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Abstract

Lyon and Maxwell (2007) argue that the traditional program evaluation method is not
appropriate for evaluating voluntary programs with strong treatment spillovers. However,
to date there exists little empirical evidence supporting their argument. This paper studies
the role of information diffusion in the Combined Heat and Power Partnership (CHPP)
program, a voluntary program to promote adoption of the CHP technology. Based on
the traditional method used in the VA literature, the result indicates that the program
has had little impact. After incorporating national information diffusion, the new results
show that, although the program has had little effect on increasing participants’adoption
rate, it increases adoption by non-participants, providing empirical support for the Lyon
and Maxwell’s (2007) argument. In addition, information diffusion impacts provide one
explanation for the low participation rate by electric utilities in this program.
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1 Introduction

Since the first national voluntary programs started in the U.S. in the early 1990s, this policy

instrument has been widely used in a variety of areas, such as agriculture, energy effi ciency,

climate change, technology adoption, product labeling, transportation, waste management and
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water. There is a substantial empirical literature on voluntary programs. While some studies

focus on incentives to join a program (Arora and Cason 1995, 1996; Videras and Alberini

2000), our interest here is in papers studying the impact of these programs on the performance

of firms (Bi and Khanna 2012; Gamper-Rabindran 2006; Innes and Sam 2008; Khanna and

Damon 1999; Vidovic and Khanna 2007, 2012).

Among the voluntary environmental programs that have been implemented in the U.S.,

several have been widely studied, e.g., the 33/50 program, Climate Challenge, Climate Wise,

Energy Star, Green Lights and so on. On the whole, the empirical literature finds mixed

evidence of the impact of voluntary programs on the behavior of participants. For example,

while a few papers find significant impacts of these programs (Bi and Khanna 2012; Khanna

and Damon 1999), many studies suggest that the programs are ineffective (Brouhle et al. 2009;

Delmas and Keller 2005; Delmas and Montes 2007; Welch et al. 2000; Vidovic and Khanna

2007, 2012), or that the impact exists only in some industries or in the early phases of the

programs (Gamper-Rabindran 2006; Innes and Sam 2008; Morgenstern and Pizer 2007).1

However, most of the empirical studies have not considered possible information dissemi-

nation effects of voluntary programs. The information about different technologies (e.g., cost-

effective abatement techniques, or energy-effi cient technologies) that participants obtain from

the program may also be received by non-participants. The traditional program evaluation

method that regards programs as successful if participants achieve significantly better out-

comes than non-participants is not appropriate to evaluate programs with strong treatment

spillovers or treatment externalities. This is especially true for voluntary programs that seek

to diffuse information about technologies as widely as possible throughout the country to en-

courage adoption of technologies that improve overall environmental outcomes (Lange 2009;

Lyon and Maxwell 2007). If a diffusion effect exists and is large, we can expect little observed

difference in performance between participants and non-participants, i.e., there will be little or

no observed impact of joining the program (de Vries et al. 2012; Lyon and Maxwell 2007). In

this context, there is a critical distinction between the impact of participation in the voluntary

programs (which captures only the difference between the effect on performance of participants

1Alberini and Segerson (2002), de Vries et al. (2012) and Lyon and Maxwell (2007) provide detailed reviews
of these empirical studies.
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and non-participants) and the effect of the existence of the programs (which captures the effect

on performance of both groups). The evaluation of the latter is more valuable to policy makers

seeking to diffuse information widely throughout the industry to improve aggregate environ-

mental outcomes. However, it is typically not included in the previous literature evaluating

voluntary programs.

To our knowledge, there have been three papers studying treatment spillover or information

diffusion effects in the context of voluntary programs. To investigate how the adoption of a

pollution prevention technology is influenced by information spillovers in the context of the

33/50 Program, Bi et al. (2011) use the lagged number of pollution prevention technologies

adopted as proxies for the information effect. Since this measure is not related to the existence

or extent of the program, what they study is actually a general technology diffusion effect, rather

than an information dissemination effect due to the voluntary program.2 Based on data from the

voluntary Coal Combustion Products Partnership program, Lange (2009) studies the treatment

spillover from participants to non-participants, more precisely, from participants who demand

Coal Combustion Products (CCP) to non-participants who supply CCP. He divides states into

two groups: those with a small number of participants demanding CCP (low spillover effect)

and those with a large number of participants demanding CCP (high spillover effect). However,

he does not simultaneously examining the impact of the program on participants or the overall

effect of the program. Finally, Bui and Kapon (2012) examine the overall information spillover

of all state voluntary pollution prevention programs. As proxies for the spillover to a certain

state, they use the fraction of all facilities in the U.S. (excluding this state) that are located

in the states with voluntary pollution prevention programs and in the same industry, or the

fraction of all the facilities in the same industry and in the bordering states, where the bordering

states have voluntary pollution prevention programs. However, they do not study a specific

program. Therefore, they cannot examine the impact of a program on either participants or

non-participants. In summary, among the papers that examine spillover effects in the context

of voluntary programs, we are not aware of any that have analyzed the overall impact of the

program on both participants and non-participants simultaneously. More importantly, the

2By “information dissemination effect of the program”, we mean the specific information flow from program
participants to non-participants, rather than any general information diffusion about the technology.
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existing studies have not examined the role of including information diffusion in the estimation.

The purpose of this paper is to study whether incorporating program information diffusion

effects into the widely used estimation method in the literature affects conclusions regarding the

effectiveness of the program. In particular, we test Lyon and Maxwell’s (2007) argument that,

because of spillover effects, voluntary programs that diffuse information about a technology

widely throughout the country might have a beneficial overall environmental impact, even

though there is little impact from participation. We base our analysis on the Combined Heat

and Power Partnership (CHPP) program, which is a voluntary program that aims to promote

the energy-effi cient combined heat and power (CHP) technology to reduce fossil fuel use and

the environmental impact of power generation.

The dynamic panel data GMM method pioneered by Arellano and Bond (1991) is applied

to an unbalanced panel dataset of 23,921 electric utilities between 1998 and 2011. This method

has been used in previous studies of voluntary programs (see, e.g., Bi and Khanna 2012; Vi-

dovic and Khanna 2012). To compare with the previous studies and to investigate whether

accounting for information diffusion in the estimation makes a difference, we start by estimat-

ing program impacts without considering information diffusion effects. The estimates suggest

that the program has had little impact, which is similar to the conclusions in many previous

empirical studies of other programs. However, when we incorporate national information dif-

fusion effects in the estimation, the results show that, compared with the outcomes that would

arise without the program, although the program has a low participation rate and is ineffective

in increasing participants’rate of adoption of the CHP technology, it statistically significantly

increases non-participants’ fraction of CHP plants, on average, by 0.006 to 0.10 points from

2003 to 2011. Ignoring the program diffusion effect in the estimation cannot capture the impact

of the program on non-participants via information diffusion, and might suggest the incorrect

conclusion that the program has had little overall impact. On the other hand, the estimates

are consistent with the reality that the program does not change electric utility participants’

behavior much. This indicates that the program has had little participation impact in terms of

the adoption rate of the technology. On the whole, our findings support the argument by Lyon

and Maxwell (2007) that the traditional program evaluation method may be inappropriate for

voluntary programs with strong spillover effects. In addition, information diffusion provides
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one explanation for the low participation rate of electric utilities in the program.

The paper is organized as follows. In section 2, we provide a brief description of the CHPP

program. In section 3 we describe our data, and then in section 4 we describe the econometric

models and the estimation method. Section 5 presents the estimated results and section 6

concludes.

2 Background of Combined Heat and Power Partnership

program

The CHPP program is a voluntary program launched in 2001 that aims to reduce total fossil fuel

use and the environmental impact of power generation by promoting the energy-effi cient CHP

technology. The CHP technology generates electricity and useful thermal output simultaneously

from a single fuel source, which leads to increased fuel effi ciency and hence reduced greenhouse

gas emissions. There are basically five types of CHP technologies: gas turbines, microturbines,

reciprocating engines, steam turbines and fuel cells. The installation costs range from $430/KW

to $6500KW (EPA CHPP 2008). The CHP systems can use a variety of fuels, e.g., coal, oil,

natural gas and other alternatives. The thermal output from the CHP systems can be used in

either direct process application or indirectly to produce steam, hot water, hot air for drying, or

cold water for cooling processes. For example, gas turbines can produce high-pressure thermal

output to be used directly for heating and drying processes (EPA CHPP 2008).

In 2013, there were 492 participants in the CHPP program. Partners in the program are

organizations that have committed to improving energy effi ciency in the U.S., including govern-

ments and private organizations such as CHP project developers, consultants/engineers, end

users, equipment manufacturers, energy service companies, financiers and utilities (EPA CHPP

2013). The CHPP program does not require adoption of the CHP technology once an orga-

nization joins. However, participants are required to report to EPA annually about existing

CHP projects, new project development, and other CHP-related activities. This is the main

cost participants incur after joining the program.

The main incentives that induce organizations to join the CHPP program are public recog-
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nition and technical assistance. For example, the CHPP program lists the names of its partners

online, provides partners with the CHPP logo for use in sales and advertising, and issues an

Energy Star CHP award based on annual performance. In addition, the CHPP program pro-

vides direct project assistance. Some energy projects may not be suitable for CHP systems.

The program helps partners identify opportunities for cost-effective CHP adoption at a partic-

ular facility, assesses goals and potential barriers for a project, directs partners to the available

tools and resources, and calculates energy saving and emission reduction of a CHP system

compared to a separate heat and power system. This technical support is provided exclusively

to participants.

However, the CHPP program also advances information diffusion regarding the CHP tech-

nology to non-participants through education and outreach. For instance, the CHPP program

holds a number of national meetings, workshops and web-seminars for participants to share

their experience using the CHP technology. It also encourages participants to share their expe-

rience with non-participants in other conferences and industry events. Therefore, as a result of

the program, information about the CHP technology can also be received by non-participants.

While a majority of voluntary programs require participants to commit to an action once

they join, e.g., a reduction of toxic releases in the 33/50 program, the main goal of the CHPP

program is to accelerate diffusion of the CHP technology. This makes it easier to explicitly

measure the impact of the program by investigating the utilization of the new technology across

plants. Based on the data available, we limit our analysis to the impact on the electric utilities

that engage in electric power generation. Through 2013, twenty utilities have participated in

the program, among which ten operate electric power generation plants (EPA CHPP 2013),

as shown in Table 1. We hypothesize that one reason for this low participation rate among

electric utilities is the information diffusion impact of the program. Specifically, electric utilities

anticipate that they can learn about the technology even as non-participants via information

diffusion of the program. The benefit of joining the program is small in terms of learning about

the technology. Therefore, they have less incentive to join the program. We will later discuss

whether this hypothesis is supported by the estimates.
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3 Data description

We obtain information from several data sources. The main data source used is the EIA860

form report, which covers all existing and proposed plants that have a total generator nameplate

capacity no less than 1 megawatt (MW), are connected to the local or regional electric power

grid, and have the ability to deliver power to the grid or draw power from the grid (EIA 2013).

As mentioned above, we limit our sample to electric power plants whose primary purpose is

generating electricity for sale and have at least one operating generator.3 We refer to their

operators as electric power generation utilities (hereafter, electric utilities for short). We use

data from 1998 to 2011, which covers both the years before the CHPP program and years when

the program is in place. This data source contains information on plant-specific characteristics,

such as the primary energy source of each plant, the nameplate capacity of its generators, the

location, the regulatory status (either regulated or unregulated) of each plant and an indicator

for the existence of a CHP system. We group plant-level data to derive utility-level information,

including the number of plants each electric utility operates, each electric utility’s percentage

of CHP plants, the fraction of each electric utility’s plants using different types of energy, the

fraction of its plants that are regulated and total nameplate capacity of its generators. Our

unbalanced panel data consists of 23,921 electric utility-year observations between 1998 and

2011.

Moreover, expected cost saving from adopting the CHP technology might be affected by

fuel costs. Therefore, we also include information on fuel costs. FERC-423 form collected

monthly plant-level fuel cost data prior to 2008 and has been superseded by EIA-923 form

since 2008. We combine 1998-2007 data from FERC-423 and 2008-2011 data from EIA-923 to

obtain plant-level fuel cost information. Annual plant-level, state-level and national average

3The EIA-860 form requires that electric utility plants whose primary purpose is generating electricity for
sale use code 22, while those generators whose primary purpose is for industrial or commercial business (e.g.,
paper mills, refineries, etc.) or for which generating electricity is only a secondary purpose use a code other than
22. Note that some of the electric power plants included in EIA-860 form whose primary purpose is electricity
generation for sale also transmit and/or distribute electricity (e.g., Connecticut Light & Power Company).
However, the EIA-860 form does not include electric utilities that only engage in transmission or distribution
activities (e.g., Bozrah Light & Power Company in CT). The majority of plants in EIA-860 form are generating
electricity for sale, with an overall fraction equal to 85% from 1998 to 2011. We are interested in examining the
impact of the program on this large group, i.e., we include plants with code equal to 22 in EIA-860 form in our
sample.
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fuel costs are derived by averaging monthly data across the same plants, the plants in the same

states and all the plants in the U.S. in a specific year, respectively. For those plants missing

plant-level information, we use state-level average fuel costs instead or national data if state-

level information is also unavailable.4 We further derive the utility-level fuel costs by averaging

the costs of its plants.

To avoid confounding effects of other programs, we control for the existence of other finan-

cial incentives or regulations that also promote the CHP technology. This information is taken

from the Database of State Incentives for Renewables & Effi ciency (DSIRE) supported by the

Department of Energy, which is the most comprehensive source of information on incentives

and policies that support renewables and energy effi ciency in the U.S. We mainly focus on

state policies related to the CHP technology and applicable to the utility sector. There are

basically three types of policies, including financial incentive programs (e.g., tax incentives,

grants and loans), the Energy Portfolio Standard (which includes the CHP technology as an

eligible technology), and the Public Benefit Fund (which supports energy effi ciency programs

or technologies, including CHP technology).5 ,6 We use either weighted or binary policy dum-

mies in the different model specifications. More specifically, because some utilities have plants

distributed in different states, we derive weighted state policy dummies for each electric utility

based on the weighted average of the policy dummies of its plants, with weights equal to the

percentage of its plants in different states. In contrast, the binary state policy dummies are

defined as one, if the electric utility has at least one plant faced with a certain state policy, and

zero otherwise.

Finally, although the EPA CHPP program provides the list of its partners online, it does

not provide the specific information on when each of them joined the program. We obtain the

detailed information on the joining date of each participant through personal communication

with the CHPP program (Sneeden 2014).

4EIA-923 form only collects fuel cost information on regulated plants. A small number of states lack data
for regulated plants in certain years and hence lack the average fuel cost information.

5These three types of state policies support different kinds of energy effi cient technologies, apart from the
CHP technology. For example, the Connecticut Public Benefit Fund for clean energy is authorized to invest in
solar-electric energy, solar-thermal energy, wind energy, ocean-thermal energy, usable electricity from combined
heat and power (CHP) systems with waste-heat recovery systems, and so on.

6Here, we use the dates when the policies became effective as the beginning time. However, the estimates
that use the dates when the policies were enacted as the beginning point are similar.
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Table 2 summarizes our data at the electric utility level before the influence of the program

(year 2002) and for the most recent year in the sample (2011).7 In 2011, on average, each

participating electric utility’s number of plants and number of CHP plants were greater than the

average levels in 2002, while those of each non-participating electric utility were almost the same

as those in 2002. The average level of individual participating and non-participating electric

utility’s fraction of CHP plants in 2011 were lower than that in 2002. The participating electric

utilities have a higher, but non-participating ones have a lower, average nameplate capacity than

that in 2002. Both groups face higher fuel costs in 2011 than 2002. In addition, participating

electric utilities have a much higher fraction of regulated plants than non-participating ones. On

average in 2011, participating utilities had a higher fraction of plants using coal, petroleum and

gas, but a lower fraction using renewable fuels and other fuels as their primary energy source

than non-participating utilities. The other state-level policies related to the CHP technology

are almost the same between electric utility participants and non-participants.

Table 3 compares the overall adoption rate of the CHP technology among electric utility

participants and non-participants across years. We find participants’total number of plants

and number of CHP plants are increasing across years. Their overall fraction of CHP plants

first increases and then declines. Overall, non-participants’total plants and CHP plants have

an increasing trend, and their total fraction of CHP plants fluctuates slightly across years.

4 Empirical model and estimation method

Consistent with previous studies of technology adoption, we examine the impact of the program

on the adoption rate of the CHP technology, measured as each utility’s percentage of plants

that are CHP (see, e.g., Besley and Case 1993; Griliches 1957; Kok et al. 2011; Mansfield 1961).

In addition, from the perspective of EPA, the fraction of plants adopting the CHP technology

is likely to be a more relevant indicator of the program’s impact than the total number of CHP

plants. Denote utility i’s percentage of plants using the CHP technology at time t as yit, which

7We assume the program’s impact is two years lagged in the outcome equation. Therefore, it did not start
to influence outcomes in 2002. The outcome in 2011 was actually affected by the program in 2009.
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is determined by the following dynamic panel data model:8

yit = β1yi,t−1 + β2X1i,t−2 + δDi,t−2 + γ (1−Di,t−2) ∗ Φt−2 + αi + λt + uit, (1)

where β1, δ and γ are scalar coeffi cients, β2 is a vector of coeffi cients, αi is the electric utility

fixed effects, and λt captures the year fixed effects. We assume there is no serial correlation

in uit, i.e., E (uit) = 0 and E (uituis) = 0, for t 6= s. X1i,t−2 includes electric utility i’s own

characteristics in (t − 2) (such as nameplate capacity and its fraction of plants using different

types of primary energy sources), fuel costs and other state policies that also promote the CHP

technology. We use two-year lagged explanatory variables to account for the time lag to adopt

a new technology (see, e.g., Kok et al. 2011).The binary participation variable, Di,t−2, equals

1 if the electric utility participated in the program in year (t− 2), and 0 otherwise.

[δDi,t−2 + γ (1−Di,t−2) ∗ Φt−2] is a general expression of the impact of the program on

electric utility i either as a participant or as a non-participant. It implies that E [yit|Di,t−2 = 1]−

E [yit|no program] = δ , i.e., δ measures the impact of the CHPP program on the participants’

fraction of CHP plants. On the other hand, E [yit|Di,t−2 = 0] − E [yit|no program] = γΦt−2,

i.e., γΦt−2 measures the impact of the program on non-participants’fraction of CHP plants.

Φt−2 is a proxy for the information diffusion effects of the program. In the main analysis, we

define it as the total number of participants in the CHPP program in all sectors in the U.S.

in (t − 2), including both utility and non-utility participants. As noted above, participants in

the CHPP program are encouraged to share their experience with non-participants in national

meetings, presentations and web seminars held by the program, or in other conferences and

industry events. Information flow of the program increases with an increase in the number of

participants. On the other hand, the impact of participation is measured by E [yit|Di,t−2 = 1]−

E [yit|Di,t−2 = 0] = δ − γΦt−2.

In addition, note that the specification in equation (1) also distinguishes between information

spillover from the program and general information diffusion or technology diffusion. General

8A dynamic panel data model is more appropriate for our analysis than the standard fixed effects or random
effects panel data model. Because investment in the new technologies is a gradual process, the stock of each
electric utility’s equipment builds on its previous stock. In addition, other factors such as managerial and
organizational features are unobservable. Their effects can be captured by including lags of the dependent
variable (see, e.g., Bi and Khanna 2012; Vidovic and Khanna 2012).
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information spillover throughout the country that is the same for each utility can be captured

in the year fixed effects. In contrast, the program information diffusion effect, when multiplied

by utility’s participation status, is utility-specific. Moreover, the magnitude is determined by

the number of participants. Therefore, Φt−2 measures the program information spillover rather

than general information diffusion.

Because each electric utility’s fraction of plants adopting the CHP technology might also

be affected by some factors that simultaneously determine the utility’s participation decision

(such as fuel costs), the endogenous treatment problem identified by Heckman (1978) arises.

We correct the resulting selection bias by including an augmented inverse Mills ratio in the

performance equation (1). This method has been used in previous studies of voluntary programs

(see, e.g., Innes and Sam 2008). Specifically, in the first stage, we estimate a probit model (as

described in equation (2) below) and construct the augmented inverse Mills ratio based on the

estimated coeffi cients. In the second stage, we include the inverse Mills ratio in equation (1) to

evaluate the effectiveness of the program.

Electric utility i’s participation decision is determined by the expected net benefit from

participation in the CHPP program, D∗
it, which is given by

D∗
it = β3X2i,t−1 + κt + εit, (2)

where β3 is a vector of coeffi cients, κt captures the year fixed effects and εit ∼ N (0, 1). The

latent variable D∗
it cannot be observed. We can only observe the participation status, Dit, equal

to 1 if the expected net benefit is positive (D∗
it > 0) and 0 otherwise. Following Khanna and

Damon (1999) and others, we lag all explanatory variables by one year to avoid the simultaneity

problem.

The variables inX2i,t−1 are not exactly what are included inX1i,t−2 (or equivalently, X1i,t−1).

To satisfy the exclusion restriction condition, we need to include at least one variable in the

participation equation (2) that is not in the performance equation (1). As mentioned above,

one incentive that induces firms to join the program is public recognition. For example, some

studies in the literature use an instrument variable that captures whether a firm sells final

goods as a proxy for its closeness to final consumers to capture the importance of public recog-
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nition for that firm (see, e.g., Khanna and Damon 1999; Vidovic and Khanna 2007). However,

the electric power market has its unique characteristics. Specifically, the electric industry is

comprised of some companies controlling the entire market in a local region. Demand is gen-

erally inelastic, and electric companies are more concerned about price. For regulated utilities,

electric rates (prices) are approved by the utility commission through rate-of-return regulation

(see, e.g., Regulatory Assistance Project 2011; Virginia State Corporation Commission 2007).

In contrast, for unregulated utilities, the rates are determined by the competitive market.9 We

might expect that regulated and unregulated utilities value public recognition differently, and

hence that utilities with a higher fraction of regulated plants would have a greater incentive

to join voluntary programs that contribute to a positive public image to regulators and hence

potentially more favorable treatment in rate-of-return regulation. However, the impact of the

regulatory status on the adoption rate of the CHP technology is not apparent. The adoption

rate is more likely based on the feasibility and cost-benefit analysis of installing the new sys-

tems.10 Therefore, a variable measuring each electric utility’s fraction of regulated plants is

included in the participation equation but not in the performance equation. Following Khanna

and Damon (1999), we confirm the validity of excluding this variable from the performance

equation by computing the F -test statistics (see F -test in Tables 5-7).

Based on the estimates from the probit model, β̂3 and κ̂t, we construct the augmented

inverse Mills ratio

IMRit = Dit

φ
(
β̂3X2i,t−1 + κ̂t

)
Φ
(
β̂3X2i,t−1 + κ̂t

)
+ (1−Dit)

 −φ
(
β̂3X2i,t−1 + κ̂t

)
1− Φ

(
β̂3X2i,t−1 + κ̂t

)
 , (3)

where φ (·) and Φ (·) are normal density and distribution functions, respectively. We then

9A utility might have some of its plants regulated and others unregulated.
10Although the regulated utilities are allowed to recover their costs of new investment by adding the additional

costs into the rate base (which needs to be approved by the utility commission), most states have not included the
investment in CHP in the rate base (Chittum 2013). Through 2012, only two states (California and Connecticut)
have appropriately designed utility rates to allow utility cost recovery and to support the clean projects (EPA
CHPP 2014). Therefore, regulated utilities have no cost advantage over unregulated utilities in investing in the
CHP technology.
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include this in the performance equation:11

yit = β1yi,t−1 + β2X1i,t−2 + δDi,t−2 + γ (1−Di,t−2) ∗ Φt−2 + β4IMRi,t−2 + αi + λt + uit. (4)

To disentangle the impact of national diffusion from the year fixed effects, we rewrite equation

(4) as

yit = β1yi,t−1 + β2X1i,t−2 + δDi,t−2 + γ (−Di,t−2Φt−2) + β4IMRi,t−2 + αi + ωt + uit, (5)

where ωt = (γΦt−2 + λt). Applying a standard fixed effects or random effects estimation method

to equation (5) would result in inconsistent estimates, because yi,t−1 is correlated with the error

term uit. Following Arellano and Bond (1991), we first transform it into a first-difference model

to eliminate the individual fixed effects, and then estimate using the panel data generalized

method of moments (GMM) method, with two year and earlier lags of dependent variables

(yi,t−s, s ≥ 2) as GMM instruments for 4yi,t−1 and the first differences of other explanatory

variables as instruments for themselves.12

The consistency of the above GMM estimator hinges on the assumption that the instruments

are valid (i.e., uncorrelated with the error terms) and there is no second-order serial correlation

in the first-difference residuals (Arellano and Bond 1991). We will use the Arellano-Bond test to

check for serial correlation in the errors, and Hansen’s J-statistics to test for orthogonality of the

instruments, i.e., validity of the over-identification restrictions. Furthermore, Kleibergen-Papp

rk statistics will be used to test whether these instruments are weak instruments (Kleibergen

and Paap 2006).

11The correction term IMRi,t−2 should be in the same period as Di,t−2.
12The first differences of explanatory variables can be used as instruments for themselves when they are

exogenous. In our model, the explanatory variables in equation (5) are treated as exogenous.
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5 Results and discussion

5.1 Determinants of participation decision

We first study the determinants of electric utility participation in the CHPP program based on

the data from 2001 to 2011, which consists of 20,971 electric utility-year observations. Because

participants are free to quit after they join, they actually make decisions on whether to be in

the program each period. Therefore, we do not drop a utility from the samples once it has

joined the program. The estimates obtained from the pooled probit models are presented in

Table 4.

As mentioned above, to control for the confounding effects of other state policies, we include

variables indicating the existence of state policies that also promote the CHP technology. We

explore alternative specifications. Models 1 and 3 use weighted state policy dummies, while

binary state policy dummies are used in Models 2 and 4. In addition, Models 1 and 2 exclude

the year fixed effects, while Models 3 and 4 include them. We find the results are similar across

these four models.

The electric utility size, as measured by total nameplate capacity of generators, is an im-

portant determinant of participation in the program. Specifically, larger electric utilities are

more likely to join the program. One explanation is that small electric utilities might generally

be more uncertain about the benefits of participation in the program than larger ones and

hence less likely to join without learning from the experience of previous participating utilities.

Moreover, electric utilities with a higher fraction of regulated plants are also more likely to

participate in the program. This supports our hypothesis that the regulated electric utilities

have a larger incentive to join the program in an effort to project a positive public image to

regulators. However, there is little evidence that an electric utility’s participation decision is

driven by its previous fraction of CHP plants.

Furthermore, the estimates indicate that utilities are more likely to join when faced with

higher fuel costs. This supports the hypothesis that the expected cost saving by utilizing the

energy-effi cient CHP technology induces firms to join the program, although this cost savings

is also available to non-participants who learn about the technology via information diffusion

and adopt it. Nonetheless, the percentages of its plants using different sources of energy are
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generally not good predictors of each electric utility’s participation decision. This is because

the CHP systems can use a variety of fuel sources (EPA CHPP 2008), which implies that the

decision on whether or not to join the program would not be driven by a specific fuel type.

In addition, there is little evidence suggesting that the existence of other state policies affects

firms’decision to join the CHPP program. Because these state policies support different types

of energy-effi cient technologies apart from the CHP technology, they have had little impact

on the participation decision in a program only targeting the CHP technology. Although not

shown in Table 4, the estimates of year fixed effects are significantly positive, which implies

that the increase in participation probability is partly attributed to an increasing time trend.13

5.2 Evaluation of the CHPP program

In this section, we evaluate the effectiveness of the CHPP program in increasing the adoption

rate of the CHP technology. In the main analysis, we use the sample over the whole time period

(1998 to 2011), including the years before the program started.

The results of the Arellano-Bond panel GMM estimates are presented in Table 5. We match

the utilities across years by their utility IDs defined in the EIA form and drop the observations

without two-year lagged information, which leaves 16,551 electric utility-year observations.

Table 5 uses weighted state policy dummies. Vidovic and Khanna (2007) find that controlling

for year fixed effects has a large impact. Therefore, we employ alternative specifications to see

whether including year fixed effects affects the conclusions implied by the results. Specifically,

Models 1 and 3 exclude the year fixed effects, while Models 2 and 4 include them. (Note that

excluding the year fixed effects would not allow us to capture a general information or technology

diffusion effect.) In all models, Hansen tests show that the instruments in the estimation are

valid at the 1% level.14 Arellano-Bond tests confirm lack of second-order serial correlation in

the first-differenced residuals. In addition, Kleibergen-Papp rk statistics reject the hypothesis

that the instruments are weak.

To compare with the previous voluntary program literature and to investigate whether in-

13Year dummy 2001 is omitted in the participation decision regression. Therefore, the estimates measure the
time trend compared with year 2001.
14Based on the Hansen test, we use three to five year lags of the dependent variable as instruments for4yi,t−1.

The Hansen test fails if the model is estimated using a two-year lag of the dependent variable as an instrument.
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corporating information diffusion in the estimation makes a difference, Models 1 and 2 follow

the widely used method in the voluntary program evaluation literature of ignoring information

diffusion effects, i.e., not including the term γ (1−Di,t−2)∗Φt−2 in equation (4) or equivalently,

not including the term γ (−Di,t−2Φt−2) in equation (5) (see, e.g., Bi and Khanna 2012). Specif-

ically, we first derive the inverse Mills ratio based on the results from Model 3 in Table 4, which

has the greatest log-likelihood value. We assign zero to the inverse Mills ratio of observations

from 1998 to 2000 before the program launched (Khanna and Damon 1999). We then include

the inverse Mills ratio in the performance equation. Similar to the conclusion in many previous

studies, the statistically insignificant coeffi cients on the participation variable in Models 1 and

2 in Table 5 suggest that the program is ineffective if we ignore information diffusion of the

program in the estimation, regardless of whether we control for year fixed effects or not.15

In Models 3 and 4, we incorporate a national information dissemination effect in the estima-

tion, i.e., assuming participants throughout the country diffuse information about the technol-

ogy to non-participants. We find that, even after including the national information diffusion

variable in the estimation, the coeffi cient on the participation variable (δ) is still insignificant,

regardless of whether we control for year fixed effects, as shown in Models 3 and 4. This implies

that the program has had little impact on increasing electric utility participants’ fraction of

CHP plants. This is consistent with what we observe. The program does not change electric

utility participants’behavior much. Specifically, among the eight electric utility participants

that had joined the program by 2009, only one participant (Austin Energy) had increased two

CHP plants since two years after it joined the program. The other seven participants had not

changed their CHP plant numbers. However, when we control for the year fixed effects simulta-

neously, the coeffi cient of the diffusion variable (γ) is positive and statistically significant at the

10% level, which indicates that the program is effective in increasing the adoption rate of the

CHP technology among non-participants via information diffusion.16 For instance, γ equal to

0.0004 in Model 4 means that the program increases non-participants’fraction of CHP plants

by 0.0004Φt−2, which ranges from 0.006 in 2003 to 0.10 in 2011 (corresponding to the impact

15We report Windmeijer-corrected robust standard errors based on the xtabond2 command in Stata (Roodman
2009). However, using robust standard errors without the Windmeijer correction does not change the basic
conclusions.
16Note that the information spillover is from all participants, not just from electric utility participants.
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of the program from 2001 to 2009, given the two-year lag).

To see the impact of the program more clearly, we derive the outcomes with and without

the impact of the program based on equation (5) in first-difference form.17 The comparison is

shown in Figure 1, which is based on the estimates in Model 4 in Table 5. (We also include the

actual outcome under the program as a benchmark.) The vertical axis is the average change

in utilities’fraction of CHP plants between two adjacent years, i.e., the change in the utilities’

adoption rate of the CHP technology. The difference between the two curves measures the

impact of the program. Since the participation rate is so low, this primarily reflects the impact

on non-participants via information diffusion. We can see that the estimated change is negative

without the program, which means that on average, each utility’s adoption rate would have

declined without the program. The estimated change under the program fluctuates around the

zero line. This indicates that the program actually offsets a declining trend, and keeps the

estimated adoption rate almost the same across years.

In summary, the estimates based on models incorporating national information diffusion

show that, although the program has had little impact on participants’adoption rate of the

CHP technology, it has had a significant impact on non-participants’adoption rate via infor-

mation dissemination. In other words, overall the program has been effective in increasing the

adoption rate of the CHP technology, although participation has been low and the program

has had little impact on the technology adoption rate of participants. The main incentive for

electric utilities to join the program might be to obtain public recognition, rather than direct

technical assistance. This supports the argument by Lyon and Maxwell (2007) that voluntary

programs that aim to spread information widely might have beneficial environmental impacts

in the aggregate, even though there is little impact through participation. This further supports

our hypothesis that electric utilities have less incentive to join the program because they antic-

ipate that they can obtain information about the technology even as non-participants through

17Because the utility fixed effects are unidentified in equation (4) or (5), we first transform (5) into a first-
difference model to eliminate the individual fixed effects:

4yit = β14yi,t−1 + β24X1i,t−2 + δ4Di,t−2 + γ4 (−Di,t−2Φt−2) + β44IMRi,t−2 +4ωt +4uit,

where 4ωt = (γ4Φt−2 +4λt). Therefore, more precisely, what we present is the impact of the program on
the average change in individual utility’s fraction of CHP plants across years. We deduct the terms related to
the program, i.e., [δ4Di,t−2 + γ4 (−Di,t−2Φt−2) + β44IMRi,t−2 + γ4Φt−2] to derive the estimated average
change in individual utility’s fraction of CHP plants without the program.
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information diffusion, and hence the benefit of joining the program is small in terms of learning

about the technology. Thus, the information diffusion impact of the program provides one

explanation for why electric utilities’participation rate in the program is so low. In addition,

comparing the estimates in Model 4 with those in Model 2 indicates that ignoring the program

diffusion effect in the estimation cannot capture the impact of the program on non-participants

via information diffusion, which in turn leads to an incorrect conclusion that the program has

had little (overall) impact. Furthermore, comparing the results in Models 3 and 4 supports

the argument that controlling for year fixed effects makes a difference. Including the year fixed

effects allows us to separately identify the impact of general information dissemination and the

information spillover effects of the program.

Apart from the direct influence of the program, we also find a strong correlation between

the individual electric utility’s fraction of CHP plants in this period and that in the previous

period. However, the size of the utility, as measured by nameplate capacity, has little influence

on the utility’s decision to adopt the energy-effi cient CHP technology. In general, there is little

evidence on the correlation between the type of energy sources and electric utilities’adoption

rate of CHP technology. Surprisingly, fuel cost is no longer a significant determinant of each

electric utility’s fraction of CHP plants.

In addition, there is little evidence that the other state policies and regulations included

here encourage the utilization of CHP technology. One explanation is that these state polices

support the CHP technology along with other energy-effi cient technologies. It is possible the

utilities replace old technology by some alternatives rather than the CHP technology based

on the consideration of feasibility or cost-effectiveness. If so, we might expect no correlation

between each electric utility’s utilization of CHP technology and these state policies. In general,

the coeffi cients on the inverse Mills ratio are insignificant, implying that selection bias is not a

concern in our context.

5.3 Robustness checks

The above evaluation of the impact of the CHPP program uses weighted state policy dummies in

the estimation. As a first robustness check, we employ an alternative specification using binary

state policy dummies. As shown in Table 6, the estimates are very similar to those in Table 5.
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Specifically, ignoring information dissemination in the estimation suggests that the program has

had little impact of participation (Models 1 and 2 in Table 6). In contrast, after incorporating

national information diffusion, the estimates imply that, although the program has had little

impact on the adoption rate of electric utility participants, it has been effective in promoting

the CHP technology among non-participants through information diffusion, increasing non-

participants’fraction of CHP plants by 0.006 to 0.10 across years (Model 4 in Table 6). On the

whole, the model controlling for information diffusion finds that the program has had significant

overall impact on promoting CHP technology, regardless of whether weighted or binary state

policy dummies are used in the estimation.

As a second robustness check, we estimate the model with information dissemination as-

sumed to be limited to each state. We would expect this diffusion effect to be lower than

with national diffusion. We replace Φt−2 by state-level program information diffusion, Φi,t−2, in

equation (4), which is defined as the number of participants in all sectors in each state.18 Then

we can directly estimate equation (4) based on the Arellano-Bond GMM estimation procedure.

The results are shown in Table 7. Models 1 and 2 use weighted state policy dummies, while

Models 3 and 4 use binary state policy dummies. In addition, Models 1 and 3 exclude year

fixed effects, while Models 2 and 4 include them. In general, we find that, when the information

diffusion is assumed to be limited to each state, the estimates indicate that the program has had

little impact, similar to that under models without controlling for information dissemination.

Furthermore, some studies in the literature suggest that it is better to estimate based on the

sample during the time when the program has existed, which excludes the pre-program trend

(see, e.g., Vidovic and Khanna 2007). Therefore, we also analyze based on the sample from

2001 to 2011 when the CHPP program exists to further check the robustness of our results.

The results are shown in Table 8. Panel I and II use weighted and binary state policy dummies,

respectively. We find the basic conclusion still holds based on this subsample. Specifically,

models ignoring information diffusion effects find little impact of participation, consistent with

many studies in the previous literature. Models controlling for national information diffusion

find that, although the program has had little impact on participant’s adoption rate of CHP

18If a utility has plants distributed in different states, we calculate weighted average of state-level information
diffusion of the program, with weights equal to the fraction of its plants in different states.
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technology, it has been effective in promoting the technology among non-participants and hence

has had a significant overall impact. The significance levels are improved based on this sub-

sample, compared to those based on the sample from 1998 to 2011. The estimates imply that

the program increased non-participants’fraction of CHP plants by 0.006 to 0.11 across years.

However, if we confine the diffusion effect to within individual states in the estimation, the

results indicate that the program has been ineffective, similar to that under models ignoring

information diffusion.

6 Conclusion

Most of the empirical studies in the voluntary program literature are based on the traditional

program evaluation method that ignores the information diffusion impact of programs and

considers a program as successful if participants achieve significantly better outcomes than

non-participants. However, Lyon and Maxwell (2007) argue that it is possible that voluntary

programs improve environmental outcomes overall, even though there is little impact of partic-

ipation. This highlights the importance of distinguishing between the impact of participation

in a voluntary program (which captures only the difference between the effects on the per-

formance of participants and non-participants) and the effect of the existence of the program

(which captures the effects on the performance of both groups). The evaluation of the latter

is more valuable to policy makers seeking to diffuse information widely to improve aggregate

environmental outcomes, but has not been included in previous empirical studies of voluntary

programs.

In this paper, we explore the role of incorporating information diffusion in the estimation

of the impact of a voluntary program to test the argument by Lyon and Maxwell (2007) that

the traditional program evaluation method is not appropriate for voluntary programs with the

potential for strong treatment spillovers. We base our analysis on the Combined Heat and

Power Partnership (CHPP) program, which is a voluntary program that aims to promote the

energy-effi cient combined heat and power (CHP) technology to reduce fossil fuel use and the

environmental impacts of power generation.

We apply the dynamic panel data GMM method pioneered by Arellano and Bond (1991)
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to an unbalanced panel dataset of electric utilities between 1998 and 2011. To be comparable

with the previous studies and to explore whether incorporating information diffusion in the

estimation makes a difference, we start with the widely used method in the voluntary program

evaluation literature, ignoring information diffusion. Similar to many previous studies, the

estimates indicate that the program has had little impact.

However, when we incorporate national information diffusion impacts of the program in the

estimation, the results imply that, although the program is ineffective in increasing participants’

adoption rate of the CHP technology, it statistically significantly increases non-participants’

fraction of CHP plants, on average by 0.006 to 0.10 points from 2003 to 2011. In other words,

the program has had a significant overall impact on increasing the adoption rate of the CHP

technology, mainly through the information dissemination effect on non-participants. Ignoring

the program diffusion effect in the estimation cannot capture the impact of the program on

non-participants via information diffusion, which might lead to the wrong conclusion that the

program has had little (overall) impact. On the other hand, the estimates are consistent with

the reality that the program does not change electric utility participants’behavior much. This

implies that the program has had little impact through participation. Our finding supports the

argument by Lyon and Maxwell (2007) that the traditional program evaluation method may

not be appropriate for voluntary programs with strong treatment externalities. In addition,

the information diffusion impact provides one explanation for the low participation rate of

electric utilities in this program. Specifically, electric utilities may have less incentive to join

the program because they anticipate that they can obtain information about the technology

even as non-participants through information diffusion, and hence the benefit of joining the

program is small in terms of learning about the technology.
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Table 1: Utility participants in the CHPP program

Name (Business name)
Partnership
join date

State
Operating electric
power generation

plants
Utility ID

Austin Energy 1/17/2003 TX Yes 1015
Chesapeake Utilities 6/7/2013 DE No
City of Palo Alto Utilities 11/30/2005 CA No
Connecticut Natural Gas Corp
/Southern Connecticut Gas

11/4/2005 CT No

Effi ciency Vermont/Vermont
Energy Investment Corporation

11/2/2012 VT No

Fort Wayne City Utilities 4/27/2009 IN No
Gainesville Regional Utilities 1/25/2008 FL Yes 6909
Great River Energy 1/11/2007 MN Yes 7570
HBH Gas Systems 11/21/2006 TX No
Lakehaven Utility District 9/21/2010 WA No
Massachusetts Water Resources Authoritya 7/29/2011 MA Yes 11426
Maui Electric Company Limited 12/13/2002 HI Yes 11843
National Grid 10/16/2009 NY Yes 56505
Nebraska Public Power District 2/12/2008 NE Yes 13337
Oglethorpe Power Company 12/7/2010 GA Yes 13994
Orange Water and Sewer Authority 12/8/2011 NC No
Philadelphia Gas Works 5/7/2013 PA No
Rochelle Municipal Utilities (RMU) 1/26/2004 IL Yes 16179
Sacramento Municipal Utility
District (SMUD)

1/25/2005 CA Yes 16534

Southern California Gas Company 7/18/2006 CA No

a EIA860 form shows Massachusetts Water Resources Authority has two operating plants that are coded with 22, i.e., with

primary purpose to generate electricity for sale.



Table 2: Descriptive Statistics (electric utility-level)a,b

Before the impact of
the program (2002)c

During the program (2011)d

Variables Full sample Full sample Participants
Non-

participants
Number of plants 2.34 2.38 8.25 2.35

(4.75) (4.96) (5.15) (4.94)
Number of CHP plants 0.16 0.15 0.75 0.15

(0.42) (0.60) (1.16) (0.60)
Fraction of CHP plantse 0.13 0.10 0.11 0.10

(0.34) (0.30) (0.20) (0.30)
Nameplate capacity (MW) 536.61 529.33 1861.10 524.11

(1959.99) (1927.25) (1498.99) (1927.21)
Fuel costs (cents/MMBtu) 271.12 623.50 827.62 622.70

(86.80) (281.28) (565.36) (279.59)
Fraction of each utility’s 0.45 0.35 1.00 0.35
regulated plants (0.50) (0.48) (0.00) (0.47)

Fraction of each utility’s plants that use the following fuels as primary energy sources
Coal 0.10 0.07 0.09 0.07

(0.27) (0.23) (0.13) (0.23)
Petroleum products 0.19 0.14 0.28 0.14

(0.38) (0.34) (0.36) (0.33)
Natural gas and other gases 0.33 0.28 0.50 0.28

(0.45) (0.43) (0.37) (0.43)
Renewable fuels 0.16 0.32 0.03 0.32

(0.36) (0.46) (0.05) (0.46)
Other fuels 0.22 0.19 0.11 0.19

(0.40) (0.38) (0.20) (0.38)
State policies related to CHP technology
Weighted policy dummies
Financial incentive 0.05 0.11 0.10 0.11

(0.22) (0.31) (0.27) (0.31)
PBF 0.38 0.36 0.35 0.36

(0.48) (0.48) (0.48) (0.48)
EPS 0.05 0.36 0.25 0.27

(0.22) (0.48) (0.46) (0.43)
Binary Policy dummies
Financial incentive 0.06 0.13 0.13 0.13

(0.24) (0.33) (0.35) (0.33)
PBF 0.39 0.37 0.38 0.37

(0.49) (0.48) (0.52) (0.48)
EPS 0.06 0.27 0.25 0.29

(0.23) (0.43) (0.46) (0.45)
Observations 1684 2049 8 2041

a Standard deviations are in parentheses.

b This table reports the mean of each variable across utilities.

c We assume the program impact is two years lagged in the outcome equation. Therefore, it did not influence the outcome in 2002.

d The outcome in 2011 was actually influenced by the program in 2009. Thus, for the last two columns, participation status is

based on 2009.

e For utility i, fraction of CHP plants = (i’s number of CHP plants)/(i’s number of plants).
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Table 4: Determinants of participation status in the CHPP programa

Dependent variable: participation status (the explanatory variables are lagged one year)
Variable Model 1 Model 2 Model 3 Model 4
Nameplate capacity (MW) 3.14e-05** 2.92e-05** 3.02e-05** 2.85e-05**

(1.3e-05) (1.33e-05) (1.33e-05) (1.36e-05)
Fraction of CHP plants 0.487 0.469 0.482 0.461

(0.372) (0.369) (0.374) (0.370)
Fraction of regulated plants 1.345*** 1.327*** 1.349*** 1.330***

(0.418) (0.415) (0.404) (0.399)
Fraction of each utility’s plants that use the following fuels as primary energy sources
Coal -0.218 -0.215 -0.205 -0.201

(0.453) (0.458) (0.463) (0.467)
Petroleum products 0.080 0.078 0.096 0.090

(0.363) (0.360) (0.358) (0.356)
Natural gas and other gases 0.446 0.442 0.450 0.443

(0.304) (0.307) (0.309) (0.311)
Renewable fuels 0.119 0.113 0.076 0.071

(0.310) (0.313) (0.313) (0.315)
Fuel costs (cents/MMBtu) 6.97e-04*** 7.16e-04*** 6.79e-04*** 6.99e-04***

(1.08e-04) (1.05e-04) (1.59e-04) (1.56e-04)
Policies related to CHP technology
Weighted policy dummies
Financial incentive -0.216 -0.264

(0.391) (0.393)
PBF 0.024 0.027

(0.275) (0.274)
EPS 0.290 0.238

(0.244) (0.257)
Binary policy dummies
Financial incentive -0.133 -0.173

(0.378) (0.381)
PBF 0.031 0.035

(0.264) (0.263)
EPS 0.218 0.166

(0.244) (0.261)
Constant -4.445*** -4.429*** -7.532*** -7.503***

(0.501) (0.502) (0.577) (0.571)
Year fixed effects included No No Yes Yes
Number of observations 20971 20971 20971 20971
χ2 (p-value) 244.51 (0.00) 250.83 (0.00) 730.52 (0.00) 740.67 (0.00)
Log likelihood -353.60 -354.70 -345.26 -346.29

a Robust standard errors clustered on utilities are in parentheses.

∗∗∗ Statistical significance at the 1% level, ∗∗ Statistical significance at the 5% level, ∗ Statistical significance at the 10% level.



Table 5: Determinants of each electric utility’s fraction of CHP plantsa

(1998 to 2011, using weighted state policy dummies)

Dependent variable: each utility’s fraction of CHP plants
Without diffusion National diffusion

Variable Model 1 Model 2 Model 3 Model 4
Participation (δ) 0.074 0.068 0.064 0.203

(0.137) (0.123) (0.134) (0.176)
Diffusion (γ) 1.11e-05 4.00e-04*

(6.78e-06) (2.34e-04)
Lagged fraction of CHP plants 0.467*** 0.495*** 0.472*** 0.496***

(0.090) (0.094) (0.089) (0.094)
Nameplate capacity (MW) 2.05e-06 1.95e-06 1.93e-06 1.95e-06

(1.80e-06) (1.90e-06) (1.87e-06) (1.90e-06)
Fraction of each utility’s plants that use the following fuels as primary energy sources
Coal -0.003 0.007 -0.004 0.007

(0.004) (0.006) (0.004) (0.006)
Petroleum products -0.003 0.002 -0.004 0.002

(0.010) (0.010) (0.010) (0.010)
Natural gas and other gases 5.53e-06 0.008 2.33e-04 0.008

(0.010) (0.011) (0.010) (0.011)
Renewable fuels 0.006 0.004 -1.12e-04 0.004

(0.012) (0.012) (0.011) (0.012)
Fuel costs (cents/MMBtu) 1.44e-06 -3.02e-06 -1.08e-07 -2.64e-06

(2.24e-06) (4.19e-06) (2.19e-06) (4.21e-06)
Other policies related to CHP technology (Weighted policy dummies)
Financial incentive -0.026 -0.022 -0.023 -0.022

(0.017) (0.018) (0.017) (0.018)
PBF 0.004 0.003 0.008 0.003

(0.008) (0.008) (0.007) (0.008)
EPS -1.40e-04 3.09e-04 1.10e-04 4.10e-04

(0.001) (0.001) (0.001) (0.001)
Inverse Mill Ratio -0.020 -0.017 -0.017 -0.047

(0.036) (0.029) (0.032) (0.042)
Year fixed effects included No Yes No Yes
Number of observations 16551 16551 16551 16551
χ2 (p-value) 33.83 (0.00) 85.41 (0.00) 36.11 (0.00) 85.67 (0.00)
F[1, N-K-1] (p-value)b 1.45 (0.23) 1.73 (0.19) 1.54 (0.21) 1.76 (0.19)
AR(1) p-valuec 0.000 0.000 0.000 0.000
AR(2) p-valuec 0.342 0.322 0.336 0.326
Hansen test (df)d 36.13 (23) 36.28 (23) 38.64 (23) 36.40 (23)
Kleibergen-Papp rk statisticse 25.214*** 24.831*** 25.203*** 24.839***

a The GMM estimates reported are all two step. Windmeijer-corrected robust standard errors are in parentheses.

b F[1, N-K-1] is F-test statistics for the validity of excluding the fraction of regulated plants as an explanatory variable.

c AR(1) and AR(2) are tests for first-order and second-order serial correlation in the first-differenced residuals. The AR(2) show

that assumption of no serial correlation errors cannot be rejected.

d Hansen test is a test of the over-identifying restrictions, asymptotically distributed χ2 as under the null hypothesis of valid

instrument. The degrees of freedom are reported in parentheses. The Hansen test shows that the over-identifying restrictions are

valid at 1% level for all models.

e Kleibergen-Papp rk statistics is used to detect the correlation between the instruments and endogenous variable.

∗∗∗ Statistical significance at the 1% level, ∗∗ Statistical significance at the 5% level, ∗ Statistical significance at the 10% level.



Figure 1: Impact of the program on the change in individual utility’s fraction of CHP plants
across years



Table 6: Determinants of each electric utility’s fraction of CHP plantsa

(1998 to 2011, using binary state policy dummies)

Dependent variable: each utility’s fraction of CHP plants
Without diffusion National diffusion

Variable Model 1 Model 2 Model 3 Model 4
Participation (δ) 0.072 0.069 0.065 0.203

(0.138) (0.123) (0.136) (0.176)
Diffusion (γ) 1.04e-05 4.00e-04*

(6.74e-06) (2.34e-04)
Lagged fraction of CHP plants 0.469*** 0.495*** 0.474*** 0.496***

(0.090) (0.094) (0.089) (0.094)
Nameplate capacity (MW) 2.11e-06 2.01e-06 1.96e-06 2.01e-06

(1.76e-06) (1.93e-06) (1.78e-06) (1.93e-06)
Fraction of each utility’s plants that use the following fuels as primary energy sources
Coal -0.003 0.007 -0.004 0.007

(0.004) (0.006) (0.004) (0.006)
Petroleum products -0.004 0.002 -0.005 0.002

(0.010) (0.010) (0.010) (0.010)
Natural gas and other gases -6.71e-05 0.008 2.02e-04 0.008

(0.010) (0.011) (0.010) (0.011)
Renewable fuels 0.005 0.005 2.32e-04 0.005

(0.012) (0.012) (0.011) (0.012)
Fuel costs (cents/MMBtu) 1.34e-06 -2.97e-06 -2.79e-07 -2.59e-06

(2.24e-06) (4.19e-06) (2.17e-06) (4.20e-06)
Other policies related to CHP technology (Binary policy dummies)
Financial incentive -0.026 -0.021 -0.023 -0.022

(0.016) (0.016) (0.016) (0.016)
PBF 0.005 0.002 0.007 0.002

(0.007) (0.008) (0.007) (0.008)
EPS -1.23e-04 1.83e-04 1.03e-04 2.73e-04

(0.001) (0.001) (0.001) (0.001)
Inverse Mill Ratio -0.019 -0.017 -0.018 -0.047

(0.036) (0.029) (0.032) (0.042)
Year fixed effects included No Yes No Yes
Number of observations 16551 16551 16551 16551
χ2 (p-value) 32.04 (0.00) 81.45 (0.00) 33.90 (0.00) 79.90 (0.00)
F[1, N-K-1] (p-value)b 1.47 (0.23) 1.73 (0.19) 1.53 (0.22) 1.75 (0.19)
AR(1) p-valuec 0.000 0.000 0.000 0.000
AR(2) p-valuec 0.34 0.322 0.335 0.326
Hansen test (df)d 35.91 (23) 36.36 (23) 38.90 (23) 36.48 (23)
Kleibergen-Papp rk statisticse 25.220*** 24.838*** 25.210*** 24.846***

a The GMM estimates reported are all two step. Windmeijer-corrected robust standard errors are in parentheses.

b F[1, N-K-1] is F-test statistics for the validity of excluding the fraction of regulated plants as an explanatory variable.

c AR(1) and AR(2) are tests for first-order and second-order serial correlation in the first-differenced residuals. The AR(2) show

that assumption of no serial correlation errors cannot be rejected.

d Hansen test is a test of the over-identifying restrictions, asymptotically distributed χ2 as under the null hypothesis of valid

instrument. The degrees of freedom are reported in parentheses. The Hansen test shows that the over-identifying restrictions are

valid at 1% level for all models.

e Kleibergen-Papp rk statistics is used to detect the correlation between the instruments and endogenous variable.

∗∗∗ Statistical significance at the 1% level, ∗∗ Statistical significance at the 5% level, ∗ Statistical significance at the 10% level.



Table 7: Determinants of each electric utility’s fraction of CHP plantsa

(1998 to 2011, State-level diffusion)

Dependent variable: each utility’s fraction of CHP plants
Variable Model 1 Model 2 Model 3 Model 4
Participation (δ) 0.066 0.073 0.066 0.073

(0.133) (0.123) (0.133) (0.123)
Diffusion (γ) 1.30e-04 1.64e-04 1.09e-04 1.58e-04

(1.68e-04) (3.61e-04) (1.64e-04) (3.62e-04)
Lagged fraction of CHP plants 0.465*** 0.494*** 0.467*** 0.494***

(0.092) (0.094) (0.092) (0.094)
Nameplate capacity (MW) 1.88e-06 1.95e-06 1.94e-06 2.00e-06

(1.77e-06) (1.90e-06) (1.72e-06) (1.92e-06)
Fraction of each utility’s plants that use the following fuels as primary energy sources
Coal -0.003 0.007 -0.004 0.007

(0.004) (0.006) (0.004) (0.006)
Petroleum products -0.004 0.001 -0.004 0.002

(0.010) (0.010) (0.010) (0.010)
Natural gas and other gases 4.94e-05 0.008 6.50e-06 0.008

(0.010) (0.011) (0.010) (0.011)
Renewable fuels 0.002 0.004 0.002 0.005

(0.012) (0.012) (0.011) (0.012)
Fuel costs (cents/MMBtu) 9.19e-07 -2.71e-06 8.79e-07 -2.65e-06

(2.32e-06) (4.19e-06) (2.32e-06) (4.19e-06)
Other policies related to CHP technology
Weighted policy dummies
Financial incentive -0.024 -0.021

(0.017) (0.018)
PBF 0.007 0.004

(0.007) (0.008)
EPS -1.82e-05 3.29e-04

(0.001) (0.001)
Binary policy dummies
Financial incentive -0.024 -0.021

(0.016) (0.016)
PBF 0.006 0.003

(0.007) (0.008)
EPS -1.69e-05 2.13e-04

(0.001) (0.001)
Inverse Mill Ratio -0.018 -0.018 -0.018 -0.018

(0.034) (0.029) (0.034) (0.029)
Year fixed effects included No Yes No Yes
Number of observations 16551 16551 16551 16551
χ2 (p-value) 31.86 (0.00) 81.34 (0.00) 30.46 (0.00) 77.63 (0.00)
F[1, N-K-1] (p-value) 1.33 (0.25) 1.68 (0.20) 1.31 (0.25) 1.67 (0.20)
AR(1) p-value 0.000 0.000 0.000 0.000
AR(2) p-value 0.341 0.322 0.34 0.322
Hansen test (df) 37.80 (23) 36.93 (23) 37.82 (23) 37.02 (23)
Kleibergen-Papp rk statistics 25.237*** 24.572*** 24.912*** 24.576***

a The notes for the table are the same as in Tables 5 and 6.



Table 8: Determinants of each electric utility’s fraction of CHP plants (2001 to 2011)a,b,c

Dependent variable: each utility’s fraction of CHP plants
Variable Without diffusion National diffusion State-level diffusion
Panel I. Weighted policy dummies
Participation (δ) 0.035 0.182 0.034

(0.239) (0.157) (0.242)
Diffusion (γ) 4.57e-04** 2.28e-04

(2.32e-04) (4.57e-04)
Number of observations 12925 12925 12925

Panel II. Binary policy dummies
Participation (δ) 0.034 0.179 0.034

(0.239) (0.156) (0.242)
Diffusion (γ) 4.51e-04** 2.31e-04

(2.30e-04) (4.56e-04)
Number of observations 12925 12925 12925

a The GMM estimates reported are all two step. Windmeijer-corrected robust standard errors are in parentheses.

b The other variables included in the models in Table 8 are similar to those in Tables 5-7. Here, we only show the estimates of the

coeffi cients of most interest.

c All models in this table include year fixed effects. As before, models excluding year fixed effects find that the program has little

impact even controlling for national information diffusion of the program.

∗∗∗ Statistical significance at the 1% level, ∗∗ Statistical significance at the 5% level, ∗ Statistical significance at the 10% level.
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