0.000847)

June 0.00133 0.00139 December -0.00782*** -0.00455***
(0.000888) (0.000901) (0.000847) (0.000886)

14-day lag Yes Yes
N=1,323,605

Note: Estimates for linear probability models of (relative to January) monthly diagnosis
rates, with robust standard errors in parentheses. Each point estimate reflects the average
diagnosis rates for women subsequent to mammograms by month, relative to those in Jan-
uary. The first column uses the actual date of the mammogram to determine the monthly
averages, while the second column uses the month of the date of the mammogram plus four-
teen days.
* significant at 10%; ** significant at 5%; *** significant at 1%.

October and January is now statistically significant, while the November and December

diagnosis rates remain smaller than those in January. Thus, the second half of October,

when combined with the first half of November, appears to have a lower diagnosis rate than

January. The May drop in diagnosis rate appears to be an early-May pattern, as the late-

April/early-May coefficient is also statistically significant at the 95% confidence level. The

July pattern disappears.

In order to maximize the power of the analysis, we group January through September into

a rest-of-year (ROY) average, and use that as the baseline. Table 2 uses the ROY baseline

to measure the extent to which the end-of-year measures of diagnosis may be influencing the

estimates. As mentioned before, the diagnosis measures used here rely upon claims made by

December 31st. If a woman has a mammogram on December 30th, is diagnosed with breast

cancer, and her treatment starts January 1st, she will still be recorded as undiagnosed in the

measure used here. The first, third and fifth columns repeat use the end-of-year diagnosis

variable, and the monthly diagnosis rates relative to the pre-October (ROY) average. The

patterns here are consistent with the specifications when all months are allowed their own

separate dummy variable.
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Table 2: Alternative specifications for Diagnosis Rate Patterns
End of Year By Next July 1 End of Year By Next July 1 End of Year By Next July 1

ROY 0.0442*** 0.0579*** 0.0232*** 0.0322*** 0.0319*** 0.0429***
(0.000209) (0.000258) (0.000178) (0.000226) (0.000184) (0.000230)

October -0.000778 -0.00195*** -0.00140*** -0.00309*** -0.00207*** -0.00351***
(0.000602) (0.000737) (0.000501) (0.000626) (0.000519) (0.000644)

November -0.00415*** -0.00364*** -0.00252*** -0.00221*** -0.00469*** -0.00450***
(0.000602) (0.000756) (0.000505) (0.000656) (0.000517) (0.000661)

December -0.00840*** -0.00606*** -0.00524*** -0.00435*** -0.00792*** -0.00592***
(0.000597) (0.000772) (0.000494) (0.000661) (0.000509) (0.000677)

1,323,605 1,125,746 988,014 841,533 1,254,045 1,066,951
ICD 9 No No
Risk factors No No

Diagnosed by July 1
January 0.0429*** 0.0432*** April 0.000982 0.00134

(0.000632) (0.000527) (0.000888) (0.000815)
February 0.000698 -0.000296 May 0.000452 -0.00274***

(0.000920) (0.000842) (0.000883) (0.000795)
March 0.000252 0.000759 June -0.00422*** -0.00511***

(0.000881) (0.000810) (0.000856) (0.000942)

634,724 634,724 634,724 634,724

14-day lag Yes Yes

Note: Estimates for linear probability models of (relative) monthly diagnosis rates, with robust standard
errors in parentheses. Each column in the top panel reports the diagnosis rates for mammograms in
October, November, and December, relative to those in the rest of the year (ROY). The different columns,
consecutively, report the point estimates for different alternative measures of diagnosis, and whether the
result is statistically significantly different from zero. The bottom panel reports the rates of diagnosis by
the month of the mammogram, using the measure of diagnosis using claims dated before July 1st. The first
column uses the actual date of the mammogram, while the second column uses the month of the date of
the mammogram plus fourteen days.
* significant at 10%; ** significant at 5%; *** significant at 1%.

The accompanying second, fourth and fifth columns update the diagnosis measure, setting

it equal to one if the beneficiary has claims that suggest diagnosis by the following July.

Because this uses claims from a subsequent year, mammograms from 2010 are dropped

and the sample falls by roughly one-sixth. As reported in the first and second columns, the

baseline diagnosis rate grows from four and half to over five and half percent, as more time is

allowed pass for diagnosis to occur. The October coefficient doubles in magnitude, to a three

percent decrease from the baseline, while the November point estimate falls slightly. The

December coefficient falls by a third. This suggests that the broader measure of diagnosis

mitigates the end-of-year censoring, while allowing increasing the difference between October
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and pre-October months.

The final four columns in the top half of Table 2 consider the differences in diagnosis rates

for screening mammograms that (a) are coded as necessary, but not for high-risk women,

and (b) did not have an second ICD-9 diagnosis code recorded. As described above, these

are the mammogram types that demonstrate the most growth in frequency in October and

November. The point estimates suggest that, for these low-risk groups, the difference in

diagnosis is larger for women with fewer secondary diagnostic concerns. First, note that the

diagnosis rate is less for these groups than all screening mammograms, falling from a third

(non-high-risk mammograms) to a half (no other ICD-9 codes). Thus, it seems reasonable

to conclude that these mammograms are for lower-risk women, all year long.

For these lower-risk women, these diagnosis difference in October, November and Decem-

ber are more pronounced. While the level of the point estimate is smaller in these smaller

groups, it is relative to a smaller baseline. In terms of the underlying diagnosis rate, these

patterns reflect larger percentage differences than for the entire sample. Across the two

diagnostic measures, the decrease in diagnosis rate in the last three months is five to ten

percent of the baseline rate, and is statistically significant at the 99% confidence level.

Table 2 also reports the monthly diagnosis rates for the first six months, relative to

January, using the mid-year diagnosis measure. To the extent that selection into screening

mammograms in those six months is relatively homogeneous, the diagnosis rates for the last

two months might also be used to proxy for the amount of non-diagnosis due to censoring.

The difference in diagnosis by July 1st appears to be limited to June mammograms, May

if the fourteen-day lag is included. The magnitude of the June difference suggests that the

December, though not October or November, differences may due to censoring, in no small

part. However, the differences due to October should not be of concern.

2.3 Staging and Mortality

In spite of this fall in the diagnosis rate, increased efforts to find and diagnose cancer may

still be worthwhile. Cancer is generally segmented into three basic categories: metastatic,

regional and local.8 A “late stage” diagnosis is given to metastatic disease. This is the case

where the cancer has spread from the initial location in the breast to other organs and parts

of the body. In many cases metastatic cancer is not curable with current technology. It is

usually not possible to remove all the tumors with surgery. Radiation may reduce the size

of the tumors but it often does not remove them completely and it often does significant

damage to the surrounding tissue. Chemotherapy can stabilize the growth and spread of the

8See the National Comprehensive Cancer Guidelines on breast cancer at http://www.nccn.org.
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tumors but often cannot hold back the spread indefinitely. In the model of the Medicare

population presented below, 53% of Stage 4 patients are alive after five years.

Regional or invasive cancers have not yet spread to other distant organs but may have

spread to nearby cells or into the lymphatic system. Regional cancers are not life threatening

but left untreated they have a high likelihood of spreading to other organs, leading to death.

Regional cancers are usually operable and patients often undergo radiation and chemotherapy

regime because there is evidence that these treatments significantly reduce the likelihood that

the cancer will spread. Patients with a regional diagnosis are usually followed for a number of

years after they have completed the surgery, radiation and chemotherapy. They are generally

considered to be “cured” if the cancer has not been found to have spread after five years from

surgery. Patients with regional cancers are relatively expensive to treat particularly if they

are given the new drug regimes. In the model of the Medicare population presented below

the expected net present value of Medicare and out-of-pocket expenses for such a patient

over the next 5 years is $105,438. According to the model, 92% of such patients are alive

after five years.

Patients for whom the tumor has yet to invade nearby tissue or the lymphatic system

are diagnosed with early or local stage cancer. These patients may also get surgery and in

rarer cases may get radiation and chemotherapy. Given the reduced treatment it follows

that these patients are relatively inexpensive to treat.

The public health objective of a cancer screening program is to diagnose patients before

the cancer spreads to distant organs. If a screening program can successful diagnose patients

with earlier stages of cancer those patients may be treated and there is a significant prob-

ability that their life will be saved. The economic benefits of a general screening program

may include the economic value of the life-years saved as well as the medical expenditure

savings. The costs of the a general screening program includes the costs associated with the

screening themselves as well as the costs of the associated follow up tests and treatments.

The test technology may also be inconvenient and involve personal costs to those screened.

The viability of such a claim relies on the ability of increased detection to lead to early

detection, and that early detection to lead to decreased mortality (among other things).

The data allow us the ability to test such claims directly. Using the ICD-9 disease codes

in the hospital-based outpatient and inpatient claims data, we are able to code each visit

as associated with four separate stages of breast cancer: Stage 0 (233.0), Stage 1 (174)

Stages 2 and 3 (174 and 196), and Stage 4 (174 and either 197 or 198). We match each

screening mammogram to the twelve months of claims that are coded as being related to

breast cancer.9

9Our measurement of diagnosis may vary from Medicare’s measurement of diagnosis for a variety of
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Table 3: Differences in Diagnosis and Cancer Staging by Month of Mammogram

EOY DIAGNOSIS Stage 2,3 or 4
ROY 0.0442*** 0.0232*** 0.0319*** 0.0835*** 0.0928*** 0.0886***

(0.000209) (0.000178) (0.000184) (0.00198) (0.00318) (0.00233)
October -0.000778 -0.00140*** -0.00207*** -0.00321 0.00456 0.00245

(0.000602) (0.000501) (0.000519) (0.00565) (0.00938) (0.00688)
November -0.00415*** -0.00252*** -0.00469*** -0.00716 -0.00668 -0.00498

(0.000602) (0.000505) (0.000517) (0.00589) (0.00934) (0.00706)
December -0.00840*** -0.00524*** -0.00792*** -0.00118 -0.00167 -0.00333

(0.000597) (0.000494) (0.000509) (0.00645) (0.0102) (0.00757)

Sample 1,323,605 988,014 1,254,045 26,394 11,350 20,042
ICD 9 No No

Risk factors No No

Initially Stage 0 Stayed at Stage 0

ROY 0.152*** 0.179*** 0.173*** 0.0403*** 0.0468*** 0.0418***
(0.00257) (0.00420) (0.00311) (0.00141) (0.00231) (0.00164)

October -0.0114 -0.00427 -0.00464 -0.00203 -0.00339 0.00163
(0.00724) (0.0120) (0.00897) (0.00399) (0.00649) (0.00487)

November 0.0113 0.0318** 0.0226** 0.00552 0.00902 0.00864
(0.00814) (0.0134) (0.0100) (0.00459) (0.00754) (0.00553)

December 0.00677 -0.00321 0.0148 0.000626 -0.00803 0.00342
(0.00856) (0.0135) (0.0105) (0.00464) (0.00691) (0.00561)

Sample 26,394 11,350 20,042 26,394 11,350 20,042
ICD 9 No No

Risk factors No No
Note: Estimates for linear probability models of (relative) monthly diagnosis rates and
cancer staging, with robust standard errors in parentheses. Each point estimate reflects
the average mortality rates for women subsequent to mammograms in October, November,
and December, relative to those in the rest of the year (ROY). The panels report the point
estimates for four different measures of diagnosis and staging, according to outpatient and
inpatient claims submitted to Medicare within one year of the mammogram. Each column
reports the point estimates by subgroups of women. The second and fifth columns exclude
those women whose doctors indicated that she had risk factors, such as family history, at
the time of the mammogram. The third and sixth columns exclude mammograms that
had indicated other medical diagnoses, as indicated by the ICD 9 codes on the screening
mammogram’s claim.
* significant at 10%; ** significant at 5%; *** significant at 1%.

reasons, included but not limited to: our lack of Carrier-based claims, different code patterns used to
recognize breast cancer-related care, and diagnosis during a calendar year (the Chronic Condition File) vs.
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Table 3 reports the rates of these associated outcomes, by month of mammogram. The

results for diagnosis can be found in Panel A. The three columns represent specifications

for the entire sample of mammograms, those mammograms with no other ICD-9 codes, and

those mammograms coded as necessary but not high risk. Our measurement of diagnosis

is about two-thirds that of CMS’s measure, and the corresponding monthly differences in

diagnosis is also smaller. The sample here is also smaller, as the mammograms from 2010

do not have full year of the follow-up care in our data.

Panel B reports the monthly differences in the rates of Stage 2 or higher breast cancer.

Stage 2 or higher breast cancers have initially spread, and are associated with higher mortal-

ity rates (see discussion above). At this point, the sample diminishes quickly, as the cancer

rate among women in these groups is below five percent, leaving just over 28,000 women in

the sample of women who had a mammogram in a hospital-based outpatient clinic and also

received treatment associated with breast cancer. The point estimates reported in Panel

B are all small in absolute terms: the largest difference in the rate of Stage 2 or higher

breast cancer is seven-tenths of one percent, and is not even ten percent of the eight-percent

baseline risk of that group. The balance of the point estimates are typically smaller, either

within the group as a whole, or among the women without other risk factors suggested in

their mammogram claim. None of the point estimates are statistically significantly different

from zero at traditional levels.

As mentioned above, much of the debate around mammogram use centers around earlier

stages. Panels C and D report the incidence of Stage 0 breast cancer claims, by month

of screening mammogram. The outcome of interest for Panel C is whether there were any

codings for Stage 0 breast cancer; for Panel D, the outcome of interest is whether Stage 0

was the only coding for subsequent breast cancer treatment. The results suggest that there

is a peak in some Stage 0 treatment following a November mammogram, particularly among

lower-risk women. However, these point estimates do fall when the outcome is exclusively

Stage 0 breast cancer. The baseline risk of exclusively Stage 0 relative to any Stage 0 is

roughly proportional to the relative size of the point estimates, and are not statistically

significant at the usual confidence levels. The sample is small, so the analysis lacks power

to precisely estimate a difference. That said, we do not find strong evidence that these

NBCAM-timed mammograms move staging up in any consistent way.

Finally, we consider the mortality rates of women who get mammograms, using the

date of death available in our data. We calculate the one-, two-, and three-year mortality

rates. The sample for these latter two measures shrink, as we lose the later years in our

a rolling year-long window (our measure).
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Table 4: Differences in Mortality Rates by Month of Mammogram

Mortality Rates—All Mortality Rates—Diagnosed
1 Year 2 year 3 year 1 Year 2 year 3 year

ROY 0.0130*** 0.0264*** 0.0378*** 0.0283*** 0.0570*** 0.0774***
(0.000140) (0.000227) (0.000327) (0.000996) (0.00160) (0.00226)

October -0.000549 -0.00159** -0.00136 -0.00495* -0.00837* -0.00928
(0.000398) (0.000644) (0.000951) (0.00267) (0.00441) (0.00635)

November -0.000338 -0.000450 -0.000338 -0.00456 -0.0104** -0.00971
(0.000415) (0.000670) (0.000970) (0.00294) (0.00466) (0.00683)

December -0.00187*** -0.00189*** -0.00282*** -0.000562 0.000947 0.00539
(0.000410) (0.000694) (0.000993) (0.00340) (0.00564) (0.00803)

Sample 899,725 684,251 464,701 37,032 27,775 18,645
Note: Estimates for linear probability models of (relative) mortality rates, with robust
standard errors in parentheses. Each point estimate reflects the average mortality rates
for women subsequent to mammograms in October, November, and December, relative to
those in the rest of the year (ROY). Panel A reports the point estimates for entire sample,
while Panel B reports the point estimates for the subsample of women who were diagnosed
with breast cancer during the calendar year of their mammogram. Each column reports
the (relative) rates by subgroups of women defined by the risk factors at the time of the
mammogram, as described by the medical diagnosis codes in the screening mammogram’s
claim.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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sample.10 As is standard in the cancer survival literature, we consider mortality due to

any reason. The differences by month of mammogram are available in Table 4, and is

presented for either all women or conditional on (CMS’s) diagnosis of breast cancer that

calendar year. As with the staging analysis, there is limited evidence that the increase in

(low-risk) screening associated with October and November mammograms is associated with

decreased mortality. Conditional on having been diagnosed, there is a decrease in one- and

two-year mortality on the order of fifteen to twenty-percent of the baseline mortality risk for

October mammograms; this difference is statistically significant at the 90 percent confidence

level. There are similar differences for November, though all of these differences tail off,

both in terms of size relative to the rest-of-year mortality and statistical significance, for the

three-year mortality measures. Not surprisingly, when the sample is not conditioned on by

diagnosis with breast cancer, the monthly differences shrink.

The empirical analysis shows that the October cohort of mammograms is associated with

women who have a lower risk of breast cancer, who are less likely to have breast cancer and

who are somewhat more likely to be diagnosed with Stage 0 breast cancer conditional upon

diagnosis. There is no direct evidence that the October cohort is associated with greater

survival rates.

3 Policy Analysis

The previous section empirically analyzed the relationship between having a mammogram

during “Pink October” with breast cancer diagnosis, with the initial staging conditional

upon diagnosis and with survival conditional on diagnosis and unconditionally. The analysis

did not distinguish between women whose regular mammogram happened to be during Pink

October and women induced to have a mammogram by Pink October. The analysis was also

limited by the length of the panel. This section attempts to compensate for these issues using

a structural model to identify the women at risk of being induced to have mammograms by

some policy intervention and a statistical model that allows more efficient use of the data in

measuring survival rates and policy costs.

Consider a woman who has breast cancer, but does not know it. She has two ways to

discover that she has breast cancer: she can have a screening mammogram, or she can self-

diagnose via a physical examination. When cancer is discovered via either of these methods,

she enters treatment at a particular stage, which is associated with increases in medical

spending (both out-of-pocket and Medicare), mortality, and transition to subsequent stages

of cancer (which are themselves also associated with different levels of medical spending and

10Date of death is only available if the death occurred during our sample period, 2005-10.
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mortality.)

We assume that some proportion of the population get regular screening mammograms

at least once every two years, while the remainder do not get mammograms or do not get

screening mammograms on the recommended schedule. The policy intervention of NBCAM

does nothing for this first group, as they would have had a mammogram anyway. The

intervention on the second group induces them to have a mammogram when they would not

have, or would have had a lower probability of screening.11

The appendix presents conditions under which the observed increase in mammograms

associated with NBCAM identifies the initial staging distribution for these women who are

induced by NBCAM, conditional upon getting a mammogram and being diagnosed with

breast cancer. It also presents additional assumptions required to identify the initial staging

distribution for these women conditional upon being self-diagnosed with breast cancer. In

short, these assumptions are similar to the ones required to generalize a random-controlled

experiment into a two-type model that we use here. While we our research design does

not satisfy the exogeneity assumptions of such “gold standard” designs, identification of an

underlying model requires similar assumptions in both cases.

Stage All Oct Aug Induced Self
0 0.043 0.043 0.041 0.051 0.049
1 0.823 0.880 0.880 0.877 0.649

2.3 0.059 0.035 0.036 0.032 0.130
4 0.075 0.042 0.043 0.040 0.172

Table 5: Actual and Inferred Initial Stage Probabilities

Table 5 presents the distribution of initial staging by various classes of diagnoses. The

first three columns are just read from the data. The first column is the distribution for women

diagnosed with breast cancer irrespective of the method used to diagnose. The second column

is the distribution for mammograms that occurred in the second half of October and the

first half of November. The third column is the distribution for mammograms that occurred

in the second half of the year but not Pink October. The last two columns come from the

data based on equations and assumptions presented in the appendix. The fourth column

comes from Assumption 6 which states that the initial staging distribution is a function of

the “Oct” and “Aug” columns with a weight related to the 25% increase in mammograms

associated with Pink October. The fifth column is the initial staging distribution for women

11There is ostensibly a third group, women who do not have a mammogram whether or not NBCAM
exists. Because we are working from the set of women who have mammograms, we are not able to assess
the value of ensuring that they get mammograms.
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that are self-diagnosed. It is a weighted function of the first three columns where the weight

is determined by proportion of women who got a mammogram in the current period (see

Equation 18).

Note that the assumption that all of the “extra” peak month mammograms are for women

who otherwise would not get a regular mammogram minimizes the measured difference

between them and the ordinary mammograms that would have occured in October (or some

other month) absent NBCAM. In extremis, were we to assume that only one woman was

induced by NBCAM, then we would ascribe all of the difference between the October and

August (or rest-of-year) to her. This one woman would have an exaggerated diagnosis and

staging profile. By going to the other extreme, we are setting up the induced mammograms

to be as similar as possible to the mammograms that would have occured anyway, providing

a upper bound for how cost-effective the induced mammogram may be.

Table 5 shows that women who are induced to have mammograms are significantly down-

staged relative to women who are self-diagnosed with breast cancer. Consistent with the

results presented above, the initial staging distribution for the “Oct” mammograms is similar

to that of the “Aug” mammograms. However, the structural model assumes that the small

observed difference is driven by the additional mammograms seen in October, all of whom

are given to women who do not receive regular mammograms. The women who are induced

to have a mammogram by Pink October have a one percentage point higher probability of

being diagnosed with Stage 0 relative to women who have mammograms in an “average”

month. The women who are self-diagnosed are significantly more likely to have the higher

stages of breast cancer than those diagnosed through mammograms. This difference comes

from the fact that the staging distribution unconditional on screening is weighted somewhat

to the higher stages and the fact that only 25% of women did not have a mammogram in

the last two-years.

Stage (T-1,T) 0 1 2.3 4 Pr(death)
0 0.878 0.118 0.001 0.003 0.007
1 0.000 0.982 0.004 0.014 0.013

2.3 0.000 0.000 0.954 0.046 0.013
4 0.000 0.000 0.000 1.000 0.148

Table 6: Transition Probabilities

We presume that inducing a screening mammogram helps the woman with cancer by

catching the cancer earlier. Vis-a-vis self-diagnosis, a cancer caught by a screening mam-

mogram may be caught at an earlier stage because the mammogram can detect a smaller

collection of cancer cells than the human hand can detect. The tables above demonstrate
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that this is true.

We also presume that increased utilization of screening mammograms is costly both

to the woman and to Medicare by catching cancer earlier; i.e., starting the spending on

cancer treatment at an earlier point in time than if the woman had delayed her screening

mammogram by a year, or instead relied upon self-diagnosis. The net value of an induced

mammogram compares the benefits of diagnosing a cancer earlier (earlier staging leading to

lower mortality and less post-diagnosis spending) to its costs (starting the spending earlier

than it otherwise would have). These costs and benefits crucially depend upon the transition

probabilities and spending associated with different stages of cancer.

Table 6 presents the transition probabilities between the various states in the Markov

model. There are six states in the model, Stage 0, Stage 1, Stage 2/3, Stage 4, Year of Death,

and Passed Away. For each year, the patient is assigned the “highest” stage of the disease

diagnosed in that calendar year. Note that the year of death is considered as a separate

state because it is associated with large medical expenses. Patients who passed away in the

previous year are assumed to have no medical expenses in the current year.

The first four columns of Table 6 present the probability of moving from one stage of

disease to another conditional on not dying within the year. The fifth column presents

the probability of dying within the year conditional on the stage of disease. Note that by

assumption the women only move “up”. For women diagnosed Stage 0, there is a 10%

probability that they will be diagnosed with invasive breast cancer within the year. Women

diagnosed with Stage 1 breast cancer have less than a 2% probability of being diagnosed with

higher stage or passing away within 12 months. Women diagnosed with Stage 2 or 3 breast

cancer have a 5% probability of having the cancer metastasize within the year. Women with

Stage 4 have a 15% probability of passing away within the year. Note that these transition

probabilities are assumed to be the same for each woman irrespective of the technology used

to diagnose breast cancer.12

Table 7 presents survival probabilities which are calculated by running the transition

probabilities (Table 6) through four iterations. The table shows that the 5-year survival

probability is relatively high for women staged between 0 and 3, but significantly lower for

women with metastatic disease.

The table also presents the survival probabilities for various demographic subsets of the

data including by age, race and ethnicity. We separate women above (and below) 75 years of

age, corresponding to the cut-off suggested by the USPSTF, ostensibly informed by varying

levels of underlying health associated with age. As suggested by Card et al. [2008], there

is reason to believe that socioeconomic differences in insurance coverage prior to entering

12We do consider transition probabilities by demographic characteristics.
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Initial Stage
0 1 2.3 4

All 0.97 0.94 0.92 0.53
75+ 0.95 0.92 0.90 0.49
<75 0.98 0.96 0.93 0.56

White 0.96 0.94 0.92 0.51
Black 0.95 0.92 0.85 0.43

Hispanic 0.99 0.94 0.92 0.52

Table 7: Five Year Survival by Initial Stage

Medicare at age 65 have lasting consequences for the quantity and composition of care

received by those groups. The underlying causes for the different results by demographic

group may only superficially be related to the demographics we consider. However, they do

suggest how robust the cost-benefit analysis we conduct is to the kinds of variation one does

see within the general population of elderly women.

We calculate the stage transition and mortality probabilities, as well as medical spending

patterns described below, separately by demographic characteristics. In contrast, because

the number of first-time cancer diagnoses is small, the initial staging is constant across

demographic characteristics. There is not much variation in survival among the different

demographic subgroups. As expected younger women have higher 5-year survival than older

women. African-American women diagnosed with breast cancer have lower 5-year survival

than white or Hispanic women.

Induced Not Induced Difference
All 0.924 0.905 0.019

75+ 0.906 0.888 0.018
<75 0.942 0.921 0.021

White 0.921 0.901 0.020
Black 0.901 0.877 0.024

Hispanic 0.929 0.908 0.021

Table 8: Five Year Survival Probabilities (Type 2)

Table 8 presents five year survival rates among women with breast cancer who do not

receive regular mammograms (type 2 women). The first column is for the women that get

a mammogram in the current period. Their survival probability is calculated by taking

their initial staging distribution (fourth column of Table 5) and running the Markov process

through using the transition probabilities for each demographic group (not presented).
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Calculating the survival probability for women with breast cancer who don’t receive

regular mammograms and who didn’t receive a mammogram in the current period is more

challenging. Such women may or may not be diagnosed with breast cancer and if they are

diagnosed it could either be through self-diagnosis or through a screening mammogram. So

as discussed in the appendix we need to determine the probability of a screening mammogram

for a type 2 woman with breast cancer, the probability of self-diagnosis given the women

has breast cancer and the probability of a women with breast cancer dieing without being

diagnosed.

In regards to the first probability, we know that 75% of women have had a mammogram

in the last two years. We assume that 100% of type 1 women have had a mammogram in the

last two years. If we knew the probability that a type 2 women has a mammogram in a two

year period, then we could also determine the proportion of type 2 women in the population.

While the data provides information on mammogram usage for a large group of women over

a six year period, our sample is limited to mammograms provided in the hospital setting. We

limit our analysis to women who received at least one screening mammogram in the hospital

setting over the six year period, and calculate the proportion of women who had less than

one mammogram every two years. 51% of these women were observed having less than the

recommended number of mammograms over the six year period.13 By Equation (16), the

probability that a type 2 women has a mammogram in a two year period is also 51%. Note

that if a women with breast cancer has a mammogram in the future, they are assumed to

be diagnosed with breast cancer 100% of the time.

A women with breast cancer may also be diagnosed through self-exam. To calculate

the probability of a women with breast cancer diagnosing herself, the paper compares this

distribution to the underlying staging distribution which is assumed to be equal to the initial

staging distribution of women induced to have a mammogram. In addition, it is assumed

that a women with Stage 4 breast cancer will self-diagnose with certainty within the year.

The appendix presents the details of the methodology used.

The third possibility is that the women passes away prior to be diagnosed. Unfortunately,

we don’t observe the probability of surviving to the next year for women with breast cancer

who remain undiagnosed. It is assumed that the 12 month survival probability for a women

with breast cancer who is undiagnosed is that same as the 12 month survival probability for

a women induced to have a mammogram by Pink October and who is then diagnosed with

13The proportion of women who do not receive regular mammograms may be higher if these women are
included in the group who received 3 or more mammograms in the six year period. It may also be lower,
because some of the women for whom we do not observe a mammogram, may be getting their regular
mammogram outside of the hospital setting. This, even though these women got at least one mammogram
in the hospital setting.
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breast cancer.

If a women is diagnosed with breast cancer at a later date then their initial staging

distribution will depend on how they were diagnosed. If they were diagnosed through a

screening mammogram then they are assumed to have the same initial distribution as the

average women who receives a screening mammogram in the calendar year. This distribution

is given by Table 5, where columns “Oct” and “Aug” are weighted by 1
12

and 11
12

respectively.

Note that this initial staging is slightly upstaged from the staging distribution of women

induced to have a mammogram by Pink October. If a women is self-diagnosed then her

initial staging distribution is given by the “Self” column of the same table. These women

are upstaged relative to women diagnosed through a screening mammogram.

The results show that given the assumptions, women with breast cancer induced to have

a mammogram have a 2 percentage point increase in five year survival compared to women

with breast cancer who were not otherwise induced to get a mammogram. The results also

show that the effect is larger for women under 75 than it is for younger women, and it is

larger for African-American women.

Inducing women who do not receive regular mammograms to have a mammogram in-

creases survival. This occurs because women with breast cancer who are detected through

mammograms have their initial staging distribution down-shifted relative to the same women

who are eventually self-diagnosed.

Initial Stage
0 1 2.3 4

All 62,936 69,796 105,438 136,633
75+ 67,078 71,667 93,396 120,343
<75 59,524 68,646 115,406 153,901

White 62,499 68,255 101,132 130,379
Black 78,590 86,102 126,787 142,392

Hispanic 62,605 79,812 102,225 138,040

Table 9: Five Year Expected NPV of Total Expenditure ($) by Initial Stage

Table 9 presents the net expected present value over 5 years of Medicare and patient

expenditure for patients diagnosed with the various stages of breast cancer. The value is

calculated assuming a discount rate of 95% and using the transition and survival probabilities

presented above in conjunction with the average annual expenditure on patients in each of

the six states of the Markov process. The table shows that medical expenses for a women

diagnosed with Stage 0 breast cancer will expect to be around $62,000 over the next five years

after diagnosis. The expense is slightly higher for Stage 1 women. For a women diagnosed
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with breast cancer that has metastasized to her lymphatic system, the medical costs over

the next 5 years are expected to be a little over $105,000. If the cancer has metastasized

to distant organs the expected medical expenses increases to $136,000. Note that Stage 4

patients are expensive to treat, and are also more likely to pass away. African-American

women have both lower survival by stage and higher expected expenses by stage.

Induced Not Induced Difference
All 73,268 72,320 948

75+ 74,080 72,333 1,747
<75 73,099 72,721 378

White 71,506 70,367 1,139
Black 89,282 86,641 2,641

Hispanic 81,989 77,165 4,823

Table 10: Five Year Expected NPV of Total Expenditures ($) (Type 2)

Table 10 presents the difference in total expected medical expenditure over 5 years for

women with breast cancer who are induced to have mammograms by Pink October and

those who are not. The first column is the expected 5-year total expenditure for women

with breast cancer who are induced to have a mammogram by the various demographic

categories. Columns 2 and 3 present the expenditures for women with breast cancer who

were not induced to have a mammogram and the difference between them. These results

are presented under the assumption that for these women the probability of dying within

the year is the same as for women induced to have a mammogram who are diagnosed with

breast cancer.

In order to determine the cost effectiveness of an intervention that induces women with

breast cancer to get mammograms the paper compares the increase in survival to the increase

in total expenditures associated with inducing mammograms. Using the numbers from Table

8 the 5-year annualized survival difference 0.0041. That is, mammography increases the

annual probability of survival by approximately 0.4 of a percentage point. If the annual

value of a life is assumed to be $47,000 then the annual increased benefit of mammography

$190, which is the same as the average increase in expected net present value of expenditures

over 5 years.

4 Conclusion

National Breast Cancer Awareness Month is the preeminent public health awareness cam-

paign. As we demonstrate, it coincides with a twenty-five percent spike in mammograms in
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the Medicare population. The women induced to have mammograms by NBCAM are less

likely to have breast cancer than women who get mammograms at other times of the year.

They are also somewhat more likely to be diagnosed with Stage 0 breast cancer. In addition

this cohort of women has similar one, two and three year survival as the cohort of women

who have mammograms at other times of the year.

The paper uses the empirically observed increase in mammography associated with

NBCAM to identify the impact of a policy that would induce a mammogram among women

who would never otherwise have one. A women with breast cancer who is induced to have

a mammogram has a two percentage point increase in five-year survival relative to the case

where she was not induced to get a mammogram. This increase in survival is associated

with a $1,000 increase in total expected medical expenditures. Such a policy is cost-effective

under the assumption that the value of a human life year is greater than $47,000 and the

costs of mammography to the undiagnosed is zero.
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5 Appendix: AModel of Selection into Diagnostic Screen-

ing

This appendix presents a model of mammogram screening participation and presents as-

sumptions sufficient to identify the impact of a policy that increases screening rates, given

the data available. There are three results. First, the appendix shows that any policy will

increase survival if and only if women with breast cancer who do not receive regular mammo-

grams have greater survival rates if they receive a mammogram in a particular period than if

they do not. Second, reasonable assumptions allow the survival probability of these women

to be measured when they get a mammogram in a particular period. Third, the survival

probability of these women is identified up to a range of values when they do not receive

a mammogram in a particular period. That is, the data and the assumptions of the model

presented below allow the survival effect of a policy to increase screening rates is identified

up to a range of values.
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Consider a world in which there are two types of women {θ1, θ2}. Type 1 women get

regular mammograms. They follow the recommendation of the USPSTF and have a mam-

mogram every two years. Type 2 women do not receive regular mammograms. Type 2

women receive mammograms at irregular intervals that may be more than 2 years apart.

Pr(mti = 1|θi = θ1) = 1

Pr(mti = 1|θi = θ2) = p < 1
(2)

where mti ∈ {0, 1} denotes whether women i has a mammogram within the two-year time

period t.

Let σ ∈ {0, 1} denote a policy intervention that increases the probability a particular

women i has a mammogram in period t.

Pr(mti = 1|θi = θ2, σ = 0) = p < Pr(mti = 1|θi = θ2, σ = 1) = pσ (3)

Such a policy (σ) may be an awareness campaign like NABCM or the CDC’s National Breast

and Cervical Cancer Early Detection Program.

The most obvious benefit of such a policy is that it has the potential to increase survival.

Pr(t̃i > T |θi = θ2, σ = 1)− Pr(t̃i > T |θi = θ2, σ = 0) (4)

where t̃i represents the year of death of women i.

Before looking more closely at this difference, consider the following two assumptions.

The first assumption states that the probability of having breast cancer is independent of

the policy. Note that this is the probability of actually having breast cancer rather than

the probability of having the breast cancer detected. The second assumption states that

conditional on not having breast cancer, the survival probability is not affected by the policy.

Assumption 1.

Pr(BCi = 1|σ = 1) = Pr(BCi = 1|σ = 0) (5)

where BC ∈ {0, 1} indicates whether the women has breast cancer.

Assumption 2.

Pr(t̃i > T |σ = 1, BCi = 0) = Pr(t̃i > T |σ = 0, BCi = 0) (6)
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Given these two assumptions we can write the difference as

Pr(t̃i > T |θ2, σ = 1)− Pr(t̃i > T |θ2, σ = 0)

=

Pr(BCi = 1|θ2)(Pr(t̃i > T |θ2, σ = 1, BCi = 1)− Pr(t̃i > T |θ2, σ = 0, BCi = 1))

(7)

Note that we can expand out the survival probability for the patient’s with breast cancer

into a group that receives a mammogram and a group that does not receive a mammogram.

Pr(t̃i > T |θ2, σ, BCi) = pσ Pr(t̃i > T |θ2, σ, BCi,mti = 1)

+(1− pσ) Pr(t̃i > T |θ2, σ, BCi,mti = 0)
(8)

Consider the following two assumptions. The first states that the probability of Type 2

patient receiving a mammogram is independent of whether that patient has breast cancer.

Assumption 3.

Pr(mti = 1|θ2, σ, BCi) = Pr(mti = 1|θ2, σ) (9)

Assumption 4.

Pr(t̃i > T |θ2, σ, BCi,mti) = Pr(t̃i > T |θ2, BCi,mti) (10)

The second assumption states that conditional on receiving (or not receiving a mammo-

gram) a Type 2 patient’s survival probability is independent of the existence of the policy.

That is, the impact of the policy is assumed to be only through the change in the probability

that the patient receives a mammogram.

Proposition 1. Given the model and the assumptions above we can write

Pr(t̃i > T |θ2, σ = 1)− Pr(t̃i > T |θ2, σ = 0)

=

Pr(BCi = 1|θ2)(pσ − p)(Pr(t̃i > T |θ2, BCi = 1,mti = 1)− Pr(t̃i > T |θ2, BCi = 1,mti = 0))

(11)

Given the assumptions made above, the question of interest turns on determining the

difference in the survival probability for Type 2 patients with breast cancer who received a

mammogram and those who did not.

As the probabilities on the right-hand side are not observed directly, the rest of the section

presents the assumptions sufficient to identify these probabilities given the probabilities that

are observed.
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Each probability can be written as

Pr(t̃i > T |θ2, BCi = 1,mti) =
S∑

s0=1

Pr(s0|θ2, BCi = 1,mti) Pr(t̃i > T |s0, BCi = 1,mti) (12)

where s0 is the initial stage of the disease at diagnosis.

Assumption 5.

Pr(t̃i > T |s0, BCi = 1,mti) = Pr(t̃i > T |s0) (13)

The use of a mammogram will be assumed to determine the probability distribution over

the initial staging of the disease, but not the probability of survival conditional on the initial

staging.

In the data we don’t observe the “types” of the breast cancer patients. Rather we simply

observe the probability distribution of the initial staging conditional on having breast cancer

and having a mammogram in October/November (denoted “Oct”) or having a mammogram

in some other month (we will denote this “Aug”).

Assumption 6.

Pr(s0|mi = Oct,BCi = 1) = 0.75 Pr(s0|mi = Aug,BCi = 1)+0.25 Pr(s0|θ2, BCi = 1,mti = 1)

(14)

That is, patients diagnosed through an “October” mammogram will be assumed to one of

two populations. A population that has the same distribution of initial diagnoses as patients

diagnosed with an “August” mammogram and a population of Type 2 patients. That is, we

assume that all the added patients in October are Type 2 patients who do not have regular

mammograms. Using this equation and noting that the distribution of initial staging is

observed for the “August” mammograms and the “October” mammograms we can identify

the probability distribution of interest.

Proposition 2. Given assumptions above, Pr(t̃i > T |θ2, BCi = 1,mti = 1) is a known

function of observed probabilities.

Given the first two results, to determine the impact of a policy to induce greater screening,

we need to determine the survival probability of a Type 2 women with breast cancer who does

not receive a mammogram in the current period. For such a patient, there are four mutually

exclusive possibilities. She may decide to have a mammogram, she may self-diagnose breast

cancer, she may die of something unrelated to breast cancer or she may continue to live
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undiagnosed. To determine the overall probability we need to determine the probability of

each case and then the survival probability conditional upon that case being true.

Case 1. The patient decides to have a mammogram in period τ > t.

The probability of a Type 2 women with breast cancer having a mammogram in a later

period is assumed to be the same as for any Type 2 women. That is, having undiagnosed

breast cancer doesn’t change behavior in relation to the use of general screening.

Assumption 7.

Pr(mτi = 1|θ2, BCi = 1) = Pr(mti = 1|θ2) = p (15)

From other data we know that

Pr(mti = 1) = 0.75 = Pr(mti = 1|θ1) Pr(θ1) + Pr(mti = 1|θ2) Pr(θ2)

= 1− π + πp
(16)

where Pr(θ2) = π. So while p is not observed we know it lies between 0 and 0.75. If we can

directly estimate π from the data, we can determine p. If we cannot directly estimate the

fraction of Type 2 women, then probability of case 1 will be estimated up to a range.

Case 2. The patient self-diagnoses.

In order to determine the survival probability of a Type 2 patient that self-diagnoses,

consider the following expansion.

Pr(s0|BCi = 1, Diagτi = 1) = Pr(s0|BCi = 1, Diagτi = 1,mτi = 1) Pr(mτi = 1)

+ Pr(s0|BCi = 1, Diagτi = 1,mτi = 0) Pr(mτi = 0)
(17)

Note that this can be re-arranged so that the probability of interest is an expression of

observed probabilities.

Pr(s0|BCi = 1, Diagτi = 1,mτi = 0)

= 1
Pr(mτi=0)

(Pr(s0|BCi = 1, Diagτi = 1)− Pr(s0|BCi = 1, Diagτi = 1,mτi = 1) Pr(mτi = 1))

(18)

By definition of Type 1 and Type 2 women, the LHS is the distribution of initial staging for

Type 2 women with breast cancer who are diagnosed through self-diagnosis.

To determine the probability of a Type 2 women with breast cancer being diagnosed

through self-exam consider writing out the RHS using Bayes Rule.

Pr(s0 = s|θ2, BCi = 1,mτi = 0, Diagτi = 1)

= Pr(Diagτi = 1|θ2, BCi = 1, s0 = s)× Pr(s0=s|θ2,BCi=1,mτi=0)
Pr(Diagτi=1|θ2,BCi=1,mτi=0)

(19)

where s refers to a particular stage of the disease.
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Assumption 8.

Pr(s0 = s|θ2, BCi = 1,mτi = 0) = Pr(s0 = s|θ2, BCi = 1,mτi = 1) (20)

Assumption 8 states that the underlying distribution of initial staging for Type 2 women

with breast cancer is the same as for those women induced to have a mammogram. That

is, the act of having a mammogram does not change the underlying distribution and there

is no selection into mammograms after conditions on the women’s type.

Assumption 9.

Pr(Diagτi = 1|mτi = 0, s0 = 4) = 1 (21)

If we assume that patients with Stage 4 are diagnosed with probability equal to 1, irre-

spective of the screening technology used, we have

Pr(Diagτi = 1|θ2, BCi = 1,mτi = 0) = Pr(s0=4|θ2,BCi=1,mτi=0)
Pr(s0=4|θ2,BCi=1,mτi=0,Diagτi=1)

(22)

The probability of a Type 2 women with breast cancer being diagnosed without a mam-

mogram is equal to the ratio of the underlying probability of Stage 4 for these patients over

the observed probability of Stage 4 for these patients once they have been diagnosed. The

RHS is observed given assumptions above.

Case 3. The patient passes away prior to being diagnosed.

Finally we need to determine the probability that a Type 2 women with breast cancer

passes away in the next period prior to being diagnosed. As the survival probability of

women with undiagnosed breast cancer is unobserved we will need to make an assumption.

Actually, we will present the results with different assumptions. For example, we could

assume that the survival probability is the same for all women not diagnosed with breast

cancer. Alternatively, we could assume that it is equal to the survival probability of women

diagnosed with early stage breast cancer. In the data we see that women not diagnosed with

breast cancer actually have lower survival rates than women diagnosed with early stage

breast cancer.

Given these three cases and noting that surviving to the next period undiagnosed is the

complement, then we can identify the probability of interest up to a range. This range

depends on the identification of the probability that a Type 2 women with breast cancer will

have a mammogram in one of the following periods and identification of the probability of

such a women passing away prior to being diagnosed.
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Proposition 3. Given the assumptions above, Pr(t̃i > T |θ2, BCi = 1,mti = 0) is identified

up to the identification of p and the probability of passing away prior to being diagnosed.
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