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Abstract

The purpose of this study is to empirically test whether receiving private health information leads to a change in health

behavior. Specifically, we examined whether receiving a diabetes diagnosis leads to a change in physical exercise and,

if so, whether responses differ by education and income. Using the Health and Retirement Study (HRS), we employed

a regression discontinuity approach to estimate a causal effect of a diabetes diagnosis on changes in exercise frequency

and intensity. Results show that subsequent to a diagnosis, individuals increased exercise frequency by engaging in

physical activities one more time per week and increased intensity by 2 metabolic equivalents. The increase in

frequency was greatest for individuals with a college degree and individuals not in the labor force, 2 and 1.6 more

times per week, respectively. By contrast, there were no differences in the response to a diagnosis across subgroups

on the exercise intensity margin. This shows that education and time costs have a large impact on exercise behavior

in the management of chronic disease which in turn leads to disparities in the prevention of complications from type

2 diabetes. Understanding the role of education and how it interacts with private health information can inform policy

regarding the allocation of resources in the treatment and management chronic diseases.
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1. Introduction

Prior studies suggest that education affects health through improving cognitive ability, and ultimately cognitive

ability leads to healthier behaviors (Auld and Sidhu, 2005; Cutler and Lleras-Muney, 2010). Specifically, cognitive

ability alters the way health information is processed. More educated individuals adopt healthier behaviors because

they are more likely to understand the reasons to do so. Cutler et al. (2011) argued that even if less educated individuals

had the same behavioral risk factors as more educated individuals, they would still have higher mortality. This implies

that education is not only important in disease prevention but also important in preventing complications after disease
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onset. Indeed, Cutler et al. (2011) posits that the “the management of chronic health problems may have become more

sophisticated in ways that favor those with more schooling.”

The purpose of this study is empirically test this theory and contribute to the scant empirical evidence on the

role of education in behavioral responses to receiving private health information regarding the presence of a chronic

condition. Specifically, we examined whether receiving information on presence of diabetes leads to a change in

physical exercise and, if so, whether responses differed by education and income. Lifestyle adjustments involve

modifying a range of health behaviors. This study focuses on exercise behavior which has not been examined in this

context. In doing so, we fill a gap in our understanding of exercise responses to private health information.

This study is closely related to Zhao et al. (2013) who investigated the roles of education and income in dietary

responses to a hypertension diagnosis. Using a longitudinal dataset of individuals in China in a regression discontinu-

ity design, they found that upon receiving a hypertension diagnosis, individuals reduced fat consumption, with higher

income reducing more, but surprisingly no difference in reduction by education. Also related is a recent study that

examined the impact of HRS biomarker notifications on a range of health behaviors (Edwards, 2013) assuming that

biomarker readings are exogenous. By contrast, this study assumes that individuals, through their health behaviors,

impact biomarker readings to a certain extent.

Two studies in the medical literature have also examined the effect of a new diabetes diagnosis on changes in health

behaviors (Manschot et al., 2014; Keenan, 2009). Manschot et al. (2014) using a longitudinal dataset of individuals

in the Netherlands, found that having a diabetes or heart disease diagnosis was associated with a higher likelihood

of quitting smoking, a small reduction of fat consumption, but no change in exercise participation. Keenan (2009)

found that individuals recently diagnosed with stroke, cancer, lung disease, heart disease, or diabetes were more likely

to quit smoking. However, the identification strategies used in these studies preclude a causal interpretation due to

the possibility of unobserved omitted factors. In addition, these two studies did not attempt to examine differential

responses by income or education.

Unlike other health behaviors, improvements in exercise requires a greater investment of time. Time costs is a

well established barrier to exercise (Meltzer and Jena, 2010). In this study, time is measured as exercise frequency,

the number of times in a given period an individual engages in the activity3. Choosing to exercise not only involves

deciding the frequency, but also deciding which form(s) of physical activity. The choice of activity determines the

intensity of the exercise. This is often measured using the Metabolic Equivalency of Task (MET). For example, a

person may report walking at a moderate pace twice a week. In this example, the exercise intensity is moderate and

the frequency is 2 times per week. Since a health information shock may affect exercise through changes in intensity

and frequency, we use both measures in our analysis.

We use Grossman’s (1972) health capital model in which an individual’s health is a stock variable, Ht, that depre-

3An individual also chooses the duration each time they engage in the activity. We are unable to explore duration in this study due to data

limitations.
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ciates at rate, δt where δt ∈ [0, 1], but can be augmented through investing in health by engaging in physical exercise

to derive a testable hypothesis. In our framework, we allow individuals to misperceive their health because they

misperceive their rate of depreciation. A diabetes diagnosis can be modeled as a type of private health information

which informs individuals of their true rate of depreciation. Assuming individuals properly process private health

information, we hypothesized that individuals will adjust to a diabetes diagnosis by increasing exercise frequency and

intensity. We test this hypothesis using data from the Health and Retirement Survey (HRS). We also derive and test

hypotheses for individuals with more education and higher wage income.

A key challenge to estimating the causal effect of a diabetes diagnosis on exercise is the presence of endogene-

ity. There may be unobserved omitted factors that increase the likelihood of being diagnosed with diabetes and is

correlated with exercise behavior. To identify a causal effect if a diagnosis on changes in exercise behavior, we use

the threshold for diabetes diagnosis in a clinical setting in a regression discontinuity (RD) approach. Since individ-

uals cannot precisely control their HbA1c around the cut-point, readings above and below this level are plausibly

exogenous.

Our results show that individuals responded to a diabetes diagnosis by adjusting both exercise frequency, increased

by about once per week, and intensity, increased by about 2 METs. College educated and those out of the labor force

increased exercise frequency more while the increase in intensity was about the same for all groups by education, in-

come, and labor force status. Our results have important implications for health care policy. Preventing complications

from type 2 diabetes can substantially reduce health care spending. Understanding the role of education and how it

interacts with private health information can inform policy regarding the allocation of resources in the treatment and

management diabetes.

2. Background

2.1. Type 2 Diabetes Mellitus

Type 2 diabetes mellitus is a chronic disease in which blood glucose levels are above normal. Insulin, a hormone

produced in the pancreas, helps cells use glucose. Type 2 diabetes begins with insulin resistance, where cells fail to

use insulin properly. Over time, as more insulin is needed, the pancreas gradually loses its ability to produce insulin.

Type 2 diabetes is the seventh leading cause of death in the United States, affecting an estimated 25.8 million people

(Centers for Disease Control and Prevention, 2011). If left untreated, complications result including cardiovascular

disease, kidney disease, infection, ulcers of the foot leading to amputation, and blindness. Due to the combination of

prevalence and complications, the direct and indirect costs of diabetes are substantial. In 2007, a total of $218 billion

was attributed to the disease, $153 billion in direct medical costs and $65 billion in reduced productivity of the labor

force (Dall et al., 2010).

Individuals may have diabetes without exhibiting any symptoms. It is recommended that individuals who suspect

they have diabetes see their physician since only a physician can make a diabetes diagnosis. The most common
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measure for blood glucose levels is hemoglobin A1c (HbA1c) where higher HbA1c corresponds to higher risk of

diabetes. The National Diabetes Data Group (NDDG) first standardized the criteria for a diabetes diagnosis in 1979,

but in doing so acknowledged that “an arbitrary decision has been made as to what level justifies the diagnosis of

diabetes” (National Diabetes Data Group, 1979). In the period when the hemoglobin A1c data used in this study

was gathered, the criteria for a diabetes diagnosis was a hemoglobin A1c level 7% or greater (The International

Expert Committee, 2009). The treatment for type 2 diabetes involves lifestyle changes to diet and exercise and only if

individuals are unable to control blood glucose levels through lifestyle changes are oral medications then prescribed

(Nathan, 2002; Ripsin et al., 2009; Short, 2012).

While adjustments to diet and exercise are both recommended, only exercise can delay the onset of diabetes

(Pan et al., 1997; Eriksson et al., 1999; Tuomilehto et al., 2001). Upon onset, exercise has been shown to be very

effective in controlling the disease (Boul et al., 2001; Castaneda et al., 2002; Dunstan et al., 2002) and a small number

of individuals may even achieve remission (Gregg EW et al., 2012). In addition, medication in conjunction with

exercise improves glycemic control beyond that achieved by medication alone (Boul et al., 2001; Castaneda et al.,

2002; Dunstan et al., 2002). Even without weight loss, exercise has been shown to effectively lower blood glucose,

cholesterol, and blood pressure (Marwick et al., 2009; Sigal et al., 2004, 2006).

2.2. Data

The data for this study is from the Health and Retirement Study (HRS), a nationally representative sample of

more than 30,000 individuals born between 1931 and 1941 and their spouses who could be of any age. Information

on demographics, physical health, health behaviors, insurance coverage, financial status, and labor market status is

collected in survey waves every two years since 1992. In 2006, the HRS added an Enhanced Face-to-Face Interview

(EFTF) to the core interview (Crimmins et al., 2013). The EFTF interview includes a set of blood and saliva samples.

Roughly half of the households were randomly selected for the EFTF interview in 2006 while the remainder were

interviewed in 2008. Individuals who participated in an EFTF were notified of their biomarker readings and later

informed of their test results by mail. For this study, we merged the 2006 and 2008 HRS Biomarkers files with the

RAND HRS Data file4. Since the 2006 and 2008 Biomarker files sampled different individuals, the biomarkers dataset

is a cross-section whereas the RAND dataset is a panel.

2.3. Variables

The survey question for presence of diabetes was worded as:

Has a doctor has ever told you that you have ... diabetes or high blood sugar?

4The RAND HRS Data file is an easy to use longitudinal data set based on the HRS data. It was developed at RAND with funding from the

National Institute on Aging and the Social Security Administration.
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We constructed a dichotomized variable for presence of diabetes equal to one if the response was “yes” and zero if

the response was “no”. Note that the study sample only contains individuals who never reported presence of diabetes

at baseline. Therefore, first difference transformation of the variable for presence of diabetes yields a dichotomous

variable equal to one if there is a new diabetes diagnosis and zero if the person was not diagnosed.

The percentage amount of glycosylated hemoglobin (HbA1c) in the blood is a common measure for blood glucose

levels. In general, individuals who have not been diagnosed with diabetes do not directly observe their HbA1c levels.

However, individuals who participated in the EFTF were informed of their HbA1c reading by mail and directed to see

a physician or health care professional to be retested if their HbA1c reading was 7 or above 5. The HRS Biomarkers

file contains HbA1c readings for individuals in the HRS as a continuous variable. This variable, normalized to zero at

the cut-point, was used as the running variable. A dichotomous variable to mark the cut-point for a diabetes diagnosis,

referred to as the assignment variable, was constructed as equal to one if the respondent’s HbA1c is 7 or greater and

zero otherwise.

In years 2004–2010, respondents were asked how frequently they participated in vigorous, moderate, and light

physical activities. The questions were phrased as:

How often do you take part in sports or activities that are vigorous, such as running or jogging, swimming,

cycling, aerobics or gym workout, tennis, or digging with a spade or shovel?

And how often do you take part in sports or activities that are moderately energetic such as, gardening,

cleaning the car, walking at a moderate pace, dancing, floor or stretching exercises?

And how often do you take part in sports or activities that are mildly energetic, such as vacuuming,

laundry, home repairs?

Respondents were allowed a choice of five responses for each question recorded as ordinal values from 1 to 5 where

1=“every day”, 2=“more than once per week”, 3=“once per week”, 4=“one to three times per month”, or 5=“never”.

The ordinal values from the responses were translated to cardinal values in order to meaningfully interpret changes in

exercise frequency and intensity.

The five responses were normalized to a time span of one month. If the response represented a range, the midpoint

was used. “Every day” was assigned a frequency of 30 times per month. “More than once per week” was assigned a

frequency of 16 times per month since it refers to 2-6 times per week with a midpoint of 4 times per week. “Once per

week” was assigned a frequency of 4 times per month. “One to three times per month” was assigned a frequency of 2

times per month. “Never” was assigned a frequency of zero.

A continuous variable for exercise frequency was constructed equal to the average frequency for vigorous, moder-

ate, and light exercise. This measure captures variation in the average frequency of exercise. If an individual increases

5See Edwards (2013) for details.
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the frequency of moderate exercise but decreases the frequency of vigorous exercise, there is no change in the exer-

cise frequency and no change in the exercise intensity, so long as the frequency of moderate or vigorous exercise is

non-zero.

We translated the examples of physical activities provided in the survey questions into Metabolic Equivalent of

Task (MET) values using the Compendium of Physical Activities. Each activity listed in the survey questions for

vigorous, moderate, and light exercise was assigned a single MET value6. We then averaged the MET associated with

each activity by the three levels of exercise intensity. In the end, we obtain a single MET value for vigorous, 7.1,

moderate 4.1, and light exercise, 2.9.

A continuous variable for exercise intensity was constructed equal to the MET value associated with the highest

intensity of physical activity the respondent reported participating in. For example, suppose a respondent reported no

vigorous exercise, moderate exercise 3 times a week, and light exercise every day, then the exercise intensity is 4.1.

If a respondent reported never participating in any of the three intensities of activities, then the exercise intensity is

assigned a value of 1.

2.4. Study sample

The RAND panel dataset contains 30,671 unique individuals and 10 waves. Since the survey questions on exercise

were only asked in waves 7-10, waves 1-6 were excluded from the sample. After constructing variables for exercise

frequency, exercise intensity, and diabetes status, we first-differenced the panel dataset to obtain changes in these

variables. Note that changes in the diabetes status variable yields a dichotomous variable equal to one for a new

diabetes diagnosis and zero otherwise. This is because diabetes is a chronic condition and once an individual indicates

presence of diabetes, this status persists for the remainder of the panel. Also, changes in the diabetes status variable for

individuals who already have diabetes yields a zero values since it is not a new diagnosis. For this reason, we exclude

individuals who had diabetes in the previous period. This yields a dataset with 44,660 person-wave observations for

waves 8-10 comprised of individuals who were newly diagnosed with diabetes and those who were never diagnosed.

We then merge the HbA1c variable from the HRS Biomarker files to this dataset matching on the individual

identifier and next wave resulting in 10,073 person-wave matched observations. Since the HbA1c variable is a cross-

section, this represents 10,073 unique persons in either wave 9 or 10. Also, since the HbA1c variable is matched to

the next wave, wave 9 has the wave 8 HbA1c values while wave 10 has the wave 9 HbA1c values. Thus, the HbA1c

values in the previous wave are used in the analysis. Excluding missing data in the exercise, diabetes diagnosis, and

HbA1c variables, the final dataset contains 9,253 observations.

6Metabolic equivalent, or MET, is defined as the rate of energy consumption during a specific physical activity. A MET of 1 represents the

energy cost of sitting quietly. In cases where the activity involves more than one form, we used the averaged MET across all forms of the same

activity. For example, swimming could involve for freestyle, backstroke, or breaststroke and the average MET value across all forms of swimming

is 7.86. See Ainsworth et al. (2011) for details.
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Table 2 shows the sample means for the final dataset. The average exercise frequency is 9 times per month or a

little over two days per week. The average exercise intensity is 5 METs equivalent to a moderate intensity. While

there is an overall decline in exercise frequency, the decline is smaller among those with a new diabetes diagnosis.

Similarly, there is an overall decline in exercise intensity but among those newly diagnosed with diabetes, there is an

increase in exercise intensity. Consistent with previous findings in the literature, more educated and higher income

individuals exercise more often and at a higher intensity.

3. Empirical framework

To derive a testable hypothesis, we begin with Grossman’s (1972) model of health production in which an indi-

vidual’s health is a stock variable, Ht, that depreciates at rate, δt where δt ∈ [0, 1], but can be augmented through

investing in health by engaging in physical exercise:

Ht+1 = I(Ft,Nt) + (1 − δt)Ht (1)

where Ft is exercise frequency and Nt is exercise intensity, I is the health investment function, IF > 0, and IN > 0.

Health capital, market goods, and intense exercise are factors in the utility function:

Ut = U(Ht, Xt,Nt). (2)

While individuals derive utility from health and market goods, UH > 0 and UX > 0, they derive disutility from intense

exercise, UN < 0 (Meltzer and Jena, 2010).

We assume that individuals misperceive their health because they misperceive the rate of depreciation:

H̃t − Ht =
(
δt − δ̃t

)
Ht = εt (3)

where δ̃t ∈ [0, 1] is the perceived rate of depreciation and εt is an i.i.d. error. For example, if δt− δ̃t > 0, then perceived

health is better than true health.

In the next period, individuals receive private health information, st+1, which allows them to observe their true

depreciation rate. Individuals then adjust their perceived depreciation rate according to how well they process private

health information:

δ̃t+1 = f (st+1) =


δt+1 if information is processed

δ̃t otherwise.
(4)

In the case that true depreciation at time t + 1 is greater than perceived depreciation at time t, δt+1 − δ̃t > 0, or,

equivalently, perceived health at time t is better than true health at time t + 1, Ht+1 − H̃∗t < 0, to return to the optimal

perceived health capital at time t, H̃∗t , health investment must increase at time t + 1. Specifically, individuals will

choose F∗t+1 > F∗t and N∗t+1 > N∗t iff H̃∗t > Ht+1.
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Assuming individuals are able to process private health information, we hypothesize that individuals will adjust

to a diabetes diagnosis by increasing exercise frequency and intensity. Furthermore, assuming that individuals with

higher wage incomes have higher time costs, they will choose to adjust by increasing exercise intensity rather than

frequency. Finally, if more educated individuals are more able to process the private information, they will adjust

more than lower educated individuals7.

4. Estimation

We begin with a basic model for the relationship between changes in exercise behavior and a new diabetes diag-

nosis

∆Yi = β0 + β1∆Di + ∆ηi (5)

where ∆Yi is the change in either exercise frequency or intensity, ∆Di is a dichotomous variable for a new diabetes

diagnosis, ∆ηiis an error term, and β0 is a constant.

A key challenge to estimating the causal effect of a diabetes diagnosis on exercise is the presence of endogeneity.

There may be unobserved omitted factors that are correlated with both diabetes and exercise. For example, individuals

who are diagnosed with hypertension are more likely to be diagnosed with diabetes and hypertension diagnosis may

be positively correlated with exercise. The estimated parameter on ∆Dit using ordinary least squares (OLS) would be

biased away from zero if hypertension diagnosis is omitted from the model.

Our identification strategy is to use the HbA1c cut-point for a clinical diabetes diagnosis as a source of random

assignment. In general, individuals can control their HbA1c levels through health behaviors. Since individuals cannot

precisely control their HbA1c around the cut-point, readings above and below this level are plausibly exogenous. Due

to the small sample size, especially around the cut-point, our primary estimation method is a parametric estimation

which makes use of all data points. We also present nonparametric estimates in Section 5.1.

Diabetes is diagnosed by a physician such that the private health information is delivered in a clinical setting.

However, not everyone above the cut-point receives a diabetes diagnosis and persons below the cut-point may be

diagnosed with diabetes. Because the cut-point does not coincide with a diagnosis, and only those diagnosed receives

private health information in a clinical setting, our initial set-up is a fuzzy RD design.

The fuzzy RD design is equivalent to a two stage least squares (2SLS) estimation framework with a polynomial

function of HbA1c as the included instrument and the HbA1c threshold variable as the excluded instrument. The

predicted probability of a new diabetes diagnosis, determined by discontinuous jump in HbA1c above the threshold,

are used in the second stage to estimate the effect of a new diagnosis on a change in exercise frequency and intensity.

7Zhao et al. (2013) suggested that more educated individuals may be more informed about their health such that private health information

would be more informative for the less educated. Under this scenario, more educated individuals are less responsive since a diagnosis yields little

new information for them.
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In this framework, the structural and first stage equations are

∆Yi = β0 + β1∆Di + f (ri) + ∆ηi (6)

∆Di = α0 + α1Zi + f (ri) + ∆µi (7)

where ri is a continuous variable for HbA1c values in the previous wave, Zi is a dichotomous variable for HbA1c

greater than 7 in the previous wave, and f (·) is a polynomial function of HbA1c values in the previous wave.

An alternate set-up is a sharp design. This set-up is valid if we believe that individuals may directly respond to

the information that their HbA1c is above normal and attempt to self-treat their condition by changing their exercise

behavior. If true, then a physician need not deliver private health information for there to be adjustments to exercise

behavior. A sharp design is implemented as

∆Yi = γ0 + γ1Zi + f (ri) + ∆νi (8)

By comparing the results from the sharp and fuzzy designs, we can test the null hypothesis that private health

information delivered by a physician induces a change in exercise behavior against the alternate hypothesis that private

health information directly induces a change in exercise behavior. Assuming physicians adhere to clinical guidelines

regarding the treatment of diabetes, a diabetes diagnosis is accompanied by specific recommendations to increase

exercise. In contrast, private health information in the form of a high HbA1c reading does not convey any information

regarding the risks of diabetes or the benefits of exercise as a treatment option.

4.1. Preliminary checks

RD design is only appropriate if individuals cannot manipulate the values of the assignment variable. This is true

in the context of a diabetes diagnosis given that 1) HbA1c is not directly observable, especially among individuals

who do not have diabetes and have not been directed to monitor their blood glucose levels 2) individuals with HbA1c

around the cut-point may not exhibit any symptoms 3) individuals cannot precisely control their HbA1c around the

cut-point. We follow Lee and Lemieux (2010) and perform checks based on parametric estimation of the observables

and nonparametric estimation of unobservables to verify that there are no non-linearities around the cut-point.

Figure 1 shows the distribution of HbA1c values using kernel density estimation with a bandwidth of 0.2. The

sample size around the cut-point is small indicating that few with HbA1c greater than 7 have not been diagnosed with

diabetes in the study sample. The distribution resembles a normal distribution and there are no discontinuities around

the cut-point. Figure 2 shows education, income, labor force participation, and whether the person has visited a doctor

at baseline. The open circles denote unconditional averages of HbA1c value for a bin and corresponding unconditional

average value for the observable both using a bandwidth of 0.2. The solid curve is a kernel-weighted local polynomial

smoother with a bandwidth of 0.6. The variance in the averaged observable values increases with HbA1c due to

increasingly smaller samples. By visual inspection, there does not appear to be any differences immediately above
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and below the cut-point8.

5. Results

A parametric approach was used as the primary estimation method due to the sparseness of the sample around the

cut-point. Equation 5, changes in exercise regressed on presence of a new diabetes diagnosis, was estimated using

ordinary least squares (OLS) for comparison with the RD results. Equations 6 and 7 were estimated using two-stage

least squares (2SLS) estimation where the predicted probability of a diabetes diagnosis were used to estimate the

effect of a diabetes diagnosis on changes in exercise frequency and intensity. Equation 8, equivalent to equation 5 plus

a function of the running variable, was estimated using OLS. Our preferred specification uses a second order poly-

nomial as the functional form for the running variable in equations 6–8. We also report results using first, third, and

fourth order polynomial functions. For robustness, we estimated the model using additional covariates, nonparametric

estimation, as a falsification test, a cut-point at HbA1c equal to 6. For inference, standard errors were adjusted for

heteroskedasticity using Huber-White estimator.

The main results are shown in Figure 3, which plots the averaged predicted changes in exercise frequency and

intensity in the vertical axis against the average HbA1c values again using a bandwidth of 0.2. Panels 3(a) and 3(b)

show the results of the sharp RD. There is a clear discontinuity in both exercise measures. Below the cut-point, there

is a decline in frequency while above the cut-point, there is no change in frequency. With intensity, there is almost no

change below the cut-point, and an increase above the cut-point. Panels 3(c) and 3(d) show the results of the fuzzy

RD which assumes that the HbA1c readings induced a diabetes diagnosis among those above the cut-point and did not

directly impact exercise behavior. Again, below the cut-point, there is a negative change in frequency and no change

in intensity and above the cut-point, there is an positive change in both measures. The estimated effects in the fuzzy

design are larger than that in the sharp design.

Table 3 reports the OLS, sharp RD, and fuzzy RD results using the entire sample, and also using subsamples

stratified by education, income, and labor force status. The point estimates using the entire sample correspond to the

plots in Figure 3 and show that the estimated effect of the cut-point is statistically significant for exercise intensity

but less precisely estimated for frequency. However, when conditioned on a college degree, there is a statistically

significant increase in exercise frequency. It also appears that the increase in frequency is larger for individuals with

higher income and and those out of the labor force but these estimates are not precise. In contrast to the results for

frequency, the estimated effects for exercise intensity is similar by education, income, and labor force status. These

findings suggest that while all individuals increased exercise intensity, only those with more education or those less

time constraints increased exercise frequency upon receipt of private health information.

8Parametric estimation using baseline observables as outcomes confirms that there is no statistically significant non-linearity at the cut-point.

These results are available upon request.

10



While it does appear that being informed of one’s HbA1c had an effect on exercise behavior, it is still unclear

whether this was a direct response or whether the response was due to being diagnosed by a physician – should the

mechanism be modeled as a sharp or fuzzy RD? If it were the former, then individuals who have not visited a doctor

should respond to the cut-point. If it were the latter, then only those who have visited a doctor should respond to the

cut-point. That is, for the sharp RD, limiting the sample to those who have visited a doctor should not alter the point

estimates and, for the fuzzy RD, limiting the sample to those who have not visited a doctor should yield a null effect.

To test this hypothesis, we estimated a set of models using only the subsample of individuals who visited a doctor9.

These results are reported in Table 5. Conditioning on individuals who have visited a doctor improved the precision of

the point RD estimates for change in exercise frequency. It also increased the magnitude of the point estimates on the

sharp RD. Although not conclusive, these findings are suggestive that the behavioral response is through a diagnosis

delivered by a physician.

5.1. Robustness

Estimating with a parametric approach allowed us to use the entire sample, but it may lead to biased estimates if

the model misspecified. In Table 7, we examine the robustness of the results to changing the functional form of the

running variable as well as inclusion of additional covariates for age, sex, and race/ethnicity. In the sharp RD, the

discontinuity in the assignment variable remains even as we increase the flexible form of the running variable and

include additional covariates does not affect the point estimates. In the fuzzy RD, there is an increase in the point

estimates between linear/quadratic and cubic/quartic which corresponds with a decline in the first stage F-statistic.

This suggests that increasing the flexible form of the running variable causes the assignment variable to lose its

predictive power resulting in a weak instrument problem.

We also performed nonparametric estimation using local linear regression (LLR) following Hahn et al. (2001). In

this approach, only data close to the cut-points are used for in a kernel estimation. The treatment effect for a fuzzy

RD is

β =
y+ − y−

x+ − x−
(9)

where y+ ≡ limz→z+
0

E[yi|zi = z], y− ≡ limz→z−0 E[yi|zi = z], y is the outcome variable (exercise frequency or intensity),

z is the running variable (HbA1c), z0 is the cut-point, and x is the treatment variable (diabetes diagnosis). For a sharp

RD, x+ − x− = 1 such that the treatment effect is

β = y+ − y− (10)

The local linear estimator for y+ is given by â where

(â, b̂) ≡ argmin
a,b

n∑
i=1

(yi − a − b(zi − z0))2 K
( zi − z0

h

)
1(zi > z0) (11)

9The HRS survey question asks how many times the respondent has seen or talked to a medical doctor including emergency room or clinic

visits. Responses were recoded as a dichotomous variable equal to 1 if number of times is 1 or more, and zero otherwise. Since a large portion of

the sample reported visiting a doctor, the subsample of those who did not visit a doctor is too small for analysis.
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where K(·) is a kernel function and h > 0 is the bandwidth. We followed Imbens and Kalyanaraman’s (2011) algorithm

for selecting the optimal bandwidth that balances between bias and precision in a RD design. Estimations using the

optimal bandwidth along with smaller and larger bandwidths were also implemented.

LLR results are reported in Table 7. For the sharp RD, the LLR estimates are comparable to the parametric es-

timates, but estimated imprecisely at the smaller bandwidth. This is expected given the small sample size around

the cut-point. As we increase the bandwidth, the LLR estimates become more precise. For the fuzzy RD, the LLR

estimates are larger than the parametric estimates and very imprecise at the smaller bandwidth. As we increase the

bandwidth, the standard error decreases and the estimates converge towards the parametric results. Taken together,

the nonparametric findings at the larger bandwidths are roughly comparable to the parametric findings using lin-

ear/quadratic specifications.

As a falsification test, we changed the cut-point of the assignment variable to a HbA1c value of 6. Since HbA1c

greater than 6 would not reveal information about health status, there should not be an effect on health behavior.

Equations 6 – 8 were estimated using the new cut-point. Tables 8 and 9 shows that the point estimates are not

statistically significantly different from zero when the cut-point is at 6. This supports the hypothesis that the health

status information is conveyed upon reaching a HbA1c threshold where a diagnosis of diabetes is made by a physician.

We also examine the robustness of the results to trimming the range of HbA1c values. In theory, trimming the

range should not materially affect the results if only the data around the cut-point are used to identify the effect.

However, in the fuzzy RD, the number of observations used to estimate the first stage is already sparse. Therefore,

restricting the upper range of HbA1c values will likely impact the results of the fuzzy RD. Tables 10 and 11 report

the point estimates restricting the sample to HbA1c values within to 5 and 9, inclusive. The sharp RD for the overall

sample show that exercise frequency increased by 1.77 compared to 1.08 for the unrestricted results shown in Tables

3 and 4. Only the estimates for the subsample of individuals in the labor force remain statistically significant. As

expected, restricting the sample leads to a weak instrument problem making fuzzy RD results difficult to interpret.

As a final robustness check, we perform the same estimates using the ordinal values for exercise frequency and

intensity. Exercise frequency responses were recorded on a scale of 1 through 5 where 1 refers to no participation

and 5 is participation every day. The average frequency across light, moderate, and vigorous exercise was used as the

measure of ordinal exercise frequency across all intensities. Exercise intensity responses were recorded on a scale of 0

to 3 where 0 refers to no participation and 3 refers to vigorous exercise participation. The maximum exercise intensity

response was used as the measure of ordinal exercise intensity. A positive change in the ordinal exercise frequency

or intensity reflect an increase in that measure. Table 4 reports the point estimates using ordinal changes in exercise

frequency and intensity as outcomes. The sign and statistical significance of these results are comparable to the main

results reported in Table 3. Therefore, the results are robust to using ordinal or cardinal measures of exercise.
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6. Discussion

Studies have shown that a large part of the effect of education on health is through health behaviors10 (Cutler and

Lleras-Muney, 2006; Cutler et al., 2011). Previous studies that have examined the relationship between education

and health behaviors have demonstrated that well educated individuals are more likely to use seat belts, less likely

to smoke, more likely to exercise (Leigh, 1990; Kenkel, 1991; Sander, 1995; Jurges et al., 2011; de Walque, 2007;

Cutler and Lleras-Muney, 2010). This study provides empirical evidence that education and income are important not

only in disease prevention, as demonstrated in these studies, but also in preventing complications after disease onset.

Diabetes is a chronic disease that if not well managed can lead to disability and death. Physical exercise can help

manage the disease and prevent complications. The purpose of this study was to examine whether individuals who

receive private health information in the form of a diagnosis adjust their exercise frequency or intensity.

The unconditional average change in the exercise frequency and intensity is negative for the overall sample which

shows that exercise declines with age. Among those diagnosed with diabetes, there is an increase in both exercise

frequency and intensity. This supports the hypothesis that those who received private health information modify their

health production.

Results also show that individuals with more education and not in the labor force increased frequency more than

other groups. The highest frequency observed was those with a college degree who exercise almost three more times

per week (Table 5). Individuals out the labor force also increased their exercise frequency, by more than two times per

week. In contrast, individuals in all subgroups by education, income, and education increased exercise intensity by

about 0.7 METs. This corresponds to an upgrade in intensity from light to moderate, or from moderate to vigorous.

Unlike in frequency, the increase in intensity is solely because those who received private health information are more

likely to increase intensity, since there was no change in exercise intensity for the overall sample.

The rising prevalence of type 2 diabetes mellitus (Centers for Disease Control and Prevention, 2011), has raised

the question of whether preventive screening should be expanded beyond the current recommendations of the U.S.

Preventive Services Task Force (USPSTF). Currently, the USPSTF recommends screening for type 2 diabetes only for

asymptomatic adults with high blood pressure. Outside of this group, the USPSTF concluded that there is inadequate

evidence that early diabetes control as a result of screening leads to improve outcomes compared with initiating treat-

ment after clinical diagnosis, particularly for outcomes such as severe visual impairment or end-stage renal disease

which take years to become apparent. However, researchers have argued that expanding the screening to a greater

number of asymptomatic adults can prevent disease onset (Gillies et al., 2008; Kahn et al., 2010; Villarivera et al.,

2012). In our view, one way that expanding screening can improve outcomes is if a diagnosis of pre-diabetes leads

to changes in health behaviors such as exercise, adopting a healthful diet, and stopping smoking. That is, the posi-

tive impact of early screening lies in its potential for altering health behaviors. There is limited empirical evidence

10A few papers countered the general consensus in the literature on education and health (Nayga, 2000; Albouy and Lequien, 2009; Tenn et al.,

2010). We do not focus on the issue of reconciling the literature in this paper but note these studies for completeness.
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regarding behavioral responses to private health information.
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Figure 1: HbA1c values. Dashed curve denotes normal distribution).
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(d) Visited Doctor

Figure 2: Observables at baseline. Open circles are unconditional averages (bandwidth=0.2).
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(d) Fuzzy RD: ∆Exercise Intensity

Figure 3: Changes in exercise frequency and intensity. Open circles and diamonds are unconditional averages.
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(d) Fuzzy RD: ∆Exercise Intensity

Figure 4: HbA1c cut-point at 6: Changes in exercise frequency and intensity. Open circles and diamonds are unconditional averages.
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(d) Race

Figure 5: Changes in exercise frequency. Open and solid circles are unconditional averages.
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(d) Race

Figure 6: Changes in exercise intensity. Open and solid circles are unconditional averages.
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Table 1: The Distribution of HbA1c ≥ 7 by Diabetes Diagnosis

No Diabetes Diabetes

∆Di = 0 ∆Di = 1 Total

HbA1c<7 Zi = 0 8,808 307 9,115

HbA1c≥7 Zi = 1 76 62 138

Total 8,884 369 9,253
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Table 2: Summary statistics.

College Degree Income Labor Force Race

All Low High Low High Out In Black White

Exercise frequency 9.14 8.14 10.29 7.64 10.41 8.36 10.47 7.23 9.42

∆Exercise frequency -1.09 -1.23 -0.92 -1.37 -0.85 -1.28 -0.78 -1.13 -1.16

Exercise intensity 5.02 4.70 5.39 4.51 5.45 4.69 5.57 4.75 5.06

∆Exercise intensity -0.09 -0.14 -0.02 -0.19 0.00 -0.16 0.04 -0.08 -0.09

∆Diabetes 0.04 0.05 0.03 0.04 0.04 0.04 0.03 0.05 0.03

HbA1c 5.60 5.65 5.56 5.66 5.56 5.63 5.55 5.78 5.57

HbA1c≥7 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.01

Age 69.43 70.77 67.93 72.51 66.85 73.73 62.17 68.29 70.08

Female 0.61 0.64 0.58 0.68 0.55 0.64 0.56 0.64 0.61

Black 0.11 0.13 0.09 0.16 0.07 0.11 0.11 1.00 0.00

Hispanic 0.08 0.11 0.04 0.12 0.05 0.07 0.09 0.00 0.00

Married 0.66 0.61 0.71 0.43 0.85 0.60 0.75 0.47 0.68

High School 0.36 0.68 0.00 0.41 0.32 0.39 0.31 0.31 0.38

College 0.47 0.00 1.00 0.29 0.61 0.40 0.58 0.36 0.50

Labor force 0.37 0.29 0.47 0.20 0.52 0.00 1.00 0.39 0.36

Income 65593 43641 90737 19949 104066 48009 95307 41263 71748

Weekly wage 869 562 1083 389 1017 . 869 681 914

Observations 9253 4925 4290 4232 5021 5813 3440 1022 7318

Exercise frequency is the average frequency across light, moderate, and vigorous exercise measured as times per month.

Exercise intensity is the maximum intensity among light, moderate, and vigorous exercise measured as metabolic equivalents (MET).
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Table 3: By education, income, labor force status: Estimated treatment effects on changes in exercise frequency and intensity.

College Degree Income Labor Force

(1) (2) (3) (4) (5) (6) (7)

All No Yes Low High Out In

∆Exercise Frequency

OLS 0.0746 0.211 -0.0885 0.487 -0.291 0.254 -0.218

(0.329) (0.430) (0.513) (0.484) (0.446) (0.401) (0.579)

Sharp RD 1.081 0.156 2.463∗∗ 0.651 1.280 1.372 0.121

(0.736) (0.990) (0.991) (1.044) (1.034) (0.860) (1.449)

Fuzzy RD 4.655 0.681 10.55∗ 2.688 5.749 6.869 0.397

(3.331) (4.303) (5.803) (4.397) (4.981) (4.745) (4.760)

∆Exercise Intensity

OLS 0.137 0.173 0.0986 0.158 0.134 0.0616 0.336∗

(0.101) (0.128) (0.167) (0.145) (0.142) (0.124) (0.172)

Sharp RD 0.596∗∗∗ 0.544∗∗ 0.650∗ 0.602∗∗ 0.538 0.478∗ 0.859∗∗

(0.214) (0.275) (0.345) (0.261) (0.351) (0.252) (0.410)

Fuzzy RD 2.569∗∗ 2.365∗ 2.785∗ 2.486∗ 2.416 2.395∗ 2.826∗∗

(1.023) (1.286) (1.691) (1.342) (1.543) (1.439) (1.331)

Observations 9253 4925 4290 4232 5021 5813 3440

F-stat 19.45 11.93 7.364 10.67 8.648 10.67 9.054

P-value (Endog) 0.00816 0.0603 0.0733 0.0356 0.137 0.0612 0.0610

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 4: By age, gender, race: Estimated treatment effects on changes in exercise frequency and intensity.

Age Gender Race

(1) (2) (3) (4) (5) (6) (7)

All Less than 65 65 and above Male Female Black White

∆Exercise Frequency

OLS 0.0746 -0.591 0.405 0.0101 0.136 0.229 0.0513

(0.329) (0.548) (0.409) (0.486) (0.449) (0.939) (0.384)

Sharp RD 1.081 0.770 1.133 1.503 0.710 2.179 1.286

(0.736) (1.133) (0.954) (1.221) (0.938) (1.806) (0.936)

Fuzzy RD 4.655 3.219 4.974 10.79 2.441 20.37 4.878

(3.331) (5.097) (4.285) (10.51) (3.294) (25.56) (3.791)

∆Exercise Intensity

OLS 0.137 0.0698 0.176 0.218 0.0765 -0.180 0.0969

(0.101) (0.176) (0.124) (0.146) (0.141) (0.317) (0.116)

Sharp RD 0.596∗∗∗ 0.485 0.622∗∗ 0.482 0.696∗∗ -0.0194 0.809∗∗∗

(0.214) (0.328) (0.269) (0.338) (0.276) (0.499) (0.300)

Fuzzy RD 2.569∗∗ 2.031 2.729∗∗ 3.459 2.392∗∗ -0.181 3.068∗∗

(1.023) (1.420) (1.334) (2.936) (1.047) (4.663) (1.260)

Observations 9253 3157 6096 3595 5658 1022 7318

F-stat 19.45 5.685 13.17 2.881 17.29 0.795 14.98

P-value (Endog) 0.00816 0.153 0.0290 0.184 0.0135 0.998 0.00958

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 5: Sample that visited doctor: Estimated treatment effects on changes in exercise frequency and intensity.

College Degree Income Labor Force

(1) (2) (3) (4) (5) (6) (7)

All No Yes Low High Out In

∆Exercise Frequency

OLS 0.000378 0.0768 -0.0698 0.371 -0.304 0.273 -0.489

(0.338) (0.447) (0.516) (0.507) (0.451) (0.411) (0.595)

Sharp RD 1.717∗∗ 0.784 2.956∗∗∗ 1.471 1.645 2.219∗∗ 0.123

(0.786) (1.112) (0.961) (1.119) (1.100) (0.901) (1.596)

Fuzzy RD 6.997∗ 3.016 13.61∗∗ 6.111 6.543 10.69∗ 0.371

(3.590) (4.360) (6.772) (5.131) (4.825) (5.510) (4.815)

∆Exercise Intensity

OLS 0.135 0.142 0.145 0.152 0.136 0.0982 0.252

(0.102) (0.128) (0.168) (0.145) (0.143) (0.124) (0.175)

Sharp RD 0.701∗∗∗ 0.668∗∗ 0.720∗∗ 0.833∗∗∗ 0.507 0.603∗∗ 0.879∗

(0.234) (0.318) (0.339) (0.285) (0.376) (0.276) (0.452)

Fuzzy RD 2.857∗∗∗ 2.570∗ 3.317∗ 3.462∗∗ 2.017 2.902∗ 2.657∗∗

(1.060) (1.316) (1.815) (1.670) (1.414) (1.553) (1.300)

Observations 8548 4447 4067 3798 4750 5441 3107

F-stat 18.90 12.50 6.291 8.705 10.08 9.938 9.570

P-value (Endog) 0.00476 0.0452 0.0485 0.00848 0.194 0.0344 0.0793

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 6: Sample that visited doctor: Estimated treatment effects on changes in exercise frequency and intensity.

Age Gender Race

(1) (2) (3) (4) (5) (6) (7)

All Less than 65 65 and over Male Female Black White

∆Exercise Frequency

OLS 0.000378 -0.791 0.381 -0.170 0.151 0.0920 0.0175

(0.338) (0.566) (0.420) (0.498) (0.462) (1.000) (0.386)

Sharp RD 1.717∗∗ 0.796 1.900∗ 2.262∗ 1.265 3.266∗ 1.766∗

(0.786) (1.276) (1.002) (1.340) (0.988) (1.912) (0.972)

Fuzzy RD 6.997∗ 3.025 8.046∗ 14.27 4.169 21.75 6.506

(3.590) (5.199) (4.681) (11.44) (3.438) (21.08) (3.969)

∆Exercise Intensity

OLS 0.135 0.0157 0.195 0.215 0.0780 -0.239 0.122

(0.102) (0.180) (0.124) (0.145) (0.144) (0.319) (0.116)

Sharp RD 0.701∗∗∗ 0.490 0.754∗∗∗ 0.455 0.888∗∗∗ -0.0196 0.876∗∗∗

(0.234) (0.378) (0.290) (0.377) (0.296) (0.559) (0.313)

Fuzzy RD 2.857∗∗∗ 1.863 3.192∗∗ 2.872 2.927∗∗∗ -0.131 3.226∗∗

(1.060) (1.393) (1.411) (2.655) (1.099) (3.711) (1.253)

Observations 8548 2828 5720 3256 5292 933 6893

F-stat 18.90 5.945 12.41 3.292 16.26 1.314 14.58

P-value (Endog) 0.00476 0.205 0.0150 0.272 0.00390 0.978 0.00821

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 7: Alternate specifications: Estimated treatment effects on changes in exercise frequency and intensity.

(1) (2) (3) (4) (5) (6)

∆Exercise Frequency ∆Exercise Intensity

Parametric Sharp RD Fuzzy RD F-stat Sharp RD Fuzzy RD F-stat

Linear 1.10∗ 4.60 27.309 0.62∗∗∗ 2.58∗∗∗ 27.309

(0.656) (2.863) (0.200) (0.922)

Quadratic 1.08 4.66 19.452 0.60∗∗∗ 2.57∗∗ 19.452

(0.736) (3.331) (0.214) (1.023)

Cubic 2.01∗∗ 15.27 4.639 0.57∗∗ 4.33 4.639

(0.873) (9.388) (0.268) (2.654)

Quartic 2.02∗∗ 14.25∗ 5.347 0.57∗∗ 4.03∗ 5.347

(0.870) (8.415) (0.267) (2.388)

Linear + covariates 0.87 3.72 26.208 0.53∗∗∗ 2.28∗∗ 26.208

(0.658) (2.885) (0.200) (0.920)

Quadratic + covariates 1.01 4.38 19.186 0.56∗∗∗ 2.45∗∗ 19.186

(0.738) (3.356) (0.214) (1.024)

Cubic + covariates 1.88∗∗ 14.43 4.547 0.52∗ 4.03 4.547

(0.872) (9.200) (0.267) (2.602)

Quartic + covariates 1.91∗∗ 13.63 5.241 0.53∗∗ 3.78 5.241

(0.869) (8.326) (0.267) (2.361)

Nonparametric Bandwidth Bandwidth

LLR (larger) 1.57∗ 6.36∗ 5.33 0.64∗∗ 2.74∗∗ 3.94

(0.808) (3.528) (0.266) (1.248)

LLR (optimal) 1.57∗ 8.51 2.66 0.58∗ 4.09 1.97

(0.937) (5.851) (0.333) (2.880)

LLR (smaller) 0.90 13.63 1.33 0.72 25.00 0.99

(1.209) (24.839) (0.447) (83.825)

Observations 9253 9253 9253 9253

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Additional covariates are for age, age-squared, and indicators for wave, female, black, and Hispanic.

Optimal bandwidth in LLR refers to Imbens and Kalyanaraman (2011).
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Table 8: HbA1c cut-point at 6: Estimated treatment effects on changes in exercise frequency and intensity.

College Degree Income Labor Force

(1) (2) (3) (4) (5) (6) (7)

All No Yes Low High Out In

∆Exercise Frequency

Sharp RD -0.0267 -0.0992 0.0191 -0.0197 -0.00360 -0.438 0.671

(0.245) (0.334) (0.364) (0.355) (0.341) (0.305) (0.414)

Fuzzy RD -1.214 -4.011 1.257 -0.701 -0.233 -17.37 45.35

(11.15) (13.61) (23.93) (12.64) (22.09) (14.02) (51.59)

∆Exercise Intensity

Sharp RD 0.0680 0.0832 0.0414 0.176∗ -0.0247 0.0888 0.0132

(0.0690) (0.0942) (0.102) (0.101) (0.0956) (0.0872) (0.113)

Fuzzy RD 3.095 3.366 2.727 6.281 -1.601 3.517 0.895

(3.341) (4.119) (6.980) (4.485) (6.307) (3.748) (7.664)

Observations 9253 4925 4290 4232 5021 5813 3440

F-stat 6.877 4.369 1.678 5.216 1.823 5.795 1.103

P-value (Endog) 0.341 0.394 0.693 0.0855 0.786 0.310 0.940

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 9: HbA1c cut-point at 6: Estimated treatment effects on changes in exercise frequency and intensity.

Age Gender Race

(1) (2) (3) (4) (5) (6) (7)

All Less than 65 65 and over Male Female Black White

∆Exercise Frequency

Sharp RD -0.0267 0.406 -0.249 0.382 -0.269 -0.0111 -0.154

(0.245) (0.437) (0.297) (0.409) (0.306) (0.628) (0.286)

Fuzzy RD -1.214 10.59 -17.01 14.81 -14.07 -0.507 -10.09

(11.15) (12.39) (23.30) (18.17) (17.62) (28.59) (19.66)

∆Exercise Intensity

Sharp RD 0.0680 0.113 0.0467 0.0272 0.0957 0.400∗∗ -0.0145

(0.0690) (0.122) (0.0845) (0.114) (0.0865) (0.193) (0.0779)

Fuzzy RD 3.095 2.950 3.185 1.057 5.003 18.28 -0.951

(3.341) (3.391) (6.120) (4.456) (5.231) (22.24) (5.136)

Observations 9253 3157 6096 3595 5658 1022 7318

F-stat 6.877 5.552 2.189 3.034 3.591 0.814 2.797

P-value (Endog) 0.341 0.357 0.596 0.846 0.272 0.0377 0.842

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 10: Restrict sample to 5≤ HbA1c ≤9: Estimated treatment effects on changes in exercise frequency and intensity.

College Degree Income Labor Force

(1) (2) (3) (4) (5) (6) (7)

All No Yes Low High Out In

∆Exercise Frequency

OLS -0.0360 -0.00731 -0.0484 0.325 -0.356 0.0849 -0.229

(0.347) (0.446) (0.553) (0.500) (0.480) (0.419) (0.620)

Sharp RD 1.770∗ 1.949 1.918 2.149 1.109 2.735∗∗ -0.358

(1.005) (1.375) (1.427) (1.355) (1.499) (1.191) (1.953)

Fuzzy RD 34.01 37.65 40.59 24.32 314.4 196.5 -2.462

(49.14) (68.56) (104.0) (29.24) (10042.7) (1208.5) (14.12)

∆Exercise Intensity

OLS 0.117 0.129 0.113 0.113 0.139 0.0329 0.333∗

(0.106) (0.134) (0.176) (0.152) (0.148) (0.129) (0.183)

Sharp RD 0.460 0.514 0.410 0.328 0.547 0.632∗ 0.353

(0.317) (0.437) (0.453) (0.382) (0.526) (0.368) (0.624)

Fuzzy RD 8.845 9.932 8.671 3.716 155.1 45.42 2.431

(12.42) (17.80) (21.91) (5.810) (4920.2) (276.2) (4.094)

Observations 8272 4448 3794 3862 4410 5282 2990

F-stat 0.534 0.325 0.168 0.900 0.000971 0.0265 1.098

P-value (Endog) 0.154 0.250 0.373 0.404 0.306 0.100 0.605

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.

30



Table 11: Restrict sample to 5≤ HbA1c ≤9: Estimated treatment effects on changes in exercise frequency and intensity.

Age Gender Race

(1) (2) (3) (4) (5) (6) (7)

All Less than 65 65 and over Male Female Black White

∆Exercise Frequency

OLS -0.0360 -0.683 0.261 -0.161 0.0756 0.291 -0.0445

(0.347) (0.609) (0.421) (0.519) (0.466) (0.990) (0.409)

Sharp RD 1.770∗ 0.691 2.150∗ 0.724 2.385∗∗ 3.920∗ 1.539

(1.005) (1.625) (1.232) (1.862) (1.133) (2.312) (1.289)

Fuzzy RD 34.01 -28.60 26.11 -9.930 19.18 24.17 -76.54

(49.14) (166.4) (29.42) (31.70) (15.98) (21.42) (348.5)

∆Exercise Intensity

OLS 0.117 0.0485 0.156 0.249 0.0173 -0.221 0.0837

(0.106) (0.191) (0.128) (0.152) (0.149) (0.329) (0.122)

Sharp RD 0.460 0.241 0.542 -0.0940 0.790∗∗ 0.471 0.627

(0.317) (0.453) (0.400) (0.504) (0.399) (0.583) (0.439)

Fuzzy RD 8.845 -9.975 6.581 1.290 6.352 2.903 -31.17

(12.42) (60.59) (7.472) (6.897) (4.916) (4.415) (143.4)

Observations 8272 2723 5549 3165 5107 941 6487

F-stat 0.534 0.0337 0.949 0.359 1.995 1.478 0.0517

P-value (Endog) 0.154 0.598 0.187 0.869 0.0547 0.408 0.162

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 12: By education, income, labor force status: Estimated treatment effects on changes in ordinal exercise frequency and intensity.

College Degree Income Labor Force

(1) (2) (3) (4) (5) (6) (7)

All No Yes Low High Out In

∆Exercise Frequency

OLS 0.0179 0.0245 0.0186 0.0570 -0.0111 0.0342 0.00164

(0.0459) (0.0607) (0.0694) (0.0696) (0.0596) (0.0569) (0.0768)

Sharp RD 0.205∗∗ 0.106 0.343∗∗∗ 0.166 0.209 0.220∗∗ 0.130

(0.0978) (0.132) (0.131) (0.139) (0.138) (0.111) (0.199)

Fuzzy RD 0.881∗∗ 0.463 1.467∗ 0.686 0.937 1.100∗ 0.429

(0.449) (0.574) (0.753) (0.610) (0.642) (0.629) (0.645)

∆Exercise Intensity

OLS 0.0512 0.0682 0.0347 0.0571 0.0558 0.0263 0.125∗

(0.0458) (0.0603) (0.0704) (0.0673) (0.0620) (0.0582) (0.0702)

Sharp RD 0.273∗∗∗ 0.242∗ 0.311∗∗ 0.271∗∗ 0.246 0.182 0.471∗∗

(0.103) (0.135) (0.156) (0.134) (0.158) (0.120) (0.200)

Fuzzy RD 1.177∗∗ 1.053∗ 1.334∗ 1.118∗ 1.106 0.912 1.548∗∗

(0.479) (0.605) (0.797) (0.652) (0.685) (0.639) (0.696)

Observations 9253 4925 4290 4232 5021 5813 3440

F-stat 19.45 11.93 7.364 10.67 8.648 10.67 9.054

P-value (Endog) 0.0106 0.0849 0.0578 0.0574 0.131 0.128 0.0327

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.
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Table 13: By age, gender, race: Estimated treatment effects on changes in ordinal exercise frequency and intensity.

Age Gender Race

(1) (2) (3) (4) (5) (6) (7)

All Less than 65 65 and above Male Female Black White

∆Exercise Frequency

OLS 0.0179 -0.0796 0.0674 0.0406 0.000801 -0.0565 0.0190

(0.0459) (0.0747) (0.0575) (0.0677) (0.0624) (0.140) (0.0521)

Sharp RD 0.205∗∗ 0.130 0.221∗ 0.199 0.210∗ 0.202 0.248∗

(0.0978) (0.140) (0.125) (0.165) (0.124) (0.214) (0.134)

Fuzzy RD 0.881∗∗ 0.543 0.968∗ 1.427 0.722 1.887 0.941∗

(0.449) (0.614) (0.579) (1.321) (0.460) (2.607) (0.545)

∆Exercise Intensity

OLS 0.0512 0.0213 0.0693 0.106∗ 0.00610 -0.141 0.0492

(0.0458) (0.0748) (0.0573) (0.0637) (0.0656) (0.145) (0.0518)

Sharp RD 0.273∗∗∗ 0.259 0.269∗∗ 0.242 0.305∗∗ -0.0323 0.362∗∗

(0.103) (0.159) (0.128) (0.162) (0.132) (0.197) (0.150)

Fuzzy RD 1.177∗∗ 1.083 1.178∗ 1.739 1.048∗∗ -0.302 1.371∗∗

(0.479) (0.734) (0.605) (1.403) (0.489) (1.862) (0.608)

Observations 9253 3157 6096 3595 5658 1022 7318

F-stat 19.45 5.685 13.17 2.881 17.29 0.795 14.98

P-value (Endog) 0.0106 0.116 0.0457 0.160 0.0209 0.929 0.0206

Frequency is measured as times per month. Intensity is measured as metabolic equivalents (MET).

Quadratic functional form for HbA1c values used in RD specifications.

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Weak instrument test statistic is robust Kleibergen-Paap Wald rk F statistic.

Endogeneity test H0: ∆Diabetes is exogenous.

33


