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Abstract

In the 2009 Copenhagen Accord, China agreed to slash its carbon intensity (carbon dioxide
emissions/GDP) by 40% to 45% from the 2005 level by 2020. We assess whether China can
achieve the target under the business-as-usual scenario by forecasting its emissions from en-
ergy consumption. Our preferred model shows that China’s carbon intensity is projected to
decline by only 33%. The results imply that China needs additional mitigation effort to comply
with the Copenhagen commitment. In addition, China’s baseline emissions are projected to
increase by 56% in the next decade (2011-2020). The emission growth is more than triple the
emission reductions that the European Union and the United States have committed to in the
same period.
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1 Introduction

China faces two crucial challenges in tackling climate change. On the one hand, China is one of the

most vulnerable countries to the risks of climate change (IPCC, 2007). On the other hand, China

is the world’s largest emitter of carbon dioxide (CO2) and it will continue to be the major driving

force of global emissions in the future (IEA, 2012; EIA, 2013). In response to the domestic and

international pressures on climate change, China has committed to a 40% to 45% reduction target

in carbon intensity, defined as CO2 emissions per unit of GDP, by 2020 relative to its 2005 level.

The pledge has been incorporated into the 2009 Copenhagen Accord.1 Although the Copenhagen

commitment is not legally binding like the Kyoto Protocol, China has started a series of measures

to limit its carbon dioxide emissions. In particular, the Chinese government set targets to reduce

both carbon intensity and energy intensity in its 12th Five-Year Plan (FYP 2011-2015).

Intensity-based targets index emissions with economic activities (Newell and Pizer, 2008). An

appropriately designed intensity target can decelerate, stop, or even reverse total emission growth.

Compared with absolute emission limits, intensity targets can better accommodate growth needs

without placing caps on economic activities (Pizer, 2005). China’s carbon intensity has been de-

clining rapidly over decades, which explains why it favors an intensity target. The central policy

question is whether China’s Copenhagen commitment can accelerate this natural decline (Qiu,

2009). If the intensity target is too loose, China can achieve its target under the business-as-usual

(BAU) scenario. Otherwise, compliance requires additional mitigation effort.

In order to determine whether China’s Copenhagen commitment is additional,2 we need to

forecast its emission trajectory under the baseline scenario. The knowledge of an emission base-

line is essential to assess the additional mitigation effort required for compliance. Furthermore,

emission forecasting also provides information necessary to the formation and implementation of

a meaningful international climate treaty. China’s engagement in climate mitigation hinges on its

expected emission trajectory. Over-estimated BAU emissions will exaggerate the abatement tar-

get and discourage China from joining in a climate treaty. On the contrary, if BAU emissions are

1Source: https://unfccc.int/meetings/copenhagen_dec_2009/items/5262.php.
2In the context of climate change, additionality is referred to as the mitigation effort that would not have occurred in

the absence of an climate program. Additionality is a major concern in the design of the baseline-and-credit program
such as the Clean Development Mechanism, a project-based carbon market created by the Kyoto Protocol (Zhang and
Wang, 2011).

1

https://unfccc.int/meetings/copenhagen_dec_2009/items/5262.php


under-estimated, China might commit to an overly ambitious target and its compliance will be in

question.

China’s compliance with the Copenhagen commitment hinges on its provinces’ performance

on carbon intensity. To the best of our knowledge, there has not been an assessment whether

Chinese provinces can achieve their carbon intensity targets. To close the gap in the literature, we

use reduced-form econometric models to forecast emission intensities at the provincial level. The

advantages of the reduced-form approach includes a smaller data requirement, fewer structural

assumptions, transparent comparisons between models, and measurable uncertainties.

Our paper is motivated not only by the emerging policy question whether China’s carbon in-

tensity target is binding, but also by the growing economics literature on carbon dioxide emission

forecasting (Holtz-Eakin and Selden, 1995; Schmalensee, Stoker, and Judson, 1998; Auffhammer

and Carson, 2008; Auffhammer and Steinhauser, 2012). In particular, our paper extends the in-

fluential forecasting analysis of China’s CO2 emissions by Auffhammer and Carson (2008). We

contribute to the existing literature by a novel synthesis of the recent development in spatial

econometrics, data generation by the engineering approach, and setting policy scenarios from

government documents. First, we forecast provincial emissions by exploiting a large set of spa-

tial econometric models to explicitly account for spatial-temporal dynamics of CO2 emissions.

Including spatial spillover effects significantly improves forecasting performance especially for a

long horizon.

Second, due to the lack of official CO2 emissions data at the provincial level, we calculate the

emissions from the detailed energy consumption data that include 17 types of fossil fuels. Fol-

lowing the guidelines by the Intergovernmental Panel on Climate Change (IPCC, 2006), we have

constructed a balanced panel data set of provincial CO2 emissions from 1985 to 2011. A forecast

for a large area such as a currency union or country may be constructed by first obtaining esti-

mates for units at a spatially disaggregated level and then aggregating them to obtain an estimate

of the desired total quantity often results in a higher quality forecast than direct estimation of the

desired total (Marcellino, Stock, and Watson, 2003; Carson, Cenesizoglu, and Parker, 2011). This

is particular true when the units at the disaggregated level exhibit some parameter heterogene-

ity. The use of provincial information also allows for emission forecasting for each individual

province. Furthermore, the data allow us to forecast energy consumption directly, which is used
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as a robustness check.

Third, we utilize a rich set of policy information in the national and provincial 12th Five-Year

Plans (FYPs) for emission forecasting. Provincial socioeconomic planning is closely linked to re-

gional economic and energy consumption trajectories (Huang and He, 2011; Liu et al., 2013). Un-

derstanding the governmental development plans enables us to construct realistic BAU scenarios

instead of using arbitrary assumptions.

Using the above empirical strategy, we forecast China’s carbon intensity in 2020 to be 32.8% be-

low the 2005 level. It implies that China would be short of the 40%-45% Copenhagen target under

the BAU scenario. Most provinces are unlikely to achieve the intensity targets without additional

mitigation efforts. Only five provinces are likely to meet their targets in the 12th FYPs and only

nine provinces are likely to accomplish the Copenhagen commitment. In particular, the less devel-

oped central and western provinces will miss the targets significantly, partly reflecting their fast

paced industrialization. Nonetheless, caution is needed to interpret the provincial-level results

because the point forecasts of some provinces are associated with relatively large uncertainties.

Furthermore, we forecast China’s baseline CO2 emissions to increase by 56.2% from 2011 to

2020. The emission increase is about 3 to 3.7 times of the total committed emission reductions

from the European Union and the United States in the same period. In comparison, both the In-

ternational Energy Agency (IEA) and the U.S. Energy Information Administration (EIA) reported

much lower emission forecasts. The emission growth rate predicted by IEA (2012) is only about

half of what we predict, despite its relatively optimistic assumption of GDP growth. IEA assumes

that China can reduce carbon intensity by 17% during the 12th FYP period while our forecast 8.8%

is only about half of that estimate. Although EIA (2013)’s forecast is the highest among the existing

studies, it is still 2.1 billion metric tons lower than our forecast for 2020. This gap is about twice

of Japan’s energy-related CO2 emissions in 2011. EIA forecasts the annual emission growth rate

between 2010 and 2020 to be only 3.9%. However, the actual annual growth rate in 2011 was 9.0%.

Therefore, both IEA and EIA appear to be too optimistic about China’s future emission growth.

The remainder of the paper is arranged as follows. Section 2 illustrates the background. Section

3 describes the data, variables, and scenario. Section 4 explains the model specification, estimation,

forecasting, and selection. Section 5 presents the estimation results and section 6 the forecast

results. Section 7 gives further discussion, and section 8 concludes.
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2 Background

China’s soaring greenhouse gas (GHG) emissions over the last decade have contributed to 65%

of the world’s emission growth. As early as 2007, China overtook the United States to become

the world’s largest emitter. In 2010, its carbon dioxide (CO2) emissions from burning fossil fuels

accounted for about a quarter of global emissions. China’s once low per-capita emissions have

exceeded the average European levels recently.3 With further economic development that heavily

relies on energy use, China’s CO2 emissions will keep rising at a fast pace. The International En-

ergy Agency (IEA) and the U.S. Energy Information Administration (EIA) predict that China will

continue to be the fastest-growing major emitter from 2010 to 2020, contributing to between 49%

and 69% of the global CO2 emissions increase (IEA, 2012; EIA, 2013). Even worse, the emission

increase is associated with the expansion of coal-fired power plants, which tend to be long lived.

Without significant shifts in the current energy consumption pattern, China can be locked in to

carbon-intensive infrastructure for decades.

To address the dual challenges of climate change risks and international pressures on mitiga-

tion, China has made energy conservation and low-carbon development key national strategies.

Most notably, its 11th Five Year Plan (2006-2010) set a binding target of 20% reduction in energy

intensity. Since then, energy intensity has been steadily declining, reversing the rising trend in

the early 2000s. In the 12th Five Year Plan (2011-2015), China sets a 17% carbon intensity reduction

target in addition to a 16% energy intensity reduction target to ensure China’s compliance with the

Copenhagen commitment to reduce carbon intensity by 40%-45% below the 2005 level by 2020.

Provinces are required to achieve differentiated targets in both energy and carbon intensities.

In the 12th Five Year Plan, the carbon intensity reduction target varies from 10% to 19% based on

the stage of economic development for each province and the negotiations between the central

and provincial governments.4 Because the regional allocation of reduction targets is not tied to

the baseline emission scenarios, the mitigation burden may be neither efficiently nor equitably

distributed across provinces. Some provinces are likely to achieve the targets in the BAU scenario

while other provinces will need significant mitigation efforts.

Nearly half of China’s CO2 emissions are from the “six most energy-intensive industries” in the

3All numbers are based on the statistics from the U.S. Energy Information Administration.
4Issued by the State Council of China, available at: www.gov.cn/zwgk/2012-01/13/content 2043645.htm.
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secondary industry.5 These industries were extensively regulated in order to achieve the energy

intensity target in the 11th FYP. The regulatory policies include shutdown of inefficient small plants

and even blackouts to limit electricity usage . With the ending of the 11th FYP, however, the output

value share of the “six most energy-intensive industries” in the secondary industry rebounded by

1% from 2010 to 2011, almost offsetting the decline in the 11th FYP. As a result, the annual rate of

decline in national carbon intensity slowed down from -4.1% in 2010 to -0.4% in 2011.6 Similarly,

for provinces, the declining trend of carbon intensities before 2010 slowed down or even reversed

in 2011 (Figure 1). In particular, the output value share of the six most energy intensive industries

in the secondary industry increased the most in Qinghai, Hainan, and Ningxia provinces (4.1%,

3.2%, and 2.3%) from 2010 to 2011. Correspondingly, their carbon intensities increased by 24.1%,

9.2%, and 6.3% respectively. Therefore, strong and continuous growth of energy intensive sectors

will serve as a serious impediment to curbing China’s CO2 emissions.

Although China’s central government is promoting the so-called low-carbon development pol-

icy, it is facing great challenges from the sub-national level. Many provincial governments still put

the highest priority on GDP growth and lack incentives to control the fast expansion of energy in-

tensive sectors. To boost economic growth, some less developed inland provinces even provide

preferential policies to attract pollution- and energy-intensive industries transferred from devel-

oped coastal provinces. Under the national strategy to stimulate economic growth in central and

western China, these provinces may become the carbon hotspots of the future.7

3 Data and Variables

3.1 Data

We use provincial data to forecast China’s CO2 emissions, not only because using disaggregated

data can increase forecasting efficiency (Marcellino, Stock, and Watson, 2003), but also because

5The six most energy-intensive industries are: (1) processing of petroleum, coking, processing of nuclear fuel, (2)
manufacture of raw chemical materials and chemical products, (3) manufacture of non-metallic mineral products, (4)
smelting and pressing of ferrous metals, (5) smelting and pressing of non-ferrous metals, and (6) production and
supply of electric power and heat power. This definition adapts from China’s statistic bulletin of 2013, available at:
www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20130221 402874525.htm.

6This is calculated from provincial statistics, which means the national GDP and emissions are computed as the sum
of provincial figures. If using national statistics, the two numbers are -5.5% and -0.2%.

7China launched the ”Western Development Strategy” and ”Rise of Central China Plan” to accelerate the develop-
ment of central and western China.
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sub-national emission forecasting is relatively less studied. Since China’s CO2 emission inventory

for provinces is not available, we calculate carbon emissions from energy consumption and car-

bon emission factors following the IPCC guidelines (IPCC, 2006). In calculating emissions at the

sub-national level, inter-regional power transmission leads to the question whether the emissions

associated with the transmitted power should be ascribed to production or consumption side. No

official guidelines are available on this issue. To avoid inconsistency between consumption level

and emissions, we ascribe the CO2 emitted from the transmitted power across provinces to the

consumption side (Huang and He, 2011; Liu et al., 2013).

The provincial CO2 emissions data used in this paper cover the years from 1985 to 2011. The

data are computed from two sources. The first source is the China Energy Statistical Yearbooks that

provide energy balance sheets for provinces in 1985 and from 1995 to 2011. The energy balance

sheets contain detailed consumption data on 17 types of fossil fuels, heat, and electricity, as well

as the energy mix for generating heat and electricity in each province. These statistics enable us

to compute the consumption side CO2 emissions for provinces (see Appendix A for more details).

However, the China Energy Statistical Yearbooks do not publish energy balance sheets for provinces

from 1986 to 1994. In addition, the energy balance sheets for Ningxia from 2000 to 2002 and for

Hainan in 1985 and 2002 are missing. The energy balance sheets for Sichuan province in 1985,

1995, and 1996 cannot be used, because Chongqing was still a part of Sichuan then and became a

municipal city since 1997.

We use provincial statistical yearbooks as a supplemental data source. The provincial statisti-

cal yearbooks provide annual energy consumption data by types: coal, coke, crude oil, gasoline,

kerosene, diesel oil, natural gas, heat, electricity, etc. To compute CO2 emissions from energy con-

sumption, we need to compute CO2 emission factors per unit heat and electricity for provinces in

1985 and from 1995 to 2011, whenever the provincial energy balance sheets are available. To deal

with the challenge of missing data, we interpolate the missing emission factors using the average

emission factors in the year just before and after the missing period (see Appendix A for more

details). By this means, we can impute most of the missing data in the first data source. However,

ten data points are still missing because the corresponding final energy consumption data by fuel

type are not provided in the provincial statistical yearbooks.8 The ten missing data points are

8The ten data points are Shanghai from 1986 to 1988, Anhui from 1986 to 1989, Hunan in 1986, and Guizhou from
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imputed using cubic spline interpolation. Finally, we have a balanced panel data set of provincial

CO2 emissions from 1985 to 2011.

Since we have to make assumptions in calculating provincial emissions whenever the energy

balance sheets are not available, we conduct a robustness check by using the provincial energy

consumption data from 1985 to 2011 to forecast energy consumption directly. The China Energy

Statistical Yearbooks provide aggregate energy consumption data at the provincial level from 1985

to 1990 and 1995 to 2011. For the year from 1991 to 1994, the aggregate energy consumption data

of provinces are obtained from the provincial statistical yearbooks. Therefore we have a balanced

panel data set of provincial energy consumption from 1985 to 2011.

3.2 Key Variables

Most literature uses per-capita emissions (emissions/population) as the dependent variable (see

Holtz-Eakin and Selden (1995) and Schmalensee, Stoker, and Judson (1998)). The intensity form

dependent variable (emissions/GDP) is also widely used in the literature on economy-emission-

energy nexus (Cole, Elliott, and Shimamoto, 2005; Fisher-Vanden et al., 2004). Considering that

China’s national and provincial emission targets are intensity based, we use carbon intensity as

the dependent variable in forecasting.

Many variables can be used to explain the relationship between economy and emissions. We

use per-capita GDP (Inc) as a general indicator of economic development status. GDP is in 2005

constant values. We also include additional variables to increase explanatory power for the emis-

sion dynamics. The ratio of the secondary industry in GDP (Ind) is used to account for the struc-

tural effect. Rapid urbanization in China also greatly changes the energy use in production and

consumption (Dhakal, 2009). Because the data on urban population are not available for the whole

period from 1985 to 2011, we use population density (Popden) as a proxy. The rapid increase of

car ownership in China since 2000 has contributed to the fast growing transport energy demand

(He et al., 2005). We use passenger cars per capita (Car) to capture the effect of car ownership on

China’s energy consumption and emissions. The data on these variables are compiled from vari-

ous editions of the China Statistical Yearbooks from 1986 to 2012 and the China Compendium of Statis-

tics 1949-2008. Due to data availability, 30 provinces and municipalities except Tibet are included

1986 to 1987.
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in our study. Because Tibet only accounts for 0.05% of total national electricity consumption and

0.1% of national GDP, we expect the exclusion of Tibet will not cause a major problem.

4 Model

Two strains of literature exist for emission modeling and forecasting. The first category employs

calibrated structural models to simulate future emissions. Examples include bottom-up models

in the engineering literature (IPCC, 2000; EIA, 2013) and computable general equilibrium (CGE)

models in the economics literature (Jorgenson and Wilcoxen, 1993; Garbaccio, Ho, and Jorgen-

son, 1999).9 However, the performance of a structural model depends on the credibility of the

structural assumptions and the availability of a large set of parameters estimated in model or

taken from elsewhere. It has been argued by some researchers that the IPCC might have under-

estimated anthropogenic emissions by using overly optimistic assumptions in technology (Pielke,

Wigley, and Green, 2008).10

The second category is the reduced-form econometric modeling, which requires less data and

makes fewer structural assumptions. Formal model comparison in a statistical sense is possible for

the reduced-form approach because longer time-series data can be used. In addition, the uncer-

tainties for the point estimates of parameters can be measured through the regression on historical

data. In contrast, parameter uncertainty is difficult to assess in the structural modeling approach,

in which parameters are fixed by calibration or subjective judgment (Manne and Richels, 1994).

For these reasons, we adopt reduced-form models to examine the regional heterogeneity in fore-

casting China’s emissions.

4.1 Specifications

Provincial carbon dioxide emissions exhibit spatial dependence, which arises as a result of technol-

ogy diffusion and environmental policy spillovers. On the one hand, technology can diffuse across

regions through inter-regional connections such as trade (Keller, 2004). Then the related techno-

9Most notably, the IPCC has developed large-scale structural models to produce global emission scenarios over a
long horizon. These emission scenarios are then used as inputs for the global climate model.

10Evidently, the global CO2 emissions since 2000 followed the upper bounds of the IPCC baseline scenarios even
after the 2008 financial crisis (Raupach et al., 2007; Peters et al., 2012, 2013).
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logical progress is possible to facilitate improvement in local emissions. On the other hand, local

governments may imitate neighbour’s environmental policies, which leads to similar emission

levels (Fredriksson and Millimet, 2002). As is shown by Giacomini and Granger (2004), ignoring

spatial correlation, even when it is weak, leads to highly inaccurate forecasts. In the forecasting

literature, several studies have illustrated that spatial panel data models can improve forecasting

performance (Girardin and Kholodilin, 2011; Baltagi and Li, 2006; Longhi and Nijkamp, 2007).

However, the application of explicit spatial models in emission forecasting is still limited with

the most noted exception by Auffhammer and Carson (2008). Nonetheless, the spillover effects in

their study were constrained to be with a temporal lag, rather than the contemporaneous spatial

spillover effects that are usually modeled in spatial econometrics (Anselin, Gallo, and Jayet, 2008).

Therefore, we account for the two types of spatial dependence in emissions by including a one-

period lag spatial spillover term or a contemporaneous spatial spillover term. In addition, we

allow for differences in spillover effects between different groups of provinces.

The baseline specification is a dynamic panel data model such that:

lnci,t = ρlnci,t−1 + x′i,tβ + λt + αi + εi,t. (1)

In this form, ci,t is carbon intensity, xi,t is a vector of additional explanatory variables (including

Inc, Ind, Popden, Car), t is a trend variable represented by the linear time trend (T) or the loga-

rithm time trend (lnT), αi is a provincial fixed effect, and εi,t is an error term. Early reduced-form

models use environmental Kuznets curve to forecast CO2 emissions (Holtz-Eakin and Selden,

1995; Schmalensee, Stoker, and Judson, 1998). Recent studies find that the dynamic models are

superior in terms of forecasting performance (Auffhammer and Carson, 2008; Auffhammer and

Steinhauser, 2012). Therefore, we also adopt the dynamic model specification.

In spatial econometrics, the spillover effects can be modeled by a spatial lag term, i.e., a

weighted average of neighbors’ dependent variables, or a spatial error term, i.e., errors with spa-

tially correlated covariance structure. The spatial error term does not explicitly capture the spa-

tial interaction, but, instead, is a special case of a non-spherical error covariance matrix (Anselin,

Gallo, and Jayet, 2008). For this reason, we only include the spatial lag.

The spatial dependence is modeled by an N×N spatial matrix W, where N is the number of
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provinces. The i,j-th element of W, wi,j, is the weight given to region i’s neighbor j. We employ

two spatial matrices: the rook contiguity weight matrix and the inverse distance matrix (Getis,

2010). In rook contiguity weight matrix, wi,j equals one if provinces i and j are neighbors and zero

otherwise. In inverse distance matrix, wi,j is the inverse of distance between the two provinces.

In both matrices, wi,j, which is the weight of province i on itself, is set to zero. The spatial weight

matrices are row standardized such that each row sum up to 1.

Starting from the baseline model, we first include the one-period lagged spatial spillover ef-

fects, which is the same spatial model used by Auffhammer and Carson (2008). This model is

labeled as Slag:

lnci,t = ρlnci,t−1 + γ ∑
j 6=i

wi,jlncj,t−1 + x′i,tβ + λt + αi + εi,t. (2)

In addition, we allow for group-specific spillover effects between eastern provinces and inland

provinces, because eastern provinces are more developed and technologically advanced.11 The

trend variable t is also allowed to be different between the two groups of provinces. This model is

labeled as Slag−g:

lnci,t = ρlnci,t−1 +
2

∑
g=1

∑
j 6=i

γgwg
i,jlncj,t−1 + x′i,tβ +

2

∑
g=1

λgtg + αi + εi,t. (3)

In this form, g indexes province (1 for eastern provinces and 2 for inland provinces); wg
i,j is an

element of the group-specific spatial weight matrix Wg, which is the product of the spatial weight

matrix W and a dummy variable indicating whether province i belongs to group g; tg is a group-

specific trend, which equals T or lnT if province i belongs to group g and zero otherwise.

We also consider a specification with contemporaneous spatial spillover effects, which is la-

beled as Scon:

lnci,t = ρlnci,t−1 + ϕ ∑
j 6=i

wi,jlncj,t + x′i,tβ + λt + αi + εi,t. (4)

Moreover, we introduce the group-specific spillover effects in model Scon, and derive the model

11Eastern provinces include Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guang-
dong, and Hainan. Inland provinces include the rest 19 provinces.

10



that is labeled as Scon−g:

lnci,t = ρlnci,t−1 +
2

∑
g=1

∑
j 6=i

ϕgwg
i,jlncj,t + x′i,tβ +

2

∑
g=1

λgtg + αi + εi,t. (5)

For the dynamic panel model in Equation (1) to be stable, the requirement is that |ρ| < 1.

Similarly, according to Yu, de Jong, and Lee (2008), for spatial dynamic panel models in Equations

(2) and (4) to be stable, the requirements are that |ρ|+|γ| < 1 and |ρ|+|ϕ| < 1, respectively.

4.2 Estimation and Forecasting

In dynamic panel data models, the lagged dependent variable is an endogenous variable. The

contemporaneous spatial spillover term further introduces simultaneity bias. Because our panel

data are short, the OLS estimator can be severely biased. Instead, we use the GMM estimator

proposed by Arellano and Bond (1991). Taking model Scon as an example, the model is estimated

in the first-difference form to eliminate provincial fixed effects:

∆lnci,t = ρ∆lnci,t−1 + ϕ ∑
j 6=i

wi,j∆lncj,t + ∆x′i,tβ + λ∆t + ∆εi,t. (6)

Then lagged dependent variables in levels can be used as instruments. In this case, the GMM

estimator is based on the following moment conditions:

E(lnci,t−s∆εi,t) = 0, s ≥ 2, (7a)

E(∑
j 6=i

wi,jlncj,t−s∆εi,t) = 0, s ≥ 2, (7b)

E(∆x′i,t∆εi,t) = 0, and (7c)

E(∆t∆εi,t) = 0. (7d)

We use the one-step GMM estimator with robust standard errors. The maximum lag of instru-

ments is set as six to avoid using too many instruments.

Because the model is estimated in the first-difference form, the forecasting is also carried out in

the same manner. With a sample of data up to period T, we first estimate the model with this sam-

ple and then make one-step ahead forecasting iteratively to get forecast of ∆lnci,T+1, ∆lnci,T+2,. . . ,
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∆lnci,T+n. Then by adding lnci,T with the predicted first differences of this variable, we can get the

forecast in levels, i.e., lnci,T+1, lnci,T+2, . . . , lnci,T+n.

It is straightforward to forecast with the baseline model and the spatial model with one-period

lagged spatial spillover effects (i.e. Slag and Slag−g). For the spatial model with contemporaneous

spatial spillover effects (i.e. Scon and Scon−g), the forecasting is implemented by the corresponding

reduced-form model. Taking Scon as an example, the model is estimated in the first-difference

form in Equation (6). We rewrite the model for period T+1 in the following form:

∆lnc·,T+1 = ρ∆lnc·,T + ϕW∆lnc·,T+1 + ∆x′·,T+1β + λ∆t + ∆ε·,T+1. (8)

In this form, ∆lnc·,T+1 is the N×1 vector representing the dependent variables at period T+1 for N

provinces. The reduced form is as follows:

∆lnc·,T+1 = (I − ϕW)−1(ρ∆lnc·,T + ∆x′·,T+1β + λ∆t + ∆ε·,T+1). (9)

Similarly, for the group-specific spillover effects model Scon−g, it has the following form for

period T+1:

∆lnc·,T+1 = ρ∆lnc·,T + ϕ1W1∆lnc·,T+1 + ϕ2W2∆lnc·,T+1 + ∆x′·,T+1β +
2

∑
g=1

λg∆tg + ∆ε·,T+1. (10)

In this form, superscripts 1 and 2 indicate eastern and inland provinces. W1 is obtained by replac-

ing rows corresponding to inland provinces in W with zeros. W2 is obtained by replacing rows

corresponding to eastern provinces in W with zeros.

The reduced form of the group-specific spillover effects model Scon−g is:

∆lnc·,T+1 = (1− ϕ1W1 − ϕ2W2)−1(ρ∆lnc·,T + ∆x′·,T+1β +
2

∑
g=1

λg∆tg + ∆ε·,T+1). (11)

After obtaining the forecast of ln c, which is the logarithm of carbon intensity, the forecast

of carbon intensity can be obtained by taking exponents. Then CO2 emission forecasts can be

obtained by using different scenarios for GDP. While producing point forecasts of emissions are

straightforward, it is complicated to derive the standard errors for the spatial models. We use the
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Monte Carlo simulation to obtain the standard errors. The coefficients of the above model follow

an asymptotic joint normal distribution, and the error term ε follows a normal distribution. The

expectation and covariance matrix of these distributions are produced by the GMM estimation. By

sampling from these distributions, we can simulate the distribution of the forecasted carbon inten-

sity and CO2 emissions. The standard errors are then computed from the simulated distributions.

We conduct 10,000 simulations for each model.

4.3 Model Selection

We would like to compare the forecasting performance of the baseline model and the four types of

spatial models described above. Because our goal is to choose a model with the superior out-of-

sample predictive ability, we use out-of-sample prediction criterion instead of in-sample criterion

(Auffhammer and Steinhauser, 2012). We conduct the one-, two-, up to six-year-ahead out-of-

sample prediction experiments for each model. All the out-of-sample prediction experiments use

the samples up to year 2000 to conduct the earliest experiments. This means the forecast range

is 2001 to 2011 for the one-year-ahead prediction, 2002 to 2011 for the two-year-ahead prediction,

and 2006 to 2011 for the six-year-ahead prediction.

The out-of-sample forecast error is based on the aggregate emissions. Model k’s root mean

squared forecast error (RMSFE) is defined as:

RMSFEk =
1

t2 − t1

t2

∑
t=t1

RMSFEk,t =
1

t2 − t1

t2

∑
t=t1

√√√√ 1
30

30

∑
i=1

(Êk,i,t − Ei,t)2, (12)

where Êk,i,t is model k’s forecast of province i’s CO2 emissions in year t, and Ei,t is the actual

realization. t1 to t2 is the year range for which we calculate the out-of-sample prediction. We

denote the model with the lowest RMSFE as the “best forecasting model.”

5 Estimation Results

We have five types of models including one baseline and four spatial models. Within each type of

model, we can derive a number of variations by selecting different combinations of explanatory

variables x and time trend. We denote each variation within a certain type of model as a sub-
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model. For example, for each type of model, the explanatory variables x can be any combination

from the four variables including Inc, Ind, Popden, Car, and the trend variable t can be the linear

time trend (T), the logarithm time trend (lnT) or none. Therefore there are 48 (= 24× 3) sub-models

for each type of model and 240 (= 48× 5) sub-models in total.

We do not present the estimation results for all sub-models here.12 Our strategy is that, for

each type of model, we select the sub-model with the lowest one-year-ahead RMSFE among sub-

models within this type of model, or in other words, we are selecting the sub-model representing

the best forecasting performance for the corresponding type of model. These selected sub-models

are then used to compare the forecasting accuracy of different types of models. In the remainder

of the paper, we use the “best forecasting model” to denote the model with the lowest one-year-

ahead RMSFE. Later we will show that in most cases these best forecasting models also have the

lowest RMSFE when the forecasting horizon gets longer.

The estimation results are summarized in Table 1. We present the estimation results for the

selected sub-models representing the best forecasting performance of each type of model. Note

that we use two different spatial matrices, i.e., rook contiguity weight matrix and inverse distance

matrix. Therefore the results of each type of spatial model take up two columns.

For all specifications in Table 1, the Sargan test and auto-correlation test for error terms suggest

that the GMM estimator is valid. The coefficients of the lagged dependent variable are significant

in all cases, supporting the dynamic emissions models. The coefficients of spillover effects, no mat-

ter contemporaneous or with one-period lag, are significant and positive, suggesting the existence

of spillovers in emissions across provinces. Moreover, by considering group-specific spillover ef-

fects between eastern and inland provinces, the spatial dependence across the two region groups

are different when using the inverse distance matrix, but are close when using the rook contiguity

weight matrix. All the selected sub-models contain logarithm time trends with negative and sig-

nificant coefficients. In three out of four cases with the group-specific time trend, the coefficient of

the time trend for eastern provinces is lower than that for the inland provinces, reflecting the fact

that eastern provinces have experienced faster declines in carbon intensity than inland provinces.

Finally, although we considered four additional explanatory variables, only population density

Popden is chosen in the selected baseline model.

12All sub-model results are available in an online appendix.
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The bottom six rows of Table 1 report the results of the out-of-sample forecasting experiment.

Compared with the baseline model, it is evident that spatial models improve forecasting signifi-

cantly. The best forecasting model, i.e. the model with the lowest one-year-ahead RMSFE, is model

Slag−g that uses inverse distance weight matrix as shown in column (4). Its one-year-ahead RMSFE

is 8.2% lower than that of the baseline model. The improvement becomes more pronounced as the

forecasting horizon gets longer: the best model’s six-year-ahead RMSFE is 24.6% lower than that

of the baseline model.

We use energy intensity as a robustness check. As shown in Table 2, the estimation results

of the energy intensity models are very similar with those of the carbon intensity models. The

coefficients of the spatial terms are significant in all four types of spatial models. The logarithm

time trend is included in the selected sub-models from the four types of spatial models, while

the selected baseline model contains linear time trend. The best forecasting model is Slag that

uses inverse distance weight matrix as in column (2). The performance of model Slag−g that uses

inverse distance weight matrix in column (4) is very close to that of the best model.

To summarize, we have several major findings here. First, accounting for spatial spillover ef-

fects improves forecasting and the improvement is more significant as the forecasting horizon gets

longer. Second, it is necessary to consider different specifications of spatial effects, e.g. contempo-

raneous or one-period lag spillover effects, homogeneous or group-specific spillover effects, and

different spatial weight matrices. If the spillover effects are restricted to be of certain form a priori,

it may lead to the selection of a sub-optimal forecasting model.

6 Prediction Results

6.1 Scenarios

We need socioeconomic scenarios to forecast national and provincial CO2 emissions. However,

future GDP, population, and sectoral compositions are associated with large uncertainties at both

national and provincial levels. Rather than arbitrarily assuming these variables, we start from the

national and provincial 12th Five-Year Plans to construct the business-as-usual scenario. In China,

government plays a tremendous role in socioeconomic development. The targets set in the FYPs

are substantially relevant for building scenarios.

15



Based on the goals in the provincial 12th FYPs, we form the scenarios for provincial GDP and

sectoral compositions. These scenarios are summarized in Table A.2 in Appendix B. We would

like to highlight the following aspects:

GDP: The national 12th FYP sets the annual GDP growth target at 7%, much lower than the

actual growth rates in 2011 and 2012 (9.3% and 7.8%). Therefore we set the national GDP growth

rate at 7.5% from 2012 to 2015, and at 7% from 2016 to 2020. However most provinces especially the

least developed ones set the goal above 10% in their 12th FYPs, which reflects their strong desire

to catch up. The double-digit GDP growth rate may be not sustainable. We downward adjust the

goals of provincial GDP growth rates in the 12th FYPs by the same factor to make them consistent

with the national growth target. However, with continued slowdown of the Chinese economy,

some studies project even more pessimistic growth for China. For example, Eichengreen, Park,

and Shin (2012) predict China’s GDP to grow by only 6.1% to 7.0% per year from 2011 to 2020.

To test the robustness of our result, we consider an additional economic scenario in which the

national GDP growth rate is 7.0% per year from 2012 to 2015, and 6.1% per year from 2016 to 2020.

Sectoral compositions: We need the scenario for the share of the secondary industry in GDP

Sine variable Ind is used. We can get the sectoral compositions scenario from the provincial 12th

FYPs. Since the 13th FYP (2016-2020) is not available yet, we further assume the policy goals in

the 12th FYP will be continued in the 13th FYP. At the national level, the share of the secondary

industry will decrease by 2.3% for each FYP period.

The FYPs do not have population or migration targets. Following the United Nations (2013),

we assume that the national population will increase by 0.53% annually from 2011 to 2020. At

the provincial level, we first estimate the historical population growth rate from 1978 to 2011 for

each province. We adjust the rate by the same factor for the national growth rate and use it as the

population growth scenario. For the variable Car, we assume that the growth of the number of

cars per capita in each province will follow the historical trends.

6.2 National Emissions

We illustrate the national emission forecast in Figure 2 that uses the “best forecasting model”

Slag−g. This Slag−g model predicts that China’s CO2 emissions will grow to 14.79 billion metric tons
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in 2020, an increase of 56.2% from 2011 to 2020. The simulated standard deviation of the predicted

emissions is 1.36 billion metric tons. The ±2 standard deviation interval for the emission growth

rate ranges from 27.6% to 84.9%. The predictions of other models in Table 1 (including the Slag

model which is used by Auffhammer and Carson (2008)) are close to that of model Slag−g, ranging

from 14.65 to 15.05 billion metric tons. The baseline model predicts the national emission to be

only 1.2% higher than the best forecasting model. However, at the provincial level, the difference

of forecasts between the two models can reach 24%. As shown before, accounting for spatial

spillover effects improves predictive ability from the baseline model, therefore we will put more

confidence on the best forecasting model.

As shown in Figure 2 (b), the best forecasting model predicts that China’s carbon intensity in

2015 will be 2.14 t CO2/104 Yuan with the simulated standard deviation being 0.075 t CO2/104

Yuan. Accordingly, China’s carbon intensity in 2015 will be 8.8% lower than the 2010 level, with

the ±2 standard deviation interval ranging from 2.4% to 15.2%. This implies that China will not

be able to reach the 17% reduction target in carbon intensity in the 12th FYP (2011-2015) under the

BAU scenario. In 2020, the best forecasting model predicts China’s carbon intensity will be 1.95 t

CO2/104 Yuan with the simulated standard deviation being 0.18 t CO2/104 Yuan. In other words,

China’s carbon intensity in 2020 will be 32.8% lower than the 2005 level, with the ±2 standard

deviation interval being from 20.4% to 45.1% lower. Therefore, under the BAU scenario China is

unlikely to fulfill the 40% to 45% reduction target pledged in the Copenhagen Accord.

We use energy intensity as a robustness check to cast as probability of meeting the Copenhagen

commitment. The forecasts of energy consumption and energy intensity are illustrated in Figure

3. The best forecasting model predicts that China’s energy consumption in 2020 will be 6.57 billion

tons of coal equivalent (ce) with the simulated standard deviation being 0.53 billion metric tons of

ce. Correspondingly, it projects emissions will increase by 61.7% from 2011 to 2020. The increase

is higher than the previous prediction of 56.2% because it largely ignores the change in China’s

energy mix. The proportion of non-fossil fuel energy (including hydro power, nuclear power,

wind power, etc.) in national energy consumption has been improved from 4.9% in 1985 to 8.0%

in 2011. Carbon emissions per unit of energy consumption have been declining 0.25% per annum

since 1985. Our prediction suggests that the decline will be accelerated to 0.38% annually from

2011 to 2020. Therefore the forecast of energy consumption is actually consistent with our forecast
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of emissions. The predicted energy intensity in 2020 will be 30.8% lower than the 2005 level, with

the ±2 standard deviation interval being from 19.8% to 41.9%.

Furthermore, if China’s economic growth slows down, we would like to assess how it will

affect China’s carbon emissions. Following Eichengreen, Park, and Shin (2012), we assume a GDP

scenario where the national GDP growth rate is 7.0% from 2012 to 2015, and 6.1% from 2016 to

2020. Under this scenario, China’s GDP in 2020 is 6.3% lower than that of the previous scenario.

Accordingly, the emission forecast by the best forecasting model is 6.5% lower, which suggests

that China’s emission growth will decelerate almost proportionally with GDP growth.

6.3 Provincial Emissions

An advantage of using the disaggregated data is that it allows for the prediction of provincial

BAU emissions, which is of substantial relevance for the sub-national mitigation policy making.

We would like to examine whether provinces will be able to achieve the allocated carbon intensity

reduction targets under the BAU scenario. In Table 3, we present the forecasted percentage of

reduction in carbon intensity using the best forecasting model. We find that during the 12th FYP,

only five provinces can reach the allocated targets as suggested by the point forecasts. By 2020,

the point forecasts indicate that only nine provinces will be able to reach at least a 40% reduction

in carbon intensity relative to the 2005 level, which is the lower bound of the national reduction

target in 2020.

The rich eastern provinces are projected to achieve higher carbon intensity targets by 2020

relative to 2005 levels: many provinces can reduce carbon intensity by more than 30% except

for Hainan and Fujian. However, many less developed central and western provinces can only

lower carbon intensity to less than 30% below 2005 levels by 2020. One possible reason is that the

eastern provinces are now accelerating the development of tertiary and high-tech sectors that are

less energy intensive. In comparison, the central and western provinces are still in the process of

rapid industrialization, creating pressures on their energy and carbon intensities.
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7 Further Discussion

7.1 Data Quality

The accuracy of our forecasts relies on national and provincial data quality. However, a large dis-

crepancy in the historical CO2 emissions data is found between those using the national statistics

and those aggregating from the provincial statistics (Guan et al., 2012). We compute China’s CO2

emissions using these two methods, and compare them with the calculations by other institutions

including the Energy Information Administration, the International Energy Agency, and the Oak

Ridge National Laboratory.13

Figure 4 shows that the historical energy-related CO2 emissions in China differ dramatically

among various sources. These estimates are relatively close before 1995. Since then, the CO2

emissions aggregated from the provincial statistics have been always higher than those from the

national statistics. The gap has widened since the year 2005 and reached 1.8 billion metric tons

in 2011. The estimated emissions from the other three institutions lie between the two series of

emissions calculated in this paper. The Oak Ridge’s estimates are close to the numbers based on

the national statistics. The EIA’s and IEA’s estimates are relatively close to the numbers based on

the provincial statistics in the last three years.

Guan et al. (2012) have discussed possible reasons of the discrepancy between the national

and provincial statistics in depth. Zhao, Nielsen, and McElroy (2012) argue that the provincial

statistics are more reliable than the national statistics for three reasons. First, the production of

small coal mines may not be well recorded by the national statistics. Second, studies using satellite

observations of air pollutants have confirmed that the provincial energy statistics are better proxies

for activity levels. Third, the national energy statistics may be deliberately under-reported by

China’s National Bureau of Statistics and National Development and Reform Commission.

We are convinced that the provincial statistics are more reliable than the national statistics.

In addition, these statistics are the only available information for calculating the provincial-level

emissions. However, we should be aware of the large uncertainties in quantifying China’s CO2

emissions. Gregg, Andres, and Marland (2008) pointed out that the uncertainty in estimating

13EIA’s statistics are available at: www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm, IEA’s statistics are available at:
www.iea.org/statistics, and Oak Ridge’s statistics are available at: cdiac.ornl.gov/trends/emis/overview.html.
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China’s CO2 emissions could be as high as 15% to 20%. In this situation, when interpreting and

comparing our forecasts with other studies, it would be more appropriate to compare the fore-

casted growth rate rather than the absolute emission level.

7.2 Comparison with Other Forecasts

In comparing forecasts across studies, it is better to compare growth rates in order to avoid the

difference in the calculated base year emissions. Table 4 compares our result with the forecasts by

several recent studies. The associated assumptions of GDP growth rate are also reported in the

table. Our study predicts the annual growth rate of emissions from 2011 to 2020 is 5.1%, which is

the highest among the recent forecasts.

The most recent International Energy Outlook (IEO) 2013 forecasts China’s CO2 emissions to

grow by 3.9% annually from 2010 to 2020 and to reach 11.53 billion metric tons in 2020 (EIA, 2013).

To compare forecasts at the absolute level, we use EIA’s calculation of China’s emissions in 2011

as the base year emissions. By multiplying the base year emissions by the forecasted growth rate,

we project China’s emissions in 2020 to be 13.63 billion metric tons, which is about 2.10 billion

metric tons higher than that of EIA. This gap is nearly twice of Japan’s current energy-related

CO2 emissions. In fact, EIA itself has already adjusted its forecast upward to 11.53 billion metric

tons in IEO 2013 (EIA, 2013) from 10.13 billion metric tons in IEO 2011 (EIA, 2011), suggesting

the recent emission trend in China has raised EIA’s expectation on China’s future emissions. The

annual growth rate of China’s CO2 emissions from 2000 to 2010 is 9.3%. However, the newest

EIA’s forecast suggests that the growth rate of China’s CO2 emissions from 2010 to 2020 will be

58% lower than that of the previous decade. In fact, China’s CO2 emissions still grew by 9.0% in

2011 despite the slowdown in GDP growth. This implies that EIA might have underestimated the

driving forces for China’s future emission growth.

The predicted growth rate of China’s emissions is even lower in the other three studies, includ-

ing the forecasts by IEA (2012), the Lawrence Berkeley National Laboratory (LBNL) (Zhou et al.,

2013), and the Energy Research Institute (ERI) in China (ERI, 2009). IEA (2012)’s prediction of

emission growth rate is only about half of our prediction, despite its relatively high assumption of

GDP growth. The current policy scenario in IEA (2012)’s study assumes the 17% reduction target
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of carbon intensity during the 12th FYP will be achieved. However, this contradicts with our pre-

vious results that the reduction percentage in China’s carbon intensity will be only 8.8% during

the 12th FYP under the BAU scenario. Similarly, the Continued Improvement scenario (CIS) in the

LBNL’s study assumes continued progress in energy efficiency and carbon abatement, thus cannot

represent the BAU scenario (Zheng, Zhou, and Fridley, 2010). In contrast, with fewer assumptions,

the reduced-form models, including the best forecasting model, the baseline model, and the same

model as Auffhammer and Carson (2008), all get much higher forecasts. The different results of

reduced-form models and structural models can be partly explained by the assumptions made in

the latter.

China’s CO2 emissions in 2011 are 7.66 billion metric tons based on the national statistics, or

9.47 billion metric tons based on the provincial statistics. We treat the two numbers as the lower

and upper bounds of China’s CO2 emissions in 2011. Our forecasted emission increase from 2011

to 2020 is 56.2%, which means the absolute increase will be 4.31 to 5.32 billion metric tons. The

United States has committed to reduce CO2 emissions by 2020 by 17% below the 2005 level, and

the European Union has committed to reduce emissions by 2020 by 30% below the 1990 level. This

suggests that the total emission reductions of the EU and US combined during 2011 and 2020 will

be about 1.43 billion metric tons14. We forecast that China’s emission increase from 2011 to 2020

will be about 3.0 to 3.7 times of the emission reductions from the EU and US combined.

8 Conclusion

China’s double-digit economic growth in the last three decades has brought wealth to its popula-

tion, but also made China the largest CO2 emitter in the world. To address the challenge of climate

change, China has pledged to reduce its carbon intensity by 40-45% below the 2005 level by 2020

in the Copenhagen Accord. This paper assess China’s probability of compliance by forecasting

China’s CO2 emissions up to 2020 under the business-as-usual scenario. We apply dynamic spa-

tial econometric models to the detailed energy consumption data. We make the best use of China’s

energy statistics to compute CO2 emissions at the provincial level. The disaggregated data allow

us to exploit provincial heterogeneity in emission forecasting. By selecting from a large set of spa-

14Calculated using the EIA statistics.
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tial models to account for spatial dependence, we find that incorporating spatial spillover effects

can improve forecasting especially for a long time horizon.

Although China has started to transition towards less energy and carbon intensive growth

and its GDP growth is slowing down, our best forecasting model suggests that there is still no

reason to be optimistic that China’s future CO2 emissions will meet its Copenhagen commitment.

Additional mitigation efforts will be needed to ensure compliance. In absolute terms, our study

forecasts that China’s CO2 emissions will increase by about 4.31 to 5.32 billion metric tons from

2011 to 2020. At the provincial level, we find most eastern provinces will be able to achieve greater

reductions in carbon intensity by 2020 relative to 2005 levels, while the less developed central and

western provinces will miss their targets. Flexible mitigation mechanisms should be established

and targeted policies are needed to ensure the less developed provinces’ compliance as they un-

dergo fast industrialization.
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A Appendix

A.1 Calculation of Carbon Dioxide Emissions

Carbon dioxide emissions from fossil fuel consumption are calculated following the IPCC guide-

lines (IPCC, 2006):

ECO2 = ∑
i

Ai × ei × ci × oi ×
44
12

, (13)

where i indexes fuel type, ECO2 denotes CO2 emissions, Ai denotes fuel consumption (kg or m3),

ei denotes net heat value (kJ/kg or kJ/m3), ci is carbon emission factor (kg C/GJ), oi is carbon oxi-

dation rate. Whenever the data are available, we use 17 types of fossil fuels in the energy balance

sheets (Table A.1). Net heat values (ei) are obtained from the China Energy Statistical Yearbooks. Car-

bon emission factors and carbon oxidation rates are obtained from IPCC (2006). Carbon oxidation

rates of different fuels are set at the default value of 1.

Table A.1: Coefficients of various fossil fuels

Fuel type
Net heat value ei Carbon emission factor ci (kg C/GJ)
Unit Value

Raw coal kJ/kg 20908 25.8
Cleaned coal kJ/kg 26344 25.8
Other washed coal kJ/kg 15373 25.8
Briquettes kJ/kg 17773 26.6
Coke kJ/kg 28435 29.2
Coke Oven gas kJ/m3 17981 12.1
Other coal gas kJ/m3 8418 12.1
Other Coking Products kJ/kg 33453 22.0
Crude oil kJ/kg 41816 20.0
Gasoline kJ/kg 43070 18.9
Kerosene kJ/kg 43070 19.5
Diesel oil kJ/kg 42652 20.2
Fuel oil kJ/kg 41816 21.1
LPG kJ/kg 50179 17.2
Refinery gas kJ/kg 46055 15.7
Other petroleum products kJ/kg 40200 20.0
Natural gas kJ/m3 38931 15.3

Notes: Net heat values (ei) are obtained from the China Energy Statistical Yearbooks. Carbon emission
factors are obtained from IPCC (2006).

The energy balance sheets in the China Energy Statistical Yearbooks are available in 1985 and from

1995 to 2011 for all provinces, except for Ningxia (available from 2000 to 2002), Hainan (available

in 1985 and 2002), and Chongqing (available in 1985, 1995 and 1996). The energy balance sheets
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contain detailed consumption data on 17 types of fossil fuels, heat, and electricity. The emissions

from burning fossil fuels can be calculated using Equation (13). The emissions from heat and

thermal power are calculated according to the energy mix for the generation in the correspond-

ing province. The emissions related to inter-regional electricity transmission are ascribed to the

consumption side, following the “consumer responsibility” method in Meng et al. (2011). For

provinces that are net electricity exporters, the emissions from the exported electricity are not in-

cluded in that province’s total emissions. For provinces that are net importers, the emissions from

the imported electricity are calculated using the national energy mix for the generation. Here we

use the national energy mix rather than that of the exporter because the energy balance sheets do

not specify the source of the imported electricity.

In case the energy balance sheets are missing, we use the energy statistics in the provincial

statistical yearbooks to impute the missing data points. These provincial yearbooks provide final

energy consumption data by type including: coal, coke, crude oil, gasoline, kerosene, diesel oil,

natural gas, heat, electricity, etc. In order to compute CO2 emissions from final energy consump-

tion, we need to make assumptions on CO2 emission factors per unit heat and electricity. We

assume the emission factors per unit heat and electricity during the missing period to be the av-

erage of the corresponding factor in the year just before and after the missing period. This means,

for provinces other than Hainan, Sichuan, and Chongqing, the energy balance sheets are available

in 1985 and 1995, therefore we assume the CO2 emission factor per unit heat and electricity from

1986 to 1994 to be the average of the corresponding factor in 1985 and 1995. Similar treatment is

applied to the data points of Ningxia from 2000 to 2002 and Hainan in 2002. Because the energy

balance sheet is not available for Hainan in 1985, we have to assume the CO2 emission factor per

unit heat and electricity from 1985 to 1994 to be the same as that in 1995. Because Chongqing was

separated out from Sichuan to become a municipal city only after 1997, the energy balance sheets

of Sichuan in 1985, 1995, and 1996 contain both Sichuan and Chongqing. Therefore we assume

the CO2 emission factor per unit heat and electricity to be the same for Sichuan and Chongqing in

1985, 1995, and 1996, and the emission factors from 1986 to 1994 as the average of that in 1985 and

1995. In this way we construct a panel data set of provincial emissions from 1985 to 2011 with only

ten missing observations. The remaining missing data are imputed by cubic spline interpolation.
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A.2 Scenario Setting of Provinces

Table A.2: Scenarios setting from 2011 to 2020

Province
GDP annual growth rate

Change of ratio of the
secondary industry in
GDP

2012∼2015 2016∼2020 Each FYP
Whole nation 7.50% 7.00% -2.30%
Eastern provinces:
Beijing 6.00% 5.60% -2.70%
Tianjin 9.00% 8.50% -3.60%
Hebei 6.40% 6.00% -1.10%
Liaoning 8.30% 7.80% -3.40%
Shanghai 6.00% 5.60% -7.60%
Jiangsu 7.50% 7.10% -5.40%
Zhejiang 6.00% 5.60% -3.60%
Fujian 7.50% 7.10% +0.00%
Shandong 6.80% 6.30% -6.20%
Guangdong 6.00% 5.60% -2.00%
Hainan 9.80% 9.20% +2.30%
Central provinces:
Shanxi 9.80% 9.20% -1.70%
Jilin 9.00% 8.50% -2.00%
Heilongjiang 9.00% 8.50% -1.00%
Anhui 7.50% 7.10% +0.90%
Jiangxi 8.30% 7.80% +1.30%
Henan 6.80% 6.30% -1.40%
Hubei 7.50% 7.10% -1.60%
Hunan 7.50% 7.10% +2.70%
Western provinces:
Inner Mongolia 9.00% 8.50% -1.80%
Guangxi 7.50% 7.10% +1.30%
Chongqing 9.40% 8.80% +2.00%
Sichuan 9.00% 8.50% +0.30%
Guizhou 9.00% 8.50% +5.90%
Yunnan 7.50% 7.10% +1.40%
Shaanxi 9.00% 8.50% -3.60%
Gansu 9.00% 8.50% +1.80%
Qinghai 9.00% 8.50% -0.10%
Ningxia 9.00% 8.50% +4.00%
Xinjiang 7.50% 7.10% +0.20%

Notes: Figures in column “GDP annual growth rate” are based on goals set in
provinces’ 12th FYP, but adjusted by the same factor to make them consistent with
the national growth we set.
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Figure 1: Carbon intensities of provinces from 2009 to 2011. The declining trend of carbon intensi-
ties before 2010 slowed down or even reversed in 2011.
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Figure 2: Emission forecast up to 2020 using the best forecasting model.
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Figure 3: Energy consumption forecast up to 2020 using the best forecasting model.
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Table 1: Estimation results of carbon intensity
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Model Baseline Slag Slag−g Scon Scon−g
Spatial matrix Winv Wrook Winv Wrook Winv Wrook Winv Wrook
ρ 0.841*** 0.554*** 0.654*** 0.554*** 0.657*** 0.695*** 0.673*** 0.730*** 0.680***

(0.022) (0.078) (0.048) (0.069) (0.045) (0.071) (0.052) (0.048) (0.043)
γ 0.332*** 0.217***

(0.080) (0.042)
γ1 0.264** 0.229***

(0.104) (0.063)
γ2 0.365*** 0.206***

(0.067) (0.041)
ϕ 0.260*** 0.253***

(0.082) (0.061)
ϕ1 0.189*** 0.248***

(0.073) (0.060)
ϕ2 0.247*** 0.245***

(0.062) (0.066)
Popden -0.190**

(0.083)
lnT -0.053*** -0.056*** -0.060*** -0.018 -0.030**

(0.010) (0.014) (0.012) (0.013) (0.012)
lnT1 -0.074*** -0.058*** -0.038** -0.036**

(0.019) (0.018) (0.017) (0.015)
lnT2 -0.048*** -0.061*** -0.006 -0.027*

(0.016) (0.015) (0.016) (0.016)
Sargan 29.38 29.50 29.26 29.39 28.70 14.51 21.10 10.04 8.65
AR(1) -3.75*** -3.25*** -3.61*** -3.36*** -3.61*** -3.72*** -3.69*** -3.80*** -3.64***
AR(2) 0.40 0.24 0.39 0.24 0.39 0.39 0.27 0.39 0.28
RMSFE:
1-year-ahead 1770 1628 1664 1625 1672 1664 1659 1681 1660
2-year-ahead 3268 2839 2958 2828 2977 2964 2967 3008 2964
3-year-ahead 5052 4175 4418 4154 4452 4402 4419 4477 4405
4-year-ahead 7183 5771 6149 5705 6209 6169 6157 6261 6119
5-year-ahead 9834 7596 8171 7453 8271 8291 8189 8399 8112
6-year-ahead 10877 8415 9008 8199 9152 9212 8981 9270 8873

Notes: (1) Meaning of coefficients ρ, γ, and ϕ can be referred to Equation (1) to (5); (2) In the row “Spatial matrix”, Winv
represents the inverse distance matrix, Wrook represents the rook contiguity weight matrix; (3) Values in parentheses are
standard errors. *, **, and *** denote significance at 10%, 5%, and 1% level; (4) In the rows corresponding to RMSFE, numbers
in bold represent the lowest one.
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Table 2: Estimation results of energy intensity
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Model Baseline Slag Slag−g Scon Scon−g
Spatial matrix Winv Wrook Winv Wrook Winv Wrook Winv Wrook
ρ 0.840*** 0.575*** 0.624*** 0.589*** 0.635*** 0.668*** 0.596*** 0.705*** 0.669***

(0.030) (0.094) (0.075) (0.080) (0.077) (0.083) (0.071) (0.060) (0.060)
γ 0.301*** 0.239***

(0.087) (0.064)
γ1 0.244** 0.225***

(0.097) (0.085)
γ2 0.308*** 0.232***

(0.080) (0.081)
ϕ 0.287*** 0.346***

(0.088) (0.067)
ϕ1 0.242*** 0.323***

(0.075) (0.048)
ϕ2 0.268*** 0.270***

(0.062) (0.067)
Ind 0.168***

(0.052)
T -0.009***

(0.002)
lnT -0.060*** -0.062*** -0.014 -0.022**

(0.009) (0.009) (0.010) (0.011)
lnT1 -0.070*** -0.061** -0.024 -0.010

(0.021) (0.026) (0.020) (0.024)
lnT2 -0.054*** -0.061*** -0.004 -0.019

(0.013) (0.014) (0.011) (0.011)
Sargan 27.26 29.60 29.53 29.40 29.67 20.29 18.76 13.13 8.71
AR(1) -3.54*** -3.14*** -3.79*** -3.51*** -3.94*** -2.99*** -3.04*** -3.24*** -3.20***
AR(2) 0.41 0.21 0.37 0.22 0.38 0.47 0.36 0.47 0.39
RMSFE:
1-year-ahead 628 576 585 580 589 591 581 598 592
2-year-ahead 1129 1004 1025 1012 1033 1047 1029 1063 1056
3-year-ahead 1708 1488 1530 1500 1543 1573 1552 1601 1601
4-year-ahead 2461 2109 2167 2119 2187 2282 2238 2329 2331
5-year-ahead 3369 2811 2896 2814 2927 3134 3054 3212 3222
6-year-ahead 3673 3078 3165 3073 3205 3510 3418 3616 3646

Notes: (1) Meaning of coefficients ρ, γ, and ϕ can be referred to Equation (1) to (5); (2) In the row “Spatial matrix”, Winv
represents the inverse distance matrix, Wrook represents the rook contiguity weight matrix; (3) Values in parentheses are
standard errors. *, **, and *** denote significance at 10%, 5%, and 1% level; (4) In the rows corresponding to RMSFE, numbers
in bold represent the lowest one.
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Table 3: Forecasted percentage of decline in carbon intensity

Forecasted carbon
intensity reduction
percentage in 2015
relative to 2010

Allocated
goals in 12th

FYP

Forecasted carbon
intensity reduction
percentage in 2020
relative to 2005

Eastern provinces:
Beijing -18%(-10%,-25%) -18.00% -46%(-35%,-57%)
Tianjin -19%(-11%,-26%) -19.00% -48%(-38%,-59%)
Hebei -5%(3%,-13%) -18.00% -31%(-15%,-46%)
Liaoning -9%(-3%,-15%) -18.00% -31%(-18%,-44%)
Shanghai -11%(-5%,-17%) -19.00% -39%(-27%,-50%)
Jiangsu -6%(2%,-13%) -19.00% -36%(-22%,-50%)
Zhejiang -10%(-3%,-16%) -19.00% -35%(-23%,-47%)
Fujian -6%(2%,-13%) -17.50% -29%(-14%,-43%)
Shandong -13%(-6%,-19%) -18.00% -40%(-29%,-51%)
Guangdong -12%(-5%,-18%) -19.50% -35%(-23%,-47%)
Hainan -4%(5%,-13%) -11.00% -22%(-4%,-39%)
Central provinces:
Shanxi -13%(-6%,-19%) -17.00% -31%(-17%,-44%)
Jilin -9%(-2%,-16%) -17.00% -43%(-32%,-54%)
Heilongjiang -10%(-4%,-17%) -16.00% -37%(-25%,-50%)
Anhui -15%(-8%,-22%) -17.00% -40%(-28%,-52%)
Jiangxi -7%(-1%,-14%) -17.00% -29%(-14%,-43%)
Henan -8%(-1%,-15%) -17.00% -24%(-9%,-40%)
Hubei -5%(3%,-13%) -17.00% -23%(-6%,-39%)
Hunan -12%(-6%,-19%) -17.00% -41%(-30%,-53%)
Western provinces:
Inner Mongolia -3%(7%,-13%) -16.00% -25%(-7%,-42%)
Guangxi -3%(6%,-12%) -16.00% -25%(-8%,-43%)
Chongqing -13%(-7%,-20%) -17.00% -38%(-25%,-51%)
Sichuan -26%(-15%,-37%) -17.50% -44%(-28%,-59%)
Guizhou -14%(-8%,-21%) -16.00% -50%(-40%,-60%)
Yunnan -18%(-10%,-26%) -16.50% -46%(-34%,-58%)
Shaanxi -17%(-9%,-26%) -17.00% -26%(-10%,-43%)
Gansu -4%(3%,-12%) -16.00% -29%(-14%,-44%)
Qinghai 9%(29%,-11%) -10.00% -22%(10%,-54%)
Ningxia 1%(13%,-10%) -16.00% -11%(13%,-34%)
Xinjiang -3%(6%,-12%) -11.00% -18%(0%,-37%)

Notes: (1) Taking “-18%(-10%, -25%)” as an example: -18% is the point forecast meaning carbon
intensity will decrease by 18%, and (-10%, -25%) is the ±2 standard deviation interval. (2) In
column two, numbers in bold font represent the allocated carbon intensity reduction target
can be achieved under point forecast. In column four, numbers in bold font represent the
point forecast exceeds the 40% reduction percentage, which is the lower bound of national
reduction target in 2020.
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Table 4: Comparison with other studies

Study Base Year
Assumption of annual
GDP growth rate from
2010 to 2020

Annual growth rate of
CO2 emissions (fore-
cast range)

EIA (2011) 2008 7.5% 3.4% (2008 to 2020)
EIA (2013) 2010 7.5% 3.9% (2010 to 2020)
IEA (2012) a 2010 7.9% 2.9% (2010 to 2020)
Zhou et al. (2013) a 2005 7.5% 2.5% (2010 to 2020)
ERI (2009) a 2005 8.4% 2.7% (2010 to 2020)
This study 2011 7.5% (2011-2015) 5.1% (2011 to 2020)

7.0% (2016-2020)
Notes: a The cited results in the table correspond to the current policy scenario in IEA (2012), CIS
scenario in Zhou et al. (2013), and baseline scenario in ERI (2009).

37


	Introduction
	Background
	Data and Variables
	Data
	Key Variables

	Model
	Specifications
	Estimation and Forecasting
	Model Selection

	Estimation Results
	Prediction Results
	Scenarios
	National Emissions
	Provincial Emissions

	Further Discussion
	Data Quality
	Comparison with Other Forecasts

	Conclusion
	Appendix
	Calculation of Carbon Dioxide Emissions
	Scenario Setting of Provinces


