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1 Introduction

A growing literature points to the importance of latent social networks for the investment and

performance of mutual fund managers. For instance, Hong, Kubik, and Stein (2005) finds

that managers located in the same city, say Boston, are more likely to own and trade similar

stocks headquartered in Kansas City, than managers located in other cities. They argue that

this excessive covariance is indicative of word-of-mouth communication among managers in the

same network. Cohen, Frazzini, and Malloy (2008) finds that managers’ most profitable stock

picks are of companies where the CEOs are likely to have been an alumni of the same university

as the manager, thereby suggesting that social networks not only influence investments but

improves performance as well.

Needless to say, being able to systematically identify whether a manager is part of a social

network would be very valuable for understanding managerial investments and performance.

However, even with the advent of Facebook and Linkedin, data on managerial networks is

still limited. As such, we develop a measure of whether a manager is part of a network that

relies only on data on the stock picks of managers, which are widely available due to regulatory

disclosure requirements. Specifically, we propose a measure of whether a manager has a network

in different cities by counting the number of her picks of stocks headquartered in these cities.

To get an intuition for our measure, we plot in Figure 1 a histogram of the count of manager-

held stocks headquartered in Seattle (left-panel) and San Diego (right-panel) using the holdings

of 1066 mutual fund managers reported in the fourth quarter of 2004. The x-axis is the number

of stocks held by a manager. The y-axis is the frequency of managers. For Seattle, the mean

of the count of stocks held by the mutual fund manager population is 2 with a variance of 4.2.

For San Diego, the mean is 1.3 and the variance is 12.7.

The count distribution for Seattle is close to a Poisson distribution as the variance of the

distribution is only somewhat larger than the mean of the distribution. Yet for San Diego, the

variance is many times greater than the mean, i.e. the distribution is an Overdispersed Poisson

1



Distribution (or Negative Binomial). The degree of overdispersion captures the extent to which

a few managers own many stocks in San Diego while most own few. We then make the inference

that there is a San Diego network of investors while there is none or a small one for Seattle.

That is, the few managers who own many stocks in San Diego are more likely to be part of a

network that guides them toward San Diego stocks, while no such network presence exists for

Seattle.

We show that this overdispersion measure is both theoretically well-motivated and empir-

ically powerful in predicting mutual fund performance. Our point of departure is the work

by statisticians Zheng, Salganik, and Gelman (2006) on modeling answers to survey ques-

tions from sociology (Killworth, Johnsen, McCarty, Shelley, and Bernard (1998); Killworth,

McCarty, Bernard, Shelley, and Johnsen (1998), McCarty, Killworth, Bernard, Johnsen, and

Shelley (2001)) about the count of friends a person has in different groups within the general

population. A surprising answer is that the mean number of prisoners people know is one.

Needless to say, most of us do not know even one prisoner. Indeed, the median is zero but

there is a fat right tail to this count distribution where some people know a lot of prisoners.

In contrast, answers to "how many people you know named Nicole" is roughly Poisson. Zheng,

Salganik, and Gelman (2006) show the fat right tail of this count distribution is informative of

the presence of social networks — presumably people who have been in prison probably know

a lot of prisoners.

To derive our measure, we extend a standard portfolio choice model with risk-neutral man-

agers who face a fixed cost of owning a stock. The fixed cost for a given stock is uniformly

distributed across managers. But a manager’s fixed cost of owning a stock headquartered in a

given city falls with the number of contacts the manager has in that city. Stocks are assumed to

have positive expected returns. Hence when a manager’s fixed cost adjusted by the number of

contacts is low enough, she owns the maximum allowable shares subject to exogenous regulatory

limits which typically cap ownership at a small percentage of shares outstanding. As a result,
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shares need not be informative of network presence in our setting.

Rather, the number of stocks in a city held by a manager, which is proportional to the

manager’s number of contacts in that city, becomes the key metric to measure managerial social

networks in a city. Zheng, Salganik, and Gelman (2006) make use of an important result from

Erdös and Rényi (1959) — namely, if connections are formed randomly, then the count of the

number of friends a person has in any group (in our context a city) follows a Poisson distribution.

In contrast, being part of a network means that people from certain groups have non-i.i.d. (i.i.d.:

independently and identically distributed) propensities to form ties with each other. Excessive

variance or overdispersion in contacts in a city then captures social connections or being part

of a network in a city, in the same way that the prisoner population are formed in a non-i.i.d.

manner as some people have a non-i.i.d. propensity to know prisoners.

We do not observe the count of contacts in a city but our model provides a monotonic

transformation of the count of contacts y into the count of stock picks z in a city, which we

approximate using a linear function of the form z = cy. We then extend the inference strategy

of Zheng, Salganik, and Gelman (2006) to test whether or not social connections are formed

randomly or are independently and identically distributed (i.i.d.) as in the random networks

model literature following Erdös and Rényi (1959). Employing panel data on the holdings of

institutional investors in different cities, we use our linear transformation and Zheng, Salganik,

and Gelman (2006)’s model to estimate the parameters of the latent managerial networks. In

other words, from Figure 1, we can infer the parameters of underlying latent social networks that

produce the count of stock picks across different cities by using observations on these counts.

If we have N managers, K cities, we end up estimating N + 2K + 1 parameters with

N ×K number of observations reflecting the number of stock holdings that managers have in

different cities. The first N parameters allow for different managers to have different degrees

of gregariousness or propensity to make a contact. Gregariousness as we explain below is not

the same as being a part of a network. The other 2K parameters allow for different city sizes
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(as captured by the number of stocks located in the city) and the degree of overdispersion to

vary across cities. That is, we can estimate a different overdispersion parameter for each city,

and the degree of overdispersion does capture the influence of networks on stock picks in each

city. N + 2K are the parameters governing the latent social networks. In addition, the last

degree of freedom is needed to estimate the transformation parameter c of the number of social

connections into the number of stocks.

The idea of our inference strategy is similar to the one behind the profile maximum likelihood

technique (see, e.g. Murphy, Rossini, and van der Vaart (1997), Murphy and van der Vaart

(2000)) used in transformation models where the underlying variable of interest y is a increasing

transform of the observable variable z. It can be understood as follows. For each possible value

of c, we first compute the maximum likelihood estimate of θ (denoting the N + 2K parameters

governing the social network distributions) and the corresponding maximal value of the log-

likelihood, then we find the value of c such that the log-likelihood attains the maximum with

the associated θ estimate.

In our empirical analysis of the mutual fund holdings data from 1980 until now, we are

careful to drop index and sector funds. Using the top 20 biggest Metropolitan Statistical Areas

(MSAs) in terms of where stocks are headquartered as groups, we find some overdispersion of

the count of contacts in most cities. Nevertheless, there is only pronounced overdispersion in

San Jose, Los Angeles, New York, and San Diego, where the overdispersion parameter is around

2. Under the null Poisson random social connections setting, the overdispersion parameter for

any given city should be 1. These results are robust to excluding managers located in a given

city (and hence our results are not simply a manifestation of local bias in Coval and Moskowitz

(1999)) or controlling for fund styles of the managers.

Importantly, we use our model to calculate for each manager his relative propensity to

have contacts in a city (RPC) and relate these managerial RPC scores to the manager’s fund

performance. Our model gives a prediction for the expected number of stocks any manager
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should hold in a given city. A manager who holds a higher number of stocks than predicted

is more likely to be part of that city (i.e. be part of that network). We sum up the manager’s

scores across all the cities to get our geographic concentration scores for each manager.

We regress fund performance on these managerial RPC scores (geographic concentration

scores), while controlling for a host of the usual explanatory variables for fund performance.

We find that managers with higher RPC scores outperform those with lower RPC scores by

around 1.6% a year. Our findings here are reminiscent of the Industry Concentration Index

of Kacperczyk, Sialm, and Zheng (2005). They find that managers who hold concentrated

positions out-perform those that do not. Their interpretation is one of closet indexing as those

with concentrated positions are less likely to be closet indexers. However, our measures and ICI

are not very correlated and including ICI in the performance regression does not change the

coefficient in front of our RPC score.

A simpler, though less theoretically well-motivated, rendition of our RPC scores is Herfindahl

index of concentration of stock picks across cities. The two measures are highly correlated at

around 0.5. However, our RPC score nonetheless contains substantially more forecasting power

for managerial performance than this simpler Herfindahl measure. This is comforting and speaks

to the value of the model.

We then relate our model’s outputs to demographic information about the fund managers

beyond the performance of their investments. If our RPC score is a result of manager social

network effects, then the RPC score should be informative about the demographics of managers.

The idea is that networks are correlated with demographics such as being female or male or

being a Democrat or Republican. We have data on such demographic attributes of managers.

We can then combine our RPC score with the demographic attributes of cities (e.g. being a

republican-affiliated city) to then forecast the likelihood of managers having the same set of

attributes. Thus a manager with concentrated picks in a Republican city or a younger city

ought to predict that the manager is more likely to be a young Republican. We verify that this
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is indeed the case. Our approach is similar to a strand of literature in computer science that

tries to infer latent social networks from internet data (see, e.g. Adamic and Adar (2005)).

Our contributions are two-fold. First, we introduce a new approach to the modeling of

investors’ social networks using their stock picks. The existing approach in economics and

finance in modeling social interactions focused on excessive correlation of investors’ actions due

to them being part of the same group and sharing information (see, e.g., Glaeser and Scheinkman

(2002)). Second, in applying these models to mutual fund manager networks, we tap into a vast

and rich database of information about managers including their investment performance. As

a result, we can systematically assess the value of such networks.

The paper is organized as follows. We describe the model in Section 2 and the data and

estimation procedures in Section 3. We collect the result for mutual fund investors in Section

4, 5 and 6. We conclude in Section 7.

2 The Model

2.1 Stock Picks

Consider a one-period model in which i = 1, . . . , N investors choose to allocate their money to

j = 1, . . . , J stocks (headquartered) across k = 1, . . . , K cities. For simplicity, the risk-free rate

is taken to be zero. The net excess return of a stock j, given by rj, has a binomial distribution:

with probability πj, rj = rd, and with probability 1 − πj, rj = ru. Hence the expected excess

return of stock j, E(rj) = πjrd + (1− πj)ru. We further assume that rd < 0 < ru (so that there

are no arbitrage opportunities) and E(rj) > 0 for all j (so that the expected excess return of

any stock is positive).

Investors have an initial wealth of w and are risk-neutral. We normalize the initial wealth

w to 1 for simplicity. To invest in a stock j in city k, an investor i has to pay a fixed cost

of participation Ci,j,k. The cost is measured relative to the initial wealth since the latter is
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normalized to 1. For an investor i, let hi,j,k denote the fraction of his wealth allocated to stock

j in city k. Then the objective of the risk-neutral investor i is then to maximize with respect

to {hi,j,k} (over j across k) the following

1 +
∑
k

∑
j, j∈k

(
hi,j,k E(rj)− Ci,j,k

)
.

Because of risk-neutrality, if there is no fixed participation cost, an investor i would simply

choose hi,j,k to be the maximum value that is allowed for any j as E(rj) > 0. We denote this

max value by hj for stock j. However, if there are participation costs, then an investor i would

only invest in stock j if hj E(rj)−Ci,j,k > 0, or hj E(rj) > Ci,j,k, i.e. the gain from participating

in stock j outweighs the associated participation cost. We write ci,j,k = Ci,j,k / hj, so that an

investor i would choose to participate in stock j (headquartered in city k) if E(rj) > ci,j,k.

Each investor knows a number of friends in different cities. We denote yi,k as the number of

friends that an investor i has in city k. For any investor i, the existence of his friends in city

k is assumed to reduce his participation costs for stocks that are headquartered in city k, and

the more friends an investor has in city k, the lower his participation costs for stocks in that

city. To be more specific, we assume that the friends yi,k an investor i has in city k reduces his

participation cost for stock j from ci,j,k to

ci,j,k
f(yi,k)

, for stock j ∈ city k,

where f(·) is an increasing function. This assumption is used in the social interaction literature

on stock market participation whereby costs falls because of peer effects through observational

learning for instance (see, e.g. Hong, Kubik, and Stein (2004)). Consequently, in the presence

of friends, an investor i would participate (invest) in stock j at city k if

E(rj) >
ci,j,k
f(yi,k)

, for stock j ∈ city k
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We let ci,j,k/f(yi,k) = ci,j,k if yi,k = 0 (i.e. participation costs stay the same if an investor i does

not have any friends in city k), and f(yi,k) > 1 if yi,k > 0 (which is to ensure that having friends

in a city lowers the participation costs for stocks in that city).

Next, we suppose that the information acquisition (participation) cost ci,j,k follows a uniform

distribution over [0, c̄], where E(rj) ∈ (0, c̄] for all j. For ease of exposition, we further let the

maximum participation cost c̄ be such that f(yi,k)E(rj) ∈ (0, c̄] for all {i, j, k} triplets. Hence

the probability that an investor i invests (participates) in stock j headquartered in city k, is

P
(
E(rj) >

ci,j,k
f(yi,k)

)
= P

(
ci,j,k < f(yi,k)E(rj)

)
=
f(yi,k)E(rj)

c̄

We now turn to the number of stock picks an investor has in a city. Let zi,k be investor i’s

number of picks of stocks that are headquartered in city k. Then zi,k is simply the total number

of city k’s stocks that investor i has invested in, i.e.

zi,k =
∑
j, j∈k

1

{
E(rj) >

ci,j,k
f(yi,k)

}
=
∑
j, j∈k

1
{
ci,j,k < f(yi,k)E(rj)

}
, (2.1)

where 1{·} is an indicator function.

To simplify things, let us assume that f(·) is linear, so that f(yi,k) = θyi,k for some constant

θ. Then the number of stock picks an investor i has in city k becomes

zi,k =
∑
j, j∈k

1

{
E(rj) >

ci,j,k
f(yi,k)

}
=
∑
j, j∈k

1
{ ci,j,k
θE(rj)

< yi,k
}
, (2.2)

It is easy to see from the above that zi,k = h(yi,k) is monotonically increasing in yi,k. In our

baseline model, we will approximate the relationship using a linear function zi,k = cyi,k.1

1We can also use a spline function to approximate h(·) in our inference strategy. Both strategies yield similar
results. These results are available upon request from the authors.
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2.2 Structure of Social Network

Following Zheng, Salganik, and Gelman (2006), we use the following notations for the social

networks between investors and their acquaintances in different cities, which determines yi,k.

Here, “group” is used interchangeably with “city”. Furthermore, we have

pij : probability that investor i knows person j ,

ai ≡
∑

j, j 6=i pij : gregariousness (the expected total number of connections) of investor i ,

bk ≡
∑N

i=1 ai∑
i∈Sk

ai
: proportion of total social connections that involves group k,

where Sk stands for “group k” ,

λik ≡
∑

j∈Sk
pij : investor i’s expected number of connections in group k ,

gik ≡ λik/(aibk) : investor i’s expected relative propensity to befriend with people in group k .

2.2.1 The Null (Poisson) Model

If investors’ social connections are independently and identically formed as in the classical

model of Erdös and Rényi (1959), the probability pij of a link between an investor i and a person

j from any particular group is the same for all pairs (i, j). It then implies that yik follows a

Poisson distribution with a probability function:

f(yik|a, bk) =
(abk)

yik exp(−abk)
yik!

,

where its mean λik = abk is equal to its variance. Furthermore, this model results in equal

expected gregariousness ai for all investors and relative propensities gik all equal to one.

However, some investors may be more gregarious and have more social ties in expectation.

To account for the variability in gregariousness, we let parameters {ai} vary across individual

investors. Hence yik follows a Poisson distribution with a mean λik = aibk and a probability
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function

f(yik|ai, bk) =
(aibk)

yik exp(−aibk)
yik!

,

but relative propensities gik are still all equal to one. We call this our null model.

2.2.2 The Overdispersed Model

An important departure from the null model is likely to occur if there are structured social

networks formed in a non-i.i.d. fashion. To be more precise, we distinguish being part of a

network from being merely gregarious. Being part of a network would mean that some investors

have a non-i.i.d. relative propensity {gik} to make connections to certain groups since the people

in those groups constitute a structured network. As a result, we allow investors to differ not

only in their gregariousness {ai}, but also in their relative propensity {gik} to accommodate for

the effect of social influence. Consequently, gik > 1 if investor i has a higher relative propensity

to connect to people from group k than an average investor in the population.

In the most general form where {gik} varies for each (i, k) pair, yik is distributed as Poisson

with a mean λik = aibkgik. Since it is not possible to identify each gik later in the estimation

if they are all different, for each group k, we let gik follow a gamma distribution with a mean

equal to 1 and a variance equal to (ωk−1) where ωk > 1.2 As a standard result, such a Poisson-

gamma mixture leads to a (marginal) distribution/density for yik that is negative binomial (after

integrating out gik and using an appropriate reparameterization)3

f(yik|ai, bk, ωk) =
Γ(yik + ζik)

Γ(ζik) Γ(yik + 1)

(
1

ωk

)ζik (ωk − 1

ωk

)yik
, (2.3)

where Γ(·) is the gamma function and ζik = aibk/(ωk − 1). yik then has a mean equal to
2The reason that it is not possible to identify all of the gik’s if each one of them is a different constant is

because we only have N ×K number of observations of investors’ stock picks. It is then not feasible to estimate
N ×K number of gik’s with only N ×K number of data points.

3For a reference on this type of Poisson-gamma mixture, see Cameron and Trivedi (2005), Chapter 20.
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aibk and a variance ωkaibk that is greater than its mean (ω > 1). Therefore, we call this our

overdispersed model. This is because variations in the relative propensities {gik} have resulted

in overdispersions, i.e. yik’s variance exceeds its mean, in contrast to our Poisson null model

with equal mean and variance aibk. Moreover, the ωk’s are called overdispersion parameters.

They measure investors’ non-identicalness in forming ties to certain groups and being part of

structured social networks.

2.3 Transformation Parameter and Likelihood Function in Terms of

Stock Picks

From our linear approximation of yik = zik/c, we can then rewrite the above negative

binomial density of friends yik in terms of stock picks zik and the transformation parameter c:

f(yik|ai, bk, ωk) = f(zik/c | ai, bk, ωk, c) =
Γ(zik/c+ ζik)

Γ(ζik) Γ(zik/c+ 1)

(
1

ωk

)ζik (ωk − 1

ωk

)zik/c
, (2.4)

Our primary goal is to estimate the overdispersion parameters {ωk} from our overdispersed

model and thus learn about diversities that exist in the formation of investors’ social networks.

As a byproduct, we also estimate the gregariousness parameters {ai} that represent the expected

number of acquaintances known by investor i, the group size parameters {bk} that gauge the

proportion of social connections involving group k, and the transformation parameter c that

approximates the increasing relationship between the number of stock picks and the number of

acquaintances.

To make notations clear, we will write the likelihood function of our model directly in terms

of zik and the transformation parameter c. Following from the density expression in (2.4) (or

(2.3)), the likelihood function of z = {zik} in our overdispersed model is

p(zik/c | a, b, ω, c) =
N∏
i=1

K∏
k=1

Γ(zik/c+ ζik)

Γ(ζik) Γ(zik/c+ 1)

(
1

ωk

)ζik (ωk − 1

ωk

)zik/c
,
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and the log-likelihood

L =
N∑
i=1

K∑
k=1

(
LG
(
zik/c+ ζik

)
− LG(ζik)− LG

(
zik/c+ 1

)
− ζik log(ωk) + zik/c

[
log(ωk − 1)− log(ωk)

])
. (2.5)

where LG(·) here denotes the log-gamma function log(Γ(·)) and ζik = aibk/(ωk − 1) as stated

before.

The parameters of interest in our model are θ =
(
{ωk}Kk=1, {ai}Ni=1, {bk}Kk=1, c

)′, a (N + 2K+

1)× 1 vector. We will estimate these parameters using N ×K observations of number of stock

picks zik. We estimate our model parameters using the method of maximum likelihood (MLE)

based on (2.5), and we normalize
∑K

k=1 bk to one to separately identify {ai} and {bk}.4 The

estimation procedure is further discussed in the next section.

Before moving on to the model estimation stage, we provide some intuition for our MLE

method. The idea is similar to the one behind the profile maximum likelihood technique (see,

e.g. Murphy, Rossini, and van der Vaart (1997), Murphy and van der Vaart (2000)) used in

transformation models where the underlying variable of interest y is a increasing transform of

the observable variable z. It can be understood as follows. For each possible value of c, we first

compute the maximum likelihood estimate of θ and the corresponding maximal value of the log-

likelihood, then we find the value of c such that the log-likelihood (2.5) attains the maximum

with the associated θ estimate.
4This normalization is needed because {ai} and {bk} enter the log-likelihood function together only as a

joint entity aibk.
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3 Data and Estimation

3.1 Data

Our data on stock holdings of mutual funds are obtained from the CDA/Spectrum Mu-

tual fund Common Stock Holdings database provided by Thompson Reuters for the period

1980–2011. The database sources from semi-annually mandatory filings to the SEC and quar-

terly voluntary disclosure by mutual funds. We then merge the CDA/Spectrum database with

survivorship-bias free CRSP mutual fund database. The CRSP mutual fund database provides

information on a variety of mutual fund characteristics such as fund locations, investment ob-

jectives, monthly fund returns and assets under management. Additionally, we augment our

mutual fund data with the database used in Hong and Kostovetsky (2012), which contains man-

agerial demographic information on age, gender, name and location of undergraduate college,

median SAT score of the undergraduate college attended, having a graduate degree or not, and

political affiliation.

In order to keep only actively managed, non-sector domestic equity funds in our sample, we

apply the following detailed screening procedures. Firstly, to exclude international, bond and

index funds, we require (1) funds’ investment objective code reported by CDA/Spectrum to be

aggressive growth, growth or growth and income, (2) their investment objectives in CRSP to be

equity (E) and domestic (D) at the first two levels, (3) their CRSP objectives not to be EDCL,

which indicates S&P500 index fund, and (4) their names not to contain anything in the vicinity

of the word “index”. Secondly, to exclude sector funds, we require funds’ CRSP investment

objectives at the third level to be either (C) or (Y). Thirdly, to exclude the possible presence of

hedge funds, we require funds’ CRSP investment objectives not to be (H) or (S) at the last level.

This screening leaves us with a sample of 1744 unique actively managed, non-sector domestic

equity funds, or 117467 fund-quarter observations on stock holdings.5

5On average, approximately 920 funds reported their portfolio holdings information in a single quarter, The
frequency of reporting peaked at 2005Q2 when around 1550 funds filed their holdings information.
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Next, we categorize the stocks held by mutual funds investors into city groups. We use

the information on companies’ headquartered cities that are available from the CRSP stock

database. To obtain city groups for stocks, we match the city information of companies with

the location information from COMPUSTAT, which maps cities into metropolitan statistical

areas (MSAs).6

We shall only consider the largest 20 cities (MSAs). The reason is because the 20 largest

groups already cover approximately 80% of all the stocks held by mutual funds in our sample.

There is no significant value added by allowing for more groups in our study. Hence in what

follows, the number of groups K is fixed at 20.

3.2 Rolling Estimation

We shall conduct a rolling maximum likelihood estimation on the model’s parameters θ =

({ωk}, {ai}, {bk})′ and the transformation parameter c using the mutual fund holdings data.

To be more precise, at each point in time (quarter for mutual funds), we will use the past 12

quarters of holdings data as a rolling subsample to estimate θ and c based on the log-likelihood

(2.5). The observations zik are then the number of unique stock picks from a city k made by

an investor i during the past 12 quarters. Therefore, our rolling estimates start at 1983Q1 and

end at 2011Q4 for mutual funds.

After obtaining the rolling estimates, we will follow Fama and MacBeth (1973) in taking the

time series means of the rolling estimates to form our overall estimates of θ and c. We denote

these Fama-MacBeth estimates as our estimated parameter values.
6We would like to thank Hyun-Soo Choi from the Singapore Management University for providing us with

the MSA information.
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4 Are Managerial Social Connections Randomly Formed?

In this section, we report our main estimation results based on the mutual fund data with

the 20 city groups.

4.1 Transformation Parameter

Table 1 presents the estimates (Fama-MacBeth means of the quarterly rolling estimates)

and related summary statistics of the transformation parameter. It shows that the mean of the

transformation parameter c is 1.39 with a standard deviation of .09 over time. There is not

much variation over time in this parameter. This parameter estimates suggest that the number

of contacts in a group is the number of holdings in that group divided by 1.39.

4.2 Gregariousness Parameters

Next, Table 2 shows the summary statistics of the estimated values of the gregarious param-

eters ai and Figure 3 illustrates the histogram of their Fama-MacBeth averages. We observe

that the mean of ai is 102. This estimate can be interpreted literally as the typical manager

having around 102 friends in the mutual fund industry overall and just in our sample. But there

is a fairly sizeable standard deviation of around 113 or so friends. The estimate does not seem

out of bounds relative to results in the sociology literature on the number of friends people have

more generally.

Nevertheless, we view the estimates of gregariousness parameters as more akin to investor

fixed effects for some investors having more stocks than others. They are separate from and do

not affect our inference on whether investors belong to a network. In other words, having a lot

of friends is not the same as being part of a network since it could also be affected by other

factors such as investment style.
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4.3 City Group Size Parameters

We then report the parameter estimates for bk that gauge the relative sizes of cities. Table

3 and Figure 4 demonstrate the values of bk for the 20 cities. Two aspects of the estimates are

noticeable. First, there are a few groups that have a much larger number of potential social

connections attached to them comparing to the rest, for example, New York and LA. However,

a group having a larger bk does not imply that the degree of overdispersion in the group would

necessarily be higher. To put it another way, just because a city has a substantial (relative) size

does not mean that investors are more likely to form structured social networks with individuals

from that group. Second, most of the standard deviations of the Fama-MacBeth bk estimates

are small, implying that the sizes of various groups are stable across time.

4.4 Overdispersion Parameters and Rejecting the Null Model

Now we turn to the estimates of our main parameter of interest – the degree of overdispersion

ωk among different groups. Recall that we introduced the overdispersions in our model in an

attempt to estimate the variability in investors’ relative propensities to form ties to members

of different groups. For groups where ωk is closer to 1, there is not much variation in these

relative propensities. In contrast, larger values of ωk imply dissimilarities in individuals’ relative

propensities to make connections.

Table 4 and Figure 5 display the estimated overdispersion parameter ωk for the cities. There

are three evident features. First, New York, Los Angeles, San Jose and San Diego stand out

as the most overdispersed cities compared to the rest. This suggests that investors are more

likely to form and be part of structured networks with acquaintances from these cities. There

is a greater standard deviation of these estimates but the rankings of cities remain fairly stable

over time.

Second, cities being larger (in terms of bk) does not necessarily imply cities being more

overdispersed. The correlation between the Fama-MacBeth estimates of ωk and those of bk is
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about 0.305, and the rank correlation between them is merely about 0.236.

Third, and most importantly, although the majority of the cities do not exhibit a substantial

degree of overdispersion, the t-statistics of testing the null Poisson distribution of ω = 1 are all

significant at the 5% level. This clearly indicates that our null hypothesis (model) of randomly

formed managerial social networks is firmly rejected. Hence it implies that some managers do

belong to certain integrated social networks even in the smaller cities (in terms of bk) such as

Miami or Minnesota. The overdispersion estimates therefore signify that a number of managers

live among some intricate social networks. They do not have to be the most gregarious managers,

nor are they necessarily tied to the largest cities or industries.

4.5 Robustness Checks: Controlling for Local Bias and Fund Styles

Lastly, we report the results of two robustness checks on the overdispersion estimates using

mutual fund data with city groups. The first check is a local-bias check, where we exclude

managers’ local stock holdings from the estimation to ensure that our overdispersion results are

not due to local biases. The other one is a verification where we dropped all growth funds from

the estimation to ensure our results are not driven by fund styles.

As can be seen clearly from Table 5, the results from the two robustness checks echo our

earlier findings in Table 4. Thus it implies that the overdispersions we find are not subject

to the influence of either local biases or fund styles, and once more the social connections of

managers are not formed in an i.i.d. manner.
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5 Predicting Managerial Performance Using Model’s Es-

timates of Managerial Relative Propensity to Connect

(RPC)

We use our model’s output to generate for each manager his relative propensity to be con-

nected (RPC) in a non-i.i.d. way to acquaintances in different cities. Recall that in our model,

investors’ expected relative propensities to know a member in city k, gik = λik/(aibk), cannot be

identified or estimated individually. The RPC measures that we construct, RPCik = yik/(aibk),

can then be considered as a proxy for gik. In other words, the RPC measures can be thought

of as investors’ realized relative propensities to know a member from a specific city. The RPC

measure for any investor in a particular city k is computed as gik = yik/(aibk).7 Our model

predicts that an investor should have an expected number of aibk connections in a given city,

and that yik should be very close to aibk if connections are formed in an Erdös and Rényi (1959)

i.i.d. manner. On the other hand, an investor who holds a (much) higher number of stocks and

hence knows a (much) larger number of acquaintances than expected in a city is more likely to

be part of and has gik > 1 in that city, i.e. being part of that network.

Then we sum up investors’ RPC measures across all the cities, i.e. gsumi =
∑K

k=1[yik/(aibk)].

We shall label this the RPC score for each investor and will use gsumi interchangeably with

RPC score. Furthermore, if social connections are formed in an i.i.d. fashion so that yik/(aibk)

are around 1 for each (i, k) pair, we would expect all the RPC scores {gsumi} to be close to 20

as we have K = 20 cities. However, if there are structured social networks among various cities,

we would anticipate gsumi > 20 for an investor i who is part of networks. This is because his

underlying true
∑

k gik = λik/(aibk) is likely to be greater than 20 as a result of social influences.

7Strictly speaking, this should be denoted as ĝik = yik/(âib̂k) (where âi and b̂k are our estimates) since it
is not the real gik that equals λik/(aibk). However, as stated before, we do not estimate individual gik value in
our model. Hence this notation is unlikely to cause any major confusion in what follows and we will denote gik
to mean yik/(âib̂k). In addition, we will use gik and RPC measure interchangeably.
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Table 6 illustrates the correlations between our RPC measures gik and our gregariousness

parameter estimates ai, using their respective Fama-MacBeth averages. It is clear from the table

that the correlations between gik and ai are rather mild for city groups. Such weak correlations

further confirm that being gregarious and being part of a network are not one and the same.

The summary statistics for our RPC scores gsumi are demonstrated in Table 7 as well

as in Figure 6. We notice that the mean of RPC scores are close to 19, yet the standard

deviation (around 8.48) is sizeable. Once more, this is another piece of evidence showing that

certain managers have non-i.i.d. propensities to form ties with members from different cities.

Furthermore, we find in Table 8 that for investors who have RPC scores greater than 20 (i.e.

they are part of certain networks), the number of cities in which they have RPC measures larger

than 1 is approximately eight. It indicates that for investors who are part of networks, they

have higher propensities of making connections to certain cities only but not to all of the cities.

5.1 Managerial RPC and Fund Performance

Now we turn our attention to a more important question, which is how social networks, i.e.

our RPC scores gsum, are related to mutual fund performances. There is a range of existing lit-

erature suggesting that social networks could exert positive values on investment performances,

e.g. Hong, Kubik, and Stein (2005), Cohen, Frazzini, and Malloy (2008) and Feng and Seasholes

(2008). Networks, such as knowing someone who is the CEO of a company, are not easy to

obtain and may contain valuable investment information not accessible by the common pub-

lic. Based on these ideas, the presence of structured networks in our model would imply that

investors with RPC scores (much) larger than 20 should earn higher returns on their invest-

ment portfolios. Consequently, active equity funds with larger RPC scores should enjoy higher

performances than their counterpart with smaller scores.

To test such implications, we utilize the following regression specification from Chen, Hong,
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Huang, and Kubik (2004) to examine the effect of social networks on mutual fund performances:

pfmi,t = α + βRPCdummyi,t−1 + x′i,t−1γ + εi,t , (5.1)

where the dependent variable pfmi,t is fund i’s net return in quarter t. RPCdummyi,t−1 is a

dummy variable that equals one if fund i’s RPC score gsumi is greater than 20 in quarter t.

Furthermore, x′i,t−1 is a vector of standard fund characteristic controls at (quarter) t− 1. They

include: (1) fund i’s lagged net return, (2) log of the total net asset of fund i, (3) log of one

plus the total net asset of other funds in fund i’s family, (4) the expense ratio of fund i, (5) the

turnover ratio of fund i, and (6) fund i’s age. Additionally, we also control for the gregariousness

of a manager via his log(ai) and for whether a fund is located in a financial center (which is

found by Christoffersen and Sarkissian (2009) to be associated with superior performance).8

They are contained in the regressor x and are both measured at t − 1 as well. Finally, α is a

constant term and εi,t is a generic error term uncorrelated with all other explanatory variables

in equation (5.1). We will carry out the regression (5.1) quarter by quarter and then take the

Fama-MacBeth time-series means and Newey-West standard errors of the quarterly estimates.

Table 9 depicts our fund performance regression results. Most of the regression coefficients

come in with the expected signs given the results in Chen, Hong, Huang, and Kubik (2004).

For instance, fund size (log TNA) is associated with poor returns. There is persistence in

performance and expense ratio is associated with poor returns. Moreover, we find consistent

with Christoffersen and Sarkissian (2009) that a fund located in a financial center has superior

performance.

Most relevant for us, it is evident that fund managers with higher RPC scores (i.e. with

gsum > 20) outperform substantially, by close to 1.6% a year. However, we notice that being

gregariousness does not necessarily lead to outperformance, as the coefficient on log(ai) is close
8There are six financial centers in total based on Christoffersen and Sarkissian (2009), which include Boston,

Chicago, Los Angeles, New York, Philadelphia, and San Francisco.
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to zero and is insignificant. Thus this difference in generating superior performance supports

our prediction that being gregarious is not the same as being part of networks.

The findings on the influence of RPC scores on mutual fund performances here are rem-

iniscent of the Industry Concentration Index (ICI) of Kacperczyk, Sialm, and Zheng (2005).

They find that managers who hold concentrated positions outperform those that do not. Their

interpretation on ICI is along the lines of closet indexing as those with concentrated portfolio

holdings are less likely to be index-fund mimickers. However, our RPC scores and ICI are not

very correlated and including ICI in the performance regression does not change the coefficient

in front of our RPC scores. This is shown in column (2) of Table 9 where ICI is included as an

extra explanatory variable in the regression specification of (5.1). In addition, our result that

social networks are valuable to the tune of 1.6% a year for mutual fund returns is evocative of

earlier studies documenting the value of investor and CEO networks such as Cohen, Frazzini,

and Malloy (2008) and Engelberg, Gao, and Parsons (2012).

5.2 A Related Herfindahl Measure in Predicting Performance

In order to further understand the fund performance result, we develop a simpler measure

of the geographic concentration of managers’ stock picks as a complement to our RPC score.

In essence, the related measure that we have is a Herfindahl index on the number of stock picks

over the 20 biggest cities for fund managers. The idea is that, if a manager has a high RPC

score, then he is likely to skew his stock picks towards some cities because of the influence of

social networks. As a result, the manager’s uneven numbers of stock selections would lead to a

high Herfindahl index that is computed based on his stock picks across cities.

Our Herfindahl index Hi of the stock picks across the 20 cities for a manager i in any quarter

is constructed as follows:

Hi =
20∑
k=1

s2i,k ,
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where si,k is equal to the manager i’s number of stock picks in city k divided by the manager

i’s total number of stock picks across the 20 cities. si,k is basically the “share” of the manager’s

number of picks in city k within his total number of picks.

Table 10 then illustrates the summary statistics of the Herfindahl index for all managers,

while Table 11 shows the summary statistics of the correlation between the index and our

RPC score gsum across all quarters. The noticeable correlation of around 0.5 demonstrates the

complementarity of the Herfindahl index of stock picks and our RPC score. In other words, our

model provides a rationale for using Herfindahl-like indices of concentration in stock picks.

Next, we run fund-performance regressions using the same specification as in (5.1), but

with the RPC score (dummy) replaced by the Herfindahl index (dummy). The corresponding

results are depicted in Table 12. It is clear that fund managers with Herfindahl index numbers

above the upper quartile value would outperform others by close to 60 basis points per year on

average, which is consonant with the superior performance number that we found earlier using

the social-network measure gsum. However, this outperformance number is noticeably smaller

than the counterpart produced by the RPC score, which is around 1.6%. Furthermore, when

we perform the regression with both the RPC score and the Herfindahl index included as shown

in column (3) of Table 12, we also find that the RPC score does a better job at forecasting

superior investment performance than the simpler Herfindahl index. Therefore, this validates

the usefulness of our RPC score in capturing the effect of social networks on the geographic

concentration of stock picks of fund managers. More importantly, it showcases the predictive

power of RPC score on investment performance.
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6 Using RPC Score to Predict Managers’ Demographic

Characteristics

If our RPC score is a result of manager social network effects, then the RPC score should

be informative about the demographics of managers. Our approach is similar to a literature in

computer science that tries to infer latent social networks from internet data (see, e.g. Adamic

and Adar (2005)). The idea is that networks are correlated with demographics such as being

female or male or being a Democrat or Republican. We have data on such demographic at-

tributes of managers. We can then combine our RPC score with the demographic attributes of

cities (e.g. being a republican-affiliated city) to then forecast the likelihood of managers having

the same set of attributes. Therefore, a manager with concentrated picks in a Republican city

or a younger city ought to predict that the manager is more likely to be a young Republican.

We focus on four types of sociodemographic characteristics for managers: being a female

(gender), being younger than 45 years old (age), being a Republican (political affiliation), and

whether they went to college in cities where most of the managers received their undergraduate

education (school).9 Next, for each of these characteristics, we reconstruct the RPC score gsum

for managers in the following way. Instead of adding up the values of gik over all 20 cities to

reach our original gsum score for each manager, we sum the gik values only from those cities

that have the desired demographic attribute. To be more precise, for the gender attribute, we

use gik’s from cities that have a relatively high female-to-male sex ratio. For the age attribute,

we look at cities that have a relatively high proportion of adults between the age of 25 and

45. And for the political affiliation attribute, we consider cities that are republican-affiliated.

Finally, for the school attribute, we tabulate the summary statistics of proportions of managers

who attended undergraduate schools in different cities in Table 13, and consider cities that have

a relatively high college-attendance proportion (“university cities”).
9We call these “university” cities that will be made more precise in a moment.
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Consequently, for each type of manager demographic characteristics, we have a corresponding

reconstructed gsum score based on cities that are of the desired demographic nature. We will

denote (the logs of) these four sets of “demographic” scores respectively as gsumFEM for gender

(“female”), gsumY NG for age (“young”), gsumREP for republican, and gsumSCH for school

(attended college in a “university city”).10

We are now in a position to examine whether managers having a high demographic gsum

score of a particular type would increase the likelihood of them having that particular demo-

graphic attribute. Since the demographic attributes of managers are all binary variables, we

will use logit regressions with the demographic gsum score as an regressor and the manager

demographic attribute as the dependent variable. Our logit regression models have the following

form of probability distribution

P(Yi|α, xi, gsumYi) = f(α + x′iβ + gsumYi γ)Yi
(
1− f(α + x′iβ + gsumYi γ)

)1−Yi ,
where the binary outcome variable Yi denotes whether manager i has the specific demographic

attribute Y , gsumYi denotes the log of manager i’s demographic gsum score with the nature Y ,

xi is a set of other manager demographic controls except the attribute Y and f(·) denotes the

standard logistic function f(z) = 1/(1 + e−z).11 As discussed above, if our underlying model is
10We use the 2000 US census data to determine which cities have a relatively high female-to-male sex ratio

or have a relatively large proportion of adults between the age of 25 and 45. To be fair, for the 20 cities, we
take the top 10 cities with the highest female-to-male sex ratio to construct gsumFEM or with the largest
proportion of adults between the age of 25 and 45 to construct gsumY NG. The 10 cities with the highest
female-to-male sex ratio are New York, Philadelphia, St. Louis, Stamford, Boston, Miami, Detroit, Washington,
Chicago and Atlanta. The 10 cities with the largest proportion of adults between the age of 25 and 45 are San
Diego, Los Angeles, Houston, San Jose, New York, Washington, Seattle, Phoenix, Dallas and Atlanta. Finally,
we determine republican-affiliated cities based on the election data in1996, 2000 and 2004 from David Leip’s atlas
of U.S. presidential elections at http : //uselectionatlas.org/. There are 4 republican cities only throughout the
years: Houston, Dallas, Phoenix and San Diego. Lastly, we use the statistics from Table 13 and take the top
10 cities with the highest median value of proportion of college-attending managers to construct gsumSCH.
These “university” cities are New York, Los Angeles, Boston, San Francisco, Chicago, San Jose, Philadelphia,
Washington, Miami and Minneapolis.

11Other manager demographic variables include the log of the median SAT score of the undergraduate school
that a manager attended and whether a manager has a graduate degree. Depending on the logit model, they
also include two of the following: being a female, being younger than 45 years old, being a republican and having
attended college in a university city.
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capturing manager social network effects, we would expect the sign of the coefficient γ in front

of the demographic gsum score to be positive. We shall estimate the logit model for each of

the four demographic attributes in every quarter first, then take the Fama-MacBeth time-series

means and Newey-West standard errors of the quarterly estimates. The estimation results are

summarized in Table 14.

What we can see from Table 14 is that the four demographic gsum variables all have posi-

tive coefficient estimates that are statistically significant. This means managers having a high

demographic gsum score of a particular type increases the probability of them having that par-

ticular demographic attribute. Moreover, we compute the marginal effect of these demographic

gsum variables in the logit model by evaluating the median SAT score and the demographic

gsum variable at their mean values, and set other demographic controls to 1. The marginal ef-

fects are 0.061, 0.173, 0.093 and 0.067 respectively for gsumFEM , gsumY NG, gsumREP and

gsumSCH. This suggests, for example, if a manager attended an undergraduate school with

a median SAT score at the average level, and the manager has a graduate degree, is a female,

is a Republican and attended college in a “university city”, then she is almost 0.20 percentage

point more likely to be below 45 years old than above when her gsumY NG score increases by

1%. If instead the manager is below 45 years old but we do not know her political affiliation,

the probability of her being a Republican would increase by close to 0.10 percentage point when

her gsumREP score rises by 1%.

7 Conclusion

There is a growing use of social networks to model phenomena from all corners of financial

economics, beyond simply mutual fund managers. For instance, in the aftermath of the Financial

Crisis of 2007, many have turned to the modeling of networks among banks and other financial

intermediaries to explain financial contagion in the hopes of discovering a more stable financial
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architecture (see, e,g., Allen and Gale (2007), Boyer, Kumagai, and Yuan (2006), Allen, Babus,

and Carletti (2010)). Additionally, networks have also made their way to corporate finance

as networks of CEOs, venture capitalists, entrepreneurs and banks are influential in allocating

resources (see, e.g., Engelberg, Gao, and Parsons (2012), Lerner and Malmendier (2013), Shue

(2013), Hochberg, Ljungqvist, and Lu (2010)).

Our count models of social networks in finance can be used to study these broader sets of

financial networks where investment data are available. For instance, our set-up can be applied

to banking networks where one can count trades between a bank with other banks in different

countries or lending volume between banks and companies in different industries. In other words,

while we do not have answers to survey questions about how many people investors know in

different groups, we can proxy for answers to these questions by counting their investments

across different categories. We leave these other applications of count models of social networks

in financial markets for future research.
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Table 1: Summary statistics of estimates of transformation parameter c for mutual funds

This table reports the summary statistics of the transformation parameter estimates (quarterly rolling
estimates) using mutual fund data with 20 city groups as described in the main article. s.d. denotes
standard deviation and med denotes median.

mean s.d. med min max
1.39 0.09 1.39 1.13 1.87

Table 2: Summary statistics of estimates of ai for mutual funds

The table shows the summary statistics of the estimated values of the gregarious parameters {ai} using
mutual fund data with 20 city groups as described in the main article. We first compute the time-series
average of the quarterly ai estimates for each individual fund i, then we report the summary statistics
of these time-series averages. s.d. denotes standard deviation and med denotes median.

mean s.d. med min max
101.9 113.0 74.0 0.6 1497.0

30



Table 3: Estimates of bk for 20 cities

This table shows the summary statistics of the quarterly estimates of the relative group size parameters
{bk} for the 20 cities. The full names for the city abbreviations are as follows. NY: New York, LA: Los
Angeles, Bos: Boston, Chi: Chicago, SJ: San Jose, Dal: Dallas, Hou: Houston, Phi: Philadelphia, Was:
Washington, Mia: Miami, Atl: Atlanta, Min: Minnesota, Den: Denver, SD: San Diego, Stfd: Stamford,
Sea: Seattle, Phx: Pheonix, SL: St. Louis, Det: Detroit. In addition, s.d. stands for standard deviation
and med stands for median.

mean s.d. med min max
NY 0.178 0.018 0.171 0.154 0.212
LA 0.073 0.013 0.068 0.060 0.102
Bos 0.069 0.003 0.069 0.064 0.075
SF 0.056 0.017 0.065 0.025 0.075
Chi 0.086 0.015 0.093 0.065 0.106
SJ 0.082 0.013 0.083 0.056 0.109
Dal 0.063 0.004 0.062 0.054 0.069
Hou 0.064 0.008 0.065 0.049 0.078
Phi 0.046 0.005 0.046 0.035 0.054
Was 0.045 0.005 0.045 0.036 0.054
Mia 0.019 0.002 0.020 0.014 0.023
Atl 0.036 0.003 0.037 0.025 0.042
Min 0.036 0.004 0.037 0.027 0.043
Den 0.019 0.004 0.019 0.013 0.027
SD 0.017 0.003 0.017 0.012 0.024
Stfd 0.032 0.007 0.035 0.022 0.045
Sea 0.023 0.003 0.024 0.016 0.027
Phx 0.016 0.004 0.018 0.009 0.021
SL 0.023 0.001 0.023 0.020 0.025
Det 0.016 0.003 0.016 0.012 0.021
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Table 4: Estimates of ωk for 20 cities

The table shows the summary statistics of the quarterly estimates of the overdispersion parameters
{ωk} for the 20 cities. s.d. stands for standard deviation and med stands for median. The t-statistics
are adjusted for serial correlation using Newey and West (1987) lags of order twelve since we use past
twelve quarters as our rolling estimation window size. They test the null hypothesis of ωk = 1 (Poisson)
against the alternative of ωk > 1 (overdispersion). For an explanation to the abbreviated city names,
please refer to the note under Table 3.

mean s.d. med min max t-stat
NY 1.382 0.307 1.257 1.012 2.386 3.175
LA 1.322 0.297 1.217 1.012 3.167 2.826
Bos 1.147 0.174 1.075 1.002 1.660 3.220
SF 1.121 0.173 1.055 1.002 1.812 2.685
Chi 1.142 0.161 1.089 1.001 1.740 3.023
SJ 2.620 0.602 2.611 1.471 5.396 11.790
Dal 1.020 0.055 1.007 1.001 1.445 3.602
Hou 1.144 0.218 1.024 1.002 1.792 2.186
Phi 1.037 0.068 1.012 1.001 1.424 3.010
Was 1.038 0.074 1.010 1.001 1.437 3.091
Mia 1.216 0.228 1.101 1.003 2.182 3.163
Atl 1.045 0.074 1.008 1.001 1.419 2.772
Min 1.237 0.196 1.203 1.002 1.662 3.959
Den 1.190 0.155 1.149 1.001 1.696 5.103
SD 1.517 0.399 1.518 1.019 3.496 4.236
Stfd 1.015 0.051 1.005 1.001 1.407 3.474
Sea 1.069 0.073 1.041 1.002 1.476 5.563
Phx 1.053 0.078 1.023 1.002 1.518 3.241
SL 1.041 0.067 1.018 1.004 1.422 3.332
Det 1.056 0.089 1.019 1.003 1.494 3.513

32



Table 5: Robustness checks on estimates of ωk of 20 cities

This table shows the results of two robustness checks on the overdispersion estimates for the 20 cities.
“No Local Response” denotes the case where managers’ local holdings have been dropped from the esti-
mation, and “No Growth Fund” indicates that all growth funds have been dropped from the estimation.
The t-statistics are adjusted for serial correlation using Newey and West (1987) lags of order twelve
since we use past twelve quarters as our rolling estimation window size. They test the null hypothesis
of ωk = 1 (Poisson) against the alternative of ωk > 1 (overdispersion). For an explanation to the
abbreviated city names, please refer to the note under Table 3.

No Local Response No Growth Fund
mean t-stat mean t-stat

NY 1.425 3.258 1.364 3.187
LA 1.384 3.093 1.335 3.058
Bos 1.127 3.844 1.177 3.014
SF 1.102 2.076 1.105 2.898
Chi 1.127 3.317 1.115 2.532
SJ 2.551 11.155 2.575 12.155
Dal 1.024 4.310 1.010 3.473
Hou 1.179 2.353 1.123 2.293
Phi 1.020 3.107 1.026 3.207
Was 1.040 2.914 1.027 3.080
Mia 1.173 3.185 1.281 3.232
Atl 1.031 2.503 1.036 3.154
Min 1.195 3.656 1.218 3.989
Den 1.204 4.833 1.206 4.088
SD 1.494 4.234 1.634 4.297
Stfd 1.012 4.265 1.012 3.260
Sea 1.055 5.080 1.058 5.832
Phx 1.047 2.834 1.058 2.704
SL 1.028 3.744 1.031 3.327
Det 1.069 2.560 1.037 3.958

Table 6: Correlations between gik and ai for mutual funds

The table displays the correlation between our managerial RPC measures gik and our gregariousness
parameter estimates ai of mutual funds in each of the 20 cities. The correlations are calculated based on
the Fama-MacBeth time-series means of gik (for each city k) and of ai. For explanations on abbreviated
city group names, please refer to the notes under Table 3.

NY LA Bos SF Chi SJ Dal Hou Phi Was
-0.028 0.058 0.029 0.127 -0.011 0.053 0.009 0.002 0.040 -0.012
Mia Atl Min Den SD Stfd Sea Phx SL Det
0.186 -0.019 -0.006 -0.015 0.217 -0.026 -0.025 -0.012 0.047 0.121
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Table 7: Summary statistics of gsumi for mutual funds

This table shows the summary statistics of our managerial RPC scores {gsumi} of mutual funds over
all quarters. We first compute the time-series average of the quarterly gsumi values for each individual
fund i, then we report the summary statistics of these time-series averages. s.d. denotes standard
deviation and med denotes median.

mean s.d. med min max
18.82 8.48 17.88 7.09 280.56

Table 8: Statistics on numbers of cities with gik > 1 for managers having gsumi > 20

The table depicts, for mutual funds that have RPC scores gsumi > 20, the summary statistics on the
number of cites in which they have their RPC measures gik strictly larger than 1. s.d. denotes standard
deviation and med denotes median.

mean s.d. med min max
8.33 1.44 8.04 5.04 11.44
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Table 9: RPC scores and mutual fund performances

This table reports the Fama-MacBeth estimates of the regression coefficients in the specification
pfmi,t = α + βRPCdummyi,t−1 + x′i,t−1γ + εi,t, with t-statistics based on Newey-West HAC stan-
dard errors (of lag order 12) shown in parentheses. *, ** and *** denote statistical significance at the
10%, 5% and 1% levels respectively. The dependent variable is fund i’s net return at quarter t. const
denotes the constant term. FundReturn, logTNA, logFamSize, ExpRatio, Turnover and FundAge
denote, respectively, fund i’s lagged net return, the log of the total net asset of fund i, the log of one
plus the total net asset of other funds in fund i’s family, the expense ratio of fund i, the turnover ratio
of fund i and fund i’s age. gsum > 20 is a dummy variable that equals 1 if a fund’s RPC score gsum is
larger than 20. FinCenter is a dummy variable that equals 1 if a fund is located in a financial center.
The following six cities are defined to be financial centers: Boston, Chicago, Los Angeles, New York,
Philadelphia, and San Francisco, in the spirit of Christoffersen and Sarkissian (2009). log(ai) is the log
of fund i’s gregariousness parameter estimate. ICI denotes the Industry Concentration Index (ICI) of
fund i, which is constructed in a similar manner as in Kacperczyk, Sialm, and Zheng (2005). But for
simplicity, we use an equally weighted index instead. All of the non-constant regressors are measured
at quarter t− 1.

(1) (2)
const 0.016** 0.017***

(2.57) (3.18)
FundReturnt−1 0.064*** 0.073***

(3.05) (3.92)
logTNAt−1 -0.0010** -0.0009***

(-2.54) (-2.83)
logFamSizet−1 0.0001 0.0001

(1.34) (1.33)
ExpRatiot−1 -0.004*** -0.003***

(-6.29) (-6.20)
Turnovert−1 0.000 0.000

(-0.15) (-0.16)
FundAget−1 0.000 0.000

(-0.93) (-0.55)
gsum > 20 0.0043** 0.0041**

(2.05) (2.01)
FinCenter 0.0006*** 0.0011***

(2.71) (2.64)
log(ai) -0.0004 -0.0004

(-0.75) (-0.62)
ICI 0.0071

(1.46)
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Table 10: Summary statistics, Herfindahl index of stock picks of fund managers

The table shows the summary statistics of the Herfindahl index of fund managers’ stock picks across
the 20 cities over time. We first compute the time-series average of the Herfindahl index values for
each individual fund i across all quarters, then we report the summary statistics of these time-series
averages. s.d. denotes standard deviation and med denotes median.

mean s.d. med min max
Herfindahl index 0.108 0.042 0.100 0.067 0.583

Table 11: Summary statistics of correlation between RPC score gsum and Herfindahl index of
stocks picks for mutual funds

The table shows the summary statistics of the correlation between our RPC score gsum of mutual
funds and the Herfindahl index of mutual fund managers’ stock picks over time. We first compute this
correlation for all funds in each quarter, then we report the summary statistics of the time series of
those correlation values. s.d. denotes standard deviation and med denotes median.

mean s.d. med min max
Correlation value 0.466 0.126 0.470 0.213 0.689
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Table 12: Herfindahl index of stock picks of fund managers and mutual fund performances

This table reports the Fama-MacBeth estimates of the regression coefficients in the specification
pfmi,t = α + βHerfBigi,t−1 + x′i,t−1γ + εi,t, with t-statistics based on Newey-West HAC standard
errors (of lag order 12) shown in parentheses. *, ** and *** denote statistical significance at the 10%,
5% and 1% levels respectively. The dependent variable is fund i’s net return at quarter t. HerfBig
is a dummy variable that equals 1 if a fund’s Herfindahl index of stock picks is larger than the upper
quartile of the Herfindahl indices of all funds at quarter t. All other explanatory variables are the same
as those in Table 9. The non-constant regressors are all measured at quarter t− 1.

(1) (2) (3)
const 0.023*** 0.022*** 0.020***

(4.12) (3.71) (4.41)
FundReturnt−1 0.128*** 0.118*** 0.110***

(2.84) (2.69) (3.35)
logTNAt−1 -0.0011** -0.0010* -0.0009***

(-2.00) (-1.84) (-3.43)
logFamSizet−1 0.0001 0.0001 0.0001

(0.49) (0.30) (0.98)
ExpRatiot−1 -0.003*** -0.003*** -0.003***

(-2.91) (-3.29) (-3.93)
Turnovert−1 0.000 0.000 0.000

(0.19) (-0.19) (0.07)
FundAget−1 0.000 0.000 0.000

(-0.07) (-0.32) (-1.74)
FinCenter 0.0005** 0.0005** 0.0005**

(2.33) (2.46) (2.19)
log(ai) 0.0028 0.0032 0.0014

(0.19) (0.20) (0.12)
ICI 0.0048 0.0065

(0.47) (0.90)
HerfBig 0.0032** 0.0030** 0.0015**

(2.48) (2.39) (2.21)
gsum > 20 0.0032**

(2.08)
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Table 13: Proportion of managers who attended undergraduate schools in a particular city

The table reports the summary statistics of proportions of managers who attended undergraduate
schools in a particular city among the 20 cities that we consider, using all available data on manager
demographics. s.d. stands for standard deviation and med stands for median. For an explanation to
the abbreviated city names, please refer to the note under Table 3.

mean s.d. med min max
NY 11.78% 2.36% 11.67% 8.25% 15.08%
LA 3.75% 0.63% 3.62% 2.81% 4.69%
Bos 9.82% 1.96% 9.73% 6.87% 12.57%
SF 1.67% 0.24% 1.54% 1.32% 2.02%
Chi 2.95% 0.49% 2.82% 2.21% 3.69%
SJ 4.02% 0.67% 3.97% 3.02% 5.03%
Dal 1.32% 0.17% 1.17% 1.07% 1.57%
Hou 0.63% 0.07% 0.59% 0.53% 0.73%
Phi 4.23% 0.85% 4.11% 2.96% 5.50%
Was 1.46% 0.18% 1.40% 1.19% 1.73%
Mia 1.25% 0.16% 1.19% 1.02% 1.48%
Atl 0.56% 0.06% 0.53% 0.48% 0.64%
Min 1.88% 0.37% 1.84% 1.33% 2.43%
Den 0.98% 0.11% 0.87% 0.83% 1.13%
SD 0.63% 0.07% 0.63% 0.53% 0.73%
Stfd 0.52% 0.05% 0.50% 0.45% 0.59%
Sea 0.98% 0.11% 0.87% 0.83% 1.13%
Phx 0.28% 0.03% 0.27% 0.24% 0.32%
SL 0.56% 0.06% 0.56% 0.48% 0.64%
Det 0.21% 0.02% 0.19% 0.18% 0.24%
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Table 14: Using demographic gsum score to predict manager demographic attribute

This table reports the Fama-MacBeth estimates of the regression coefficients in the logit regression
models where the dependent variable is the demographic attribute (being a female (FEMALE), being
younger than 45 years old (Y OUNG), being a republican (REP ) or having attended college in a
“university” city (SCHOOL)) of a manager, with t-statistics based on Newey-West HAC standard
errors shown in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1%
levels respectively. The main explanatory variable is the log of the demographic gsum score of a
manager, with gsumFEM being constructed based on cities having a relatively high female-to-male
sex ratio, gsumY NG on cities having a relatively high proportion of adults between the age of 25
and 45, gsumREP on cities being republican-affiliated and gsumSCH on cities having a relatively
large proportion of managers who went to college there. The cities based on which the three different
demographic scores are calculated have been detailed in Footnote 10. const denotes the constant term,
SAT is the log of the median SAT score of the undergraduate school that a manager attended, and
ADV , FEMALE, Y OUNG, REP and SCHOOL are all dummy variables that equal 1 if a manager
holds a graduate degree, is a female, is less than 45 years old, has a Republican political affiliation, and
received an undergraduate degree in a “university” city respectively. For our logit regression in the last
column where the dependent variable is REP , we exclude managers that are neither a republican nor
a democrat.

FEMALE Y OUNG REP SCHOOL
const 9.82*** -3.17 21.5*** -33.6***

(4.92) (-1.63) (4.55) (-37.3)
SAT -1.86*** 0.20 -3.05*** 4.59***

(-5.87) (0.75) (-4.47) (36.9)
ADV -0.40*** -0.02 0.87*** -0.15

(-3.08) (-0.08) (14.79) (-1.48)
FEMALE 0.20 -0.28* 1.07***

(1.10) (-1.92) (8.39)
Y OUNG 0.24 -0.50*** -0.04

(1.38) (-3.41) (-0.88)
REP 0.03 -0.92*** 0.01

(0.15) (-9.71) (0.23)
SCHOOL 1.04*** -0.03 -0.30**

(5.67) (-0.63) (-2.43)
gsumFEM 0.43***

(3.03)
gsumY NG 0.79***

(4.33)
gsumREP 0.37***

(5.63)
gsumSCH 0.30**

(2.16)
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Figure 2: Social networks of fund managers and their stock picks in different cities

The figure on the left is a illustrative graph of the potential social networks of mutual fund man-
agers, which is based on Figure 3 used in Adamic and Adar (2005) and is downloadable at http:
//www-personal.umich.edu/~ladamic/img/hplabsemailhierarchy.jpg. The table on the right is
an example of managers’ possible stock picks in different cities. The figure and the table are for
illustrative purposes only and thus are not based on the data used in this paper.

                            Social Networks of Managers                                                                      Stock Picks of Managers 
                                      (Latent)                                                                                                     (Observed) 

 

 

Manager 

City 

NY LA Boston ... 

John 25 10 8 ... 

Steve 20 0 20 ... 

Laura 12 15 15 ... 

Jennifer 10 30 5 ... 

... ... ... ... ... 

Inference 

Manifestation 
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Figure 3: Histogram of ai estimates for mutual funds

The figure shows the histogram of the estimated values of the gregarious parameters {ai} using mutual
fund data with 20 city groups as described in the main article. As in Table 2, We compute the time-
series average of the quarterly ai estimates for each individual fund i and use these time-series averages
as our estimated gregarious parameter values. The x-axis is the value of the ai estimate and the y-axis
is the frequency of managers.
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Figure 4: Boxplot of bk estimates of 20 cities

This figure gives the boxplot of the quarterly estimates of the relative group size parameters {bk} for
the 20 cities. The green marker is the mean, the red line is the median, the box is the interquartile
range, and the tails extend to the min and the max. For an explanation to the abbreviated city names,
please refer to the note under Table 3.
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Figure 5: Boxplot of ωk estimates of 20 cities

The figure gives the boxplot of the quarterly estimates of the overdispersion parameters {ωk} for the
20 cities. The green marker is the mean, the red line is the median, the box is the interquartile range,
and the tails extend to the min and the max. For an explanation to the abbreviated city names, please
refer to the note under Table 3.
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Figure 6: Histogram of gsumi of mutual funds

This figure shows the histogram of the values of our managerial RPC scores {gsumi} of mutual funds.
As in Table 7, We compute the time-series average of the quarterly gsumi values for each individual
fund i and plot the graph based on these time-series averages. The x-axis is the value of the RPC score
gsumi and the y-axis is the frequency of managers.
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