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Abstract

We develop a dynamic model to assess the effects of liquidity and leverage require-

ments on banks’ insolvency risk. The model features endogenous capital structure,

liquid asset holdings, payout, and default decisions. In the model, banks face taxation,

flotation costs of securities, and default costs. They are financed with equity, insured

deposits, and risky debt. Using the model, we show that mispriced deposit insurance

fuels default risk while depositor preference in default decreases it; liquidity require-

ments have no long-run effects on default risk but may increase it in the short-run;

leverage requirements reduce default risk but may significantly reduce bank value.
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Banks can impose major risks on the economy. Avoidance of these risks and the associated

social costs is the overwhelming concern of prudential regulation. Given the experience in

the financial crisis of 2007-2008, in which insufficient liquidity buffers and excessive debt

levels made the financial system unable to withstand large negative shocks, the debate on

banking regulation has recently evolved around two main ideas. First, equity (or leverage)

requirements should be significantly increased, so that if the value of the banks’ assets were

to decline this would not automatically lead to distress and the resulting losses would be

borne by the bank owners (see e.g. Admati and Hellwig (2013)). Second, because most

banks assets are illiquid and raising fresh equity is costly, banks should hold a buffer of

liquid reserves to be able to cope with short-term losses (see e.g. Gorton (2012)).

While many insightful discussions of leverage and liquidity requirements are available in

the literature, financial theory has made little headway in developing models that provide

quantitative guidance for bank capital structure decisions or for the effects of regulatory

requirements on bank behavior and insolvency risk. Our objective in this paper is therefore

twofold. First, we seek to develop a dynamic model of banks’ choices of liquid asset holdings,

financing, payout, and default policies in the presence of realistic market frictions. Second,

we want to use this model to characterize the endogenous response of banks to the imposition

of liquidity and leverage requirements and to measure the effects of such requirements on

banks’ insolvency risk.

We begin our analysis by formulating a dynamic structural model in which banks face

taxation, issuance costs of securities, and default costs and may be constrained by a regulator

to hold a minimum amount of liquid reserves and/or equity capital. In the model, banks

are financed with equity, insured deposits, and risky debt. They hold risky, illiquid assets

(e.g. loan portfolios) whose cash flows are subject to both small and frequent shocks as well

as large and infrequent negative jumps capturing tail risk. They also have the option to

invest in risk-free, liquid assets (such as cash reserves), that can be used to absorb potential

losses and save on recapitalization costs. Banks earn revenues from their investments as well

as by providing liquidity services to their depositors. Banks maximize shareholder value by

choosing their buffers of liquid assets as well as their financing and default policies.
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We first consider an hypothetical environment in which banks are unregulated and solve

for the bank’s optimal capital structure, which involves determining both how much debt

to issue and how much liquid reserves to hold. In this environment, we show that financing

frictions create a wedge between inside and outside equity and generate a precautionary

demand for liquidity as well as an optimal capital structure for banks. Notably, we find that

banks facing higher external financing costs have lower debt levels, pay less dividends, hold

more liquid reserves, and default earlier.

We also show that banks absorb small and intermediate losses using their liquid reserves or

by raising outside funds at a cost when these reserves are insufficient. That is, in our model,

small and intermediate losses do not lead to insolvency. We show, however, that large losses

due to a realization of tail risk may lead to default. Notably, we find that insolvency risk

increases with tail risk, debt levels, and financing costs and decreases with franchise value,

defined as the present value of the revenues from the bank’s assets. As will become clear,

our framework highlights a trade-off between managing insolvency risk ex ante via leverage

choices versus ex post via liquidity buffers. That is, in our model, liquidity management,

financing decisions, and default decisions are jointly and endogenously determined.

After solving for the policy choices of unregulated banks, we examine the effects of

prudential regulation on these policy choices and insolvency risk. We first analyze liquidity

requirements that mandate banks to hold a minimum amount of liquid reserves. We show

that, when facing such a requirement, banks voluntarily choose to hold liquid buffers in

excess of the required minimum in order to reduce the costs associated with breaches of the

requirement. Notably, we show that as liquidity requirements rise, banks raise their target

level of liquid reserves by a like amount, thereby making their liquidity cushion independent

of the level chosen by the regulator. We then investigate the implication of this behavior for

default risk. We show that, because raising outside funds is costly, an increase in liquidity

requirements will generally not lead to an immediate adjustment to the new target buffer. As

a result, in the short-run, liquidity requirements will lead to a drop in franchise value and to

an increase in insolvency risk. We also demonstrate that once there has been an opportunity

to build up liquid reserves towards the desired level, changes in liquidity requirements have

2



no impact on insolvency risk. That is, contrary to received wisdom, we find that constraining

liquid reserves has no long-run impact on the risk of failure of banks.

In addition to liquidity requirements, banks may be subject to leverage requirements.

Such requirements do not impose any restriction on what assets banks should hold but

impose constraints on the way they fund their operations. As argued by Admati and

Hellwig, a tightening of leverage requirements transfers a large fraction of the bank’s risks

to its shareholders, which otherwise might be passed on to creditors or taxpayers. Leverage

requirements generally indicate how much equity capital banks should have relative to their

total assets. For example, banks are expected to maintain a Tier 1 capital to asset ratio of 3%

under Basel III.1 Using a calibrated version of the model, we show that such requirements

have significant effects on both insolvency risk and bank value. For example, increasing

equity capital from its privately optimal level to 20% (as recommended by Admati and

Hellwig) decreases the default probability over a one year horizon from 0.1% to 0.0005%. At

the same time however, such a requirement reduces total bank value by almost 6%.

The model also allows us to investigate the effects of deposit insurance and depositor

preference in default on financing decisions and default risk. We show that mispriced

deposit insurance generally allows banks to take on more subordinated risky debt, leading

to an increase in insolvency risk. Another way to interpret this result is that the privately

optimal level of equity capital increases significantly when deposit insurance is fairly priced.

Alternatively, leverage requirements can be seen as a mechanism to reduce both default

risk and the mispricing of deposit insurance. Lastly, we show that depositor preference in

default increases the cost of subordinated debt and motivates bank shareholders to adopt

more conservative financing policies, thereby reducing insolvency risk and contributing to a

better alignment of private and social interests.

The literature examining default risk in banks has started with the early contributions

of Merton (1977, 1978), in which the objective is to determine the cost of deposit insurance

1In July 2013, U.S. banking regulators have also proposed a new restriction on borrowing for U.S. banks,
requiring a ratio of (Tier 1) capital to total assets of 6 percent for 8 Systemically Important Financial
Institutions and 5 percent for their bank holding companies. Similarly, the Vickers Commission in the U.K.
has recommended a 4 percent ratio rather than the 3 percent global standard set by the Basel III regime.
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and loan guarantees. Although an important milestone, the analysis of Merton suffers from

four limitations. First, it assumes that the bank defaults whenever the assets-to-deposits

ratio falls below some exogenous barrier. Second, the capital structure of the bank is set

exogenously and does not depend on the frictions that it faces such as taxes, bankruptcy

costs, or issuance costs of securities. Third, the dynamics of the bank’s assets are governed

by an exogenous process, implying that there is no connection between the bank’s asset and

capital structures. Fourth, raising equity is costless, so that liquid reserves are irrelevant.

Most of the recent quantitative banking models examine variants to the first of these

assumptions. In these contributions, insolvency is endogenous and triggered by shareholders

decision to cease injecting funds in the bank (see e.g. Fries, Mella-Barral, and Perraudin

(1997), Bhattacharya, Planck, Strobl, and Zechner (2002), or Décamps, Rochet, and Roger

(2004)). While identifying some prime determinants of insolvency risk, these theories assume

that asset and liability structures are exogenously given. As a result, they leave open the

question of how financing structure and asset structure interact and jointly affect insolvency

risk. In addition, these models also maintain the assumption that banks can raise outside

funds at no cost, thereby leaving no role for liquid reserves. In that respect, they ignore a

number of key determinants of insolvency risk, which are at the centre of most regulatory

frameworks, including that of the Basel Committee on Banking Supervision.

Our analysis inherits some of the assumptions of this literature. For example, bank

shareholders are protected by limited liability and the bank’s objective is to maximize

shareholder value. However, it differs from these contributions in three important respects.

First, we consider that at least part of a bank’s assets are illiquid and that it is costly to

issue securities, thereby providing a role for liquid reserves. Second, we incorporate some of

the key market imperfections and regulatory requirements that banks face in practice and

relate banks’ payout, financing, and default policies to these frictions. Third, in our model,

financing structure and asset structure interact and jointly affect insolvency risk. We show

that these unique features have important implications. For example, while in standard

models shareholder value is always increased by making dividend payments to shareholders,
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this is not the case in our model with frictions, in which shareholders have incentives to

protect their franchise value by maintaining adequate liquid reserves.

There exists a large literature analyzing the role of bank capital in regulation (see e.g.

Hellman, Murdoch, and Stiglitz (2001), Décamps, Rochet, and Roger (2004), Morrison and

White (2005), or Repullo and Suarez (2013)). But it is only recently that the question

of bank optimal capital structure has begun to be addressed. The papers that are most

closely related to ours in this literature are those by Froot and Stein (1988), Allen, Carletti,

and Marquez (2014), Sundaresan and Wang (2014), and Subramanian and Yang (2014).

Subramanian and Yang use a dynamic model to examine banks’ insolvency risk, focusing

on regulators’ incentives to step in as banks become distressed. Sundaresan and Wang

develop a dynamic model to analyze banks’ financing decisions and the effects of deposit

insurance and regulatory closure on bank liability structures. In both of these papers, there

is no role for liquid reserves as outside financing is costless. In that respect, these papers are

complementary to ours. Allen, Carletti, and Marquez show in a static model with bankruptcy

costs that banks generally will hold capital to reduce expected bankruptcy costs and the cost

of deposit finance. They also show the need for capital regulation when deposits are insured

as the cost of deposits does not depend on the risk of the bank’s assets and liability structures.

Froot and Stein (1998) build a two-period model in which capital is initially costless but

may become costly in the future. In their model, decisions are made by bank shareholders

in the first period, in which the future increase in financing costs leads the bank to increase

equity capital and to engage in risk management activities to hedge future potential losses.

Our model differs from Froot and Stein by considering that banks always face the same

set of frictions and choose their payout, financing, and default decisions in response to these

frictions as well as regulatory requirements. Another difference is that we consider a dynamic

model. Indeed, as argued by Hellwig (1998), a static framework fails to capture important

intertemporal effects. For example, in a static model, a regulatory requirement can only

affect banks’ behavior if it is binding. In practice however, regulatory requirements are

binding for a small minority of banks and yet seem to influence the behavior of all banks.
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From a methodological perspective, our paper relates to the inventory models of Milne

and Whalley (2001), Peura and Keppo (2006), Bolton, Chen, and Wang (2011), Décamps,

Mariotti, Rochet, and Villeneuve (2011), and Hugonnier, Malamud, and Morellec (2014) in

which financing costs lead banks or corporations to have liquidity buffers. In these models,

uncertainty is solely driven by Brownian shocks. As a result, there is no risk of default if firms

can raise outside equity. Our paper advances this literature in two important dimensions.

First, we incorporate jumps in our analysis to account for tail risk and show that banks may

find it optimal to default following large shocks, even if they have access to outside funds.

Second, we endogenize not only banks’ payout decisions but also their financing and default

policies. This allows us to examine the effects of regulation on banks’ insolvency risk. As

shown in the paper, this problem is difficult to solve because we have two free boundaries

(the default and the payout thresholds) instead of one (the payout threshold). Another

contribution of this paper is thus to develop a new method based on fixed-point arguments

to derive the solution to shareholders’ optimization problem.

The paper is organized as follows. Section 1 presents the model. Section 2 derives the

value-maximizing payout, financing, and default policies for unregulated banks. Section

3 examines the effects of liquidity and leverage requirements on these policy choices and

insolvency risk. Section 4 discusses the model’s implications. Section 5 concludes. The

proofs are gathered in a separate Appendix.

1 Model

Throughout the paper, agents are risk neutral and discount cash flows at a constant rate

ρ > 0. Time is continuous and uncertainty is modeled by a probability space (Ω,F , P ;F),

with the filtration F = {Ft : t ≥ 0} satisfying the usual conditions.

The subject of study is a bank held by shareholders that have limited liability. This bank

is subject to taxation at rate θ ∈ (0, 1). It owns a portfolio of risky assets (e.g. a portfolio

of risky loans) as well as liquid reserves (i.e. cash reserves or safe government bonds) and is

financed by equity, insured deposits, and risky, subordinated debt. The bank’s risky assets
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generate after-tax cumulative cash flows At that evolve according to:

dAt = (1− θ)µdt+ σdBt − YNtdNt.

In this equation, Bt is a Brownian motion, Nt is a Poisson process, (µ, σ) are constants, and

(Yn)∞n=1 is a sequence of independently and identically distributed random variables that are

drawn from R+ according to an exponential distribution with mean 1
β
> 0. The increments

of the Brownian motion represent small and frequent shocks to the bank cash flows. The

jumps of the Poisson process represent large losses that may be due, for example, to defaults

across the loan portfolio of the bank (see Acharya, Cooley, Richardson, and Walter (2009) for

an analysis of the role of tail risk in the 2007-2009 financial crisis). We denote the intensity of

the Poisson process by λ > 0 so that over an infinitesimal time interval there is a probability

λβe−βydt that the bank makes a loss of size y ≥ 0.2 In a non-financial firm, dAt is the total

earnings. In a bank, it only represents the earnings from assets such as loans, not including

the income from serving deposit accounts.

The illiquidity of bank assets generally constitutes a major source of banking fragility.3

Indeed, as discussed in Froot and Stein (1998), “one of the fundamental roles of banks is to

invest in assets which, because of their information-sensitive nature, cannot be frictionlessly

traded in the capital markets.” The standard example of such an illiquid asset is a loan to a

small or medium-sized company. To capture this feature, we consider that risky assets are

illiquid and assume for simplicity that they have zero liquidation value, as in Biais, Mariotti,

Rochet, and Villeneuve (2010), DeMarzo, Duffie, and Varas (2013), or Rochet and Sigrist

2These jumps may reflect trading losses, such as the $8.9 billion loss of Morgan Stanley on credit default
swaps or the $7.2 billion loss of Société Générale on European index futures. They may also reflect losses on
poorly performing acquisitions, such as the $10.4 billion loss of Crédit Agricole on Emporiki. Lastly, they
may reflect the payments made by a number of banks to authorities in the United States either for having
facilitated tax evasion or for having traded with countries under embargo. For example, on June 30, 2014,
BNP Paribas has agreed to pay a fine of $8.9 billion for having violated U.S. sanctions against Cuba, Iran,
Sudan, and other countries. For more details, see “Capital Punishment,” in The Economist July 5, 2014.

3This illiquidity problem can be due for example to the special expertise of the bank in evaluating its
long-term investments. If the bank tries to sell them before they pay out, other investors might infer that
the bank got bad news about the future returns from these investments leading to a decrease of the price
at which the bank could sell these assets. That is, liquidity problems may be fundamentally informational.
But informational problems are also why we need a banking system in the first place.
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(2014). This assumption implies that liquid reserves have the highest possible private value

and that liquidity requirements have the highest possible social value. Section 4 examines

the effects of positive liquidation values on the predictions of the model.

In addition to risky assets, the bank can (or may be constrained to) hold liquid, risk-free

reserves. We denote by St the liquid reserves of the bank at any time t ≥ 0. Holding liquid

reserves generally involves deadweight costs. We capture these costs by assuming that the

rate of return on liquid reserves is zero.4 When optimizing its liquid asset holdings, the bank

trades-off the lower returns of these assets with the benefits of liquidity.

Banks share some characteristics with non-financial firms: Both have access to the cash

flows generated by their assets and both finance their assets with debt and equity. Banks,

however, differ from non-financial firms in that they take deposits and provide account

services to their depositors. In many countries, deposits are insured by the regulator and the

deposit-taking activity comes with heavy regulation. Deposits and the associated account

services, deposit insurance, and regulation distinguish the banking business from other

businesses and set the capital structure decision of banks apart from that of other firms.

To capture these important differences, we consider that the liability structure of the bank

comprises equity, a fixed volume of deposits D, as well as risky, subordinated debt. Deposits

are insured against bank failure and require the bank to make a payment cD ≥ 0 per unit of

time, which includes the interest paid to depositors and a deposit insurance premium.5 In

the model, the rate of return on deposits cD
D

may differ from the fair rate of return, reflecting

the income earned by the bank for serving deposit accounts and mispriced deposit insurance.

Subordinated debt requires the bank to make a payment cL ≥ 0 per unit of time and has a

face value L that is endogenized in section 3.2. The rate of return on subordinated debt is

thus cL
L

and, as we shall show below, it includes a risk premium to compensate for the risk

of default. Summarizing, the bank’s debt payments are thus c = cD + cL and its earnings

4A necessary condition for a well-defined payout policy is that there exists a cost of holding liquidity in
that the rate of return on liquid reserves is strictly less than the risk-free rate of return ρ.

5As in many recent contributions (see Allen, Carletti, and Marquez (2014), Subramanian and Yang (2014),
or Hanson, Shleifer, Stein and Vishny (2014)), we downplay the vulnerability of bank deposits to runs and
emphasize the opposite aspect of deposits: Relative to other forms of private-money creation that occur in
the shadow-banking sector, bank deposits are highly sticky and not prone to run at the first sign of trouble.
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evolve according to

dCt = dAt − (1− θ)cdt = (1− θ)(µ− c)dt+ σdBt − YNtdNt. (1)

Because the distribution of the jump magnitudes has unbounded support, the bank will

be unable to withstand large losses with some positive probability, leading to default. In

the following, we use a stock based definition of default whereby the bank services debt

as long as equity value is positive (as in e.g. Leland (1994), Duffie and Lando (2001), or

Sundaresan and Wang (2014)). That is, default is the result of the optimizing behavior of

shareholders. In the model, equity capital and liquid reserves serve as buffers against default

risk. The bank can increase its liquid reserves either by retaining earnings or by issuing new

equity. We consider that when raising outside funds, the bank has to pay a lump-sum cost

φ. Because of this fixed cost, the bank will raise new funds through lumpy and infrequent

issues. In addition, to reduce the costs associated with having to issue fresh equity, the bank

will retain earnings and hold liquid reserves.

A payout and financing strategy is a pair π = (P π, Rπ) of adapted, left-continuous, and

non-decreasing processes with initial value zero, where P π
t and Rπ

t respectively represent the

cumulative payouts to shareholders and the cumulative net financing raised from investors

up until time t ≥ 0. The liquid reserves process associated with a strategy π is defined by:

Sπt = s+ Ct − P π
t +Rπ

t ,

where Ct is defined in equation (1) and s is the initial level of liquid reserves. This equation

is a general accounting identity, in which P π
t and Rπ

t are endogenously determined by the

bank. It shows that liquid reserves increase with the bank’s earnings and with the funds

raised from outside investors and decrease with payouts to shareholders. The liquidation

time associated with the payout and financing strategy π is then defined by:

τπ = inf{t ≥ 0 : Sπt+ = lim
u↓t

Sπu ≤ 0}.
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In the model, bank shareholders make their financing, payout, and default decisions

after observing the increment of the cash flow process. As a result, we use left-continuous

processes in the definition of strategies and right-hand limits in the definition of liquidation

times. Notably, the occurrence of a cash flow jump

∆Ct ≡ Ct − Ct− = Ct − lim
s↑t

Cs ≤ −Sπt−

that depletes the liquid reserves of the bank results in default if shareholders do not provide

sufficient funds for the right hand limit

Sπt+ = Sπt− + ∆Ct +Rπ
t+ −Rπ

t − P π
t+ + P π

t

to be strictly positive. In the following, we will consider strategies such that P π
t+ − P π

t ≤

(Sπt +Rπ
t+ −Rπ

t )+, where x+ ≡ max (0, x), implying that the bank cannot pay out amounts

that it does not hold.

Management chooses the payout, financing, and default policies of the bank to maximize

the present value of future dividends to existing shareholders, net of the total cost of capital

injections. That is, management solves:

v(s) = sup
π∈Π(s)

Es
[∫ τπ

0

e−ρt(dP π
t − dΦt(R

π))

]
, (2)

where Π(s) denotes the set of admissible strategies defined in the Appendix and dΦt(R
π)

represents the contribution of shareholders to the bank, including the cumulative cost of

external financing.6 Because risky assets have no liquidation value, there is no cash flow to

6Formally, the cumulative net financing raised from outside investors Rπt and the total contribution of
shareholders to the bank Φt(R

π) up until time t are defined by

Rπt =

∞∑
n=1

1{t>ξn}rn and Φt(R
π) = Rπt +

∞∑
n=1

1{t>ξn}φ,

for some increasing sequence of stopping times (ξn)∞n=1 that represent the dates at which the bank raises
funds from outside investors and some sequence of nonnegative random variables (rn)∞n=1 that represent the
net financing amounts. See the Appendix for more details.
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shareholders in default. That is, we have (Sπτπ −D − L)+ = 0. We show in section 3.1 that

this is no longer the case in the presence of a regulatory liquidity requirement.

To gain some intuition on the solution to problem (2), note that because of the fixed

costs of financing, the bank raises external funds only when cash flow shocks deplete its

liquid reserves, i.e. when s ≤ 0. In such instances, the bank has to either immediately raise

new funds to finance the shortfall and continue operating, or default. The bank may choose

to default when the shortfall or the cost of refinancing are large. When this is not the case,

the bank pays the financing cost φ and raises funds so as to maximize equity value. Taking

into account these two possibilities, we have that the equity value function satisfies:

v(s) = sup
b≥0

(v (b)− b+ s− φ)+ = (α∗0 + s)+ , s ≤ 0, (3)

where b is the level of the bank’s liquid reserves after raising external funds, and

α∗0 = v(0) = sup
b≥0

(v (b)− (b+ φ))+

is the maximal shortfall that shareholders can accept to refinance. Anticipating, equation

(3) shows that two key determinants of default risk in our model are the cost of outside

funds φ and tail risk, i.e. the possibility for s to become (very) negative.

Because the likelihood of costly refinancing decreases with s, we expect the marginal value

of liquid reserves to be decreasing and, therefore, the equity value function to be concave on

the positive real line. If this conjecture is verified, then there should exist some barrier level

b∗0 such that v′(s) ≥ 1 if and only if s ≤ b∗0 and the optimal payout policy should consist in

distributing dividends to maintain liquid reserves at or below the target level b∗0.

The main difficulty in verifying this conjecture is that one needs to simultaneously

determine the values of α∗0 and b∗0. To circumvent this difficulty, we proceed in two steps. In

the first step, we fix the value of the constant α and solve for the bank’s payout policy in

an auxiliary problem where the bank cannot raise funds but produces the payoff (α+ s)+ to

shareholders when it runs out of liquid reserves and defaults. In the second step, we show
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that the constant α can be chosen in such a way that the value of this auxiliary problem

coincides with the solution to problem (2) and derive the equity value-maximizing payout,

financing, and default policies.

Before moving to these two steps, we first determine the equity value and the bank’s

policy choices in the benchmark case where there are no refinancing costs. This allows us

to derive a first best franchise value of equity that will be of repeated use when solving

shareholders’ optimization problem.

2 Value of an unregulated bank

2.1 First best franchise value

When there are no costs of raising funds, in that φ = 0, any loss can be covered by issuing

equity at no cost and there is no need for the bank to hold liquid reserves (as in e.g. Leland

(1994) or Duffie and Lando (2001)). As a result, it is optimal to distribute all earnings and

the optimization problem of the bank reduces to choosing the default policy that maximizes

equity value. That is, management solves

v∗ = sup
τ∈S

E
[
e−ρτ |∆Cτ |+

∫ τ

0

e−ρtdCt

]
,

where S denotes the set of all stopping times and |∆Cτ | represents the size of the loss leading

to default. Let a ∧ b = min(a, b). Solving this problem leads to the following result.

Proposition 1 (First best franchise value). When issuing equity is costless, it is optimal to

distribute all positive earnings and the optimal default time is given by

τ ∗ = inf{t ≥ 0 : |∆Ct| ≥ v∗},

where the first best franchise value of equity v∗ > 0 is the unique solution to

ρv∗ = (1− θ) (µ− c)− λE [v∗ ∧ Y1] , (4)
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when c < µ and v∗ = 0 otherwise. For c < µ, v∗ is increasing in the cash flow rate µ, and

decreasing in the coupon rate c, the jump intensity λ, and the mean jump size 1/β.

Proposition 1 shows that for any c < µ, it is optimal for bank shareholders to default the

first time that the absolute value of a jump of the cash flow process exceeds equity value. In

effect, the quantity |∆Ct| = YNt plays the role of a cost of investment that shareholders have

to pay to keep the bank alive following the occurrence of a large loss. To better understand

this feature, we can rewrite the Bellman equation (4) as

v∗ = p(1− θ)
(
µ− c
ρ

)
+ (1− p)E

[
(v∗ − Y1)+

]
.

with p = ρ
ρ+λ
∈ (0, 1]. Thus, when issuing equity is costless, the banks’ problem can be

interpreted as a discrete-time, infinite horizon problem in which shareholders earn (1− θ) µ−c
ρ

each period with probability p and otherwise face a random liquidity shock that they can

decide to pay, in which case the bank continues, or not, in which case the bank is liquidated.

To determine the effect of limited liability on bank policy choices, let

v0 = E
[∫ ∞

0

e−ρtdCt

]
=

1

ρ

(
(1− θ)(µ− c)− λ

β

)

stand for the equity value under the assumption that shareholders never default, and denote

by Ω = v∗ − v0 the excess value generated by the option of declaring default. Using the

Bellman equation (4), it can be shown that this quantity satisfies:7

Ω =

(
λ

ρ

)
E
[
(Y1 − v∗)+

]
. (5)

This equation shows that limited liability only has value if the bank cash flows are subject

to jumps, i.e. only if λ > 0, for otherwise the bank would not be subject to default risk.

Importantly, the fact that the first best franchise value of equity v∗ is strictly positive for all

7While Proposition 1 is valid for any distribution, it is possible to obtain closed-form solutions for
equity value and the option to default under specific distributions. For example, when the jumps Yn are
exponentially distributed, the solution to equation (5) is given in closed form by Ω = (1/β)W((λ/ρ)e−v0)
where W(x) is the LambertW function (see for example Corless, Gonnet, Hare, Jeffrey, and Knuth (1996)).
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c < µ, irrespective of the frequency and magnitude of the jumps, implies that it is optimal

for the bank to operate even if the present value of cash flows v0 is negative. That is,

limited liability leads shareholders to invest in risky assets that would otherwise have negative

net present value. This behavior is reminiscent of the collapse of AIG who was providing

insurance by issuing credit default swaps (CDSs). AIG was collecting premia on these CDSs

and was expected to make payments only if certain bonds defaulted, which unexpectedly

happened in the wake of the subprime crisis. Once the bonds started defaulting, the CDSs

had to pay out and AIG was on the hook for billions, which eventually led them to default.

2.2 Equity value and bank policies with no refinancing

Having determined the first best franchise value of equity, we now turn to the solution

of the auxiliary problem in which the bank has no access to outside funds. In this case,

shareholders cannot refinance, have to default if the bank runs out of liquid reserves, and

can only optimize equity value over the bank’s payout policy.

Let α ≥ 0 be a constant and consider an hypothetical bank whose assets produce after-

tax net cash flows to shareholders given by dCt as long as it is in operation, and a cash flow

(α+ s)+ to shareholders if the bank is liquidated at a point where St = s. The optimization

problem of shareholders in such a bank can be written as

w(s;α) = sup
π∈Π0(s)

Es
[∫ τπ

0

e−ρtdP π
t + e−ρτπ(α + Sπτπ)+

]
, (6)

where Π0(s) denotes the subset of admissible strategies such that Rπ = 0 (i.e. no refinancing)

and τπ denotes the first time that liquid reserves are negative. The first term on the right-

hand side of (6) captures the present value of all dividend payments until the time of default.

The second term gives the present value of the cash flow to shareholders in default.

If the value of α is sufficiently large, it should be optimal for shareholders to liquidate the

bank’s assets and distribute all the available cash. The following result confirms this intuition
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and shows that the threshold above which immediate liquidation is optimal coincides with

the first best franchise value of equity determined in the previous section.

Lemma 2. If α ≥ v∗, it is optimal for shareholders to immediately liquidate.

Given the above result, we now assume that α < v∗. Following the literature on optimal

dividend policies (see for example Albrecher and Thonhauser (2009) for a survey), it is

natural to conjecture that the optimal payout strategy for shareholders in the auxiliary

problem (6) should be of barrier type. Specifically, we conjecture that for any α < v∗ there

exists a constant barrier b∗(α) such that the optimal policy consists in paying dividends to

maintain liquid reserves at or below the level b∗(α). To verify this conjecture, we start by

calculating the value of the auxiliary bank’s equity under an arbitrary barrier strategy.

Fix a constant b > 0 and consider the strategy πb = (P b, 0) that consists in paying

dividends to maintain the liquid reserves of the bank at or below the level b. The cumulative

payout associated with this barrier strategy is

P b
t = 1{t>0} max

0≤u<t
(Xu − b)+

where Xt = s+Ct denotes the uncontrolled liquid reserves process (i.e. assuming that there

are no dividend payments) and the corresponding value is defined by

w(s;α, b) = Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπb (α + Sπbτπb

)+

]
.

Letting ζ0 denote the first time that the uncontrolled liquid reserves Xt become negative

and using the dividend–penalty identity (see Gerber, Lin, and Yang (2006) and Gerber and

Yang (2010)), we have that this value is given by:

w(s;α, b) =


(α + s)+ , for s ≤ 0,

ψ(s;α) + W (s)
W ′(b)

(1− ψ′(b;α)) , for 0 < s ≤ b,

s− b+ w(b;α, b), for s > b,

(7)
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where the function

ψ(s;α) = Es
[
e−ρζ0 (α +Xζ0)

+]
gives the present value of the payment that shareholders receive in liquidation if no dividends

are distributed prior to bankruptcy, and W (s) is the ρ−scale function of the uncontrolled

liquid reserves process. Closed-form expressions for both of these functions as linear combi-

nations of exponentials are provided in the Appendix.

In the payout region (i.e. for s > b), the bank pays dividends to maintain its liquid

reserves at or below b, so that equity value grows linearly with s. In the earnings retention

region (i.e. for s ≤ b), the term

W (s)

W ′(b)
= w(s; 0, b) = Es

[∫ τπb

0

e−ρtdP b
t

]

gives the present value of the dividend payments that shareholders receive until default. The

term

ψ(s;α)− ψ′(b;α)
W (s)

W ′(b)
= Es

[
e−ρτπb (α + Sπbτπb

)+
]

gives the present value of the payoff that shareholders receive in liquidation, with the second

term on the left hand side reflecting the effects of payouts on this present value.

Equation (7) shows that in the earnings retention region, the value of a barrier strategy

depends on the barrier level only through

H(b;α) =
1− ψ′(b;α)

W ′(b)
.

In the Appendix, we show that there exists a unique payout barrier b∗(α) that maximizes this

function over R+ and, relying on a verification theorem for the Bellman equation associated

with problem (6), we prove that the corresponding barrier strategy is optimal among all

strategies. This leads to the following result.
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Proposition 3 (Auxiliary value function). Consider a bank with no access to outside funds

that produces a cash flow (α+s)+ to shareholders in default. The equity value of such a bank

is concave and twice continuously differentiable over (0,∞) and given by

w(s;α) = w(s;α, b∗(α)),

where b∗(α) is the unique solution to H ′(b∗(α);α) = 0. Furthermore, the optimal policy for

bank shareholders is to distribute dividends to maintain liquid reserves at or below b∗(α).

As can be seen from equation (7), the value function of problem (6) is linear with slope

equal to one in the payout region where s > b∗(α). Combining this property with the

smoothness established in Proposition 3 shows that this value function satisfies:

0 = w′(b∗(α);α)− 1 = w′′(b∗(α);α).

The first of these two conditions is known as the smooth-pasting condition and indicates

that liquid reserves are reflected down through dividend payments at the constant barrier

level b∗(α). The second condition is usually referred to as the high-contact condition and

guarantees the optimality of the dividend barrier (see Dumas (1991)).

2.3 Equity value and optimal bank policies

Having solved for the payout policy of the auxiliary bank, we now show how to obtain the

optimal policies for problem (2) by endogenizing the value of the constant α that determines

the equity value of the auxiliary bank at the point where it runs out of liquid reserves.

Let b > 0 be a constant and consider the strategy π̂b that consists in paying dividends to

maintain liquid reserves at or below b and in raising funds back to b whenever liquid reserves

become negative if that is profitable. Denote by

v(s; b) = Es
[∫ τπ̂b

0

e−ρt(dP π̂b
t − dΦt(R

π̂b))

]
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the corresponding equity value. By definition, this function satisfies

v(s; b) = (v(b; b)− b+ s− φ)+, ∀s ≤ 0.

Since the bank does not raise funds before the first time τπb that liquid reserves are negative,

we have that Rπ̂b
t = P π̂b

t − P b
t = 0 for all 0 ≤ t ≤ τπb . Therefore, using the above equations

together with the law of iterated expectations, we get that

v(s; b) = Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπbv(Sπbτπb

; b)

]
= Es

[∫ τπb

0

e−ρtdP b
t + e−ρτπb (v(b; b)− b+ Sπbτπb

− φ)+

]
= w(s; v(0; b), b), (8)

where w(s;α, b) is defined as in equation (7). Evaluating the function v(s; b) at the payout

barrier b, subtracting b + φ from both sides of equation (8), and taking the positive part

shows that the equity value associated with zero liquid reserves solves

α̂(b) ≡ (v(b; b)− b− φ)+ = v(0; b) = (w(b; α̂(b), b)− b− φ)+ .

Given equation (8), the results of the previous section now suggest that to determine the

optimal strategy, we need to look for a barrier level b such that b = b∗(α̂(b)) or, equivalently,

for a fixed point of the function defined by

g(α) = (w(b∗(α), α, b∗(α))− b∗(α)− φ)+.

We show in the Appendix that this function admits a unique fixed point α∗0 in the interval

[0, v∗). If the cost of financing is such that

φ ≥ φ∗ ≡ w(b∗(0); 0, b∗(0))− b∗(0),

then this fixed point is given by α∗0 = 0 and it is not profitable for shareholders to raise funds

when the bank runs out of liquid reserves. If the cost of refinancing is such that φ < φ∗,
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then we have that α∗0 > 0 and it may be profitable for shareholders to refinance when the

bank runs out of liquid reserves, depending on the size of the shortfall. In this case, we have

α∗0 = w(b∗0;α∗0, b
∗
0) − b∗0 − φ with b∗0 = b∗(α∗0) and it follows that α∗0 gives both the bank’s

equity value at the point where it runs out of liquid reserves and the size of the maximum

loss that shareholders are willing to refinance.

The identity (8) and the definition of the constants α∗0 and b∗0 imply that the equity value

associated with the strategy π̂b∗0 is given by

v(s; b∗0) = w(s;α∗0, b
∗
0) = w(s;α∗0).

Using the properties of the auxiliary value function derived in the previous section, we show

in the Appendix that this function satisfies

v(s; b∗0) = (α∗0 + s)+ = max
b≥0

(v(b; b∗0)− b+ s− φ)+ , s ≤ 0,

and, relying on a verification theorem for the Bellman equation associated with the bank’s

optimization problem, we prove that the barrier strategy π̂b∗0 is optimal, not only in the class

of barrier strategies, but among all strategies. This leads to the following result.

Proposition 4 (Equity value function). The equity value function is concave and twice

continuously differentiable in liquid reserves over (0,∞) and given by

v(s) = v(s; b∗0) = w(s;α∗0, b
∗
0),

where α∗0 denotes the unique fixed point of g(α) in the interval [0, v∗). The optimal payout

strategy consists in paying dividends to maintain liquid reserves at or below b∗0 = b∗(α∗0).

When φ < φ∗, the bank raises funds to move to b∗0 whenever liquid reserves become negative

with a shortfall smaller than α∗0 > 0, and liquidates otherwise. When φ ≥ φ∗, the bank never

raises equity and defaults the first time that liquid reserves reach α∗0 = 0.
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Proposition 4 shows that when outside funds are costly, the value of equity is a concave

function of the bank’s liquid reserves over (0,∞), so that there are no incentives for share-

holders to increase cash flow volatility even if the bank is levered. In our model, the bank’s

risk aversion, as measured by the curvature of the value function, is endogenous and depends

on the level of liquid reserves. For liquid reserves above b∗0, the equity value function satisfies

v′′(s) = w′′(s;α∗0) = 0,

so that the bank becomes risk-neutral. For negative values of liquid reserves, the equity value

function is linear as long as shareholders find it optimal to refinance and equal to zero in the

default region where s+ α∗0 ≤ 0. The value of equity is therefore convex for negative values

of liquid reserves. However, since these values can only be reached following the occurrence

of a large loss, the bank does not spend any time in this region.8 The shape and properties

of the equity value function are represented in Figure 1.

Under the optimal policy, the bank pays dividends to maintain its liquid reserves at or

below b∗0. This is illustrated by the smooth-pasting and high-contact conditions:

0 = v′(b∗0)− 1 = v′′(b∗0),

which show that liquid reserves are optimally reflected down at b∗0. When liquid reserves

exceed b∗0, the bank is fully capitalized and places no premium on internal funds so that it is

optimal to make a lump sum payment s−b∗0 to shareholders. The desired level of reserves, b∗0,

results from the trade-off between the cost of raising funds and the cost of holding liquidity.

8The model can give the bank the option not to refinance immediately after a negative jump hits (e.g. by
introducing a lender of last resort), to allow for counter-cyclical liquidity buffers. A simple way to incorporate
this feature is to assume that if a negative jump takes the liquid reserves of the bank below the required
minimum, the bank has until the fist arrival time τδ of a Poisson process with intensity δ to build liquidity
back up, before it is forced to either refinance or liquidate. In this case, the expected duration of this
forbearance period is ∆ ≡ 1/δ and the value of equity for s ≤ 0 is given by

v (s) = E
[
1τ0≤τδe

−ρτ0v(0) + 1τδ≤τ0e
−ρτδ (v(b∗)− b∗ − φ+ Sτδ)

+
]
,

where τ0 is the first time that the liquid reserves process goes back to 0. See section 4.5.

20



Figure 1: Equity value for an unregulated bank
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Notes. This figure illustrates the shape of the equity value function and the optimal strategy for an

unregulated bank. The regions on each side of the graph correspond respectively to liquidation

(left) and dividend payments (right) while the two intermediate regions and correspond

respectively to earnings retention and refinancing.

Lastly, note that in our model, banks are subject to insolvency risk even though they

can raise outside funds. Notably, Proposition 4 shows that it is optimal for shareholders to

default following a shock that brings liquid reserves below −α∗0 = −v(0). Our results are

thus in sharp contrast with those of Brownian-driven inventory models (see e.g. Milne and

Whalley (2001), Peura and Keppo (2006), or Décamps, Mariotti, Rochet, and Villeneuve

(2011)) in which there is no default if banks can raise outside equity. Also, while in those

models firms always raise the same amount of capital, there exists some time series variation

in the amount of funds raised from investors in our model.
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3 The effects of liquidity and leverage requirements

This section examines the effects of prudential regulation on the policy choices that maximize

equity value and on the risk of insolvency. We introduce prudential regulation in our setup

by considering that the regulator can force the bank to maintain its liquid reserves in excess

of a given regulatory level and can set a lower bound on equity capital when making leverage

choices. That is, our focus is on the instruments of regulation that are being considered in

the Third Basel Accord, namely leverage and liquidity requirements.

3.1 Liquidity requirements

To examine the effects of liquidity requirements, we consider a regulatory constraint that

mandates the bank to hold a minimum level of liquid reserves T > 0 at all times. When

s ≤ T , the bank has the choice of recapitalizing by issuing new equity at a fixed cost φ

or liquidating. By introducing this liquidity requirement in the model, we are interested in

answering the following questions. Can a liquidity requirement affect bank behavior even if

it is not binding? If liquidity requirements were to rise, would banks raise their target level

of liquid reserves? What are the implications of these behaviors on default risk?

The value of equity in a bank subject to a minimum regulatory level of liquid reserves is

defined by the optimization problem

v(s;T ) = sup
π∈Π(s,T )

Es
[∫ τπ,T

0

e−ρt(dP π
t − dΦt(R

π)) + e−ρτπ,T (Sπτπ,T −D − L)+

]
, (9)

where τπ,T = inf{t ≥ 0 : Sπt+ ≤ T} denotes the default time associated with the strategy

π in the presence of a liquidity requirement at the level T , and Π(s, T ) denotes the set of

admissible payout and financing strategies such that P π
t+ − P π

t ≤ Sπt − T + Rπ
t+ − Rπ

t . This

constraint implies that the regulatory amount of liquid reserves T cannot be distributed. It

guarantees that creditors will receive at least this amount in liquidation. The first term on

the right-hand side of (9) captures the present value of all dividends to shareholders until

default. The second term is the present value of the cash flow to shareholders in default.
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Let `(s) = (s−D−L)+ denote the payment that shareholders receive if liquidation occurs

at point where the bank’s liquid reserves are equal to s. Solving shareholders’ optimization

problem leads to the following result.

Proposition 5 (Liquidity requirements). Equity value in a bank subject to a minimum

regulatory level of liquid reserves T ≥ 0 is given by:

v(s;T ) =

 v(s− T ; 0), if `(T ) ≤ α∗0,

w(s− T ; `(T )), otherwise,
(10)

while the target level of liquid reserves b∗T satisfies

b∗T =

 T + b∗0, if `(T ) ≤ α∗0,

T + b∗(`(T ) ∧ v∗), otherwise.
(11)

When `(T ) ≤ α∗0, the bank pays dividends to maintain liquid reserves at or below b∗T , raises

funds to move to b∗T whenever liquid reserves fall below T with a shortfall smaller than α∗0,

and liquidates otherwise. When `(T ) > α∗0, the bank never raises equity, defaults as soon as

s ≤ T , and pays dividends to maintain liquid reserves at or below b∗T .

Proposition 5 shows that the effect of liquidity requirements on the bank’s policy choices

depends on their stringency. When the liquidity requirement is such that `(T ) > α∗0 = v(0),

it is never optimal for shareholders to refinance at T since the cash flow to shareholders in

liquidation exceeds the continuation value of equity. In this case, the bank liquidates as soon

as liquid reserves fall short of the minimum regulatory level. By contrast, when `(T ) ≤ α∗0,

it is optimal for shareholders to refinance at T . In this case, liquidity requirements lead to

a drop in equity value as

v(s;T ) = v(s− T ; 0) = v(s− T ) ≤ v(s),

and make it optimal for shareholders to default when liquid reserves fall below T−α∗0. Figure

2 illustrates these effects by plotting the value of equity for different liquidity requirements.
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Figure 2: Equity value for a regulated bank
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Notes. This figure illustrates the change in the equity value when going from an unregulated bank

(solid line) to either a regulated bank with T0 such that `(T0) ≤ α∗0 (dashed line) or to a regulated

bank with T1 such that `(T1) > α∗0 (dashed-dotted line).

Given that liquidity requirements reduce equity value, it is immediate to see that in

the short-run, i.e. before the bank adjusts to its new target level of liquid reserves, such

requirements decrease equity value and increase insolvency risk (see also Figure 5 below).

That is, liquidity requirements have a negative transitory effect on insolvency risk. We

therefore focus below on the long-run effects of liquidity requirements, i.e. on their effects

once the bank has had the opportunity to build up liquid reserves. In addition, given that

setting `(T ) > α∗0 leads to liquidation whenever liquid reserves fall below the regulatory level,

we consider that the regulator sets a minimum liquidity requirement satisfying `(T ) ≤ α∗0. In

this case, it is optimal for shareholders to refinance when liquid reserves reach the regulatory

level T , at which point the bank raises b∗T − T = b∗0 to move to the target level of liquid
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reserves. As a result, equity value at the regulatory level T is given by:

v(T ;T ) = (v(b∗T ;T )− (b∗T − T )− φ)+ .

This value corresponds to the maximum amount that shareholders are willing to contribute

to keep the bank alive following a large loss. Using equations (10) and (11), we then have

v(T ;T ) = (v(b∗T − T )− (b∗T − T )− φ)+ = (v(b∗0)− b∗0 − φ)+ = α∗0,

so that shareholders default when liquid reserves fall below T with a shortfall greater than

α∗0. This shows that the presence of liquidity requirement increases the default threshold

from the unregulated value −α∗0 to the regulated value T − α∗0. Since the target level of

liquid reserves satisfies b∗T = b∗0 + T , we immediately get the following result:9

Corollary 6 (Liquidity requirements and insolvency risk). Liquidity requirements have no

effect on insolvency risk when banks are optimally capitalized.

Given that b∗T = b∗0 + T , the cushion of liquid reserves that the bank holds above the

required level does not depend on the level chosen by the regulator. In effect, liquidity

requirements shifts the support of the distribution of liquid reserves from (−α∗0, b∗0] to (−α∗0 +

T, b∗0 + T ]. This is due to the fact that raising the required level of liquid reserves does not

change the trade-off between the cost of carrying liquidity inside the bank and the cost of

accessing outside liquidity.10

Two remarks are in order before we conclude this section. First, while liquidity require-

ments do not affect the long-run probability of default, they reduce the potential losses of

9Section 4.4 provides a detailed analysis of the effects of regulation on insolvency risk. Importantly,
introducing counter-cyclical liquidity buffers, as described in footnote 8, would not change our result that
liquidity requirements have no long-run impact on default risk for so long as this “forbearance” response is
anticipated ex ante by bank shareholders. See section 4.5.

10Milne and Whalley (2001) show in a model without default risk that the target level of liquid reserves
in banks increases with the reserves requirement so that the buffer of liquid reserves does not depend on
regulatory constraints. One important contribution of our paper with endogenous default risk is to show
that reserves requirements change not only the target level of liquid reserves in banks but also the selected
default threshold, so that such requirements have no long-run effect on default risk in banks.
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the bank in default and, hence, the capital injections by the regulator in default. Second,

our analysis shows that liquidity requirements increase default risk in the short-run. This

may explain why the regulator is implementing these requirements with a long transition

period, thereby limiting the effects on bank franchise value and insolvency risk.

3.2 Endogenous leverage and leverage requirements

In this section, we examine the privately optimal mix between equity and debt on the balance

sheet of the bank and the effects of regulatory constraints on this mix. To do so, we follow the

literature on optimal financing decisions (see e.g. Leland (1994), Duffie and Lando (2001),

or Sundaresan and Wang (2014)) and consider a bank that raises an amount D of deposits

and issues at par a perpetual debt contract, with face value L and coupon rate cL.

Assume that the bank is subject to a setup cost Ψ ≥ φ that includes the cost of buying

assets and let us determine the set of face values that lead to nonnegative payoffs for both

shareholders and debtholders. If creditors agree to the proposed face value L, then the

present value to shareholders of setting up the bank is

ηs(cL, L, T ) = sup
e≥(T+Ψ−D−L)+

(−e+ v(D + L+ e−Ψ;T |cL, L)) ,

where e represents the amount injected by shareholders and v(s;T |cL, L), defined as in (9),

gives the equity value of a bank that holds s in liquid reserves, is subject to a minimum

liquidity requirement T ≥ 0, and has issued debt with coupon rate cL and face value L. To

derive conditions under which this net present value is nonnegative, consider the function

N(cL, T ) = T + b∗0(cL) + Ψ−D − v(b∗0(cL)|cL),

where b∗0(cL) and v(s|cL) respectively give the optimal payout barrier and the equity value

of an unregulated bank with coupon rate cL. Note that, since shareholders in such a bank

do not receive any payment in liquidation, these quantities depend neither on the face value
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of the debt contract L nor on the amount of deposits D that the bank initially raises. In the

Appendix, we establish the following result:

Proposition 7 (Net present value). The net present value of setting up the bank to share-

holders is positive if and only if L ≥ N(cL, T ). In this case, this NPV satisfies:

ηs(cL, L, T )+ = (L−N(cL, T ))+,

and shareholders’ strategy Θ∗(cL) = (T, α∗0(cL), b∗0(cL)) consists in paying dividends to main-

tain liquid reserves at or below T + b∗0(cL), raising funds to move to T + b∗0(cL) whenever

liquid reserves fall below T with a shortfall smaller than α∗0(cL), and liquidating otherwise.

The first part of Proposition 7 shows that shareholders break even only if they can obtain

at least N(cL, T )+ from creditors. If creditors agree to such a price, then the second part of

the proposition shows that shareholders will first adjust liquid reserves to the optimal level

b∗T (cL) = T + b∗0(cL),

and will then run the bank according to the barrier strategy Θ∗(cL). In such a scenario, the

present value to creditors will be

ηc(cL, L, T ) = d (b∗T (cL),Θ∗(cL)| cL, L)− L,

where the function

d(s,Θ|cL, L) = E

[∫ τ(s,Θ)

0

e−ρtcLdt+ e−ρτ(s,Θ) min
(
Sτ(s,Θ)(s,Θ)−D,L

)+

]
(12)

gives the value of risky debt under the assumption that the bank follows a barrier strategy

Θ = (T, a, b). The first term on the right-hand side of (12) captures the present value of

all coupon payments until the default time τ(s,Θ) associated with the strategy Θ starting

from the initial level s. The second term is the present value of the cash flow to debtholders
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in default, where we have assumed that deposits were senior to risky debt. (Section 4.3

examines the effects of alternative priority rules on bank leverage and credit spreads.)

In the Appendix, we show that the creditors’ present value is strictly decreasing in L and

admits a unique root L∗(cL, T ) that lies in (0, cL/ρ]. This result implies that the present value

of creditors is positive if and only if the proposed face value lies below L∗(cL, T ). Combining

this with Proposition 7 then shows that the set of individually rational face values associated

to a coupon rate cL is given by the interval

{
L > 0 : N(cL, T )+ ≤ L ≤ L∗(cL, T )

}
.

If the chosen coupon rate is such that this set is empty, then there is no face value of

debt that generates nonnegative payoffs for both parties. If the coupon rate is such that

0 < N(cL, T ) ≤ L∗(cL, T ), then any face value between these points generates a nonnegative

present value for both parties, and it remains to determine how the surplus is shared between

shareholders and creditors. To do so, we assume that creditors are competitive and do not

have any bargaining power against the bank. In this case, the usual undercutting argument

implies that shareholders will be able to sell debt at the highest possible price L∗(cL, T ).

In our model, debt financing reduces the taxes of the bank. At the same time, for

any given level of liquid reserves, debt financing increases expected bankruptcy costs and

the frequency at which the bank raises costly outside capital. When choosing the coupon

payment cL, the objective of shareholders is to maximize the value of equity after debt has

been issued plus the proceeds from the debt issue net of the cost to shareholders of acquiring

the bank assets through the provision of required capital. That is, shareholders solve:

sup
cL∈C(T )

ηs (cL, L
∗(cL, T ), T ) , (13)

where the feasible set is defined by

C(T ) = {cL ≥ 0 : N(cL, T ) ≤ L∗(cL, T )}.
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One key difference between the optimization problem (13) and leverage choices in dynamic

corporate finance models such as Leland (1994), Hackbarth, Miao, and Morellec (2006), or

Strebulaev (2007) is that the initial contribution of shareholders to the bank’s capital is

endogenous and depends on the liquidity constraints faced by the bank. Another impor-

tant difference is that, in our model, the bank determines its optimal capital structure by

balancing tax benefits against both issuance costs and bankruptcy costs.

While problem (13) is not amenable to an explicit solution, we can show that as long as the

minimum liquidity requirement does not exceed the amount of deposits—which is the relevant

case in practice—the presence of a liquidity requirement will either deter shareholders from

setting up the bank or will have no effect on the optimal coupon rate.

Proposition 8 (Optimal leverage and liquidity requirements). Assume that the optimal

coupon rate c∗L(0) ∈ C(0) is well-defined. If the liquidity requirement is such that T ≤ D then

either C(T ) is empty or c∗L(T ) = c∗L(0).

In addition to liquidity requirements, the bank may also face leverage ratio requirements.

That is, in an attempt to reduce insolvency risk, the regulator may constrain the bank to

choose a leverage ratio, defined as equity capital over total asset value, that exceeds some

lower bound `∗. Since the bank’s leverage ratio is minimized at s = T , constraining the

bank’s leverage ratio to be higher than some value `∗ is equivalent to

α∗0(cL)

D + L∗(cL) + α∗0(cL)
≥ `∗,

or

α∗0(cL) ≥ `∗

1− `∗
(L∗(cL) +D).

The left-hand side of this equation is decreasing in cL whereas the right-hand side is increasing

in cL for any cL ≤ c∗L(T ). This shows that constraining the leverage ratio of the bank is

equivalent to constraining the bank to choose a coupon level cL ∈ [0, ĉ), where ĉ ≥ 0 is a cap

on the coupon payment on risky debt. In our analysis of financing decisions, we will also
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refer to the debt ratio. This ratio is defined as the market value of debt plus deposits over

total bank assets and is equal to one minus the leverage ratio, i.e.

Debt ratio(s) =
D + d(s;T |cL, L)

D + d(s;T |cL, L) + v(s;T |cL, L)

= 1− v(s;T |cL, L)

D + d(s;T |cL, L) + v(s;T |cL, L)
= 1− Leverage ratio(s).

4 Model analysis

4.1 Parameter values and implied variables

This section provides additional results and illustrates the effects of frictions and regulatory

constraints on bank’s policy choices using numerical examples. The values of the model

parameters used in our base case environment are reported in Table 1. These parameter

values imply that large losses represent on average 50% of yearly income and occur every

other year in expectation and that the cost of refinancing represents between φ
b∗0+α∗0

= 1.27%

(at the default threshold) and φ
b∗0

= 6.36% (at the regulatory threshold) of the capital raised.

For these parameter values, the optimal coupon on risky debt is cL = c∗L(0) = 11.49% and

the corresponding face value of risky debt is L = 2.25.

Because liquid reserves fluctuate between their minimum regulatory level and the target

buffer set by bank shareholders, the debt ratio of the bank effectively remains between

two bands as in the dynamic capital structure models of Fischer, Heinkel, and Zechner

(1989), Hackbarth, Miao, and Morellec (2006), Strebulaev (2007), and Morellec, Nikolov,

and Schürhoff (2012). Notably, the debt ratio of the bank fluctuates between 91.89% and

93.49% at the optimal coupon level while deposits represent between 61.25% and 62.31% of

total asset value, consistent with the figures reported in Gropp and Heider (2010). Lastly, the

1-year default probability for the bank at optimal leverage is 10.06 basis points, consistent

with the values reported in Crossen and Zhang (2012) or Hamilton, Munves, and Smith

(2010) for 1-year default probabilities of financial firms.
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Table 1: Parameter values and implied variables

A. Parameter values

Parameter Symbol Value

Drift rate net of taxes (1− θ)µ 0.18
Volatility σ 0.08
Arrival intensity λ 0.50
Mean jump size 1/β 0.09
Tax rate θ 0.35
Face value of debt L 2.25
Face value of deposits D 4.50
Coupon rate cL 0.1149
Cost of deposits cD 0.045
Discount rate ρ 0.05
Financing cost φ 0.0075
Liquidity requirement T 0.00

B. Implied variables

Variable Symbol Value

First best value v∗ 0.6220
Equity value α∗0 0.4699
Target level of liquid reserves b∗0 0.1179
Share of financing cost 0.0636
1 Year default probability (bps) 10.06
Debt ratio (%) 91.89− 93.49
Deposits over total assets (%) 61.25− 62.31

4.2 Default and payout decisions

We start our analysis by examining the determinants of the target level of liquid reserves.

To do so, we plot in Figure 3 the unconstrained target buffer b∗0 as a function of the intensity

of large losses λ, the expected size of large losses 1
β
, the cash flow volatility σ, and the cash

flow rate µ. In the model, the target level of liquid reserves maximizes the value of equity

and results from a trade-off between the carry cost of liquidity ρ and the cost of raising new

capital. Because an increase in volatility increases the likelihood of a costly equity issuance,

the target buffer b∗0 increases with σ. An increase in the frequency of large losses λ or in their

expected size 1
β

has two opposite effects on b∗0. First, it increases the likelihood of a costly

security issuance and, hence, shareholders’ incentives to build up liquid reserves. Second, it
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reduces the expected cash flow from operating the bank’s assets and therefore shareholders’

incentives to contribute capital. The first effect dominates for low values of λ and 1
β
; the

second effect dominates for larger expected losses. The effect of the cash flow rate µ on

the target level of liquid reserves also results from two opposite effects. On the one hand,

a higher cash flow rate increases the bank’s franchise value and shareholders’ incentives to

contribute capital. On the other hand a higher cash flow rate increases revenues and reduces

the role of liquid reserves as a buffer to absorb losses.

Consider next the determinants of the bank’s default decision. As shown in Proposition

4, when there is no liquidity requirement in that T = 0, default occurs when the bank is

hit with a negative shock that takes its liquid reserves below −α∗0. This threshold is given

by the value of equity at the target, i.e. v(b∗0), net of the new provision of capital b∗0 and

of the refinancing cost φ. By decreasing the value of the claim of incumbent shareholders

at refinancing (i.e. by decreasing v(b∗0) − b∗0), an increase in the intensity of large losses λ,

in their expected size 1
β
, in the cost of financing φ, or in the diffusion coefficient σ lead to

an increase in the default threshold. By contrast, an increase in the cash flow rate µ (or,

equivalently, a decrease in the coupon rate c) leads to an increase in the value of the claim of

incumbent shareholders at refinancing and, therefore, to a decrease in the default threshold.

Lastly, when µ falls below cD + cL, equity becomes worthless and it is optimal to default

immediately. These effects are illustrated in Figure 3.

To illustrate the effects of liquidity requirements on bank’s policy choices, Figure 4 plots

the target level of liquid reserves as well as the default threshold as functions of the minimum

requirement T . Consistent with Proposition 5, the figure shows that both thresholds grow

linearly with the minimum liquidity requirement T . That is, regulatory requirements affect

bank behavior even when they are not binding. The figure also shows that banks will

generally hold a significant buffer of liquid reserves in excess of the liquidity requirements in

order to reduce refinancing costs. Therefore, our theory predicts that liquidity requirements

should be non-binding for most banks. Lastly, Figure 4 shows that both thresholds increase

with the cost of external funds φ. Indeed, an increase in the cost of raising funds decreases

the benefits of refinancing, leading to an increase in the default threshold. In addition,
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Figure 3: Effect of the cash-flow parameters
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and the cash flow drift. In each panel the upper and lower regions correspond respectively

to dividend payments and liquidation while the two intermediate regions and correspond

respectively to earnings retention and refinancing.
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Figure 4: Effect of liquidity requirements and financing costs
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payments and liquidation while the two intermediate regions and correspond respectively

to earnings retention and refinancing.

an increase in the cost of external funds raises the value of inside equity and therefore

shareholders’ incentives to build up liquid reserves.

4.3 Deposit insurance, depositor preference, and insolvency risk

In our model, the terms of deposit insurance and the payments to depositors are fixed

exogenously and reflect neither the risk of the bank’s assets nor its policy choices. The

benefit for bank shareholders of the mispricing of deposit insurance is that it increases the

cash flows of the bank by lowering its cost of operation and reduces the present value of

bankruptcy costs priced in the debt contracts. This in turn allows the bank to reduce its

cost of capital by increasing its debt ratio, leading to a change in insolvency risk.
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To investigate the effects of mispriced deposits on banks’ financing decisions and insol-

vency risk, we consider an environment in which D = cD = 0 and all debt is risky and fairly

priced. Table II shows that, in such an environment, the bank’s debt ratio is significantly

reduced and fluctuates between 83.26% and 86.15% at the optimal coupon level. That is,

the amount of debt financing is reduced by close to 7.5%. This drop in debt financing leads

in turn to a drop in insolvency risk. Notably, the 1-year default probability for the bank

at optimal leverage is now 0.0726%. (The Appendix provides closed-form solutions for this

default probability.) This suggests that the mispricing of deposit insurance has two opposite

effects on default risk. First, it increases cash flows to shareholders and their willingness to

absorb losses, for any given coupon rate. Second, it increases the privately optimal amount

of debt in the bank’s capital structure. In our base case environment, the second effect

dominates leading to an increase in insolvency risk. In addition, Table II shows that the

drop in insolvency risk is more important in banks with high tail risk, as captured by λ and

1/β. As shown by the table, volatility risk works differently. Notably, an increase in σ leads

to an increase in the expected cost of refinancing. This leads the bank to adopt a more

conservative financing policy, leading to a drop in the probability of default.

Our analysis so far has assumed that deposits were senior to risky debt. Indeed, in the

U.S. for example, Congress has adopted in 1993 a national depositor preference law that

elevates the claims of domestic depositors on the assets of a failed bank over the claims

of foreign depositors and general creditors. The main objective of this law is to produce

cost savings for the Federal Deposit Insurance Company (FDIC) when it resolves failed

institutions, thereby limiting injections of public money in the financial sector.

To estimate the effect of this depositor preference on default risk, we now allow the

bank to issue risky debt that is secured by the bank’s assets. Securing risky debt effectively

subordinates depositors, but the depositors do not object to being subordinated as they are

fully insured through deposit insurance. In our model, making risky debtholders senior to

depositors implies that their cash flow in default is given by: min(S+
τ(Θ), L), where τ(Θ) is

the default time associated with the use of the strategy Θ. This in turn increases the value

of risky debt and leads the bank to take on additional debt.

36



Table 2 shows that debt ratios and insolvency risk increase when bonds subordinate

depositors. That is, high deposit volume combined with secured financing, two factors

commonly attributed to a stable banking system, encourage high debt ratios and fuel default

risk in banks. Further, the effects of secured debt financing are stronger for banks with high

asset volatility and tail risk. This suggests that switching from junior bonds to secured

bonds does not necessarily result in less risky bonds. Indeed, while the loss given default

decreases by subordinating depositors, increased debt ratios raise the likelihood of default

and negatively affect bondholders. That is, we find that depositor preference motivates bank

shareholders to adopt more conservative financing policies, thereby reducing insolvency risk

and contributing to a better alignment of private and social interests.

4.4 Regulation, insolvency risk, and bank value

An important question that our model allows to answer is whether regulatory requirements

affect insolvency risk. Proposition 5 and Corollary 6 show that altering the liquid reserves

of banks has no long-run impact on insolvency risk. To examine the short-run effects of

liquidity requirements on insolvency risk, Figure 5 plots the relative change in the probability

of default of the bank that results from imposing a minimum liquidity requirement. When

the bank follows equity value-maximizing policies, this relative change is given by:

P (τ(b∗0;T, α∗0, b
∗
0) < t)

P (τ(b∗0; 0, α∗0, b
∗
0) < t)

− 1,

where τ(b∗0;T, α∗0, b
∗
0) is the time of default for a bank with liquid reserves b∗0, default trigger at

T−α∗0, payout trigger at T+b∗0, and facing a liquidity requirement T . Figure 5 considers three

different horizons to compute the change in the probability of default: A three-month horizon

(t = 0.25), a six-month horizon (t = 0.5), and a one-year horizon (t = 1). Consistent with

the discussion in section 3.1, Figure 5 shows that imposing a minimum liquidity requirement

always increases insolvency risk in the short-run. In addition, the figure shows that the

increase in the probability of default is larger for shorter horizons, since it is less likely

that the bank has built up liquid reserves. The figure also shows that for large liquidity
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Figure 5: Insolvency risk and liquidity requirements
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Notes. The figure plots the relative change in default probability at a 3 month (dotted line), 6 month

(dashed line) and 1 year horizon (solid line) induced by a tightening of the liquidity requirement

for a bank with liquid reserves equal to the unregulated target b∗0.

requirements (i.e. when T > b∗0), it is optimal for the bank to recapitalize immediately and

liquidity requirements do not change the probability of default.

One way to restrict the bank’s leverage is to constrain its liquid asset holdings by imposing

liquidity requirements. However, we have just shown that such constraints lead to a short-run

increase in insolvency risk for any given coupon cL. In addition, as shown by Proposition

8, liquidity requirements have no effects on banks’ ex ante choice of debt level in that

c∗L(T ) = c∗L(0) for all T ≤ D. As a result, a more direct mechanism, constraining directly

banks’ financing decisions, may be necessary. One mechanism advocated by regulators and

academics to limit default risk in the banking sector is to impose a minimum leverage ratio

for banks (see e.g. Admati and Hellwig (2013)).
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Table 3: Leverage requirements, default probabilities, and bank value

A. Base case parameters

Minimal leverage Coupon Leverage ratio Default Change in
(%) c∗L (%) probability (bps.) bank value (%)

0 0.1149 6.508− 8.104 10.06 −0.000
3 0.1149 6.508− 8.104 10.06 −0.000
6 0.1149 6.508− 8.104 10.06 −0.000
10 0.0963 10− 11.51 0.6835 −1.191
15 0.0711 15− 16.40 0.01776 −3.568
20 0.0471 20− 21.29 0.0005488 −5.866

B. High financing cost φ = 300bps.

0 0.1098 5.82− 8.729 9.222 −0.000
3 0.1098 5.82− 8.729 9.222 −0.000
6 0.1088 6− 8.901 8.021 −0.009
10 0.0882 10− 12.73 0.4085 −1.509
15 0.0638 15− 17.53 0.01194 −3.877
20 0.0404 20− 22.35 0.0004097 −6.157

Notes. This table presents the optimal coupon, the band for leverage ratios, the default probability

over one year and the change in the value of the bank implied by different leverage ratio constraints.

To illustrate the effects of leverage ratio requirements on insolvency risk, Table 3 reports

the probability of default over a one-year horizon and the optimal coupon of the bank for

different refinancing costs φ and different leverage requirements. As shown by the table,

leverage ratio requirements have a very strong quantitative effect on insolvency risk. In

our base case environment, reducing the coupon rate of the bank from its privately optimal

level to cL = 4.71% – corresponding to the ratio of equity capital to total assets of 20%

recommended by Admati and Hellwig (2013) – reduces the probability of default over a

one-year horizon from 0.1006% to 0.0005%. In effect, leverage ratio requirements lead to an

increase in the cash flow rate of the bank net of the payments to debtholders and, hence,

in an increased willingness of shareholders to absorb losses.11 The table also shows that

11In our model, the bank only has access to one class of risky assets. As a result, the ex-ante constraint
on the coupon level that we consider can be easily mapped into a risk-weighted capital ratio. For example,
assuming that risk-weighted assets represent 57% of total assets (which is the average number for the financial
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Figure 6: Regulation, leverage, and value
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4

5

6

Coupon

N
P

V
to

S
h

a
re

h
o
ld

er
s
η s

Unregulated
T
D

= 0.03
T
D

= 0.05

0 c20L c∗L(0) ĉL
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different values of the ratio T/D (left panel) and the leverage at the target level of liquid reserves

b∗T (cL) and at the refinancing point T as functions of the coupon level (right panel). c20
L = 0.0471

indicates the optimal coupon level under a 20% leverage ratio constraint, c∗L(0) = 0.1149 indicates

the coupon level that is optimal for shareholders given any liquidity requirement T ≤ D, and

ĉL = 0.1843 indicates the coupon level where where the bank switches to a no-refinancing strategy.

with higher refinancing costs, the bank optimally chooses a lower coupon level. Yet, this

lower coupon level translates into a lower leverage ratio due to the drop in equity value (see

equation (2)). This in turn implies that the effects of leverage requirement on insolvency

risk get larger as refinancing costs increase.

Our analysis so far has shown that while liquidity requirements may increase banks’

insolvency risk in the short-run, leverage requirements reduce this risk. Another important

aspect of regulation that has been widely discussed in the financial press relates to its effects

industry in North America; see e.g. Le Leslé and Avramova (2012)), our leverage ratio constraint of 6% is
equivalent to a risk-weighted capital ratio of 6%/0.57=10.52%. When banks have access to multiple risky
assets, risk-based capital charges constrain asset choices to reflect the trade-off between risk and return. See
Rochet (1992) for an analysis of the benefits and costs of risk-weights.
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on valuations. To measure the value effects of liquidity and leverage requirements, Figure 6

plots the net present value to shareholders (left panel) as well as the bank’s debt ratio (right

panel) as functions of the selected coupon payment.

As shown by Figure 6, liquidity requirements have significant value effects. In our base

case environment, requiring that liquid reserves represent at least 3% of the value of deposits

reduces the value of the bank by 1.97%. That is, liquidity requirements lead not only to a

short-run increase in default risk but also to a large reduction in the value of the bank. As

shown by the figure and Table 3, leverage requirements also reduce total bank value. For

example, the total value of the bank is reduced by 5.866% when moving from the privately

optimal leverage ratio to a leverage ratio with 20% of equity capital. In our model, this

decrease in value is due to an increase in the bank’s cost of capital. The table also reveals

that the effect of leverage requirements on bank value depends on both their stringency and

the level of refinancing costs. Notably, because higher refinancing costs are associated with

lower leverage ratios, the (relative) decrease in bank value due to leverage requirements gets

more important as refinancing costs increase.

4.5 Model extensions

In this section, we numerically investigate three extensions of our basic setup. First, we in-

troduce a positive liquidation value for risky assets. Notably, we assume that the liquidation

value Λ of risky assets is a constant fraction 1−ϕ of their first best value (1−ϕ) (1−θ)µ−λ/β
ρ

.

In our calibration, we base the value of ϕ on the estimates of James (1991) and Flannery

(2011) and set ϕ = 25%. Second, we incorporate counter-cyclical liquidity requirements

as discussed in footnote 8. Notably, we consider that if a negative jump takes the liquid

reserves of the bank below the required minimum, the bank has until the fist arrival time

τδ of a Poisson process with intensity δ to build liquidity back up, before it is forced to

either refinance or liquidate. In our calibration, we assume that the expected duration of

this forbearance period is 1/δ = 1 year. Third, we assume that the cash held by the bank

to meet the liquidity requirement earns a return ξ > 0.
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Table 4: Model extensions

A. Liquidation value

Liquidity Deposits Leverage ratio Franchise Target 1 Year Default
Requirement T D band (%) value α∗0 b∗T − T probability (bps.)

ϕ = 0 ∈ [0, D] 4.5 6.50–8.10 0.4699 0.1179 10.05
ϕ = 0.25 ∈ [0, D − Λ] 4.5 6.50–8.10 0.4699 0.1179 10.05

ϕ = 0 0 0 13.84–16.73 0.4992 0.1175 7.26
ϕ = 0.25 0 0 12.08–15.02 0.4393 0.1181 14.12
ϕ = 0.25 0.1L0 0 11.51–14.46 0.4197 0.1182 17.55
ϕ = 0.25 0.4L0 0 8.31–11.31 0.3079 0.1173 61.71

B. Forbearance period

δ = 0 ∈ [0, D] 4.5 6.50–8.10 0.4699 0.1179 10.05
δ = 0.25 ∈ [0, D] 4.5 2.25–4.15 0.5328 0.0819 7.59
δ = 1 ∈ [0, D] 4.5 2.81–3.76 0.6123 0.0435 2.80

C. Return on regulatory liquid reserves

ξ = 0 ∈ [0, D] 4.5 6.50–8.10 0.4699 0.1179 10.05
ξ = 0.02 0.03D 4.5 6.48–8.08 0.4720 0.1178 9.83
ξ = 0.02 0.10D 4.5 6.44–8.00 0.4765 0.1178 9.34
ξ = 0.02 0.4(D + L0) 4.5 6.08–7.47 0.5044 0.1175 6.86

Notes. This table presents the optimal band for leverage ratios, the default probability over a year

and the change in the value of the optimally capitalised bank implied by different extensions of the

model. In the second column L0 = 2.25 gives the face value of the bank’s debt at the base case.

Table 4 reports the leverage ratio of the bank, its franchise value, the target level

of cash reserves, and the probability of default over a one-year horizon under alternative

specifications for (T, ϕ, δ, ξ). The table also provides information about the level of deposits

and, when analyzing the effects of positive liquidation values for risky assets, we also consider

that cases in which there are no deposits (as in Table 2), to make sure that bank incentives

with respect to financing decisions reflect the change in liquidation payoffs.
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Table 4 delivers several results. First, the presence of a liquidation value has no impact

on the bank’s optimal capital structure as long as we have both

α∗0 ≥ (T + Λ−D − L)+

so that refinancing the bank is optimal, and

T + Λ− α∗0 −D < 0

so that creditors receive nothing in default despite the presence of a liquidation value. When

these constraints do not hold (as in the case without deposits in the table), a positive

liquidation value increases the value of the bank increases and the privately optimal coupon

level, leading to a drop in leverage ratios and to an increase in the default probability.

Second, the table shows that a bank facing counter-cyclical liquidity requirements adopts

riskier policies. Indeed, the table shows that the target level of cash reserves of the bank

decreases with δ while its debt ratio increases with δ. Despite these adverse effects on private

incentives, the introduction of a forbearance period leads to an increase in the bank franchise

value α∗0 and to a decrease in default probabilities. Third, total bank value increases as we

decrease the cost of holding liquidity, leading to a reduction in the default probability. Lastly,

the table shows that our previous results on the effects of liquidity requirements are robust,

in that such requirements have no effects on insolvency risk when ξ = 0 (that is the default

probabilities do not depend on T for any T ∈ [0, D − Λ]).

5 Conclusion

We develop a dynamic model of banking in which banks face taxation, flotation costs of

securities, and default costs and are financed with equity, insured deposits, and subordinated,

risky debt. In this model, liquidity management, financing policies, and default decisions are

jointly and endogenously determined. Shareholders have limited liability and banks’ policies
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maximize shareholder value. Using this model, we show that when raising outside funds is

costly, inside and outside equity are not perfect substitutes and banks find it optimal to hold

buffers of liquid assets even in the absence of regulation. To reduce the risk of default and

save on recapitalization costs, banks manage their liquidity buffers dynamically by adjusting

their dividend payments to shareholders. Banks facing higher cost of outside financing are

less levered, pay less dividends, hold more liquid reserves, and default earlier.

We also show that liquidity requirements constraining banks to hold a minimum amount

of liquid reserves have no long-run effects on default risk but may increase it in the short run.

By contrast, we find that leverage requirements, which prescribe how much equity capital

banks should have relative to their total assets, increase shareholders’ willingness to absorb

losses, thereby reducing default risk. Ex ante, however, such requirements may significantly

reduce total bank value by increasing its cost of capital. In our base environment for example,

increasing equity capital from the equity value-maximizing level to 20% to total assets – as

suggested by Admati and Hellwig (2013) – reduces total bank value by almost 6%.

We also investigate the effects of mispriced deposit insurance and depositor preference in

default on banks’ financing decisions and insolvency risk. We show that mispriced deposit

insurance generally allows the bank to increase its debt ratio, leading to a increase in

insolvency risk. By contrast, depositor preference in default motivates bank shareholders

to adopt more conservative financing policies, thereby reducing insolvency risk and aligning

private and social interests.

While the framework developed in this paper is based on a number of simplifying as-

sumptions, we believe that it is a natural starting point to think about bank equity capital

and liquid reserves and to examine the effects of prudential regulation on bank behavior and

insolvency risk. In future research, we plan to extend this framework to examine additional

issues related to bank optimal capital structures and asset choices.
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