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Abstract

We study the impact of labor market frictions on credit risk. Our central finding is that
labor market variables are the first-order effect in driving the credit spread fluctuations.
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better than alternative predictors. A model with wage rigidity can explain this link
as well as produce large credit spreads despite realistically low default probabilities
(credit spread puzzle). This is because pre-committed payments to labor make other
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1 Introduction

We study the impact of labor market frictions on credit risk. Our central finding is that labor

market variables are the first-order effect in driving the credit spread fluctuations. When

wages are rigid, the operating leverage effect caused by smooth wages increases firms’default

risk because precommitted wage payments make debt payment more risky. Consistent with

this view, we show that labor market variables (wage growth and labor share) which capture

the strength of operating leverage when wages are sticky, significantly forecast the Baa-

Aaa credit spread in the U.S. More specifically, a 1 percentage point increase in the wage

growth (labor share) is associated with a decrease (increase) of 16 (11) basis points in credit

spread. The predictability of labor market variables is stronger than the standard credit risk

predictors including financial leverage, market volatility, term spread, etc. For example, the

adjusted R2 of wage growth in predicting credit spread is 31%, substantially larger than that

of financial leverage (21%) , market volatility (21%) and term spread (2%). Furthermore,

wage growth drives out the predictability of investment growth, which is the key variable

used in the recent investment-based models to link credit risk to the real economy. This

result suggests the crucial role of wage growth as a key determinant of credit risk.

To establish the link between labor market frictions and credit risk, we propose a

dynamic stochastic general equilibrium model with heterogeneous firms. The key friction

is a staggering of wage contracts or infrequent wage resetting, which prevents firms from

immediately adjusting their labor expenses in response to new shocks. In the model, the

predictability of labor market variables for the credit spread arise endogenously due to

the interaction between operating leverage and financial leverage. In economic downturns

productivity and output fall by more than wages, causing an increase in labor leverage. High

expected payments to labor make equity more likely to default in bad times, especially when

the wage bill is relatively high. Thus, the model implies that labor share (positively) and

wage growth (negatively) are natural predictors of credit spreads.

More specifically, in the model firms default if the realized firm value is not big enough

to repay the debt due. This occurs if the firm’s idiosyncratic productivity is below a cutoff

value, which itself depends on the state of the economy. In economic downturns, profit falls

more than output, which makes it harder for firms to pay off precommitted debt payment.

This raises the default threshold of idiosyncratic productivity, which in turn increases the

default probability and the credit risk premium. Thus the model produces large credit

spreads despite realistically low default probabilities. Furthermore, wage growth negatively

whereas labor share positively predicts credit spread because times of low wage growth or

high labor share are associated with high wage rigidity and hence high credit risk premium.
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The model endogenously generates time-variations in credit spread.

This intuition is consistent with anecdotal evidence. For example, regarding the

bankruptcy of American Airlines in 2012, the Wall Street Journal writes "Bankruptcy seems

to be helping American do what practically every other bankrupt airline has done —reduce

its labor costs to competitive levels. Those costs are ... the highest of any major airline

operating in the U.S. today. American spends $600 million more on wages than its peers."1

American’s CEO Thomas W. Horton said "Achieving the competitive cost structure we need

remains a key imperative in this process, and as one part of that, we plan to initiate further

negotiations with all of our unions to reduce our labor costs to competitive levels." Similarly,

regarding the bankruptcy of United in 2002, a UBS analyst said "Excess debt, burdensome

labor contracts, expensive pension obligations... are all high on the list of what ails airlines.

Bankruptcy can certainly address these other issues."2

The model is calibrated to match aggregate-level quantity moments. The model generates

a reasonable distribution of default rates for corporate bonds with different credit ratings,

consistent with the data. Most important, the model with wage rigidity (combined with labor

adjustment costs) successfully replicates the predictability of wage growth and labor share for

the credit spread observed in the data. Furthermore, the model also endogenously generates

the positive relation between stock market volatility and credit spread. In contrast, a model

with no labor market frictions does not generate any meaningful time variation in credit

spread. Moreover, without wage rigidity, wage growth (labor share) positively (negatively)

predicts credit spread which is counterfactual. Taken together, our results show that labor

market frictions have significant impact for credit risk.

In addition to successfully replicating the observed predictability in credit spread, the

model also produces a sizable equity premium and equity volatility consistent with the data

(the mechanism is similar to Favilukis and Lin 2013). Thus the model with wage rigidity and

corporate debt provides a coherent explanation for the joint dynamics of the equity market

and the credit market risks.

Related literature: While the macroeconomic literature on wages and labor is quite large

(e.g., Pissarides 1979, Calvo 1982, Taylor 1983, Taylor 1999, Shimer 2005, Hall 2006, Gertler

and Trigari 2009), there has been little work done relating labor market frictions to credit

risk. We fill this gap by integrating labor market frictions with credit risk. In particular,

our paper differs from these macro-papers in that we study implications of staggered wage

setting on corporate bond pricing, while the models in labor economics fail to match the
1James K. Glassman, Wall Street Journal Op/Ed, October 16, 2012, "Once It Emerges From Bankruptcy,

Let American Airlines Stay American"
2Sam Buttrick in interview to CNNMoney, December 9, 2002 "United hits turbulance of bankruptcy"
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asset prices observed in the data; this is a problem endemic to most standard models.

The literature of structural models on credit risk highlights the roles of financial leverage

and asset volatility as the key determinants of credit spread. Models in this literature usually

feature exogenously specified cash flow process (e.g., Collin-Dufresne and Goldstein 2001;

Hackbarth, Miao and Morellec 2006; Chen, Collin-Dufresne, and Goldstein 2009; Chen

2010). We are complementary to these work by endogenizing cash flows through firms’

investment and hiring decisions. More importantly, as is shown in Favilukis and Lin (2013),

wage rigidity is crucial to match cash flow dynamics in DSGE models, thus our paper makes

structural models of credit risk viable in a production economy. Some recent investment-

based models attempt to link credit risk to firms’real investment decisions. In particular,

Gomes and Schmid (2010) explore the propagation mechanism of movements in bond markets

into the real economy. Gourio (2013) studies the impact of disaster risk on credit risk in

a DSGE model. Kuehn and Schmid (2013) study the interaction between investment and

credit spread. We are complementary to these papers but break new ground by explicitly

modelling the interactions between labor market frictions and corporate bond pricing.

Our empirical findings relate to the empirical literature on the determinants of credit

spread. Collin-Dufresne, Goldstein and Martin (2001) show that standard credit spread

forecasters have rather limited explanatory power. Elton et al (2001) find that expected

default accounts for a small fraction of the credit risk premium. We show that labor

market variables, in particular, wage growth, have stronger explanatory power than financial

leverage and stock market volatility in predicting the Baa-Aaa spread. Our findings suggests

that exploring the link between labor market frictions and credit risk can shed light to the

empirical puzzle documented in Collin-Dufresne, Goldstein, and Martin (2001).

Our paper also relates to the recent literature exploring the relations between labor

frictions and equity returns. Belo, Lin, and Bazdresch (2013) study the impact of labor

frictions on the relationship between hiring rates and the cross section of returns. Petrosky-

Nadeau, Zhang, and Kuehn (2013) explore how search frictions in the style of Mortensen

and Pissarides (1994) affect asset pricing in a general equilibrium setting with production.

Gomes, Jermann, and Schmid (2013) study the rigidity of nominal debt which creates long

term leverage that works in a similar way to our labor leverage. We differ in that we explicitly

study credit risk and wage rigidity.
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2 Empirical Evidence

In this section we explore the predictability of labor market variables (wage growth and

labor share) for credit spread. We first describe the data, and then the empirical specification

and the results.

2.1 Data and Variable Definitions

Credit spread We use the Moody’s Baa corporate bond yield in excess of Aaa corporate

bond yield from the Federal Reserve. As in Chen, Collin-Dufresne, and Goldstein (2009),

the Baa-Aaa spread should be mostly due to credit risk, assuming that the component of

the credit spread due to taxes, call/put/conversion options and the lack of liquidity in the

corporate bond markets, is of similar magnitude for Aaa and Baa bonds.

Wage growth Wage growth is the growth rate in the real wages and salaries per full-time

equivalent employee from NIPA table 6.6.

Labor share Labor share is the ratio of aggregate compensation of employees to GDP.

Controls The empirical finance literature has uncovered a list of variables that forecast

credit spread. We measure financial leverage as the book value of corporate bond divided

by the market value of equity in the nonfinancial corporate business sector from the Flow of

Funds Accounts. Stock market volatility is the annualized volatility of monthly CRSP stock

market returns in excess of riskfree rate. Term spread is the difference between the ten-year

Treasury bond yield and the three-month Treasury bill yield from the Federal Reserve. Spot

rate is the one-year Treasure bill rate. Our sample is from 1948 to 2012.3

Panel A in Table 2 reports the descriptive statistics for the variables mentioned above.

Credit spread has an annual mean of 95 basis points and a volatility of 41 basis points. It

has a first-order autocorrelation at 0.75, suggesting that credit spread is persistent. Wage

growth has mean of 2% and a standard deviation of 1%. It has a first-order autocorrelation

at 0.45, less persistent than credit spread. Labor share has a mean and standard deviation

at 0.55 and 1%, respectively. The mean, standard deviations, and autocorrelations of other

standard credit spread predictors seem reasonable.

Panel B in Table 2 presents the correlations of all variables of interest with real GDP

growth, and their cross correlations. Credit spread has a correlation with GDP growth

at -0.52, suggesting that it is countercyclical. Wage growth and investment growth are

3We start in 1948 because financial leverage from Flow of Funds is available after 1946. We do not start
in 1946 to avoid the influence of the WWII on our results. However, the predictability of wage growth for
credit spread holds in a longer sample starting from 1929.
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procyclical with correlations with GDP growth at 0.4 and 0.77, respectively; both of them

negatively correlate with credit spread with correlations at -0.52 and -0.5, respectively. But

they are only mildly positively correlated at 0.21. This implies that wage growth and

investment growth contain different information in explaining credit spread even though both

of them negatively correlate with credit spread. Both labor share and financial leverage are

negatively correlated with GDP growth with correlations at -0.18 and -0.32, respectively;

however labor share and financial leverage themselves are negatively correlated at -0.16,

suggesting they contain different information despite both being countercyclical. Consistent

with the existing literature, credit spread is positively correlated with financial leverage,

market volatility, and the term spread.

It is also evident in Figure 1 that credit spread is highly countercyclical and moves in

the opposite direction to the wage growth, while labor share somewhat leads credit spread

but moves in the same direction as credit spread.

2.2 Empirical Specification and Results

In this subsection, we explore the predictability of wage growth and labor share for credit

spread in three steps. All regressions are at an annual frequency. First, we run univariate

regressions of one year ahead credit spread, CSt+1, on current wage growth,∆Wt, labor share,

LSt, and the controls at year t; second, we run horse race regressions of either wage growth

or labor share with a control one at a time; thirdly, we conduct multivariate regressions of

wage growth and labor share together with a control, and finally a multivariate regression

with all the predictors at the right hand side.

Univariate regressions Panel A in table 3 reports the univariate regression results. Wage
growth negatively forecasts credit spread with a slope coeffi cient at -16.44 which is more

than 4 standard deviations away from zero (column one). Furthermore, the adjusted R2 is

0.31, which is substantially larger than that implied by other predictors, suggesting that the

explanatory power of wage growth is stronger than most of other conventional predictors

including financial leverage and stock market volatility. Labor share positively predicts

credit spread with the slope coeffi cient of 10.97 which is more than 2 standard deviations

away from zero (column two). As for the controls, investment growth negatively forecasts

credit spread (the third column), but the adjusted R2 is only 0.03, far below the adjusted

R2 implied by wage growth (it is also smaller than the adjusted R2 implied by labor share

at 0.08). Both financial leverage and stock market volatility positively predict credit spread,

consistent with Collin-Dufrene, Goldstein, and Martin (2001). However, price-to-earnings

ratio, term spread, and spot rate do not significantly predict credit spread.
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Horse race regressions Panel B in table 3 presents the horse race regression results of
wage growth with a control one at a time. Wage growth remains statistically significant in

predicting credit spread after controlling for all other predictors. Furthermore, investment

growth is no longer significant in the joint regression with wage growth (column one).4 This

is perhaps surprising given that the recent literature has emphasized the role of investment in

driving credit spread (Gomes and Schmid 2010, Gourio 2011, and Kuehn and Schmid 2013),

however our result shows that wage growth drives out the predictive power of investment

growth, thus wage growth is more important in explaining the movement of credit spread

than investment. Panel C in table 3 presents the horse race regression results for labor

share and other predictors. Labor share remains significant after controlling for investment

growth, financial leverage, price-to-earnings ratio and the term spread; it is marginally

significant when controlling for the spot rate. However, labor share is not significant at

10% significance level when controlling for stock market volatility (column three). This is

perhaps not surprising given that Favilukis and Lin (2013) show that labor share and return

volatility are highly positively correlated since higher labor share implies higher operating

leverage.

Multivariate regressions Panel D presents the multivariate regression results. When both
wage growth and labor share are the right hand side variables (the first column), both of

the variables significantly predict credit spread. In the multivariate regressions with wage

growth and labor share together with one additional predictor at a time, wage growth remains

significant in all specifications, while labor share is significant or marginally significant in

most specifications.

The last column shows a kitchen sink regression that includes all controls but excludes

our labor market variables. Given that there are six regressors and 64 years of data, this

regression may very well be overfitted. In this regression, the adjusted R2 is 0.43; recall

that wage growth alone attains an R2 of 0.31. Finally, for parsimony we include a regression

with both of our labor market variables and all controls (overfitting is once again a concern).

In this all-in regression (the second to last column), wage growth remains significant after

controlling for investment growth, financial leverage, market volatility, P/E, term spread,

and spot rate; however labor share is no longer significant. Moreover, investment growth is

not significant either. The R2 in this regression is 0.52.5

4This finding also holds in a longer sample starting in 1929.
5In the results not tabulated here, we have also controlled for debt growth, employment growth, stock

market premium, dividend-to-price ratio, unemployment rate, and past credit spread. We find that wage
growth always remains significant.
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3 Model

The model is similar to Favilukis and Lin (2013) with exogenous corporate debt.6 We

begin with the household’s problem. We then outline the firm’s problem, the economy’s key

frictions are described there. Finally we define equilibrium.

In the model financial markets are complete, therefore we consider one representative

household who receives labor income, chooses between consumption and saving, and

maximizes utility as in Epstein and Zin (1989).

Ut = max

(
(1− β)C

1− 1
ψ

t + βEt[U
1−θ
t+1 ]

1− 1
ψ

1−θ

) 1

1− 1
ψ

(1)

Wt+1 = (Wt +Nt ∗ wt − Ct)Rt+1 (2)

where wt is the average wage in the economy, Ct is average consumption, Wt is the wealth

held by the average household, and Rt+1 is the return to a portfolio over all possible financial

securities. For simplicity, we assume that aggregate labor supply is inelastic: Nt = 1. Risk

aversion is given by θ and the intertemporal elasticity of substitution by ψ.

3.1 Firms

The interesting frictions in the model are on the firm’s side. We assume a large number of

firms (indexed by i and differing in idiosyncratic productivity) choose investment and labor

to maximize the present value of future dividend payments where the dividend payments are

equal to the firm’s output net of investment, wages, operating costs and adjustment costs.

Output is produced from labor and capital. Firms hold beliefs about the discount factor

Mt+1, which is determined in equilibrium.

3.1.1 Technology

Firm i’s output is given by

Y i
t = Zi

t

(
α(Ki

t)
η + (1− α)(XtN

i
t )
ηρ
) 1
η . (3)

6We will incorporate endogenous defaultable corporate debt soon.
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Output is produced with CES technology from capital (Ki
t) and labor (N

i
t ) where Xt is labor

augmenting aggregate productivity, Zi
t is the firm’s idiosyncratic productivity, ρ determines

the degree of return to scale (constant return to scale if ρ = 1), 1
1−η is the elasticity of

substitution between capital and labor (Cobb-Douglas production if η = 0), and (1− α)ρ is

labor share in production.

The process for Xt is non-stationary but its growth rate is stationary, this is in the

spirit of the exogenous shock process in long run risk models of Bansal and Yaron (2004),

Kaltenbrunner and Lochstoer (2010), and Croce (2012). We specify the growth rate of

aggregate productivity (∆ logXt+1) to be the following

∆ logXt+1 = (1− ρX)µX + ρX∆ logXt + εXt+1, (4)

which is consistent with long run risk.7 ∆ is the first-difference operator, εXt+1 is an

independently and identically distributed (i.i.d.) standard normal shock, and µZ and ρX are

the average growth rate and autocorrelation of the growth rate of aggregate productivity,

respectively.

Idiosyncratic productivity shocks logZi
t follow an AR(1) process

logZi
t+1 = ρZ logZi

t + εZt+1, (5)

where εZt+1 is an i.i.d. standard normal shock that is uncorrelated across all firms in the

economy and independent of εXt+1, and ρZ is the autocorrelation of idiosyncratic productivity.

3.1.2 The Wage Contract

In standard production models wages are reset each period and employees receive the

marginal product of labor. We assume that any employee’s wage will be reset this period

with probability 1 − µ.8 When µ = 0 our model is identical to models without rigidity: all

wages are reset each period, each firm can freely choose the number of its employees, and each

firm chooses N i
t such that its marginal product of labor is equal to the wage. When µ > 0

7Our process for TFP growth is analogous to a discretized AR(1) process, Bansal and Yaron (2004) use a
slightly more complicated formulation where consumption growth is ARMA(1,1). When the short-run and
long-run shocks in Bansal and Yaron (2004) are perfectly correlated, their process becomes identical to ours.

8Note that this is independent of length of employment. This allows us to keep track of only the number
of employees and the average wage as state variables, as opposed to keeping track of the number of employees
and the wage of each tenure. This way of modeling wage rigidity is similar in spirit to Gertler and Trigari
(2009), but for tractability reasons, we do not model search and match frictions.
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we must differentiate between the spot wage (wt) which is paid to all employees resetting

wages this year, the economy’s average wage (wt), and the firm’s average wage (wit). The

firm’s choice of employees may no longer make the marginal product equal to either average

or spot wages because firms will also take into account the effect of today’s labor choice and

today’s wage on future obligations.

When a firm hires a new employee in a year with spot wage wt, with probability µ it

must pay this employee the same wage next year; on average this employee will keep the

same wage for 1
1−µ years. All resetting employees come to the same labor market and the

spot wage is selected to clear markets. The firm chooses its total labor force N i
t each period.

These conditions lead to a natural formulation of the firm’s average wage as the weighted

average of the previous average wage and the spot wage:

witN
i
t = wt(N

i
t − µN i

t−1) + wit−1µN
i
t−1 (6)

Here N i
t −µN i

t−1 is the number of new employees the firm hires at the spot wage and µN
i
t−1

is the number of tenured employees with average wage wit−1.
9

Note that the rigidity in our model is a real wage rigidity, although our channel could in

principle work through nominal rigidities as well. There is evidence for the importance of

both real and nominal rigidities. Micro-level studies of panel data sets comparing actual and

notional wage distributions show that nominal wage changes cluster both at zero and at the

current inflation rate, with sharp decreases in the density to the left of the two mass points.

Barwell and Schweitzer (2007), Devicenti, Maida and Sestito (2007), and Bauer, Goette and

Sunde (2007) find that downward real wage rigidity is substantial in Great Britain, Germany,

and Italy, and that the fraction of real wage cuts prevented by downward real wage rigidity is

more than five times greater than the fraction prevented by downward nominal wage rigidity.

In a recent international wage flexibility study, Dickens, Goette, and Groshen (2007) find

that the relative importance of downward real wage rigidity and downward nominal wage

rigidity varies greatly across countries while the incidences of both types of wage rigidity are

about the same.
9It is possible that N i

t < µN i
t−1, in which case µN

i
t−1 cannot be interpreted as tenured employees. In this

case we would interpret the total wage bill as including payments to prematurely laid-off employees. Note
that the wage bill can be rewritten as witN

i
t = wit−1N

i
t + (µN i

t−1 −N i
t )(w

i
t − wt), here the first term on the

right is the wage paid to current employees and the second term represents the payments to prematurely
laid off employees. An earlier version of the paper included the constraint N i

t ≥ µN i
t−1, the results were

largely similar.
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3.1.3 Accounting

The equation for profit is

Π(Ki
t) = Y i

t − witN i
t −Ψi

t (7)

Π(Ki
t) is profit, given by output less labor and operating costs.

10 Operating costs are defined

as Ψi
t = f ∗Kt; they depend on aggregate (but not firm specific) capital.11 Labor costs are

witN
i
t .

Capital adjustment costs are given by Φ(I it , K
i
t) = υt

(
Iit
Ki
t

)2
Ki
t where υt = υ+ if

Iit
Ki
t
> 0 and υt = υ− otherwise. Asymmetric costs have been shown to quantitatively

help with the value premium by Zhang (2005). Labor adjustment costs are given by

Ξ(N i
t , N

i
t−1) = ξ(N i

t − N i
t−1)

2Kt. The labor adjustment costs include advertising of job

positions, training and screening of new workers, as well as output that is lost through time

taken to readjust the schedule and pattern of production.

The total dividend paid by the firm is

Di
t = Π(Ki

t)− I it − Φ(I it , K
i
t)− Ξ(N i

t , N
i
t−1), (8)

which is profit less investment, capital adjustment costs and labor adjustment costs.

3.1.4 The Firm’s Problem

We will now formally write down firm i’s problem. The firm maximizes the present

discounted value of future dividends

V i
t = max

Iit ,N
i
t

Et[
∑
j=0,∞

Mt+jD
i
t+j], (9)

10As there are no taxes or explicit interest expenses we do not differentiate between operating profit and
net income and simply call it profit.
11Because productivity is non-stationary, all model quantities are non-stationary and we cannot allow for

a constant operating cost as it would grow infinitely large or infinitely small relative to other quantities. All
quantities in the model must be scaled by something that is co-integrated with the productivity level, such
as aggregate capital. We have also experimented with using the spot wage (wt) or aggregate productivity
(Xt) and the results appear insensitive to this.
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subject to the standard capital accumulation equation

Ki
t+1 = (1− δ)Ki

t + I it , (10)

as well as equations (6), (3), (7), and (8).

3.2 Financial Leverage

It is standard in the literature to assume that all firms keep leverage constant,12 however

in the data leverage is quite sticky. Because sticky leverage is both realistic, and improves

the model’s performance, we assume that the firm’s choice of debt is sticky and follows

Bt+1 = ρBBt + (1− ρB)B∗t

B∗t = λ(Vt −Dt)
(11)

where Bt is the market value of corporate debt (amount borrowed) and B∗t is the target debt

level. We assume that the target debt level is a constant fraction of the firm’s ex-dividend

value Vt −Dt.

Combining this assumption about the evolution of debt with the Modigliani and Miller

(1958) second proposition implies that the equity dividend and the equity return are:

DE
t = Dt +Bt −Bt−1R

B
t−1 (12)

RE
t =

Vt −Bt−1R
B
t−1

Vt−1 −Bt−1 −Dt−1
(13)

where Dt is the total payout to all of the firm’s financial stakeholders (debt and equity) and

RB
t is the (risky) return on debt.

3.3 Default and Credit Spread

Let RP
t−1 be the t−1 promised return, whose derivation is discussed below. Default occurs

at t if Vt < Bt−1R
P
t−1, since due to limited liability, equity holders can walk away instead

of receiving a net return below -100%. When the firm does not default, RB
t = RP

t−1; when

12One example is Boldrin, Christiano and Fisher (1999) who provide additional discussion.
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the firm does default, the equity return is −100% and creditors take over the firm, so that

RB
t = Vt

Bt−1
< RP

t . At this stage the firm’s debt is reset to zero and then follows Equation

11. The promised payment RP
t−1 is set such that

1 = Et[R
B
t+1Mt+1] = Rp

tEt[Mt+1|d 6= 1]∗ (1−p(d = 1))+Et[Mt+1
Vt+1
Bt

|d = 1]∗p(d = 1) (14)

where d = 1 indicates default and p(d = 1) is the probability of default.

We define the credit spread CSt in the model as the difference between the risky return

on debt and the riskfree rate, i.e.,

CSt = RB
t −R

f
t , (15)

where Rf
t = 1

EtMt+1
.

To gain some intuition for why wage rigidity matters for default risk, we will compare the

default decision in the frictionless model to the model with wage rigidities. The firm defaults

if its realized firm value Vt is not big enough to repay the debt due Bt−1R
P
t−1. This occurs

if the firm’s idiosyncratic productivity Z is below a cutoff value Z∗, which itself depends on

the state of the economy including the aggregate state variables. Mathematically, the cutoff

value Z∗ can be characterized as

Z∗
(
Sit , St, Xt;w

i
t

)
= arg min

Z

[
Vt > Bt−1R

P
t−1
]

= arg min
Z

[
Y i
t − witN i

t −Ψi
t − I it − Φ(I it , K

i
t)− Ξ(N i

t , N
i
t−1) + EtMt+1Vt+1 > Bt−1R

P
t−1
]
(16)

The default decision can be described as follows

Z ≥ Z∗ stay

Z < Z∗ default
(17)

Proposition 1 All else equal, the model with rigidity implies a higher default probability
than the frictionless model.

Proof. When a negative aggregate productivity shock hits the economy, gross profit

Y i
t − witN

i
t in the model without wage rigidity will fall roughly proportional to output,
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whereas the gross profit will fall by more than output in the wage rigidity model. This

implies that all else being equal, the cutoff value of idiosyncratic productivity for default in

the frictionless model is lower than that of wage rigidity model, i.e.,

Z∗frictionless < Z∗rigidity (18)

Equation (18) implies that the default region in idiosyncratic productivity for the frictionless

model is smaller than the wage rigidity model, which is described in equation (19),

(
−∞, Z∗frictionless

]
⊂
(
−∞, Z∗rigidity

]
. (19)

This relationship will directly translate into a higher default probability for the firm in the

wage rigidity model.

Wage growth negatively whereas labor share positively predicts credit spread because

times of low wage growth or high labor share are associated with high wage rigidity and

hence high credit risk premium. As we will show quantitatively in the next section, without

wage rigidity default risk is too small to generate any time-variation in credit spread in the

frictionless model.

3.4 Equilibrium

We assume that there exists some underlying set of state variables St which is suffi cient

for this problem. Each firm’s individual state variables are given by the vector Sit .

Because the household is a representative agent, we are able to avoid explicitly solving

the household’s maximization problem and simply use the first order conditions to find

Mt+1 as an analytic function of consumption or expectations of future consumption. For

instance, with CRRA utility, Mt+1 = β
(
Ct+1
Ct

)−θ
while for Epstein-Zin utility Mt+1 =

β
(
Ct+1
Ct

)− 1
ψ

(
Ut+1

Et[U
1−θ
t+1 ]

1
1−θ

) 1
ψ
−θ

.13

Equilibrium consists of:

• Beliefs about the transition function of the state variable and the shocks: St+1 =

f(St, Xt+1)

13Given a process for Ct we can recursively solve for all the necessary expectations to calculateMt+1. The
appendix provides more details.
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• Beliefs about the realized stochastic discount factor as a function of the state variable
and realized shocks: M(St, Xt+1)

• Beliefs about the aggregate spot wage as a function of the state variable: w(St)

• Firm policy functions (which depend on St and Sit) for labor demandN i
t and investment

I it

It must also be the case that given the above policy functions all markets clear and the

beliefs turn out to be rational:

• The firm’s policy functions maximize the firm’s problem given beliefs about the wages,
the discount factor, and the state variable.

• The labor market clears:
∑
N i
t = 1

• The goods market clears: Ct =
∑(

Πi
t + Ψi

t + witN
i
t − I it

)
=
∑
Di
t + witN

i
t+Φi

t+Ξi
t+Ψi

t.

Note that here we are assuming that all costs are paid by firms to individuals and are

therefore consumed, the results look very similar if all costs are instead wasted.

• The beliefs about Mt+1 are consistent with goods market clearing through the

household’s Euler Equation.14

• Beliefs about the transition of the state variables are correct. For instance if aggregate
capital is part of the aggregate state vector, then it must be that Kt+1 = (1− δ)Kt +∑
I it .

4 Model Solution

We solve the model at an annual frequency using a variation of the Krusell and Smith

(1998) algorithm, we discuss the solution method in the appendix. The model requires

us to choose the preference parameters: β (time discount factor), θ (risk aversion), ψ

(intertemporal elasticity of substitution); the technology parameters: α and ρ (jointly

determine labor share in output and degree of return to scale), 1
1−η (elasticity of substitution

between labor and capital), δ (depreciation), f (operating cost); the adjustment cost

parameters: ν+ (upward capital adjustment cost), ν− (downward capital adjustment cost),

14For example, with CRRA Mt+1 = β
(∑

Dt+1,i+wtNt+1,i+Φt+1,i+Ξt+1,i+Ψt+1,i∑
Dt,i+wtNt,i+Φt,i+Ξt,i+Ψt,i

)−θ
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and ξ (labor adjustment cost). Finally we must choose our key parameter µ which determines

the frequency of wage resetting. Below we justify our choices of these parameters.

Table 4 presents parameter choices for two models of interest: (i) a model with a

calibrated elasticity of substitution between labor and capital but where all wages are reset

each year; (ii) a model with a calibrated elasticity of substitution between labor and capital

where wages are reset once every four years on average and where firms face labor adjustment

costs (ξ = 0.15).

Preferences We set β = 0.995 to match the level of the risk free rate. We set

θ = 6.5 to get a reasonably high Sharpe Ratio, while keeping risk aversion within the range

recommended by Mehra and Prescott (1985). The intertemporal elasticity of substitution ψ

also helps with the Sharpe Ratio, it is set to 1.5 as in Bansal and Yaron (2004), who show

that values above 1 are required for the long run risk channel to match asset pricing moments

as this ensures that the compensation for long-run expected growth risk is positive.

Technology The technology parameters are fairly standard and we use numbers

consistent with prior literature. We jointly choose α = 0.25 and ρ = 0.853 so that labor

share and profit share are consistent with empirical estimates.15 Similarly we set η = −1 to

match empirical estimates of the elasticity of substitution between labor and capital,16. We

set δ = 0.1 to match annual depreciation.

Operating Cost Ψt = f ∗Kt is a fixed cost from the perspective of the firm, however it

depends on the aggregate state of the economy, in particular aggregate capital. We choose

f to match the average market-to-book ratio in the economy, which we estimate to be 1.33

(details of this estimation are in the appendix). While we think it is realistic for this cost to

increase when aggregate capital is higher (during expansions), the results are not sensitive to

this assumption. The results look very similar when Ψt is simply growing at the same rate

as the economy.17Note that fixed costs in the production process also effectively constitute

15Labor share is (1 − α)ρ = 0.64. Profit share is (1 − α)(1 − ρ) = 0.11 implying returns to scale of 0.89.
Gomes (2001) uses 0.95 citing estimates of just under 1 by Burnside (1996). Burnside, Eichenbaum, and
Rebelo (1995) estimate it to be between 0.8 and 0.9. Khan and Thomas (2008) use 0.896, justifying it
by matching the capital to output ratio. Bachmann, Caballero and Engel (2013) use 0.82, justifying it by
matching the revenue elasticity of capital.
16The elasticity of substitution between labor and capital is 1

1−η = 0.5. In a survey article based on a
multitude of studies, Chirinko (2008) argues this elasticity is between 0.4 and 0.6. One concern may be that
the estimate of η would itself be affected by frictions, such as the one in our paper. However, several of the
studies cited by Chirinko (2008) are done with micro-level data specifically to account for frictions, therefore
η is the exact model analog of their estimate. Furthermore, we have repeated the exercise in Caballero (2004)
to estimate η from aggregate quantities in our model by regressing log(Y/K) on the cost of capital. The
estimate of 1

1−η is 0.5 if the cost of capital is defined as the return on capital, and 0.41 if it is the interest
rate plus the log of Tobin’s Q.
17Recall that the model is non-stationary, therefore Ψt cannot be a constant and must be scaled by

something that is cointegrated with the size of the economy.
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a form of operating leverage. However, its quantitative effect on credit spread is minimal.

Capital Adjustment CostsWithin each model, we choose the capital adjustment costs
(ν+ and ν−) to match the volatility of aggregate investment. Models with different µ or ξ

may require a different adjustment cost for investment volatility to match the data, therefore

the level of adjustment cost is different across models. Higher adjustment costs always help

increase equity volatility and the value premium but they decrease aggregate investment

volatility. This restriction on matching aggregate investment limits how much work capital

adjustment costs can do in helping to match financial moments.

We set the asymmetry ν−

ν+
= 5. This asymmetry in capital adjustment costs helps our

model’s cross-sectional distribution of investment rate look similar to the data. In particular,

the fraction of firms with negative investment is relatively small, while a significant number

of firms have brief periods of large positive investment, referred to as spikes. We have

also experimented with symmetric adjustment costs, these lead to similar (though slightly

smaller) equity volatility.

Labor Adjustment Costs In the model with no labor adjustment cost (ξ = 0) the

cross-sectional variation in employment growth is far too high. Therefore, we choose the

labor adjustment cost (ξ = 0.15) to roughly match this cross-sectional variation. The total

cost of adjustment (labor and capital) in our model with the highest costs is less than 1.5% of

output. We view this as reasonable, this also falls towards the low end of estimates provided

in Hamermesh and Pfann (1996).

Productivity Shocks In order for the long run risk channel to produce high Sharpe
ratios, aggregate productivity must be non-stationary with a stationary growth rate. We

specify the growth rate of aggregate productivity (∆ logXt) to be a symmetric 3-state

Markov process with autocorrelation 0.27, unconditional mean of 0.02, and unconditional

standard deviation of 0.055. We choose these numbers to roughly match the autocorrelation,

growth rate, and standard deviation of output. Aggregate productivity is then log(Xt+1) =

log(Xt) + ∆ logXt+1 which is consistent with long run risk.18

The volatility of idiosyncratic productivity shocks logZi
t depends on the model’s scale,

that is which real world production unit (firm, plant) is analogous to the model’s production

unit. There is no consensus on the right scale to use, for example the annual autocorrelation

and unconditional standard deviation are 0.69 and 0.40 in Zhang (2005), 0.62 and 0.19 in

Gomes (2001), 0.86 and 0.04 in Khan and Thomas (2008), while Pastor and Veronesi (2003)

estimate that the volatility of firm-level profitability rose from 10% per year in the early

18Our process for TFP growth is analogous to a discretized AR(1) process, Bansal and Yaron (2004) use a
slightly more complicated formulation where consumption growth is ARMA(1,1). When the short-run and
long-run shocks in Bansal and Yaron (2004) are perfectly correlated, their process becomes identical to ours.
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1960s to 45% in the late 1990s. We have experimented with various idiosyncratic shocks and

find that our aggregate results are not significantly affected by the size of these shocks. In our

model, logZi
t is a 3-state Markov process with autocorrelation and unconditional standard

deviation of 0.75 and 0.23 respectively. We believe these shocks make our production units

closest to real world firms because, as will be discussed below, these shocks allow us to

match various firm moments, such as the cross-sectional variation of investment rate and

stock returns.

Frequency of wage resetting In standard models wages are reset once per period and
employees receive the marginal product of labor as compensation. This corresponds to the

µ = 0 case. However, wages are far too volatile in these models relative to the data. We

choose the frequency of resetting to roughly match the volatility of wages in the data. This

results in µ = 0.75 or an average resetting frequency of four years.

We also believe that this number is realistic, for example Rich and Tracy (2004) estimate

that a majority of labor contracts last between two and five years with a mean of three years,

they cite several major renewals (United Auto Workers, United Steel Workers) which are

at the top of the range. Anecdotal evidence suggests that assistant professors, investment

bankers, and corporate lawyers all wait approximately this long to be promoted. Even

if explicit contracts are written for a shorter period than our calibration (or not written

at all), we believe that four years is a reasonable estimate of how long the real wage of

many employees stays unchanged. Campbell and Kamlani (1997) conducted a survey of

184 firms and find that implicit contracts are an important explanation for wage rigidity

of U.S. manufacturing workers, especially of blue-collar workers. For example, if the costs

of replacing employees (for employers) and the costs of finding a new job (for employees)

are high, the status quo will remain, keeping wages the same without an explicit contract.

Another example are workers who receive small raises every year, keeping their real wage

constant or growing slowly; indeed, Barwell and Schweitzer (2007) show that this type of

rigidity is quite common. Such workers do not experience major changes to their income

until they are promoted, or let go, or move to another job. Hall (1982) estimates an average

job duration of eight years for American workers, Abraham and Farber (1987) estimate

similar numbers just for non-unionized workers (presumably unionized workers have even

longer durations).

Given the importance of this parameter for our model, it is useful to note the difference

between job length and the separation rate. As mentioned above, average job length is

around eight years for American workers. A separation rate is the probability of a worker

separating from her job in any particular period. Estimates of separation rates for the US

range from 1.1%/month by Hobijn and Sahin (2009), to 3.4%/month by Shimer (2005), with
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most being around 3%/month. If separations were equally likely for all workers, this would

imply an average job length of around 2.8 years - far shorter than our calibrated contract

length or job length in the data. This apparent difference is due to a small number of workers

who frequently transition between jobs, while a majority of workers stay in their jobs for a

long time. For example, Hall (2005) writes “Separation rates are sensitive to the accounting

period because a small fraction of jobs but a large fraction of separations come from jobs

lasting as little as a day." Hobijn and Sahin (2009) show that 15% of jobs have a tenure below

6 months; Davis, Faberman, and Haltiwanger (2006) show that if one estimates separations

based on workers who have held their job for a full quarter (as opposed to all separations),

the quarterly separation rate falls from 24% to 10.7%. On the other hand, as mentioned

above, estimates of average job length are around 8 years for U.S. workers.

Since, for computational reasons, in our model separation is equally likely for all workers,

we can either relate µ to estimated separation rates which will imply that model job length

is too low relative to the data, or to estimated job and contract lengths, which will imply

that model separation rates are too low relative to the data. We believe that the later is

more relevant for our model. Note that workers who separate frequently are likely to be

low paid, temporary or part time workers who do not significantly contribute to the firm’s

wage bill. The majority of the firm’s wage bill is likely paid to high skilled and long-tenured

workers and the obligations to these workers are likely to be quite sticky.

Financial leverageWe estimate the target debt to equity ratio to be 0.59, which implies
that λ = 0.37. We find debt to be quite sticky, with estimates of ρB between 0.46 and 0.99,

depending on the specification. Details of these estimates are in the appendix. We set

ρB = 0.85 in all of our models, this allows us to match the dividend volatility in the data.

As noted earlier, we have also experimented with ρB = 0; with this calibration all of our

key results are very similar to ρB = 0.85, however the process for equity dividends is far

too volatile. We have also experimented with a more complicated leverage process which

explicitly smooths dividends, it is possible to make dividends even smoother without altering

the main results.

5 Results

In this section, we study the model implications for both equity volatility and credit

spread predictability. We present frictionless model in section 5.1, and the model with wage

rigidity in section 5.2.

19



5.1 The Frictionless Model

We will first discuss the frictionless model where production function is CES and wages

are reset once per year (µ = 0). This is a standard real business cycle model with the

addition of long run risk and CES production technology. This model is most similar

to Croce (2010) and Kaltenbrunner and Lochstoer (2010). Like other RBC models (for

example see Prescott (1986)), this model does a good job at matching many macroeconomic

moments, this can be seen in Panel B of Table 5. One important exception to this model’s

success in reproducing macro-economic moments is wage volatility. The volatility of hourly

compensation in the model is twice as high as in the data and its correlation with output

is far too high. Because labor income comprises such a large fraction of output, this flaw is

very significant quantitatively and is responsible for many of this model’s failures at matching

financial data; these are discussed below. Our goal is to fix this flaw.

Unlike the first generation of RBC models, which did a very poor job matching financial

moments (the well known Equity Premium Puzzle), this model can produce a high Sharpe

Ratio through the long run risk channel. First proposed by Bansal and Yaron (2004) in

an endowment economy and later incorporated into a production economy by Croce (2010)

and Kaltenbrunner and Lochstoer (2010), the long run risk channel makes the economy

appear risky to households because (i) a high intertemporal elasticity of substitution makes

households care not only about instantaneous shocks to consumption growth but also shocks

to expectations of future consumption growth, (ii) shocks to the growth rate (as opposed to

the level in standard models) of productivity are persistent causing expectations of future

consumption growth to vary over time. As can be seen in Table 6, the model’s Sharpe Ratio

is 0.45 despite a risk aversion of only 8; this is similar to the 0.36 in the data. For comparison,

most models without long run risk produce Sharpe Ratios below 0.1 unless risk aversion is

significantly higher. However this model still has several important flaws. Most evident is

the volatility of equity returns which is nearly 19% in the data but below 5% in the model.

Because the volatility of equity is so low, the equity premium (which is the Sharpe Ratio

multiplied by the volatility of equity) is also quite low.

Turning to our focus of credit spread predictability, the frictionless model does not

generate time-variations in credit spread. Panel B in table 8 presents the results. Because

there is only one aggregate shock in the model, wage growth and labor share are highly

negatively correlated. For this reason we do not present regressions containing both

wage growth and labor share from the model. In the univariate regression, wage growth

counterfactually positively forecasts credit spread, the opposite to the data (column one

in panel A). Labor share, investment growth, and stock market volatility all predict credit
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spread with the opposite sign to the data.

5.2 Infrequent resetting of wages

In this section we will discuss our preferred model, which combines infrequent wage

renegotiation, labor adjustment costs, and a calibrated CES production function.

Because wages are negotiated infrequently, the average wage is no longer equal to the

marginal product of labor but rather a weighted average of past spot wages, this results

in average wages being much smoother than the marginal product of labor. We believe

that almost any model in which average wages are smoother than the marginal product of

labor will have results qualitatively similar to those discussed below. We view infrequent

renegotiation as simply one of multiple mechanisms responsible for the relatively smooth

wages in the data.

5.2.1 Equity Volatility

Profits are approximately equal to output minus wages. In a standard model wages are

highly volatile and highly pro-cyclical (the marginal product of labor is perfectly correlated

with output). This results in profits being too smooth. Dividends are approximately equal to

profits minus investment. Because profits are relatively small in magnitude while investment

is pro-cyclical, dividends in a standard model are counter-cyclical and highly volatile, exactly

the opposite of what we observe in the data. Because profits are smooth and dividends are

counter-cyclical, the firm’s equity is also very smooth in standard models. In other words,

pro-cyclical wages act as a hedge for the firm’s shareholders, making equity seem very safe.

When wages become smoother than the marginal product of labor, profits become more

volatile and more pro-cyclical relative to the standard model. Volatile and pro-cyclical profits

lead to pro-cyclical dividends. With smoother wages no longer being as strong of a hedge,

equity volatility looks closer to the data as well. Table 6 presents the unconditional asset

pricing moments of the wage rigidity model (third row). The preferred model, combining

infrequent renegotiation and labor adjustment costs, has an equity volatility of 15.76% which

is very close to the 19.89% in the data. A common problem of production models that were

able to produce high equity volatilities is that they also resulted in highly volatile risk free

rates (for example Jermann (1998) and Boldrin, Christiano and Fisher (2001) . Note that risk

free rates in our models are all suffi ciently smooth. Furthermore, due to the high volatility

of equity, our model is not only able to match the high Sharpe Ratio (like Croce (2010)

and Kaltenbrunner and Lochstoer (2010)) but also the actual equity premium; the model
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combining infrequent renegotiation and labor adjustment costs has an equity premium of

6.52%, nearly identical to the data.

5.2.2 Credit Spread

As in Favilukis and Lin (2013), our preferred model fixes or greatly reduces all of the

problems with the standard model in matching wage volatility, and equity volatility. In

the following, we will also focus on the novel empirical predictions of the model on the

forecastability of credit spread.

Because wages are set infrequently, the average wage is no longer equal to the marginal

product of labor but rather a weighted average of past spot wages, this results in average

wages being much smoother than the marginal product of labor. Smother wages imply

volatile profit which in turn increases the default probability and credit spread.

Table 7 presents the default probabilities implied by the best model for corporate bonds

with different rating and the data counterpart. Overall, the model does a reasonable job

matching the cross sectional distribution of default rates. The model predicts zero default

probabilities for AAA-AA, A, and BBB rated bonds, slightly below the data. The default

probability of BB bonds in the model is 1% and B bonds is 4%, both of which fall into the

data range. CCC’s default probability is 25%, somewhat higher than the data.

Panel B in table 8 presents the regression results. Wage growth negatively forecasts

credit spread with the slope at -17.65, which is fairly close to the data counterpart at -

16.44. Similarly, labor share positively forecasts credit spread with the slope coeffi cient at

9.61, which is also close to the data slope of 10.97. It is worth noting that stock market

volatility also positively forecasts credit spread, consistent with the data. Investment growth

negatively forecasts credit spread. It is clear that wage rigidity is crucial to generate time-

variations in credit spread that is consistent with data. Without wage rigidity, variables

predicting credit spread all have the wrong sign.

6 Conclusion

Labor market variables have significant impact in driving the credit spread fluctuations.

We show that wage growth and labor share can forecast credit risk as well as or better

than the standard predictors including financial leverage and market volatility. We build a

DSGE model with wage rigidities that can explain this link. This is because pre-committed

payments to labor make other committed payments (such as debt) more risky; for this reason
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variables related to pre-committed labor payments forecast credit risk.

Our results have implications for asset pricing, labor economics, and macroeconomics

literature. Our findings suggest that labor market frictions, in particular, wage rigidity

can have a significant impact on corporate bond prices. Credit market variables, which are

typically ignored in the labor economics literature, can thus be a useful source of information

for quantifying frictions in labor markets. Our results suggest that incorporating time-

varying credit risk in current DSGE models can be important for an accurate understanding

of labor market dynamics over the business cycle.
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A Estimation of market-to-book and debt-to-equity

The relevant market-to-book ratio is the one for the entire firm value (the enterprise

value). From Compustat we calculate the market-to-book ratio for equity to be 1.64 and

the book debt to market equity ratio to be 0.59. [?] find that outside of the Volcker period
aggregate market to book values for debt are very close to one. These numbers imply a

market to book of 1.33 for enterprise value. This also implies that the debt to value ratio is

λ = 0.59
1+0.59

= 0.37; this is the number we use in our calibration. An alternative is to estimate

λ = Avg( B
B+E

) where B is the value of debt from the flow of funds and E is the total market

value of equity from CRSP (both variables are described in more detail in the next section).

This method implies λ = 0.41, this slightly higher leverage would make our results even

stronger.

B Estimation of ρB

To estimate the dependence of debt issuance on past issuance we use levels of debt from

the flow of funds. In particular, we aim to estimate Bt+1 = ρBBt + (1− ρB) ∗ λVt where B
is the market value of corporate debt and V is the enterprise value of the corporate sector

(equity plus debt). We define B to be non-financial credit market instrument liabilities

(line 28 from Table L.101 in the Flow of Funds).19 We define V to be B plus total market

value of NYSE/AMEX/NASDAQ from CRSP.20 Because the values of debt and equity are

non-stationary, we cannot directly estimate the equation above.

We use several different specifications to estimate ρB. In particular specification 1 simply

estimates ρB to be the autocorrelation of HP filtered B. In specification 2 we regress

Bt+1 = a0 + a1Bt + a2Vt where both B and V are HP filtered; we either define ρB = a1

(specification 2a, λ unrestricted) or ρB = 1−a2/λ (specification 2b, λ = 0.37). However, the

HP filter may cause the estimation to miss out on important low frequency dependence

of debt on past debt. In specifications 3 and 4 we do not HP filter. In specification

3, we regress Bt+1/Bt = a0 + a1Vt/Bt and either define ρB = a0 (specification 3a, λ

19As an alternative, we defined debt to be credit market liabilities minus assets (line 7 from Table L.101)
and the estimated ρB is very similar because the credit assets of non-financial corporations are very small
relative to liabilities.
20Since the set of firms in CRSP is not exactly the same firms as the ones for whom debt is defined in the

flow of funds, this definition of V is slightly problematic. However, note that this should mostly affect our
estimate of λ but not necessarily ρB . For this reason we use other sources to estimate λ, this is described
in the previous section. Nevertheless, as discussed in the previous section, the two methods imply similar
values for λ. Furthermore, we have redone everything with logs, or by defining V to be just market value,
without adding the debt and estimates of ρB are very similar.
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Table 1: Estimates of ρB

This table presents estimates of ρB for several different specifications. The specifications are described in detail in the text.

Specification λ unrestricted λ = 0.37
1 0.61 —
2 0.46 0.49
3 0.99 0.94
4 — 0.81

unrestricted) or ρB = 1 − a1/λ (specification 3b, λ = 0.37. Finally, in specification 4

we regress Bt+1/Bt−Bt/Bt−1 = a0 + a1(Vt/Bt−Vt−1/Bt−1) and define ρB = 1− a1/λ where
λ = 0.37. The different estimates are presented in a Table 1.

C Numerical Solution

C.1 Making the Model Stationary

Note that the model is not stationary. In order to solve it numerically, we must rewrite

it in terms of stationary quantities. We will show that a normalizing all non-stationary

variables by Zρ
t implies a stationary competitive equilibrium. We will do this in two steps.

First we will show that if the firm believes that the stochastic discount factor is stationary

and that aggregate quantities (in particular the spot wage) normalized by Zρ
t are stationary

than the firm’s policy functions normalized by Zρ
t will also be stationary. Second we show

that these policy functions imply that these aggregate quantities are indeed stationary when

normalized by Zρ
t .

The firm’s problem is:

V (Zi
t , K

i
t , N

i
t−1,W

i

t−1;Zt, Kt, St,W t−1) = maxIit ,N i
t
Zi
t (α(Ki

t)
η + (1− α)(ZtN

i
t )
ρη)

1
η

−
(
W

i

t−1N
i
t−1µ+Wt(N

i
t −N i

t−1µ)
)
−Wtf

−υt
(
Iit
Ki
t
− δ
)2
Ki
t − ξ

(
N i
t −N i

t−1
)2
Wt

+Et[Mt+1V (Zi
t+1, K

i
t+1, N

i
t ,W

i

t;Zt+1, Kt+1, St+1,W t)]

(20)

Where Zi
t is the idiosyncratic productivity, K

i
t is the firm’s individual capital, N

i
t−1 is the

firm’s employment last period, W
i

t−1 is the firm’s average wage last period, Zt is aggregate

productivity, W t−1 is the aggregate average wage from last period, and Wt is the spot wage

this period. Following Krusell and Smith (1998) the state space potentially contains all
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information about the joint distribution of capital and productivity. Kt and St summarize

this distribution. We explicitly write its first moment Kt as an aggregate state variable and

let St be a vector of any other relevant moments normalized by the mean (i.e. the normalized

second moment is E[(Ki
t −Kt)

2]/K2
t ).

On the right of this equation the first line contains output, the second line labor expenses

and operating costs, the third line adjustment costs of capital and labor, and the fourth the

firm’s continuation value.

Households have beliefs about the evolution of the aggregate quantities Mt+1, Kt, and

St and about the spot wage as a function of the aggregate state. Aggregate wage evolves as

W t = µW t−1 + (1− µ)Wt. The individual state variables evolve as:

Ki
t+1 = (1− δ)Ki

t + I it

W
i

t =
W
i
t−1N

i
t−1µ+(N

i
t−N i

t−1µ)Wt

N i
t

(21)

Let us define kit =
Ki
t

Zρt
, kt = Kt

Zρt
, iit =

Iit
Zρt
, wt = Wt

Zρt
, wit = W

i
t

Zρt+1
, and wt = W t

Zρt+1
(not that the

timing of wit and wt differs from the others). We will now show by induction that the value

function is linear in Zρ
t . Suppose this is true at t+1:

V (Zi
t+1, K

i
t+1, N

i
t ,W

i

t;Zt+1, Kt+1, St+1,W t) = Zρ
t+1V (Zi

t+1, k
i
t+1, N

i
t , w

i
t; 1, kt+1, St+1, wt)

Than we can rewrite the firm’s problem as:

V (Zi
t , k

i
t, N

i
t−1, w

i
t−1; 1, kt, St, wt−1) = maxiit,N i

t
Zi
t (α(kit)

η + (1− α)(N i
t )
ρη)

1
η

−
(
wit−1N

i
t−1µ+ wt(N

i
t −N i

t−1µ)
)
− wtf

−υt
(
iit
kit
− δ
)2
kit − ξ

(
N i
t −N i

t−1
)2
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+Et[
(
Zt+1
Zt

)ρ
Mt+1V (Zi

t+1, k
i
t+1, N

i
t , w

i
t; 1, kt+1, St+1, wt)]

(22)

where the aggregate wage evolves as wt = (µwt−1 + (1− µ)wt)
(
Zt+1
Zt

)−ρ
and the individual

state variables evolve as:

kit+1 = ((1− δ)kit + iit)
(
Zt+1
Zt

)−ρ
wit =

(
wit−1N

i
t−1µ+(N

i
t−N i

t−1µ)wt
N i
t

)(
Zt+1
Zt

)−ρ (23)

As long as
(
Zt+1
Zt

)ρ
, Mt+1, kt+1, and wt+1 are stationary this is a well defined stationary

problem where the firm’s optimal policy (iit and N
i
t ) will also be stationary. But this implies

that kit+1 and kt+1 =
∑
kit+1 are stationary as well, confirming the firm’s beliefs.
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It is similarly straight forward to show that the stochastic discount factor is stationary.

First of all note that Mt+1 is related to the growth rate of consumption, so it should be

stationary. More formally:

Ut =

(
C
1− 1

ψ

t + βEt[U
1−θ
t+1 ]

1− 1
ψ

1−θ

) 1

1− 1
ψ

Mt+1 = β

(
Ut+1

Et[U
1−θ
t+1 ]

1
1−θ

) 1
ψ
−θ (

Ct+1
Ct

)− 1
ψ

(24)

Define ct = Ct
Zρt
and ut = Ut

Zρt
and note that the firm’s optimal policy implies that ct is

stationary. Now we can rewrite the above equations as:

ut =

(
c
1− 1

ψ

t + βEt[
(
Zt+1
Zt

)ρ
u1−θt+1 ]

1− 1
ψ

1−θ

) 1

1− 1
ψ

Mt+1 = β

( (
Zt+1
Zt

)ρ
ut+1

Et[
(
Zt+1
Zt

)ρ
u1−θt+1 ]

1
1−θ

) 1
ψ
−θ (

ct+1
ct

)− 1
ψ
(
Zt+1
Zt

)− ρ
ψ

(25)

which are stationary as long as ct is stationary.

Next, we must show that the spot wage is stationary. The firm’s first order condition for

labor implies:

wt = Zi
t

(
α(kit)

η + (1− α)(N i
t )
ρη
) 1−η

η (1− α)ρ(N i
t )
ρη−1 + Et[

(
Zt+1
Zt

)ρ
Mt+1

∂Vt+1
∂N i

t

] (26)

For every firm, the right hand side is well defined and stationary, therefore the wage is too.

To jointly find the wage and each firm’s choice of N i
t one must solve a system of N equations.

N-1 equations where the right hand side of the first order condition for firm 1 is set equal to

firm i (i=2,N), and the labor market clearing equation
∑
N i
t = 1.

There remains one last complication, is St stationary? This is related to a more general

problem of the validity and accuracy of the Krusell and Smith (1998) algorithm. We cannot

give an explicit answer as it is not clear what exactly St must contain. Krusell and Smith

(1998) argue that St should contain higher order moments of the distribution since they

fully describe the distribution. Since we define St to be normalized by its first moment, it

is likely that these normalized higher moments are stationary. We have also checked the

behavior of several simulated higher order moments and they appear stationary. In practice

our numerical algorithm (described in the next section) only considers the first moment so

St is an empty set, which is stationary by definition.
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C.2 Numerical Algorithm

We will now describe the numerical algorithm used to solve the stationary problem above.

We will first describe the algorithm used to solve a model with CRRA utility and then the

extension necessary to solve the recursive utility version. The algorithm is a variation of the

algorithm in Krusell and Smith (1998).

The aggregate state space is potentially infinite because it contains the full distribution

of capital across firms. We follow Krusell and Smith (1998) and summarize it by the average

aggregate capital kt and the state of aggregate productivity ∆Zt; because past wages matter,

we augment the aggregate state space with the previous period’s average wage wt−1 . Each of

these is put on a grid, with the grid sizes of 20 for capital and 9 for past wage. Productivity

is a 3-state Markov process. We also discretize the firm’s individual state space with grid

sizes of 25 for individual capital (kit), 11 for last period’s labor (N
i
t−1), and 5 for last period’s

average wage (wit−1). Individual productivity is a 2-state Markov process. We chose these

grid sizes after careful experimentation to determine which grid sizes had the most effect on

Euler equation errors and predictive R2.

For each point in the aggregate state space (kt, wt−1,∆Zt) we start out with an initial

belief about consumption, spot wages, and investment (ct, wt, and it); note that this non-

parametric approach is different from Krusell and Smith (1998).21 From these we can solve

for aggregate capital next period kt+1 = ((1− δ)kt + it)
(
Zt+1
Zt

)−ρ
for each realization of the

shock. Combining kt+1 with beliefs about consumption as a function of capital we can also

solve for the stochastic discount factor next period: Mt+1 = β
(
ct+1
ct

)−θ (
Zt+1
Zt

)−θρ
. This is

enough information to solve the stationary problem described in the previous section. We

solve the problem by value function iteration with the output being policies and market

values of each firm for each point in the state space.

The next step is to use the policy functions to simulate the economy. We simulate the

economy for 5500 periods (we throw away the initial 500 periods). In addition to the long

simulation, we start off the model in each point of the aggregate state space. We must do

this because unlike Krusell and Smith (1998), the beliefs in our algorithm are non-parametric

and during the model’s typical behavior it does not visit every possible point in the state

space. From the simulation we form simulation implied beliefs about ct, wt, and it at each

21The standard [?] algorithm instead assumes a functional form for the transition, such as log(kt+1) =
A(Zt) + B(Zt)log(kt) and forms beliefs only about the coeffi cients A(Zt) and B(Zt) however we find that
this approach does not converge in many cases due to incorrect beliefs about off-equilibrium situations and
that our approach works better. Without heterogeneity and infrequent resetting we would not need beliefs
about wt because it would just be the marginal product of aggregate capital. Similarly, we would not need
beliefs about ct as we could solve for it from yt = ct + it where yt is aggregate output, however aggregate
output is no longer a simple analytic function of aggregate capital.
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point in the aggregate state space by averaging over all periods in which the economy was

suffi ciently close to that point in the state space. Our updated beliefs are a weighted average

of the old beliefs and the new simulation implied beliefs.22 With these updated beliefs we

again solve the firm’s dynamic program; we continue doing this until convergence.

In order to solve this model with recursive preferences an additional step is required.

Knowing ct and kt+1 as functions of the aggregate state is not alone enough to know Mt+1

because in addition to consumption growth, it depends on the household’s value function

next period: Mt+1 = β
(
Ct+1
Ct

)− 1
ψ

(
Ut+1

Et[U
1−θ
t+1 ]

1
1−θ

) 1
ψ
−θ

. However this problem is not diffi cult to

overcome. After each simulation step we use beliefs about ct and kt+1 to recursively solve for

the household’s value function at each point in the state space. This is again done through

value function iteration, however as there are no choice variables this recursion is very quick.

We perform the standard checks proposed by Krusell and Smith (1998) to make sure we

have found the equilibrium. Although our beliefs are non-parametric, we can still compute

an R2 analogous to a regression; all of the R2 are above 0.999. We have also checked that an

additional state variable (either the cross-sectional standard deviation of capital or lagged

capital) does not alter the results.

22The weight on the old belief is often required to be very high in order for the algorithm to converge. This
is because while rational equilibria exist, they are only weakly stable in the sense described by [?]. However,
we find that this is only a problem when capital adjustment costs are very close to zero.
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Figure 1: Labor Market Variables and Credit Spread
This figure plots the Baa-Aaa credit spread, wage growth (∆W ) and labor share (LS). Wage growth is the
growth rate of real wages & salaries per employee; labor share is the total compensation scaled by GDP, and
credit spread is the Moody’s Baa-Aaa corporate bond yield. Sample is from 1948 to 2012. The grey bars
are the NBER recessions. All variables are standardized to allow for an easy comparison in one plot.
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Table 2

Descriptive Statistics

Panel A reports the descriptive statistics of the variables of interests. Panel B reports the cross
correlations of the variables. Term spread, credit spread, market volatility, and spot rate are in
percentage terms. Credit spread (CreditSpd) is the Moody’s Baa-Aaa corporate bond yield. Wage
growth (∆W ) is the growth rate of real wages & salaries per employee; investment growth (InvGr)
is the growth rate of real private nonresidential fixed investment; labor share (LS) is the aggregate
compensation divided by GDP; P/E is the equity price to earnings ratio from Shiller; term spread
(TS) is the long-term government bond yield (10 year) minus the short-term government bond
yield (1 year); financial leverage (FinLev) is book value of nonfinancial corporate bonds divided
by the market value of equities of nonfinancial corporate sector. Market volatility (MktVol) is the
annual volatility of CRSP value-weighted market premium; spot rate (SpotRate) is the real 1 year
government bond yield from Shiller’s webpage. Sample is from 1948 to 2012.

Panel A Summary Statistics

Mean Std AC

∆W 0.02 0.01 0.45

LS 0.55 0.01 0.85

InvGr 0.04 0.06 0.2

FinLev 0.27 0.07 0.75

MktVol 0.14 0.05 0.31

P/E 18.29 7.56 0.91

TS 1.36 1.3 0.44

SpotRate(1yr) 1.68 2.69 0.54

CreditSpd 0.95 0.41 0.75

Panel B Cross Correlation

GDPGr ∆W LS InvGr FinLev MktVol P/E TS SpotRate

∆W 0.4

LS -0.18 -0.17

InvGr 0.77 0.21 -0.06

FinLev -0.32 -0.56 -0.16 -0.29

MktVol -0.34 -0.24 0.3 -0.32 0.37

P/E 0.07 0.23 0.07 0.2 -0.47 0.02

TS -0.15 0.03 -0.2 -0.29 0.25 -0.01 -0.05

SpotRate -0.16 0.12 0.25 -0.06 -0.18 0.05 -0.02 0.02

CreditSpd -0.52 -0.44 0.2 -0.5 0.5 0.45 -0.33 0.25 0.3
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Table 3

Labor Market Variables and Credit Spread

This table reports the predictive regression of variables of interests for credit spread. Wage growth
(∆W ) is the growth rate of real wages & salaries per employee; investment growth (InvGr) is
the growth rate of real private nonresidential fixed investment; labor share (LS) is the aggregate
compensation divided by GDP; P/E is the equity price to earnings ratio from Shiller; term spread
(TS) is the long-term government bond yield (10 year) minus the short-term government bond
yield (1 year); financial leverage (FinLev) is book value of nonfinancial corporate bonds divided
by the market value of equities of nonfinancial corporate sector. Market volatility (MktVol) is
the annual volatility of CRSP value-weighted market premium; spot rate (SpotRate) is the real 1
year government bond yield from Shiller’s webpage. [t] are heteroscedasticity and autocorrelation
consistent t-statistics (Newey-West). Sample is from 1948 to 2012.

Panel A: Univariate
1 2 3 4 5 6 7 8

∆W -16.44

[t] -4.25

LS 10.97

[t] 2.03

InvGr -1.31

[t] -2.46

FinLev 2.98

[t] 4.7

MktVol 3.57

[t] 4.74

P/E -0.01

[t] -0.81

TS -5.68

[t] -1.01

SpotRate 3.27

[t] 1.48

Adjusted R2̂ 0.31 0.08 0.03 0.21 0.21 0.02 0.02 0.03
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Labor Market Variables and Credit Spread (Contd)

Panel B: Bivariate (∆W + predictor)
∆W -15.89 -12.76 -13.88 -15.98 -16.26 -17.28

[t] -3.86 -2.84 -4.21 -4.88 -4.8 -3.75

InvGr -0.58

[t] -1.08

FinLev 1.44

[t] 2.14

MktVol 2.66

[t] 5.47

P/E 0

[t] -0.41

TS -4.99

[t] -1.51

SpotRate 4.22

[t] 2.29

Adjusted R2̂ 0.31 0.34 0.42 0.31 0.33 0.38

Panel C: Bivariate (LS + predictor)
LS 10.68 13.15 6.73 11.62 10.12 9.79

[t] 2.01 3.28 1.45 1.92 2.01 1.79

InvGr -1.23

[t] -2.5

FinLev 3.26

[t] 6.38

MktVol 3.15

[t] 4.63

P/E -0.01

[t] -1.06

TS -3.93

[t] -0.74

SpotRate 2.32

[t] 1.01

Adjusted R2 0.11 0.34 0.23 0.12 0.08 0.09
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Labor Market Variables and Credit Spread (Contd)

Panel D: Multivariate
∆W -15.24 -14.69 -9.57 -13.37 -14.5 -15.24 -16.32 -9.45

[t] -4.07 -3.79 -2.52 -4.16 -3.79 -4.35 -3.49 -2.91

LS 7.28 7.28 10.02 4.48 7.75 6.44 5.15 4.07

[t] 2.11 2.2 3.1 1.74 1.79 1.8 1.34 1.18

InvGr -0.57 -0.17 -0.43

[t] -1.24 -0.34 -0.76

FinLev 2.04 2.09 3.23

[t] 3.56 2.21 3.32

MktVol 2.42 1.58 1.81

[t] 5.42 2.76 1.98

P/E -0.01 0 0

[t] -0.59 0.13 0.26

TS -3.92 -7.58 -10.45

[t] -1.14 -2.3 -2.49

SpotRate 3.67 4.2 4.53

[t] 1.76 2.4 3.18

Adjusted R2 0.34 0.34 0.4 0.43 0.34 0.35 0.39 0.52 0.43
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Table 4

Calibration

All model parameters are listed in this table. Note that most parameters are shared by all models
and only five parameters (η, υ+, f , µ, and ξ) vary across models.

Parameter Description Frictionless Model Benchmark

Preferences

β Time Preference 0.995 0.995

θ Risk Aversion 6.5 6.5

ψ IES 1.5 1.5

Production

(1− α)ρ Labor Share 0.64 0.64

α + ρ− αρ Returns to Scale 0.89 0.89
1
1−η Labor Capital Elasticity 0.50 0.50

δ Depreciation 0.10 0.10

υ+ Upward Adj. Cost 0.07 0.17
υ+

υ− Asymmetry in Adj. Cost 5 5

f Operating Cost 0.070 0.070

µ Probability No Resetting 0 0.75

ξ Labor Adj. Cost 0 0.15
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Table 5

Aggregate Macroeconomic Moments

This table compares macroeconomic moments from the data (1929-2011) to several versions
of our model. All reported correlations are with HP filtered GDP (y) except for growth rates
of variables, in these cases correlations are reported with the growth rate of GDP. In the
data w is compensation per hour. The models in Panels B and C have a calibrated elasticity
of substitution between labor and capital ( 1

1−η = 0.5). Panel B is frictionless models with no
wage rigidity (µ = 0) or labor adjustment costs (ξ = 0). Panel C presents the model with
wage rigidity (µ = 0.75) and labor adjustment costs (ξ = 0.15). Note that the table reports
the volatility of quantities relative to GDP volatility. The volatility of HP filtered GDP in
the data is 3.55%, all models are calibrated to match this number.

Panel A: Data Panel B: Frictionless Panel C: Wage Rigidity
σ(x)
σ(y)

ρ(x, y) AC(x) σ(x)
σ(y)

ρ(x, y) AC(x) σ(x)
σ(y)

ρ(x, y) AC(x)

y 1.00 1.00 0.55 1.00 1.00 0.45 1.00 1.00 0.45

c 0.45 0.60 0.49 0.64 0.96 0.51 0.66 0.96 0.53

i 3.70 0.19 0.54 3.52 0.94 0.39 3.54 0.93 0.38

w 0.32 0.41 0.46 0.85 1.00 0.47 0.37 0.75 0.67

∆c 0.65 0.70 0.51 0.99 0.96 0.55 0.99 0.96 0.55

∆i 4.17 0.38 0.44 4.47 0.88 0.17 4.48 0.88 0.14

i-k 0.45 0.47 0.45 0.78 0.02 0.84 0.76 0.02 0.83

Table 6

Unconditional Financial Moments

This table presents the unconditional financial moments to several versions of our model.

E[Rf ] σ(Rf ) E[Rexc] σ(Rexc) SR

Data 0.69 3.81 6.84 19.89 0.34

Frictionless Model 0.60 1.18 2.20 4.87 0.45

Wage Rigidity Model 0.64 1.26 6.52 15.76 0.41
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Table 7

Default Probability in the Data and the Model

This table reports the default probability for corporate bonds with different ratings in the data and
in the model with wage rigidity. Default probabilities in the data are from Elton, Gruber, Agrawal,
and Mann (2001).

AAA+AA A BBB BB B CCC

Data <0.05% 0.05%-0.15% 0.15%-0.5% 0.5%-3% 3%-11% >11%

Model 0.00% 0.00% 0.00% 1.07% 4.47% 25.53%

Table 8

Simulated Labor Market Variables and Credit Spread

This table reports the predictive regression of variables of interests for credit spread in the
model with wage rigidity and the frictionless model. [t] are heteroscedasticity and autocorrelation
consistent t-statistics (Newey-West).

Panel A Data Panel B Frictionless model Panel C Wage Rigidity Model

∆W -16.44 0.4 -17.65

[t] -4.25 9.29 -21.54

LS 10.97 -0.73 9.61

[t] 2.03 -3.11 29.93

InvGr -1.31 0.13 -1.42

[t] -2.46 19.91 -22.72

MktVol 3.57 -0.34 2.45

[t] 4.74 -1.09 2.64

Adj. R2 0.31 0.08 0.03 0.21 0.12 0.02 0.19 0 0.76 0.83 0.2 0.02
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