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Abstract

We show that the price of risk for equity factors that are nonlinear in the market

return are readily obtained using index option prices. We apply this insight to the

price of co-skewness and co-kurtosis risk. The price of co-skewness risk corresponds to

the spread between the physical and the risk-neutral second moments, and the price

of co-kurtosis risk corresponds to the spread between the physical and the risk-neutral

third moments. Our option-based estimates of the prices of risk lead to reasonable

values of the associated risk premia. An out-of-sample analysis of factor models with

co-skewness and co-kurtosis risk indicates that the new estimates of the price of risk

improve the models� performance. Models with higher-order market moments also

robustly outperform standard competitors such as the CAPM and the Fama-French

model.
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1 Introduction

The speci�cation and performance of factor models are of paramount importance for �nancial

research and practice, and have been the subject of intense debate for a long time. The

Capital Asset Pricing Model (CAPM) has been criticized from di¤erent angles, and although

its performance improves substantially when evaluating the model conditionally rather than

unconditionally, there is widespread consensus that models with better explanatory power

are badly needed.

Many alternative models have been proposed over the past four decades, with limited

success. One class of models attempts to �nd new factors using economic intuition or more

formal economic modeling. The performance of these models in cross-sectional pricing has

been rather disappointing. For instance, aggregate consumption, which is a state variable

suggested by theory, has been shown to have limited explanatory power for the cross-section

of stock returns. Another class of models constructs factors using a more reduced-form

approach, partly based on well-documented stylized facts. The standard examples in this

literature are the three-factor model of Fama and French (1993), which includes market,

book-to-market and size factors, and the four-factor model suggested by Carhart (1997),

which additionally includes a momentum factor. The cross-sectional explanatory power

of these models is often judged as satisfactory, but the lack of economic and theoretical

foundations is cause for concern.1

In view of the state of the literature, further evidence on the pricing of the cross-section

of stock returns is therefore a priority. This paper contributes to a literature that goes back

to Kraus and Litzenberger (1976), who argue that if investors care about portfolio skewness,

co-skewness enters as a second pricing factor in addition to the market portfolio.2 This

argument has later been applied to investor preferences over portfolio kurtosis, leading to

co-kurtosis as an additional factor (see, for instance, Ang, Chen, and Xing (2006), Dittmar

(2002), Guidolin and Timmermann (2008), and Scott and Horvath (1980)).3 Despite several

important contributions by among others Bansal and Viswanathan (1993), Leland (1997),

Lim (1989), Harvey and Siddique (2000), and Dittmar (2002), and despite the theory�s

obvious intuitive appeal, there seems to be no widespread consensus on the importance of

1An extensive literature has sprung up that attempts to provide economic underpinnings for the Fama-
French and Carhart factors. See for example Liew and Vassalou (2000) for a risk-based explanation, and
Chan, Karceski, and Lakonishok (2003) for a behavioral explanation.

2In a related literature, Ang, Hodrick, Xing, and Zhang (2006) analyze the performance of volatility as a
pricing factor.

3See also Arditti (1967), Rubinstein (1976), and Golec and Tamarkin (1998) for related work.
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this literature for cross-sectional asset pricing.

One possible drawback of co-skewness and co-kurtosis as cross-sectional pricing factors

is measurement. Measurement is especially di¢ cult when analyzing conditional co-skewness

and co-kurtosis.4 Most existing papers estimate and test the importance of co-skewness and

co-kurtosis using two-stage cross-sectional regressions. For a classical example of this type of

conditional analysis, see for instance Harvey and Siddique (2000). This approach necessitates

the estimation of co-skewness betas in a �rst stage. These betas are subsequently used in the

second-stage cross-sectional regression. It is well-known that the estimation of betas in the

�rst-stage regression is noisy, and these errors carry over in the second-stage cross-sectional

regression. While these problems apply to virtually all implementations of cross-sectional

models, including the CAPM, they may be especially serious in the case of co-skewness and

co-kurtosis. The simple basic intuition is that the higher the moment, the more di¢ cult it

is to estimate precisely. This argument applies a fortiori to the estimation of co-measures

of higher moments, such as co-skewness and co-kurtosis, and the betas for these factors.

Therefore, errors in estimated betas may be large for these models, leading to biases in the

cross-sectional estimation of the price of risk that are potentially much larger than in the

competing case of the CAPM or the Fama-French three-factor model.

We propose a new strategy to estimating the price of co-skewness and co-kurtosis risk,

which avoids the problems inherent in the second-stage cross-sectional regression. Our ap-

proach can also be used to estimate the price of other risks, provided that they are nonlinear

functions of the market return. We derive our result based on the well-known representation

of cross-sectional asset pricing models that relies on the stochastic discount factor or SDF

(see Cochrane (2005)). The CAPM corresponds to the assumption of linearity of the SDF

with respect to the market return. A quadratic SDF implies that investors require compensa-

tion not only for the exposure to market returns but also for the exposure to squared market

returns, which leads to co-skewness risk aversion.5 SDFs that are higher-order functions of

the market return lead to progressively more complex co-movements with market returns as

pricing factors.

The key di¤erence between our approach and existing studies is that we explicitly impose

restrictions on the pricing of both stocks and contingent claims. This allows us to derive

explicit formulas for the time-varying price of risk for the exposure to any nonlinear function

4Kraus and Litzenberger (1976) provide an unconditional empirical analysis of co-skewness.
5See Dittmar (2002) for an investigation of higher moments in cross-sectional pricing using this approach.

See Bakshi, Madan, and Panayotov (2010) for evidence that pricing kernels are U-shaped as a function of
market returns.
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of the market return. For instance, for the case of co-skewness risk we show that the price of

co-skewness risk corresponds to the spread between the physical and the risk-neutral second

moment. Similarly, the price of co-kurtosis risk is given by the spread between the physical

and the risk-neutral third moment. To provide intuition for this result, consider the special

case where the SDF is a linear function of the market return, which corresponds to the

CAPM. In this case, our general result shows that the price of risk can be estimated as

the di¤erence between the spread between the physical and risk-neutral �rst moment. This

equals the market return minus the risk-free rate, which is of course the classical CAPM

result.

We empirically investigate the performance of our approach for the pricing of co-skewness

and co-kurtosis risk. Using monthly data for the period 1996-2012, we �nd that the price of

co-skewness risk has the expected negative sign in every month in our sample, and the price

of co-kurtosis risk has the expected positive sign in most months. On average, both estimated

prices of risk are larger in absolute value than the traditional estimates obtained using a two-

stage Fama-MacBeth approach. More importantly, while the average prices of risk obtained

using the Fama-MacBeth approach have the theoretically anticipated signs on average, they

are often estimated with the opposite sign. We evaluate the cross-sectional performance of

our newly proposed estimates out-of-sample, and �nd that they outperform implementations

of the CAPM and the Fama-French three factor model that use cross-sectional regressions

to estimate the price of risk.

The paper proceeds as follows. Section 2 describes our alternative approach to the mea-

surement of (nonlinear) market risk. Section 3 presents an empirical investigation of co-

skewness risk. Section 4 investigates co-kurtosis risk. Section 5 concludes.

2 MeasuringMarket Risks: An Option-Based Approach

In this section we provide an overview of multifactor asset pricing models in which cross-

sectional di¤erences in expected returns between assets are determined by their exposure to

risk factors that are nonlinear functions of the market return. This setting corresponds to

assuming SDFs that are nonlinear in the market return. We proceed to propose an option-

based approach to measuring the price of risk for these types of exposures. We investigate

two special cases that are of signi�cant empirical interest: exposure to the squared market

return R2m, which captures co-skewness risk; and exposure to the third power of the market

return R3m, which captures co-kurtosis risk.
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2.1 Measuring Co-Skewness Risk

Before we introduce the general case, we �rst discuss two speci�c examples to provide more

intuition for our approach. We begin with co-skewness risk. Let mt+1 denote the stochastic

discount factor

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
; (1)

where Rm; denotes the stock market return, and EPt (:) denotes the expectation under the

physical probability measure. Similar to Harvey and Siddique (2000, henceforth HS), our

setup is based on the assumption of a quadratic SDF. As explained by HS (2000), a quadratic

SDF is consistent with several utility-based asset pricing models. The performance of

quadratic pricing kernels is studied in Bansal and Viswanathan (1993) and Chabi-Yo (2008).

Given this SDF, we can establish pricing restrictions on any asset return. The key feature

of our approach is that we jointly consider theoretical restrictions on stocks and contingent

claims, whereas the existing cross-sectional asset pricing literature focuses exclusively on the

underlying assets. Our approach enables the speci�cation of new estimators for the price of

co-skewness risk which can be easily implemented using short data windows.

Denote the return on a stock j by Rj and the return on a contingent claim on the

stock by Ri. The existing literature contains several measures of co-skewness risk, which

all capture covariation between the stock return and the squared market return. Kraus

and Litzenberger (1976, henceforth KL) de�ne co-skewness risk by
EP [(Rj�Rj)(Rm�Rm)2]

EP [(Rm�Rm)3]
. HS

(2000) mainly focus on cov(Rj; R2m) in their theoretical analysis but consider four di¤erent

co-skewness measures in their empirical analysis. Our measure of co-skewness risk is the

beta with respect to R2m in a multivariate regression. This measure allows for mathematical

tractability in the derivation of the price of risk as shown in the following proposition. The

proposition presents the pricing implications of the SDF de�ned in equation (1).

Proposition 1 If the stochastic discount factor (SDF) has the following form:

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
;

then the cross-sectional pricing restrictions are

EPt (Rj;t+1)�Rf = �MKT
t �MKT

j;t + �COSKt �COSKj;t ; (2)
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and

EPt (Ri;t+1)�Rf = �MKT
t �MKT

i;t + �COSKt �COSKi;t ; (3)

where �MKT
t and �COSKt are the loadings from the projection of the asset returns on Rm;t+1

and R2m;t+1. The price of covariance risk, �
MKT
t , is

�MKT
t = EPt (Rm;t+1)�Rf ; (4)

and the price of co-skewness risk, �COSKt , is

�COSKt = EPt (R
2
m;t+1)� E

Q
t (R

2
m;t+1): (5)

where EPt (:) and E
Q
t (:) denote the expectation under the physical and risk-neutral probability

measures, respectively.

Proof. Linear factor models, in which the stochastic discount factor is mt+1 = at +

b0t

�eft+1 � EPt (eft+1)� = at + b
0
tft+1, are equivalent to beta-representation models with the

vector of risk factors f

EPt (Rj;t+1)�Rf;t = �0t�j;t; (6)

where �0t =
�1
at
b0tE

P
t (ft+1f

0
t+1), (1+Rf;t) =

1
at
= 1

EPt (mt+1)
, �j;t =

�
EPt (ft+1f

0
t+1)

��1
EPt (ft+1Rj;t+1),

see for instance Cochrane (2005). Since the pricing kernel prices all the assets including con-

tingent claims, the above equation also holds for any claim i whose price is contingent on

the stock j and has a payo¤ function 	(Rj;t+1), for any function 	(.). From equation (6) we

have

EPt

�
	(Rj;t+1)� Pi;t

Pi;t

�
�Rf;t = �0t�i;t; (7)

where Pi;t is the price of the contingent claim i. Using the de�nition of �i;t we have

EPt

�
	(Rj;t+1)� Pi;t

Pi;t

�
�Rf;t = �0t

�
EPt ((ft+1f

0
t+1)

��1
EPt

�
(ft+1

	(Rj;t+1)� Pi;t
Pi;t

�
. (8)

Rearranging and using EPt (ft+1) = 0 gives

EPt [	(Rj;t+1)]� Pi;t (1 +Rf;t) = �0t
�
EPt ((ft+1f

0
t+1)

��1
EPt [(ft+1	(Rj;t+1)] (9)

The no-arbitrage condition ensures the existence of at least one risk-neutral measure Q such
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that Pi;t = 1

(1+Rf;t)
EQt [	(Rj;t+1)]. Therefore, we obtain

EPt [	(Rj;t+1)]� E
Q
t [	(Rj;t+1)] = �

0
t�	;t (10)

where �	;t is from the projection of 	(Rj;t+1) on ft+1.

For mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
and 	 = Rm;

equation (10) reduces to equation (4). Applying equation (10) for 	 = R2m, we recover

equation (5).

Proposition 1 shows that the price of co-skewness risk corresponds to the spread between

the physical and the risk-neutral second moments for the market return. Unlike other mo-

ments, the second moment is fairly easy to estimate under both the physical and risk-neutral

probability measures. The literature contains a wealth of robust approaches for modeling

the physical volatility of stock returns. The risk-neutral moment can be estimated from

option market data either by the implied volatility of option pricing models, or alternatively

using a model-free approach based as in Bakshi and Madan (2000) and Bakshi, Kapadia,

and Madan (2003).

A number of existing studies relate the volatility spread to risk aversion (see Bakshi and

Madan (2006)) or the price of correlation risk (see Driessen, Maenhout and Vilkov (2009)).

Proposition 1 shows that if the pricing kernel is quadratic, then the volatility spread is equal

to the price of co-skewness risk.

Proposition 1 allows for separate identi�cation of the price of covariance (�MKT
t ) and

co-skewness (�COSKt ) risk. Note that this result is simply an application of the general result

that if the factor is a portfolio, then the expected return on the factor is equal to the factor

risk premium. Importantly, the result holds regardless of assumptions on other risk factors.

This is in stark contrast with risk premia estimated from two-pass cross-sectional regressions

for which the empirical results depend on the other risk factors considered in the regression.

Our approach also has the advantage of easily capturing time variation in risk premia.

The existing empirical evidence clearly indicates that risk-neutral variance is larger than

physical variance, therefore suggesting a negative price of co-skewness risk. See for instance

Bakshi and Madan (2006), Bollerslev, Tauchen, and Zhou (2009), Carr and Wu (2009), and

Jackwerth and Rubinstein (1996). A negative price of risk is consistent with theory. Assets

with lower (more negative) co-skewness decrease the total skewness of the portfolio and

increase the likelihood of extreme losses. Assets with lower co-skewness are thus perceived

by investors to be riskier and should command higher risk premiums.
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While our approach to estimating the price of co-skewness risk is di¤erent from the

existing literature and the betas are de�ned (and/or scaled) di¤erently, the implications for

the risk premia on the assets are of course the same. Using the fact that EPt (Rm;t+1)�Rf =
�MKT
t and EPt (R

2
m;t+1)� E

Q
t (R

2
m;t+1) = �

COSK
t , we can re-write equation (2) of proposition

1 as follows

EPt (Rj;t+1)�Rf = �MKT
j;t

�
EPt (Rm;t+1)�Rf

�
+ �COSKj;t

h
EPt (R

2
m;t+1)� E

Q
t (R

2
m;t+1)

i
; (11)

which can also be written as

EPt (Rj;t+1)�Rf = ct + �MKT
j;t EPt (Rm;t+1) + �

COSK
j;t EPt

�
R2m;t+1

�
; (12)

where ct = ��MKT
j;t Rf � �COSKj;t EQt (R

2
m;t+1). Equation (12) shows the link between our

method and the approaches in KL (1976) and HS (2000). It is equivalent to equation (6) of

KL (1976) and equation (8) of HS (2000).

The crucial di¤erence between our approach and the one in KL (1976) and HS (2000)

is that we explicitly impose the pricing restrictions on contingent claims. This additional

restriction leads to a very simple estimator of the price of risk.

2.2 Measuring Co-Kurtosis Risk

A natural extension of the quadratic pricing kernel discussed in the previous section is the

cubic pricing kernel studied in Dittmar (2002), given by

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
+b3;t

�
R3m;t+1 � EPt (R3m;t+1)

�
: (13)

A cubic pricing kernel is consistent with investors�preferences for higher order moments,

speci�cally skewness and kurtosis. See Dittmar (2002) and HS (2000) for more details.

As before, we �rst make an assumption on the shape of the SDF and then derive pricing

restrictions. In this case, the expected excess return on any asset will be related to co-kurtosis

risk, in addition to covariance risk and co-skewness risk. As explained by Dittmar (2002),

kurtosis measures the likelihood of extreme values and co-kurtosis captures the sensitivity

of asset returns to extreme market return realizations. If investors are averse to extreme

values, they require higher compensation for assets with higher co-kurtosis risk, meaning
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that the price of co-kurtosis risk should be positive. See Guidolin and Timmermann (2008)

and Scott and Horvath (1980) for a more detailed discussion. Similar to co-skewness risk,

co-kurtosis risk has been de�ned in various ways in previous studies. For instance, Ang, Chen

and Xing (2006) measure co-kurtosis risk using
EP [(Rj�Rj)(Rm�Rm)3]q

EP [(Rj�Rj)2](EP [(Rm�Rm)2])
3=2 , and Guidolin

and Timmermann (2008) use cov(Rj; R3m). In this paper, we measure co-kurtosis risk by the

return�s beta with respect to the cubic market return R3m. We denote the co-kurtosis beta

of a stock j (contingent claim i) by �COKUj;t (�COKUi;t ).

The following proposition presents the estimator for the co-kurtosis price of risk and the

cross-sectional pricing restrictions.

Proposition 2 If the stochastic discount factor (SDF) has the following form:

mt+1 = at + b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+ b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
+b3;t

�
R3m;t+1 � EPt (R3m;t+1)

�
;

then the cross-sectional restrictions are

EPt (Rj;t+1)�Rf = �MKT
t �MKT

j;t + �COSKt �COSKj;t + �COKUt �COKUj;t ; (14)

and

EPt (Ri;t+1)�Rf = �MKT
t �MKT

i;t + �COSKt �COSKi;t + �COKUt �COKUi;t ; (15)

where �MKT
t , �COSKt , and �COKUt are from the projection of asset returns on Rm;t+1, R2m;t+1

and R3m;t+1, respectively. The prices of covariance, �
MKT
t , and co-skewness risk �COSKt are

�MKT
t = EPt (Rm;t+1)�Rf ; (16)

�COSKt = EPt (R
2
m;t+1)� E

Q
t (R

2
m;t+1); (17)

and the price of co-kurtosis risk, �COKUt , is

�COKUt = EPt (R
3
m;t+1)� E

Q
t (R

3
m;t+1); (18)

where EPt (:) and E
Q
t (:) denote the expectation under the physical respectively risk-neutral

probability measure.

Proof. The structure of the proof largely follows the proof of Proposition 1. Assuming
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thatmt+1 = at+b1;t
�
Rm;t+1 � EPt (Rm;t+1)

�
+b2;t

�
R2m;t+1 � EPt (R2m;t+1)

�
+b3;t

�
R3m;t+1 � EPt (R3m;t+1)

�
,

then, as in Proposition 1, applying equation (10) for 	 = Rm, we recover equation (16), and

applying equation (10) for 	 = R2m, we recover equation (17). In addition, applying equation

(10) for 	 = R3m, we obtain equation (18).

Proposition 2 shows that the price of co-kurtosis risk is equal to the spread between

the market physical and risk-neutral third moments. Clearly third moments are harder to

estimate than second moments. Nevertheless, existing evidence (see for instance Bakshi,

Kapadia, and Madan (2003)) indicates that the risk-neutral distribution for the market

return is more left skewed than the physical distribution, therefore suggesting a positive

price of co-kurtosis risk. This is entirely consistent with theory, as explained earlier in this

section.

2.3 The General Case

We now examine more general nonlinearities in the SDF. Preference theory is relatively

silent about the sign of terms in the SDF higher than the third order, and therefore we

do not extend our empirical analysis beyond the cubic SDF. However, while the empirical

focus of this paper is on co-skewness and co-kurtosis risk, our approach can be used for any

source of risk that is an arbitrary nonlinear (including linear) function of the market return.

This does not just include powers of the market return, it includes more complex nonlinear

relationships, such as for instance measures of downside risk as in Ang, Chen, and Xing

(2006). We now present the general result which nests among many other results the results

for co-skewness risk in Section 2.1 and co-kurtosis risk in Section 2.2.

Proposition 3 If the stochastic discount factor (SDF) has the following form:

mt+1 = at +
P
k

bk;t
�
Gk(Rm;t+1)� EPt [Gk(Rm;t+1)]

�
+
P
l

cl;t
�
fl;t+1 � EPt (fl;t+1)

�
;

then the cross-sectional pricing restrictions are

EPt (Rj;t+1)�Rf =
P
k

�kt �
k
j;t +

P
l

lt�
l
j;t; (19)

and

EPt (Ri;t+1)�Rf =
P
k

�kt �
k
i;t +

P
l

lt�
l
i;t; (20)
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where the �kt and �
l
t are from the projection of asset returns on Gk(Rm;t+1) and fl;t+1 respec-

tively, and l is the price of risk associated with the factor fl. The price of risk associated

with the exposure to a nonlinear function, Gk, of the market return, �
k
t , is

�kt = E
P
t (Gk(Rm;t+1))� E

Q
t (Gk(Rm;t+1)); (21)

where EPt (:) and E
Q
t (:) denote the expectation under the physical respectively the risk-neutral

probability measure.

Proof. The structure of the proof is again similar to the proof of Proposition 1. If
mt+1 = at +

P
k bk;t

�
Gk(Rm;t+1)� EPt [Gk(Rm;t+1)]

�
+
P

l cl;t
�
fl;t+1 � EPt (fl;t+1)

�
, then ap-

plying equation (10) for 	 = Gk(Rm;t+1) we obtain equation (21).

Proposition 3 shows that the reward for exposure to any nonlinear function G of the

market return is determined by the spread between the physical and the risk-neutral expec-

tations of this function. The proposition also demonstrates that we can easily incorporate

factors that are not necessarily functions of the market return.

3 Estimating the Price of Co-Skewness Risk

We begin the empirical investigation by documenting the price of co-skewness risk using

the estimators presented in Proposition 1. The implementation of our approach requires the

estimation of physical and risk-neutral conditional expectations. For the price of co-skewness

risk, we need to estimate the second conditional moment under the risk-neutral measure,

EQt (R
2
m;t+1), and under the physical measure, E

P
t (R

2
m;t+1). We �rst discuss the estimation

of these moments. Subsequently we estimate the price of co-skewness risk and compare our

estimate with more conventional regression-based estimates.

3.1 Estimating the Risk-Neutral Variance

We estimate the risk-neutral variance in two ways. In our benchmark analysis, we use the

square of the VIX index as our estimate for the risk-neutral variance. The VIX provides a

very simple benchmark because the data are readily available from the Chicago Board of

Options Exchange (CBOE). Using the VIX has a number of advantages. The construction

of the VIX is exogenous to our experiment, and so it is not possible to design it to maximize

performance. Even more importantly, the VIX is available for a longer sample period than
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the available alternatives. We obtain data for the period January 1986 to December 2012.

For existing studies that use the VIX as a proxy for the risk-neutral second moment see for

instance Bollerslev, Tauchen, and Zhou (2009). In the robustness analysis in Section 3.6,

we use an alternative approach to compute the risk-neutral variance, following Bakshi and

Madan (2000).

3.2 Estimating the Physical Variance

The literature contains a large number of models for estimating physical variance. In our

benchmark analysis, we use a simple and robust implementation of the heterogeneous au-

toregressive model (HAR) of Corsi (2009), de�ned as follows

RPt+1;t+K = �0 + �1RPt�1;t + �2RPt�4;t + �3RPt�20;t+K + "RP;t; (22)

where

RPs;s+� = RPs +RPs+1 + ::::+RPs+� ; (23)

and

RPt = ln(SHight =SOpent )
h
ln(SHight =SOpent )� ln(Scloset =SOpent )

i
(24)

+ ln(SLowt =SOpent )
h
ln(SLowt =SOpent )� ln(Scloset =SOpent )

i
; (25)

where SCloset (SOpent ) denotes the close (open) stock price and SHight (SLowt ) denotes the

highest (lowest) price on day t. We estimate the HAR model using OLS and a recursive

ten-year window. To ensure consistency with our measure of the risk-neutral variance, we

generate one-month forecasts of the physical variance at the end of every month.

In the robustness analysis in Section 3.6, we use several alternative approaches to estimate

the physical variance. We use a simple autoregressive model on realized variances, the

NGARCH model of Engle and Ng (1993), and the Heston (1993) stochastic volatility model.

For each of these models, we also use a recursive ten-year window.
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3.3 The Price of Co-Skewness Risk

Using the estimates of the physical and risk-neutral second moments, the estimated price of

co-skewness risk for month t is now simply

b�COSKt = bEPt (R2m;t+1)� bEQt (R2m;t+1)
Table 1 reports descriptive statistics for the estimates of the moments and the price of risk.

Figure 1 depicts the time series of the price of co-skewness with the corresponding estimated

physical and risk-neutral moments required to compute these prices. The �gures show some

spikes surrounding the 1987 stock market crash, the 1998 LTCM collapse, the WorldCom

bankruptcy in 2002, and the subprime crisis. These spikes occur for both the risk-neutral as

well as physical moments, but the spikes in the physical variance are relatively smaller than

the risk-neutral spikes except for the one during the subprime crisis. This is to some extent

due to the choice of the model for the physical variance. Other approaches for modeling

the physical variance in some cases yield larger spikes, but they do not a¤ect our results for

cross-sectional pricing. We discuss these results in more detail in Section 3.6 below.

The co-skewness risk premium is negative for almost all months. On average the co-

skewness price of risk is equal to �0:271. These �ndings are consistent with theory, and
with existing empirical studies that document a negative price of co-skewness risk, see for

instance KL (1976) and HS (2000). However, it is critical to emphasize that these existing

estimates are typically averages of the price of risk over several years. Most studies estimate

prices of risk using a two-pass Fama-MacBeth (1973) setup and report the average estimates

of the month-by-month cross-sectional regressions. Often the estimates of the price of risk

have the opposite sign over shorter time periods, as we will demonstrate below. What is

remarkable about the results reported in Figure 1 is that we have genuinely conditional

month-by-month estimates of the price of risk that have the theoretically expected sign in

almost every month. Note also that while there is no guarantee that these results for co-

skewness will continue to hold in the future, we know that usually implied variances exceed

historical variances have exceeded implied variances. Because of this stylized fact, when

using this method we can expect theoretically plausible estimates of co-skewness risk most

of the time.
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3.4 Regression-Based Estimates of the Price of Co-Skewness Risk

The studies referenced in Section 3.3 use di¤erent sample periods and implementations of the

cross-sectional regressions. To provide more insight into our new estimates of co-skewness

risk, we now compare our estimates with estimates obtained using regression methods, using

samples for the same period 1986-2012. We report results from Fama-MacBeth regressions

using the classical setup. We �rst obtain betas using sixty monthly returns, and subsequently

we run a cross-sectional regression for the next month.

Table 2 reports results for two factor models. The �rst model incorporates co-skewness

exposure but also exposure to the market factor. The second model also includes the Fama-

French (1993) size and book-to-market factors, and the momentum factor. For each regres-

sion, following Fama and MacBeth (1973), we report the average of the cross-sectional regres-

sion estimates as well as the t-statistics on these averages. We report on four cross-sectional

datasets that are commonly used in the existing literature. We use portfolios formed on size

and book-to-market ratio, portfolios formed on size and momentum, portfolios formed on

size and short-term reversal, and portfolios formed on size and long-term reversal. The data

on these portfolios, as well as the data on the Fama-French and momentum factors we use

to analyze competing models, are collected from Kenneth French�s online data library. We

report on the 1986-2012 period but also on the longer 1966-2012 period to provide additional

perspective.

Figures 2 and 3 report more detailed results for two speci�cations. Figure 2 reports on

the univariate model that exclusively contains co-skewness exposure. We depict the average

returns as well as the average co-skewness betas for both sample periods used in Table 2.

Figure 3 reports on the model that includes the co-skewness and market factors using the

same time period used for our estimates in Table 1, 1986 through 2012. We report the time-

series of the cross-sectional regression estimates of the price of risk. The estimates for the

price of co-skewness risk reported in the �rst model in Panel A of Table 2 are the averages

of the time series in Figure 2.

Consider �rst the results for 1986-2012 in Panel A of Table 2 and Figure 2. For our

purpose, the most important conclusion is that the estimates of the price of co-skewness

risk critically depend on the assets used in estimation. For the univariate models displayed

in Figure 2, the estimate of the price of co-skewness risk is �0:084 when using the twenty-
�ve size and book-to-market portfolios. When using the twenty-�ve size and momentum

portfolios, the estimate is �0:182. However, when using the size and short-term reversal

portfolios and the size and long-term reversal portfolios, the estimates are positive. The
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only estimate that is statistically signi�cant is the one obtained using the twenty-�ve size

and momentum portfolios. Panel A of Table 2 indicates that when including the market

factor in the regressions, the results do not change much. The estimates for the size and

short-term reversal portfolios and the size and long-term reversal portfolios are now negative

but they are not statistically signi�cant. Our �rst conclusion is that the choice of test assets

is critical for the estimate of the price of co-skewness risk.

Our second conclusion is that our newly proposed estimate of the price of co-skewness

risk in Table 1, which is equal to �0:271, is much larger (in absolute value) than any of the
estimates obtained using the regression approach. This of course does not necessarily mean

that our estimate is superior; in order to demonstrate that we have to show that the larger

estimate leads to improved �t. We address this in Section 3.5 below.

Including additional factors in the cross-sectional model does not change this conclusion.

Table 2 also reports results for the price of co-skewness risk when the Fama-French factors

as well as the momentum factor are included in the regressions. The resulting estimates are

smaller in absolute value and are always statistically insigni�cant.

Finally, it could be argued that our 1986-2012 sample period is relatively short to reliable

estimate the price of co-skewness risk using a regression approach. We use the 1986-2012

period to compare the results to our newly proposed estimates, which are limited to this

sample period because of the availability of risk-neutral second moments. Panel B of Table

2 therefore also reports results for the longer 1966-2012 period. The resulting estimates of

the price of co-skewness risk are very similar to those obtained for the 1986-2012 period, and

also strongly di¤er across test assets.

The time-series of the cross-sectional estimates of the price of co-skewness risk in Figure

3 yields another important conclusion. It is clear that the cross-sectional estimates vary a

lot over time, and that they are often positive, even when the averages reported in Panel

A of Table 2 are negative. We have to interpret the evidence in Figure 2 with caution,

because the essence of the Fama-MacBeth cross-sectional procedure is of course to estimate

the price of risk by averaging the time series of cross-sectional estimates. In other words, the

fact that the estimates in Figure 2 are positive for some months may not in itself constitute

a problem. Nevertheless, the contrast with the results for our newly proposed method in

Figure 1 is stark. In Figure 1, we also report estimates for every month. It is striking

that the monthly estimates are almost all negative. This of course also explains why the

negative average estimate of �0:271 for our approach is so much larger (in absolute value),
because the negative peaks are not cancelled out by positive estimates in other months. At a
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minimum, we can conclude that our newly proposed estimator provides us with a genuinely

conditional month-by-month estimate of the price of risk that almost always has the sign

suggested by theory.

Figure 3 provides additional insight into the properties of the regression estimates. Based

on the results in Figure 2 and Table 2, we concluded that there were substantial di¤erences

between di¤erent test assets. But Figure 3 instead indicates substantial commonality be-

tween test assets in the month-by-month estimates of the price of risk. In other words, the

four time series in Figure 3 are highly correlated. Table 2 indicates that the only test as-

sets that yield a signi�cantly negative price of co-skewness risk are the twenty-�ve size and

momentum portfolios. Figure 3 indicates that this can be explained by the fact that the

regression estimates for these test assets vary less over time compared to the estimates for

other test assets, even though the monthly estimates are also often positive.

In summary, a comparison of our newly proposed estimates of the price of co-skewness

risk with regression-based estimates yields three important conclusions. First, regression-

based estimates critically depend on the test assets used in estimation, whereas our approach

is by design independent of the test assets. Second, our estimate �0:271 indicates a role
for co-skewness that is much larger in magnitude. Third, when looking a month-by-month

estimates we obtain a consistently negative sign of the price of co-skewness risk in our

approach. While the regression approach is of course mainly focused on the overall average

of the cross-sectional coe¢ cients, the estimates are positive for many months, and this has

implications for the statistical signi�cance of the estimates. Moreover, the averaging needed

to obtain reliable results with the regression approach makes the estimates less genuinely

conditional.

We therefore conclude that our approach is economically appealing. To show that it

improves on regression-based estimates, we have to demonstrate that it leads to a better �t.

This is the subject to which we now turn.

3.5 Comparing Model Fit: Out-of-Sample Tests

When using regression-based methods, the cross-sectional or Fama-MacBeth regressions

which provide estimates of the prices of risk are also used to evaluate cross-sectional �t

and assess the model�s performance. For instance, Table 2 reports on model performance

using the R-square. Even though there are many other related evaluation criteria, in the

overwhelming majority of cases these evaluation criteria are similar to the R-square in Table
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2 in the sense that they are in-sample. Table 2 also highlights a common drawback of such

in-sample comparisons, in the sense that models with more factors often lead to a better �t.

It is important to note that in our approach, we construct betas or loadings in exactly the

same way as in the traditional Fama-MacBeth setup, but the price of risk is not estimated

from a cross-sectional regression. Instead it is estimated as a historical risk premium, and

subsequently it is used to assess cross-sectional �t. This di¤erence can best be understood

by referring to the well-known case of the CAPM. The CAPM is often evaluated using

the Fama-MacBeth approach, by �rst estimating betas and then running cross-sectional

regressions. But alternatively the price of risk for the CAPM could be estimated using the

historical market risk premium, and the cross-sectional �t of the CAPM could be evaluated

using this price of risk and (the same) estimated betas. It does not make sense to compare

the in-sample cross-sectional R-square of the CAPM when the price of risk is estimated in

the regression with an R-square obtained by inserting the historical risk premium in the

same sample. This amounts to comparing an in-sample �t with an out-of-sample �t. We

therefore implement tests of our models using a genuinely out-of-sample approach for all

models. Out-of-sample testing of cross-sectional models is becoming increasingly popular,

see for instance Simin (2008) and Ferson, Nallareddy, and Xie (2012).

We therefore present out-of-sample results, and we use two evaluation criteria. Denote

the one step-ahead forecast provided by the model for security j by bRModel
j;t+1 . In our imple-

mentation, which is recursive, this forecast uses information available up to time t. The �rst

evaluation criterion is the mean of the squared forecast error, also used by Simin (2008),

which is given by

RMSFEj;OS =

vuut 1

T

TX
t=1

�
Rj;t+1 � bRModel

j;t+1

�2
(26)

where T is the number of time periods in the sample. We can compute this measure for

each individual portfolio j, but because of space constraints we report the average over the

test portfolios. Our second evaluation criteria is adapted from the time-series literature. We

use the out-of-sample R-square suggested by Campbell and Thompson (2008), which has

become the standard in the time-series literature, see for instance Rapach and Zhou (2013).

The out-of-sample R2j;OS for a security j is de�ned by

R2j;OS = 1�

P
t

�
Rj;t � bRModel

j;t+1

�2
P

t

�
Rj;t �Rj;t�59:t

�2 (27)
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where Rj;t�59:t = 1
60

Pt
s=t�59Rj;s. This R-square can again be computed for every portfolio,

but because of space constraints we report the average across portfolios for each model.

Note that this out-of-sample R-square uses the historical return on the test portfolio as

a benchmark. If a candidate model performs as well as the historical return on the test

portfolio, the resulting R-square will be zero. R-squares will be negative for models that

do not perform well in forecasting. Consequently, the values of this out-of-sample R-square

should not be confused with the R-squares one typically obtains from a cross-sectional or

time-series regression, for example. In fact, R-squares can be expected to be very small, and

a small positive R-square is an indicator of success. See Campbell and Thompson (2008),

Rapach, Strauss, and Zhou (2010), and Rapach and Zhou (2013) for a detailed discussion.

We compare the cross-sectional performance of our newly proposed estimates of the

price of co-skewness and co-kurtosis risk to a number of other speci�cations based on these

two evaluation criteria. One set of speci�cations is based on historical risk premia, in

the other one the risk premia are estimated using cross-sectional regressions. The models

that use cross-sectional regressions to estimate the risk premia are the model with mar-

ket covariance risk (the CAPM), the model with market covariance and co-skewness risk

(CAPM+COSK), and the Fama-French three-factor model (FF). The speci�cations based

on historical risk premia are: CAPM, COSK, and CAPM+COSK. We also include a hybrid

approach CSCAPM+COKU, where the market risk premium is estimated using a cross-

sectional regression.

To provide more intuition, consider the implementation of the two types of speci�cations

using the CAPM as an example.

For the CAPM, the one step-ahead forecast of bRCAPMj;t+1 using information available up to

time t is bRCAPMj;t+1 = b�mktt
b�mktj;t (28)

The betas for both implementations are the same, and are obtained by regressing Rj on Rm,

using a rolling window of 60 months from t� 59 to t. However, estimates of the covariance
price of risk, b�mktt , are obtained in two ways. The �rst approach uses the sample mean of

the market excess return over the past 60 months. The second approach is to estimate the

price of risk using a cross-sectional regression:

Rj;t = �
mkt
t

b�mktj + uj;t; j = 1; :::N (29)

Note that in principle we can at each time t use this price of risk �t to construct the forecast
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of bRCAPMj;t+1 . However, we found that this leads to extremely poor forecasts, which is due

to the time variation in these cross-sectional estimates, as evidenced by the estimates for

co-skewness in Figure 2. To provide better out-of-sample competitors for our estimators of

co-skewness that use historical risk premia, we therefore use averages of the cross-sectional

averages of �t for the past 60 months, which provided better forecasts, and which is more in

line with the conventional (in-sample) implementation of Fama-MacBeth regressions.

Table 3 presents results for the same four sets of test portfolios used in Table 2. Panel A

presents the out-of-sample R-square R2OS, and Panel B presents the out-of-sample RMSFEs.

Consider the out-of-sample RMSFEs in Panel B, which we have multiplied by 100; following

the convention adopted by Simin (2008). To interpret these numbers, note that if the forecast

is the historical average, the magnitude should be similar to a monthly volatility. For a stock

with 30% annual volatility, the monthly volatility is 8:66%. The second and third columns

present results that are obtained using our newly proposed estimates of the price of co-

skewness and co-kurtosis risk. The co-skewness based forecasts, in column 2, provide the

lowest forecast errors for all four sets of test portfolios.

The out-of-sample RMSFEs provide a useful ranking of the models, but it takes some

e¤ort to interpret the magnitudes. The out-of-sample R-square R2OS evaluation criterion is

perhaps easier to understand intuitively. Panel A of Table 3 presents the results. Recall that

a positive out-of-sample R-square means that the model forecasts better than the historical

average return on the asset.

The performance of our newly proposed co-skewness measure COSK in the second col-

umn of the top four rows is impressive. It yields a positive R-square for all four sets of test

portfolios. The out-of-sample performance of the other models is mixed. Arguably the best

competitor is the regression-based implementation of the CAPM, but this model does poorly

for the twenty-�ve size and book-to-market portfolios. The out-of-sample performance of the

Fama-French model is disappointing. It may seem surprising that the FF model performs so

poorly for the case of the 25 size and book-to-market portfolios, but note that the FF model

is not typically evaluated in a genuine out-of-sample setting.

It is important to keep in mind that in a genuine out-of-sample setting, these very small

positive R-squares are economically meaningful. This criterion is typically used in the time-

series literature, and even there R-squares of 1-2% are the exception rather than the rule, with

many candidate forecasts yielding negative R-squares, see Campbell and Thompson (2008),

Rapach, Strauss, and Zhou (2010), and Rapach and Zhou (2013). The performance of the

newly proposed estimate of the price of co-skewness risk is therefore impressive, especially
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because forecasting with a cross-sectional model is even harder than time series forecasting.

3.6 Robustness

We now report on several robustness exercises, using alternative measures of conditional

physical and risk-neutral second moments.

We used the VIX as our measure of the risk-neutral second moment in our benchmark

results. In the robustness analysis we use an alternative approach to compute the risk-

neutral variance, following Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan

(2003). This approach requires a continuum of out-of-the money call and put options which is

approximated using cubic spline interpolation techniques. See the appendix for more details.

We implement this approach using data on S&P500 index options from OptionMetrics for the

period January 1996 to December 2012. We use the implied volatility estimates reported in

OptionMetrics to approximate a continuum of implied volatilities which are in turn converted

to a continuum of prices. For strike prices outside the range available, we simply use the

implied volatility of the lowest or highest available strike price.

Following standard practice, we �lter out options that (i) violate no-arbitrage conditions;

(ii) have missing or extreme implied volatility (larger than 200% or lower than 0.01%); (iii)

with open-interest or bid price equal to zero; and (iv) have a bid-ask spread lower than the

minimum tick size, i.e., bid-ask spread below $0.05 for options with prices lower than $3 and

bid-ask spread below $0.10 for option with prices equal or higher than $3.

We investigate three alternative approaches for modeling the conditional physical vari-

ance. We �rst consider a simple autoregressive model on realized variances. The one-step

ahead forecast of the physical second moment is estimated from the following monthly re-

gression

�2t = a0 + a1�
2
t�1 + u

�
t ; (30)

where �2t =
P

d2tR
2
d;t, and Rd;t is the daily return in day d of month t.

In addition to the autoregressive model we also use an NGARCH model (Engle and Ng,

1993) to estimate the physical variance

Rt = htzt zt � N(0; 1) (31)

h2t = a0 + b0h
2
t�1 (zt�1 � d0)

2 + c0h
2
t�1: (32)

The T-day ahead forecast can be computed as follows
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Et[R
2
t+1:t+T ] = Th

2
0 + (h

2
t+1 � h20)

1� (b0 + c0 + b0d20)T
1� b0 � c0 � b0d20

; (33)

where h20 =
a0

1�b0�c0�b0d20
. Finally we also use the Heston (1993) stochastic volatility model

in which the underlying stock price St is given by

dSt
St

= �dt+
p
vtdWS;t; (34)

and the instantaneous variance is

dvt = �(� � vt)dt+ �
p
vtdWv;t; (35)

where WS;t and Wv;t are two correlated Brownian motion processes with dWv;tdWS;t = �dt.

We estimate this model using the particle �lter.

Table 4 presents the results. Panel A contains the estimates of the price of risk obtained

using the di¤erent approaches. Panels B and C contain the out-of-sample results. To save

space, we limit ourselves to the out-of-sample R-squares R2OS.

The estimates of the price of risk in Panel A vary between �0:123 and �0:316. Recall
that our benchmark estimate in Table 1 was �0:271. These estimates are quite similar and
they are all larger (in absolute value) than the cross-sectional estimates in Table 2. The out-

of-sample R-squares in Panel B are positive in twenty-six out of twenty-eight cases, which

is quite impressive. We conclude that our newly proposed estimates of the price of risk

are rather robust across di¤erent empirical implementations, and that the resulting out-of-

sample performance is much better than that of regression-based implementations of models

with co-skewness risk as well as competing models.

4 Estimating the Price of Co-Skewness and Co-Kurtosis

Risk

We now provide estimates of the price of co-skewness and co-kurtosis risk using the estimators

presented in Propositions 1 and 2. For the price of co-skewness risk, we need to estimate

the second conditional moment under the risk-neutral measure, EQt (R
2
m;t+1), and under the

physical measure, EPt (R
2
m;t+1);just as in Section 3. For the price of co-kurtosis risk, we need

to estimate the third conditional moment under the risk-neutral measure EQt (R
3
m;t+1) and

22



under the physical measure EPt (R
3
m;t+1).

It is important to realize the main di¤erences between this empirical exercise and the

one in Section 3. Most importantly, estimating third moments is harder than estimating

second moments. This is the main reason that we �rst provide estimates of co-skewness risk

using methods that do not require us to model the third moments. When considering the

estimation of risk-neutral and physical conditional third moments, the question then arises

which of these tasks is most challenging. Perhaps somewhat surprisingly, the modeling of

the physical third moment is relatively more di¢ cult.

4.1 Modeling Risk-Neutral and Physical Skewness

We estimate risk-neutral variance and skewness using the method of Bakshi and Madan

(2000), as explained in the appendix. We use data on S&P500 index options from Op-

tionMetrics for the period from January 1996 to December 2012. We use the data �lters

discussed in Section 3.6.

For the physical moments, we want to impose internal consistency and obtain estimates

of the physical conditional second and third moment using the same model. The estimation

of conditional higher moments is notoriously di¢ cult. We use a version of the Jondeau and

Rockinger (2003) model. Our implementation is close to the model they refer to as Model 2,

which is among the more parsimonious models they consider. We found this model converged

well in estimation and for our purposes it is su¢ ciently richly parameterized. We implement

this model using monthly data. The model is given by

Rm;t = htzt zt � GT (ztj�t; �t);

where Rm;t is the return on the market in month m, GT denotes the generalized student-t

distribution, and where the higher-moment dynamics are modeled via

h2t = a0 + b
+
0

�
R+m;t�1

�2
+ b�0

�
R�m;t�1

�2
+ c0h

2
t�1;e�t = a1 + b

+
1 R

+
m;t�1 + b

�
1 R

�
m;t�1;e�t = a2 + b

+
2 R

2
m;t�1;

�t = g]2;+30] (e�t) ; and �t = g]�1;1] �e�t�
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where R+m = max(Rm; 0) and R
�
m = max(�Rm; 0). The logistic map

g]xL;xU ] (x) = xL +
xU � xL

1 + exp(�x)

ensures that 2 < �t <1 and�1 < �t < 1, which are necessary conditions for the existence of
the GT distribution. Note that we have set the conditional mean return to zero here because

it is di¢ cult to model and unlikely to matter much for the dynamics of higher moments.

The density of Hansen�s (1994) GT distribution is de�ned by

GT (ztj�t; �t) =

8>>><>>>:
btct

�
1 + 1

�t�2

�
btzt+at
1��t

�2��(�t+1)=2
if zt < �at=bt;

btct

�
1 + 1

�t�2

�
btzt+at
1+�t

�2��(�t+1)=2
if zt � �at=bt;

where

at � 4�tct
�t � 2
�t � 1

; bt � 1 + 3�2t � a2t ; ct �
� ((�t + 1) =2)p
� (�t � 2)� (�t=2)

:

We need the non-centered second and third conditional moments, which can be computed

as follows

EPt
�
R2m;t+1

�
= h2t+1;

and

EPt
�
R3m;t+1

�
= h3t+1

�
m3;t+1 � 3at+1m2;t+1 + 2a

3
t+1

�
=b3t+1:

where

m2;t = 1 + 3�
2
t ; m3;t = 16ct�t

�
1 + �2t

� (�t � 2)
2

(�t � 1) (�t � 3)
;

Note that the third moment exists in the model so long as �t > 3.

Because estimation of conditional higher moments is di¢ cult, we conducted an extensive

robustness analysis. We computed the physical conditional second and third moments from

the alternative model in Leon, Rubio, and Serna (2005), and the resulting estimates are

very similar. For our purpose, both the Jondeau and Rockinger (2003) and Leon, Rubio,

and Serna (2005) approaches have the advantage that estimates of the conditional third

and second moment are internally consistent. If, as in Section 3, we limit ourselves to

co-skewness, we only require the physical second moment, for which more straightforward

estimation techniques are available.
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4.2 The Price of Co-Kurtosis Risk

The price of co-skewness and co-kurtosis risk for month t can now simply be computed as

b�COSKt = bEPt (R2m;t+1)� bEQt (R2m;t+1)b�COKUt = bEPt (R3m;t+1)� bEQt (R3m;t+1)
Table 5 reports descriptive statistics for the relevant moments and the estimated prices

of risk. Figure 4 depicts the time series of the prices of co-skewness and co-kurtosis risk with

the corresponding estimated physical and risk-neutral moments required to compute these

prices. As in Figure 1, the �gures show spikes surrounding the 1998 LTCM collapse, the

WorldCom bankruptcy in 2002, and the subprime crisis. These spikes occur for both the

second and third moments, and for risk-neutral as well as physical moments.

Just as in Figure 1, the co-skewness risk premium in Figure 4 is negative for almost all

months. Also consistent with theory, the co-kurtosis risk premium in Figure 4 is positive

for almost all months, but following a sharp peak during the recent �nancial crisis, it brie�y

turns negative. Table 5 reports that on average the co-skewness price of risk is equal to

�0:274, remarkably close to the average in Table 1. The price of co-kurtosis risk is equal
to 0:0116 on average. Existing empirical studies have also documented positive prices of co-

kurtosis risk, see for instance Ang, Chen, and Xing (2006) who �nd that stocks with higher

co-kurtosis earn higher returns.

Figures 5 and 6 report on estimates of co-kurtosis risk obtained using Fama-MacBeth

regressions. Figure 5 indicates that the month-by-month estimates of the rice of co-kurtosis

risk vary signi�cantly over time, and that they are often negative. Compared to the time

series of the prices of co-skewness risk in Figure 3, the time series of the prices of co-

kurtosis risk are less correlated across test assets. When averaging over time, the estimate

is signi�cantly negative for the twenty-�ve size and momentum portfolios. This is also the

case for the univariate regressions in Panel A of Figure 6 However, Panel B of Figure 6

indicates that this may be due to the relatively short time period. When using the longer

1966-2012 time period, all four estimates of co-skewness risk are positive, although not always

signi�cant.

For the 1996-2012 sample period in Panel A of Figure 6, only one set of test portfolios

yields a statistically signi�cant positive result, the twenty-�ve size and short term reversal

portfolios. The resulting estimate of the price of co-skewness risk is 0:020, of the same order

of magnitude as our new estimate of 0:0116 in Table 5. The estimates obtained for the
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1966-2012 sample period in Panel B of Figure 6 are also of the same order of magnitude, but

somewhat larger. We conclude that our new estimates of the price of co-kurtosis risk are

more similar to regression-based estimates compared to the estimates of co-skewness risk.

Table 6 presents out-of-sample R-squares and root mean squared forecast errors using

these estimates of the prices of co-skewness and co-kurtosis risk, and compares the resulting

�t with the �t of regression-based approaches.

Because the estimates of the price of co-skewness risk are similar to the ones obtained

in Section 3.3, it is not surprising that the resulting R-squares and RMSFEs are similar to

the ones in Table 3. The model with co-kurtosis risk does not do as well as the model with

co-skewness risk only, but it performs better than the CAPM implemented with historical

risk premia.

Table 7 reports on several robustness exercises. Unlike in the case of the physical second

moment which is used to compute co-skewness risk, the literature does not contain a wealth

of alternatives to model the physical third moment. As previously mentioned, we imple-

mented the model of Leon, Rubio, and Serna (2005) and obtained similar results. Because

of the inherent di¢ culty in modeling the physical third moment, we also implemented some

alternatives that are much simpler. Table 7 reports on three alternatives for physical skew-

ness: a constant skewness computed using daily data, a constant skewness computed using

monthly data, and �nally the case of zero skewness, which serves as a sanity check.

The results in Table 7 indicate that the resulting price of co-kurtosis risk is similar to

the one in Table 5. The out-of-sample performance of the co-kurtosis model is substantially

better than the one in Table 6. This suggests that our estimates of the conditional physical

third moment may be too noisy, thus a¤ecting the out-of-sample �t.

5 Conclusion

We propose an alternative strategy to estimate the price of possibly nonlinear exposures to

market risk, which avoids the errors inherent in the cross-sectional regression approach. The

key di¤erence between our approach and existing studies is that we explicitly impose the

resulting pricing restrictions on both stocks and contingent claims. We study two important

applications of our general approach. The price of co-skewness risk in our framework corre-

sponds to the spread between the physical and the risk-neutral second moment. The price

of co-kurtosis risk is similarly given by the spread between the physical and the risk-neutral

third moment.
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Using monthly data for the period 1996-2012, we �nd that the price of co-skewness risk

has the theoretically expected negative sign in each month, and the price of co-kurtosis risk

has the theoretically expected positive sign in most months. In contrast, the prices of risk

obtained using regression-based approaches do not always have the theoretically anticipated

signs on average. Our approach also provides genuinely conditional estimates of the price

of risk at monthly or even higher frequencies. When using a regression-based approach,

monthly estimates are available, but they are very imprecise, and they are therefore usually

averaged over a large number of months. An out-of-sample analysis of factor models with

co-skewness and co-kurtosis risk indicates that the new estimates of the price of risk improve

the models� performance. The models also robustly outperform competitors such as the

CAPM and the Fama-French model.

Some questions remain, and a number of extensions could prove interesting. First, while

the estimated price of co-skewness risk leads to a more than satisfactory out-of-sample cross-

sectional �t when used by itself, its performance is worse when combined with the CAPM

risk factor. It may prove useful to further investigate the resulting biases. Second, the focus

of this paper is on improving measurement. While we believe that our measure of the price

of co-skewness risk improves on existing techniques, we worry that the estimated betas we

use in the analysis may be noisy. Improved estimation of betas may be worth exploring, and

may lead to better out-of-sample performance. The estimation approach proposed by Bali

and Engle (2010) may be especially promising in this regard.
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Appendix: Extracting Option Implied Moments

Bakshi and Madan (2000) show that any twice-continuously di¤erentiable payo¤ function,

H[S], can be spanned by a portfolio of risk-free bonds, the underlying asset and out-of-the-

money calls and puts as follows

H [S] = H
�
S
�
+
�
S � S

�
HS
�
S
�
+

Z 1

S

HSS [K] (S �K)+ dK

+

Z S

0

HSS [K] (K � S)+ dK: (36)

The prices of these contracts are

EQt
�
e�r�H [S]

	
=
�
H
�
S
�
� SHS

�
S
��
e�r� +HS

�
S
�
S (t)

+

Z 1

S

HSS [K]C (t; � ;K) dK +

Z S

0

HSS [K]P (t; � ;K) dK: (37)

where Ct (� ;K) and Pt (� ;K) are prices of the European call and put options with time-to-

maturity � and strike price K. As a result, we can calculate the prices of derivatives whose

payo¤s only depend on the future S, given the prices of (i) the risk free zero coupon bond,

r, (ii) the current value of the underlying stock, S, and (iii) a series of OTM calls and puts.

For our purposes, let R (t; �) = lnS (t+ �)� lnS (t), and �rst consider the function

H[St+� ] = R
2
t+� = (lnSt+� � lnSt)

2 (38)

Using this, we can get the risk-neutral raw second moment via

EQt
�
R2t+�

�
= er�

1R
St

2 (1� ln [K=St])
K2

Ct (� ;K) dK

+er�
StR
0

2 (1 + ln [St=K])

K2
Pt (� ;K) dK:

Now, let

H[St+� ] = R
3
t+� = (lnSt+� � lnSt)

3 (39)
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then we get the option-implied raw third moment via

EQt
�
R3t+�

�
= er�

1R
St

6 ln [K=St]� 3 (ln [K=St])2

K2
Ct (� ;K) dK

�er�
StR
0

6 ln [St=K] + 3 (ln [St=K])
2

K2
Pt (� ;K) dK:

When computing these moments, we eliminate put options with strike prices of more than

105% of the underlying asset price (K=S > 1:05) and call options with strike prices of less

than 95% of the underlying asset price (K=S < 0:95). We only estimate the moments for

days that have at least two OTM call prices and two OTM put prices available.

Since we do not have a continuity of strike prices, we calculate the integrals using cubic

splines. For each maturity, we interpolate implied volatilities using a cubic spline across mon-

eyness levels (K=S) to obtain a continuum of implied volatilities. For moneyness levels below

or above the available moneyness level in the market, we use the implied volatility of the

lowest or highest available strike price. After implementing this interpolation-extrapolation

technique, we obtain a �ne grid of implied volatilities for moneyness levels between 1% and

300%. We then convert these implied volatilities into call and put prices using the following

rule: moneyness levels smaller than 100% (K=S < 1) are used to generate put prices and

moneyness levels larger than 100% (K=S > 1) are used to generate call prices using trape-

zoidal numerical integration. Linear interpolation between maturities is used to calculate

the moments for a �xed 30-day horizon.
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Figure 1: The Option-Based Price of Co-Skewness Risk

We plot the times series for the conditional physical and risk-neutral second moments (monthly in percentage)

and the price of co-skewness risk. The physical second moment is estimated using an HAR model and the

risk-neutral second moment is proxied by the VIX. The time-varying price of co-skewness risk is equal to

the spread between the physical and risk-neutral moments. The sample period is from January 1986 to

December 2012.
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Figure 2: The Cross-Section of Returns and Co-Skewness Betas

We plot average excess returns (monthly, in percentages), E[Rj;t]� rf , against co-skewness betas, �COKUj ,

for four sets of portfolios. The co-skewness beta, �COSKj , is computed from the regression of monthly excess

returns on market returns and squared market returns. We consider two periods, 1986-2012 and 1966-2012,

and four sets of test portfolios.
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Figure 3: Regression-Based Estimates of the Price of Co-Skewness Risk
We plot the time series for the cross-sectional prices of co-skewness risk. Each month, we estimate the co-
skewness beta using a 60-month rolling window of monthly returns from the following time series regression

Rj;t � rf = �j + �MKT
j;t RMKT;t + �

COSK
j;t R2MKT;t + "j;t:

We then run the following cross-sectional regression using the estimated betas and returns for the next month

Rj;t+1 � rf = �0 + �MKT
j;t �MKT + �

COSK
j;t �COSK + ej;t:

We consider four sets of test portfolios: 25 Size/Book-to-Market, 25 Size/Momentum, 25 Size/Short-Term
Reversal and 25 Size/Long-Term Reversal. The sample period is from January 1986 through December 2012.
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Figure 4: The Option-Based Price of Co-Skewness and Co-Kurtosis Risk
We plot the time series for the conditional physical and risk-neutral moments (in percentage per month).

We also plot the price of co-skewness and co-kurtosis risk. The physical moments are estimated using the

autoregressive conditional volatility, skewness, and kurtosis model of Jondeau and Rockinger (2003). The

risk-neutral moments are estimated using the model-free approach in Bakshi and Madan (2000) and Bakshi,

Kapadia, and Madan (2003). The sample period is from January 1996 to December 2012.

00 05 10
0

1

2

3

P hysical Second Moment

00 05 10
0

1

2

3

RiskNeutral Second Moment

00 05 10
3

2

1

0

1
P rice of Coskewness Risk

00 05 10
0.4

0.3

0.2

0.1

0

0.1
P hysical Third Moment

00 05 10
0.4

0.3

0.2

0.1

0

0.1
RiskNeutral Third Moment

00 05 10
0.2

0

0.2

0.4

0.6
P rice of Cokurtosis Risk

37



Figure 5: Regression-Based Estimates of the Price of Co-Kurtosis Risk
We plot the time series for the cross-sectional prices of co-kurtosis risk. Each month, we estimate the co-
kurtosis beta using a 60-month rolling window of monthly returns from the following time series regression

Rj;t � rf = �j + �MKT
j;t RMKT;t + �

COSK
j;t R2MKT;t + �

COKU
j;t R3MKT;t + "j;t:

We then run the following cross-sectional regression using the estimated betas and returns for the next month

Rj;t+1 � rf = �0 + �MKT
j;t �MKT + �

COSK
j;t �COSK + �

COKU
j;t �COKU + ej;t:

We consider four sets of portfolios: 25 Size/Book-to-Market, 25 Size/Momentum, 25 Size/Short-Term Re-
versal and 25 Size/Long-Term Reversal. The sample period is from January 1996 to December 2012.
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Figure 6: The Cross-Section of Returns and Co-Kurtosis Betas

We plot average excess returns (in percentages per month), E[Rj;t]� rf , against co-skewness betas, �COKUj ,

for four sets of portfolios. The co-skewness beta, �COKUj , is computed from the regression of monthly excess

returns on market returns, squared market returns and cubic market returns. We consider two periods,

1996-2012 and 1966-2012, and four sets of test portfolios.
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Table 1: The Option-Based Price of Co-Skewness Risk
The table provides descriptive statistics for the physical and risk-neutral expectations and the price of co-

skewness risk. The data are monthly.. The physical second moment is estimated using an HAR model and

the risk-neutral second moment is proxied by the VIX. The time-varying price of co-skewness risk is equal

to the spread between the physical and risk-neutral moments. The data are monthly and the sample period

is from January 1986 to December 2012.

EPt [R
2
t+1] EQt [R

2
t+1] EPt [R

2
t+1]� E

Q
t [R

2
t+1]

mean 0.1675 0.4381 -0.2707

std 0.2158 0.4133 0.3105

skew 10.5092 3.4318 -3.5761

kurt 145.8792 19.0463 23.1180

�(1) 0.4013 0.7525 0.4949
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Table 2: Regression-Based Estimates of the Price of Co-Skewness Risk

The table shows the results of cross-sectional Fama-MacBeth regressions using monthly returns. Each month,

we estimate the betas using a 60-month rolling window of monthly returns from a time series regression of

the following general form

Rj;t � rf = �j + �
MKT
j;t RMKT;t + �

HML
j;t RHML;t + �

SMB
j;t RSMB;t + �

MOM
j;t RMOM;t

+�COSKj;t R2MKT;t + "j;t:

We then run the following cross-sectional regression using the estimated betas and returns for the next month

Rj;t+1 � rf = �0 + �
MKT
j;t �MKT + �

HML
j;t �HML + �

SMB
j;t �SMB + �

MOM
j;t �MOM

+�COSKj;t �COSK + ej;t:

We report the mean (in percentage) of the estimates and the Fama-MacBeth t-statistics with Newey-West

correction for serial correlation, using 1 lag. We consider two periods, 1986-2012 and 1966-2012, and four

sets of test assets.

Panel A: 1986 - 2012
25 Size/BM 25 size/Mom 25 size/STR 25 size/LTR

�0 0.968 1.197 0.069 0.871 0.215 0.111 0.133 0.274
(2.28) (3.33) (0.17) (2.81) (0.59) (0.26) (0.45) (0.85)

�MKT -0.396 -0.600 0.486 -0.154 0.372 0.477 0.569 0.417
(-0.85) (-1.58) (1.07) (-0.42) (0.83) (1.05) (1.67) (1.14)

�HML 0.043 0.103 -0.090 0.125
(0.24) (0.53) (-0.50) (0.60)

�SMB 0.274 -0.177 0.116 0.101
(1.45) (-0.68) (0.39) (0.43)

�MOM 0.737 0.532 -0.507 0.113
(1.82) (1.90) (-1.18) (0.35)

�COSK -0.080 -0.059 -0.148 -0.037 -0.008 0.023 -0.058 -0.035
(-1.21) (-1.16) (-2.45) (-0.87) (-0.13) (0.42) (-0.92) (-0.60)

Adj R2 26.75 46.30 25.05 54.54 29.71 48.70 21.58 43.38

Panel B: 1966 - 2012
25 Size/BM 25 size/Mom 25 size/STR 25 size/LTR

�0 0.755 0.892 0.107 0.807 -0.538 -0.152 0.252 0.647
(2.40) (3.48) (0.35) (3.42) (-1.68) (-0.49) (1.11) (2.67)

�MKT -0.251 -0.440 0.397 -0.258 1.017 0.555 0.364 -0.123
(-0.70) (-1.60) (1.17) (-0.96) (2.70) (1.67) (1.32) (-0.44)

�HML 0.193 0.227 0.138 0.229
(1.39) (1.56) (0.96) (1.50)

�SMB 0.372 -0.068 0.199 0.231
(2.72) (-0.39) (0.92) (1.42)

�MOM 0.433 0.680 -1.116 0.042
(1.58) (3.56) (-3.71) (0.17)

�COSK -0.046 -0.045 -0.146 -0.060 -0.027 0.034 -0.040 -0.049
(-1.05) (-1.32) (-3.56) (-2.12) (-0.58) (0.91) (-0.95) (-1.35)

Adj R2 30.16 48.95 26.37 54.40 30.26 49.61 23.07 43.47
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Table 3: Out-of-Sample Tests

We test the out-of-sample performance of several competing models. The price of risk is estimated using

cross-sectional regressions or historical risk premia. Using historical risk premia, we provide out-of-sample

predictions for the CAPM, the model with a co-skewness premium COSK, and the model with market

and co-skewness factors CAPM + COSK. Using cross-sectional regressions, we provide predictions for the

CAPM, the model with market and co-skewness factors CAPM + COSK, and the Fama-French three-factor

model FF. We also use a hybrid model with regression-based co-variance premium and historical co-skewness

premium. This model is referred to as CSCAPM + COSK. We consider four sets of portfolios. We compute

out-of-sample R�squares for each portfolio and report the average in Panel A. Panel B reports the average
of the square root of the mean forecasting errors (RMSFE). The sample period is from January 1986 to

December 2012.

Panel A: Out of Sample R-squares

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK CAPM CSCAPM

+COSK + COSK

25 Size/Book-to-Market -0.252 1.690 -0.005 -2.061

25 Size/Momentum -0.553 0.377 -1.623 0.353

25 Size/Short-Term Reversal -0.301 1.362 -0.676 0.304

25 Size/Long-Term Reversal -0.420 0.888 -0.533 0.720

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM FF

+COSK

25 Size/Book-to-Market -3.905 -4.534 -7.141

25 Size/Momentum 0.879 -0.214 -6.237

25 Size/Short-Term Reversal 0.469 0.524 -0.691

25 Size/Long-Term Reversal 0.440 0.509 -0.750

Panel B: RMSFEs

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK CAPM CSCAPM

+COSK +COSK

25 Size/Book-to-Market 5.709 5.651 5.704 5.75

25 Size/Momentum 6.088 6.061 6.124 6.065

25 Size/Short-Term Reversal 5.977 5.923 5.987 5.957

25 Size/Long-Term Reversal 5.624 5.587 5.629 5.593

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM FF

+COSK

25 Size/Book-to-Market 5.805 5.822 5.891

25 Size/Momentum 6.044 6.077 6.247

25 Size/Short-Term Reversal 5.953 5.951 5.985

25 Size/Long-Term Reversal 5.599 5.598 5.631
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Table 4: Robustness. Price of Risk and Out-of-Sample Performance

In Panel A, we provide estimates of the price of co-skewness risk using alternative estimators of the physical

and risk-neutral second moments. In Panel B, we document the out-of-sample performance of the model

with co-skewness risk using these di¤erent moment estimators. In Panel B we consider four sets of portfolios.

The sample periods di¤er dependent on the availability of data.

Price of Coskewness Risk

EPt [R
2
t+1] EQt [R

2
t+1] EPt [R

2
t+1]� E

Q
t [R

2
t+1]

NGARCH + VIX (1986 - 2012) 0.2960 0.4381 -0.1421

NGARCH + BKM (1996 - 2012) 0.3445 0.5153 -0.1708

Heston + VIX (1986 - 2012) 0.1539 0.4386 -0.2847

Heston + BKM (1996 - 2012) 0.2132 0.5167 -0.3035

AR + VIX (1986 - 2012) 0.3152 0.4381 -0.1229

AR + BKM (1996 - 2012) 0.3462 0.5153 -0.1691

HAR + BKM (1996 - 2012) 0.1990 0.5153 -0.3163

Panel B: Out-of-Sample R-squares

25 Size/BM 25 Size/Mom 25 Size/STR 25 Size/LTR

NGARCH + VIX (1986 - 2012) 1.976 0.762 1.679 1.236

NGARCH + BKM (1996 - 2012) 2.165 0.345 1.709 1.056

Heston + VIX (1986 - 2012) 1.521 0.492 1.243 0.750

Heston + BKM (1996 - 2012) 1.437 -0.070 1.076 0.120

AR + VIX (1986 - 2012) 0.974 0.618 1.352 0.333

AR + BKM (1996 - 2012) 0.925 0.278 1.442 -0.091

HAR + BKM (1996 - 2012) 1.999 0.203 1.602 0.765
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Table 5: The Option-Based Price of Co-Skewness and Co-Kurtosis Risk
The table provides descriptive statistics for the physical and risk-neutral expectations and the price of co-

skewness and co-kurtosis risk. The data are monthly and the mean and the standard deviation are reported

in percentages. The second and third conditional physical moments are estimated using the autoregressive

conditional volatility, skewness, and kurtosis model of Jondeau and Rockinger (2003). The risk-neutral

moments are estimated using the model-free approach in Bakshi and Madan (2000) and Bakshi, Kapadia,

and Madan (2003). The sample period is from January 1996 to December 2012.

Panel A: Coskewness Risk

EPt [R
2
t+1] EQt [R

2
t+1] EPt [R

2
t+1]� E

Q
t [R

2
t+1]

mean 0.2408 0.5153 -0.2745

std 0.1939 0.3961 0.3024

skew 2.8889 2.7374 -3.8285

kurt 13.2043 15.0935 27.0616

�(1) 0.8421 0.7278 0.4257

Panel B: Cokurtosis Risk

EPt [R
3
t+1] EQt [R

3
t+1] EPt [R

3
t+1]� E

Q
t [R

3
t+1]

mean -0.0104 -0.0220 0.0116

std -4.9370 -5.7427 6.1949

skew -4.9370 -5.4637 7.8020

kurt 33.3414 49.7137 63.3882

�(1) 0.6639 0.4515 -0.0446
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Table 6: Out-of-Sample Tests with Co-Kurtosis Risk

We test the out-of-sample performance of several competing models. The price of risk is estimated using

cross-sectional regressions or historical risk premia. Using historical risk premia, we provide out-of-sample

predictions for the CAPM, the model with a co-skewness premium COSK, the model with a co-kurtosis

premium COKU, and the model with market and co-skewness factors and market and co-kurtosis factors,

CAPM + COSK and CAPM + COKU respectively. Using cross-sectional regressions, we provide predictions

for the CAPM, CAPM + COSK, CAPM + COKU, and the Fama-French three-factor model FF. We also

use hybrid models with regression-based co-variance premium and historical co-skewness and co-kurtosis

premiums, CSCAPM + COSK and CSCAPM + COKU. We consider four sets of portfolios. Panel A reports

out-of-sample R�squares. Panel B reports root mean squared forecasting errors (RMSFE). The sample

period is from January 1986 to December 2012.

Panel A: Out-of-Sample R-squares

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK COKU CAPM CAPM CSCAPM CSCAPM

+COSK +COKU +COSK +COKU

25 Size/Book-to-Market -0.402 2.074 0.396 0.088 -0.702 -0.342 -2.927

25 Size/Momentum -0.731 0.249 -0.432 -2.033 -1.729 0.818 0.270

25 Size/Short-Term Reversal -0.418 1.306 0.397 -1.015 -1.113 0.473 0.335

25 Size/Long-Term Reversal -0.644 1.001 -0.331 -0.719 -1.410 1.485 0.023

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM CAPM FF

+COSK +COKU

25 Size/Book-to-Market -1.943 -2.471 -3.931 -7.966

25 Size/Momentum 1.595 0.960 0.615 -4.681

25 Size/Short-Term Reversal 1.048 1.736 0.007 -0.392

25 Size/Long-Term Reversal 0.998 1.046 0.178 0.055

Panel B: RMSFEs

Prices of Risk Estimated from Historical Risk Premia

CAPM COSK COKU CAPM CAPM CSCAPM CSCAPM

+COSK +COKU +COSK +COKU

25 Size/Book-to-Market 6.083 6.005 6.056 6.068 6.092 6.074 6.154

25 Size/Momentum 6.557 6.525 6.548 6.600 6.595 6.510 6.531

25 Size/Short-Term Reversal 6.424 6.365 6.399 6.441 6.449 6.393 6.401

25 Size/Long-Term Reversal 5.934 5.883 5.924 5.936 5.956 5.871 5.916

Prices of Risk Estimated from Cross-Sectional Regressions

CAPM CAPM CAPM FF

+COSK +COKU

25 Size/Book-to-Market 6.125 6.140 6.192 6.294

25 Size/Momentum 6.482 6.504 6.519 6.678

25 Size/Short-Term Reversal 6.376 6.354 6.412 6.419

25 Size/Long-Term Reversal 5.886 5.885 5.912 5.91345



Table 7: Robustness. Co-Kurtosis Price of Risk and Out-of-Sample Performance

Panel A provides estimates of the co-kurtosis risk premium using alternative measures of the physical third

moment. Panel B reports out-of-sample R-squares using these alternative estimates. Panel B considers four

sets of portfolios. We compute out-of-sample R�squares for each portfolio and report the average. The
sample period is from January 1996 to December 2012.

Panel A: The Price of Co-Kurtosis Risk

EPt [R
2
t+1] EQt [R

2
t+1] EPt [R

2
t+1]� E

Q
t [R

2
t+1]

const skew (daily) -0.0006 -0.0220 0.0214

const skew (monthly) -0.0015 -0.0220 0.0205

zero skew 0.0000 -0.0220 0.0220

Panel B: Out-of-Sample R-squares

25 Size/BM 25 Size/Mom 25 Size/STR 25 Size/LTR

const skew (daily) 1.087 0.510 1.098 0.360

const skew (monthly) 1.038 0.385 0.974 0.172

zero skew 0.934 0.399 1.007 0.214
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