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Abstract

Optimism about future house price appreciation and loose credit constraints are
commonly considered drivers of the recent housing boom. This paper infers both mean
and variance of short-run expectations of future house price growth and minimum
down payment requirements from observed household choices. The expectations and
credit constraints are implied by a life-cycle portfolio choice model that encompasses
home ownership, housing demand, and financing choices. I estimate the parameters
of this model using data from the Survey of Consumer Finances from 1995 to 2010.
The main result is that both expectations of future mean price growth and minimum
down payment requirements were close to their long-run averages during the boom.
Subjective uncertainty about the house price growth rate, however, was increasing.
Expectations and credit constraints are separately identified due to their differential
effects on the intensive and extensive margins of housing demand. The increase in
uncertainty about future prices helps to explain the rise in household debt. Given the
option to default, greater expected volatility leads to higher optimal leverage.
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1 Introduction

During the recent housing boom, a sharp increase in house prices relative to rents coincided

with low interest rates and loose lending standards in the mortgage market. These features

characterized the economic environment that households were facing when they were de-

ciding whether to rent or own, whether to upgrade or downgrade the house they own, or

whether to re-finance their mortgage. A generally unobserved but important determinant

of such decisions is the expected rate of house price growth that households assume in their

decision-making process. This paper examines the role expectations and credit constraints

played in shaping household behavior during the boom by inferring short-run expectations

of future house price growth and average minimum down payment requirements from ob-

served household choices. The expectations and credit constraints are implied by a life-cycle

portfolio choice model that encompasses home ownership, housing demand, and financing

choices.

The goal of this paper is not to determine the cause of the boom, but rather to test

whether the choices of the majority of households during the boom can be explained by

a rational model with reasonable expectations about future prices. My approach further

connects the financing side of observed household choices during the boom with the extensive

and intensive margins of housing demand, i.e. the decision whether to rent or own and

the amount of housing services consumed. To accomplish this, I solve a life-cyle portfolio

choice model with housing, and use the optimal policies to estimate expectations and credit

constraints with data from the Survey of Consumer Finances (SCF) for the period 1992 to

20101.

We can think of the optimal policies resulting from the dynamic program as a mapping

from different dimensions of household heterogeneity - age, income, wealth, homeownership

status, and the house owned initially - into choices for the next period - homeownership

status, house value, consumption of housing services and numéraire, and the amount saved

or borrowed. In other words, given a model of optimal housing demand, for which expec-

tations about future house prices are an input parameter, it is possible to back out implied

1The SCF is only conducted every three years.
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expectations from observed demand.

In order to perform this inference one must assume a structure for the path of household

expectations. I divide household beliefs into short-term beliefs, which dictate expectations

for the next period, and long-term beliefs that are based on long-run averages and apply

to all subsequent life-cycle periods. At the same time, other time-varying variables, such as

house price-to-rent ratios and interest rates, are set to their observed value for each period.

This way I can use the model to trace short-term variation in these observable variables

and estimate the matching short-term expectations and down payment requirements, while

keeping long-term household beliefs about all variables set to long-run averages.

The main finding is that estimated household expectations were relatively close to average

long-run house price growth (of 2.5% annually), with slightly higher expectations at the

beginning and the end of the boom. Even though the estimated mean expectations are

close to the long run average, the subjective volatility during the boom years is considerably

higher with an estimated standard deviation of house price growth of 25% annually. The

estimation also finds an increase of the short term down payment constraint from a value of

9% in 1998 to 18.5% in 2007 (as share of the house value at the time of the purchase), with

the long run constraint set to 15%.

The separate identification of the two channels affecting household choices – expectations

and down payment constraints – comes from their differential impact on the intensive and

extensive margins of housing demand. In particular, changes of the down payment constraint

have a quantitatively larger effect on the intensive margin. Changes in expected house price

growth, however, more strongly affect the extensive margin of housing demand – the decision

whether to own or rent. The key feature of the model for understanding these differential

effects is the transaction cost of selling houses. This transaction cost causes inertia in the

choices of existing home owners who are consequently less likely to adjust their housing

demand in response to short-term fluctuations in the economic environment. Hence the

identification of the estimated parameters mainly relies on the choices of young households

in the data who are on the margin between renting and owning. These households are

financially constrained, and increasing or decreasing their optimism about future house prices

does not affect the size of the house they are able to afford (the intensive margin). On the
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other hand, tightening or relaxing the down payment constraint directly impacts the house

size for those households with a binding constraint.

The estimated upward trend in credit constraints can be understood by comparing data

averages to model-predicted averages. Particularly, absent any time variation in model

parameters, the model-predicted house values rise almost one-for-one with house prices since

transaction costs cause most home owners to hold on to their existing houses despite the large

increase in prices. The combination of low mortgage rates and high realized house price gains

would then inflate model-predicted house values during boom beyond data values if down

payment constraints were relaxed in addition. Hence the slight tightening of the constraints

during the boom is needed to match the evolution of house value-to-income ratios in the data.

Everything else equal, the tighter constraints would depress model-implied home ownership

rates. The role of the slight increase in expectations towards the end of the boom is thus to

offset the effect of the tightened constraints on the ownership rate.

The estimates of subjective house price growth volatility are below the long run average at

the beginning and above the long run average at the height of the boom. Increased volatility

(i.e., a higher standard deviation of house price growth) leads to increased leverage in the

model. This is because households with defaultable mortgages are effectively holding a call

option on their houses, and the value of this option increases as house price volatility rises.

Households then consume part of this greater option value through higher debt today. Hence

the estimates of greater house price volatility are identified from the increase in household

debt during the boom period2.

Of course, several other aspects of the data such as time-variation in rent-to-price ratios,

and in the joint distribution of wealth, income, and age also affect the estimates. How-

ever, the identification arguments outlined above capture the quantitatively most important

channels that drive the estimates.

Survey evidence on return expectations for houses in the US during the boom years is

limited. Case, Quigley, and Shiller (2003) performed mail surveys of home buyers in 2002.

Their point estimates suggest high capital gains expectations among buyers – between 6 and

2The approximately constant leverage ratios during the boom imply a substantial increase in debt due to
the large increase in house values.
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11 percent per year – for different regions of the US, although they are rather imprecise.

Contrary, Piazzesi and Schneider (2009) report based on the 2005 Michigan Survey of Con-

sumers that the large majority of households expressed the view that buying a house is not

a good idea, and only 20% of households expected future prices to be high. The estimates in

this paper are consistent with both kinds of evidence to the extent that they represent av-

erage expectations across potentially more optimistic buyers, and less optimistic incumbent

owners and renters. Furthermore, my estimates are not outright pessimistic expectations –

they merely say that household choices imply expectations of moderate growth, both at the

beginning and at the peak of the boom3.

The finding of tighter constraints for the 2007-2010 period during the housing market

bust is consistent with other evidence on tightening credit conditions during that period.

However, the estimate of the 2004-07 constraint at 15% runs counter the well established

notion that credit constraints were relaxed during the boom years. A lesson from the partial

equilibrium exercise in this paper is that high realized house price gains and cheap credit

in the form of low mortgage rates are sufficient to explain average value-to-income and

loan-to-value ratios during the boom. This is consistent with the idea that the estimates

represent average down payment requirements across different segments of the mortgage

market, including conforming prime mortgages and subprime mortgages4.

While quantitative survey evidence on mean expected house price gains is limited, there

is even less quantitative evidence on uncertainty about future house prices during this pe-

riod. The survey by Case, Quigley, and Shiller (2003) finds greater standard errors for the

mean expectation of respondents in 2002 than in 1998, hinting at an increase in dispersion

during the boom. Similarly, the numbers reported Piazzesi and Schneider (2009) from the

2005 Michigan Survey of Consumers are indicative of greater disagreement about future

house prices during the late boom period. There was certainly a discussion among academic

economists and in the media during 2004 and 2005 whether the large run-up in prices con-

3They also imply that households did not anticipate the large run-up in prices, but neither did they
anticipate the bust.

4Foote, Gerardi, and Willen (2008) show that the median LTV at origination for subprime loans in
Massachusetts reached 90% in 2005. Demyanyk and Hemert (2011) report an average LTV of 86% at
origination for subprime loans in 2006. The 20% down payment requirement for conforming loans as defined
by the GSEs remained constant throughout the boom period. Average loan-to-value ratios among all home
owners as measured in the SCF are roughly constant between 36 and 38 percent throughout the boom period
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stituted a bubble, see for example a special report in the Economist (2005), or studies by

Case and Shiller (2005) and Himmelberg, Mayer, and Sinai (2005).

To summarize, the US housing boom of the 2000s was characterized by a large rise in

house value-to-income ratios and mortgage debt, with a relatively stable aggregate leverage

ratio and home ownership rate. The structural estimation exercise in this paper finds that

neither overly optimistic expectations about future house prices nor extremely low down

payment requirements are necessary to rationalize aggregate household choices over this

period. In a frictionless model that allows to adjust housing consumption without cost, the

large increase in house prices would cause many homeowners to substitute from housing

consumption into other goods, and some additional force such as optimism would be needed

to induce them to keep their now expensive houses. However, in a model with realistic

housing transaction costs such as the one used in this paper, most homeowners simply hold

on to their existing houses despite the rise in prices, and an increase in the aggregate house

price translates into higher house value-to-income ratios almost one-for-one.

Further, high uncertainty about future house prices may have been a factor in contribut-

ing to the increase in household debt. In the model, greater volatility of future house price

growth increases the value of the implicit call option consisting of a house and a defaultable

mortgage. Hence the estimates show that even at times of growing house values and few

observed defaults, the option of default may substantially affect household choices through

second moments.

House prices are exogenous in this analysis, which therefore does not offer an explanation

why house prices rose in the first place. It merely says that conditional on the realized path

of house prices, interest rates, mortgage spreads, and rent-to-price ratios, household choices

are implying expectations of moderate price growth. In any competitive equilibrium model

that would generate the observed path of house prices and interest rates, the conclusions of

the demand analysis in this paper would still be valid. Furthermore, the result of moderate

expected growth but high uncertainty (in the sense of disagreement) is consistent with a

theory of the boom that relies on a small subset of agents who are very optimistic and whose

actions drive price growth during the boom, such as articulated in Geanakoplos (2010) or

Piazzesi and Schneider (2009).
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This paper is related to a large literature on the role of cheap credit during the housing

boom. Several reduced form empirical studies including Mian and Sufi (2009), Mian and

Sufi (2011) show that easier access to credit mattered for house prices at the regional level.

Recent studies that embed household life-cycle models in a dynamic general equilibrium

framework of the housing market to assess the importance of cheap credit include Kiyotaki,

Michaelides, and Nikolov (2011) and Favilukis, Ludvigson, and Nieuwerburgh (2013). These

papers have endogenous house prices and focus on the effect of relaxed credit constraints

and easier access to credit more broadly on house prices5. Corbae and Quintin (2014)

use an equilibrium model of the mortgage market to show that relaxation of payment-

to-income constraints was crucial to explain the increase in mortgage debt. None of these

papers estimate expectations or credit constraints to track the evolution of household choices

over time. Rather, they calibrate these parameters based on evidence from other empirical

studies and focus on equilibrium effects. Recent papers on the role of expectation formation

in the housing market include Piazzesi and Schneider (2009), Burnside, Eichenbaum, and

Rebelo (2011), and Glaeser, Gottlieb, and Gyourko (2010). These papers propose different

theoretical mechanisms by which expectations of future house price gains may feed back to

current house prices. Landvoigt, Piazzesi, and Schneider (2014) consider both the role of

credit constraints and expectations in a equilibrium model of a local housing market. They

show that loose credit constraints are important for explaining the high capital gains at the

low end of the house quality distribution during the boom.

The model presented in this paper is similar to the models developed by Campbell and

Cocco (2003), Cocco (2004), Yao and Zhang (2005). These papers focus on introducing

housing as an additional asset in a portfolio choice setting with life-cycle labor income.

They solve for optimal life-cycle positions of housing and other assets such as bonds and

stocks; their emphasis is on analyzing the optimal policies for a given calibration that uses

parameter values from the literature. Li, Liu, and Yao (2009) and Bajari, Chan, Krueger,

and Miller (2013) perform a structural estimation of a life-cycle model with housing similar

to the one in this paper, using data from the PSID. However, their focus is mainly on

5Other papers focusing on housing collateral constraints mainly from the perspective of risk-sharing in
general equilibrium include Campbell and Hercowitz (2005), Lustig and Nieuwerburgh (2005), and Iacoviello
and Pavan (2013).
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using the fitted model to conduct experiments and predict future household behavior. While

Li, Liu, and Yao (2009) focus on policy experiments about changes in lending conditions,

Bajari, Chan, Krueger, and Miller (2013) are predicting the length and depth of the slump

in the housing market. In contrast to the analysis of this paper, all of the papers listed

above assume that household beliefs about future house prices are described by the same

stochastic process over the life-cycle, irrespective of current economic conditions.

This paper proceeds as follows. Section 2 describes the model, discusses the assumptions,

and outlines the computational solution method. Section 3 discusses the empirical strategy

and its implementation, and states values of the calibrated parameters and data source. Sec-

tion 4 presents the data moments entering the objective function and the estimation results.

It further discusses the identification, and interprets the findings. Section 5 concludes.

2 Model

2.1 Household Problem

A household lives for years t = 25, . . . , 100, with a probability of survival from year t − 1

to t of λt, and λT+1 = 0. Every year until retirement at age tR = 65, the household

receives labor income Yt that follows an exogenous stochastic process. After retirement, the

household receives a constant fraction of its last labor income YtR until death. The household

chooses consumption of housing services St and other goods Ct (the numéraire) every year

to maximize expected lifetime utility. The per-period utility function u(Ct, St) is assumed

to satisfy the usual properties of being strictly increasing and concave in its two arguments

arguments. Lifetime utility is given by

Et

{
T∑
t=0

βt [Λtλt+1 u(Ct, St) + Λt(1− λt+1)Bt]

}
,

where Bt is the bequest the household leaves to its children in case it does not survive until

year t+ 1, and

Λt =
t∏

s=0

λs

is the unconditional probability that the household is alive in year t < T .
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Housing has the dual role of an asset that the household can save in, and a durable

consumption good that generates housing services. Households can consume housing services

in two ways: they can either own or rent a house. The variable τt ∈ {0, 1} represents a

household’s decision whether to be a home owner or not in year t, with τt = 1 indicating

ownership. A house of size Ht produces housing services with the linear technology

St = Φ(τt, at)Ht, (1)

where at is the age of the household in year t. The housing services production coefficient Φ(·)

generally depends on the home ownership status τt and age at. It captures age-dependent

aspects of the preference for ownership that are not directly contained in this model, such

as changes in household size and uncertainty about future household size. A unit of the

housing asset sells for Pt units of numéraire, and can be rented for P r
t in the rental market.

The household assumes that labor income and house price follow a Markov process with

transition rule

[Yt, Pt] = F ([Yt−1, Pt−1], εt) , (2)

where εt is a two-dimensional random vector distributed independently over time. I will

specify the exact form of the transition rule below.

The rental price is pegged to the asset price through a deterministic, but potentially

time-varying ratio

αt =
P r
t

Pt
. (3)

In addition to the housing asset, the household can save and borrow the amount Lt in

a risk-free bond. By saving one unit of numéraire in the bond at t − 1, the bond pays out

Rt > 1 units at t. In order to borrow, the household has to own a house and use part of its

value as collateral. In particular, when the household buys a house, it can at most borrow an

amount (1− δt) of the house value to finance the purchase, where δt is the fraction required

as a down payment:

Lt ≥ −(1− δt)PtHt. (4)

Furthermore, the interest rate when borrowing is higher by a spread of ζt.

The budget constraint and the evolution of household wealth over time are best under-

stood by distinguishing two cases. First, if the household did not own a house at age t− 1,
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its liquid resources in period t consist of savings and interest from the previous period and

current labor income. The household can use this wealth to consume the numéraire good,

buy or rent units of the housing asset, and save in the risk-free asset. If the household decides

to buy a house (i.e. purchase a positive amount of the housing asset), it can also borrow in

the risk-free asset subject to constraint 4. Since the borrowing rate is higher than the rate

for savings, the household will never optimally save and borrow at the same time. Thus it

suffices to keep track of the net position Lt in the risk-free asset. This yields the following

budget constraint for a household who was renting in period t− 1

RtLt−1 + Yt = Ct + Lt + PtHt[(1− τt)αt + τt(1 + ψ)], (5)

subject to the down payment constraint 4, and using the fact that the rental price can be

expressed in terms of the house price and the rent-to-price ratio αt based on equation 3. The

coefficient (1 + ψ) multiplying the expenditure on the new house in the last term accounts

for a proportional maintenance cost ψPtHt that a homeowner must pay each period in order

to offset depreciation.

The second case is that of a household who enters period t owning a house. The household

may sell its current house in order to buy a new one of different size or rent instead. In this

case, the sale requires payment of a transaction cost proportional to the house value, νPtHt−1.

In general, the homeowner can decide to stay in the current house, and therefore not incur

the transaction cost. Hence the home owner’s liquid resources consist of savings and labor

income as for the renter, plus the value of the house net of mortgage principal, interest,

and the sales transactions cost. Denoting the decision whether to sell or keep the house by

ξt ∈ {0, 1}, with 0 indicating keeping the house and 1 selling, the constraint for the home

owner is

(Rt + 1[Lt−1<0]ζt)Lt−1 + Yt + PtHt−1 =Ct + Lt + (1− ξt)PtHt−1

ξt{PtHt[(1− τt)αt + τt(1 + ψ)] + νPtHt−1} (6)

again subject to down payment constraint 4, and with τt indicating the ownership decision

as in equation 5.

In addition to the decision whether to stay in the current house, sell and rent, or sell and

buy, a home owner can also decide to default on its debt. In case of default, mortgage debt
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and home equity are erased, and the household incurs a cost of default κ that is proportional

to its income. Hence this household’s budget constraint is essentially that of a household who

does not own a house coming into the period with income (1 − κ)Yt.
6 Denote the decision

whether or not to default for a home owner by dt ∈ {0, 1}, with dt = 1 indicating default.

Each household has to move with a certain probability every period, independent of all

other shocks and previous periods. This shock is only relevant for home owners since it forces

them to sell their house and incur the transaction cost. Renters sign period-by-period rental

contracts, and thus their problem is unaffected. Let the outcome of this shock be denoted

by Mt ∈ {0, 1}, with 0 indicating that the household may keep the house and 1 that it must

move.

The complete life-cycle optimization problem can be stated recursively using dynamic

programming. Denote the vector of state variables at time t byXt = [Mt, Pt, at, τt−1, Ht−1, Yt, Lt−1],

and the vector of choice variables Zt = [τt, ξt, dt, Ht, Ct, Lt]. Then the value function at age

t = 0, . . . , T − 1 is defined as

Vt(Xt) = λt+1

{
max
Zt

u (Ct,Φ(τt, at)Ht) + βEt [Vt+1(Xt+1)]

}
+ (1− λt+1)B(Xt) (7)

subject to constraints 4, 5, and 6 and the transition equation for income and prices 2, and

by

VT (XT ) = B(XT ) (8)

for the final period.

To close the model, I still need to specify functional forms for the intra-period utility

function u(Ct, St) and the bequest function B(Xt). For the utility function, I use the con-

ventional Cobb-Douglas form for composite utility from housing services and other goods:

u(Ct, St) =

[
C1−ρ
t (Φ(τt, at)Ht)

ρ
]γ

1− γ
, (9)

where ρ determines the relative weight on housing services and γ is the risk-aversion param-

eter. The function Φ(τt, at) that governs the age-dependent preference for renting is given

by

Φ(τt, at) = 1 + (1− τt) exp(−φat).
6The constraint for the defaulting household is (1− κ)Yt = Ct + Lt + PtHt[(1− τt)αt + τt(1 + ψ)].
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with parameter φ. If φ > 0, as will be the empirically relevant case, then the additional

utility from renting is decreasing exponentially with age.

To specify bequest utility, it is helpful to first define liquid wealth after the potential sale

of the housing asset as

Wt = (Rt + 1[Lt−1<0]ζt)Lt−1 + τt−1(1− ν)PtHt−1 + Yt. (10)

Bequest utility depends on liquid wealth in the household’s final year and the current house

price

B(Wt, Pt) = B̄
(Wt/P

ρ
t )1−γ

1− γ
, (11)

where B̄ is a parameter that governs the strength of the bequest motive7

2.2 House Price and Labor Income Processes

Since the empirical analysis will involve cross-sections of households of different age cohorts,

I will use the subscript t to index the calendar year, and i to index an individual household.

The age of household i in year t will be denoted by ait.

A crucial step in inferring household expectations from observed decisions is the modeling

of household beliefs about future house prices. This involves specifying a parametric form

for the transition rule F ([Yit−1, Pit−1], εit) in equation 2 for income and house prices. First,

I assume that the individual house price follows a random walk in logs, i.e. the growth rate

of the house price is

RH
it ≡

Pit
Pit−1

= exp(mt−1 + εHit ), (12)

where εHt is a random variable with zero mean, and mt−1 is the deterministic drift. As is

evident from the subscript, I assume that the drift parameter is common across all houses.

The labor income for household i in year t also follows a random walk in logs

GY
it ≡

Yit
Yit−1

= exp(f(ait) + gt−1 + εYit), (13)

where f(ait) is a deterministic life-cycle trend, gt−1 is aggregate income growth in year t,

and εYit is a random variable with mean zero. I assume that the vector εit = (εHit , ε
Y
it) is

7The functional form of the bequest motive ensures that the value function is homogeneous in the house
price. It is also sensible since it reflects that at high house prices, a given amount of wealth buys less housing
consumption.
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independently distributed over time; however, the two components may have a non-zero

contemporaneous covariance σHY,t > 0 that represents a potential common exposure of

housing and income risks at the regional or national level

Var(εit) =

[
σ2
H,t σHY,t

σHY,t σ2
Y,t

]
. (14)

It should be noted that, from the perspective of the optimizing household, the distinction

between aggregate and idiosyncratic risk is only important to the extent that aggregate risk

may induce a positive correlation between income and house price growth.

I will assume that εit is normally distributed. For the rest of the paper, it will then

be convenient to directly write the mean and standard deviation of the log-normal random

variable RH
it as

m̂t−1 = E[RH
it ], and

σ̂H,t−1 = Var[RH
it ]

1/2,

respectively8.

2.3 Computational Solution

The state and the choice variables of the dynamic program given by equations 7 and 8 can

be re-defined to allow for a more efficient computational solution. These transformations

are also the basis for the mapping of model quantities to observables described in the next

section, so I will state the important aspects here and refer the reader to appendix A for

details on the transformed model and the computational approach.

First, after omitting i subscripts again for notational simplicity, we can normalize all

model quantities by current income Yt, which is equivalent to normalization by permanent

income due to the i.i.d. nature of the innovations to income growth. Specifically, define

wt = Wt/Yt and h̄t−1 = PtHt−1/Yt for the endogenous state variables and ct = Ct/Yt,

8In terms of the parameters mt−1 and σH,t, one therefore gets

m̂t−1 = mt−1 +
1

2
σ2
H,t,

σ̂H,t−1 =
[(

exp(σ2
H,t)− 1

)
exp(2mt−1 + σ2

H,t)
]1/2

,

by the usual arithmetic for log-normal random variables.
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lt = Lt/Yt and ht = PtHt/Yt with respect to choices. All housing related quantities are

expressed in terms of expenditure since this is what we observe in the data. I reduce the

choices of both owner and renter to the value of the occupied house ht, which is possible

due to the linearity of housing services production from the housing asset. Thus letting the

vector of transformed state variables be given by xt = [Mt, τt−1, wt, h̄t−1, lt−1] and the vector

of choice variable by zt = [τt, ξt, dt, ht, ct, lt], one can define the normalized value function

vt(xt) = Vt(Xt)/(YtP
−ρ
t )1−γ to get

vt(xt) =λt+1

{
max
zt

[
c1−ρt (htΦ(τt, at))

ρ
]1−γ

1− γ
+ β Et

[
vt+1(xt+1)

(
Yt+1

Yt

)1−γ (
Pt+1

Pt

)−ρ(1−γ)]}
+ (1− λt+1)b(wt)

=λt+1

{
max
zt

[
c1−ρt (htΦ(τt, at))

ρ
]1−γ

1− γ
+ β Et

[
vt+1(xt+1)

(
GY
t+1(R

H
t+1)

−ρ)1−γ]}
+ (1− λt+1)b(wt) (15)

subject to conformably rewritten budget and down payment constraints given in appendix

A, and where GY and RH are the growth rates of income and house price as defined in

equations (13) and (12). It becomes apparent from equation (15) that the normalization

of the value function eliminates two exogenous state variables for computational purposes,

which are income and the house price.

In practice, the computation is best performed in terms of two different value functions

(both normalized as above) and the resulting optimal policies: one for households who

were renting in the previous period or those who were forced to sell and move due to the

exogenous shock, and one for homeowners that have the additional option of staying in

their current house. Appendix A contains details on these transformed value functions and

the corresponding budget constraints and transition equations for the states. Due to the

nature of the estimation procedure, the model’s solution will have to be re-computed for

each iteration of the estimation loop.

2.4 Discussion

Several assumptions deserve a brief discussion. First, note that the model specified above

yields the optimal demands for housing conditional on age, income, wealth, home ownership
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status, and the price of the housing asset. I do not explicitly specify the equilibrium in

the markets for the housing asset or housing services. However, the goal of this analysis

is to infer implied household beliefs about future price growth, and in any competitive

equilibrium households will take the house price Pt as given. Therefore, the exercise of

inferring implied expectations from observed demands is well-defined without an explicit

specification of equilibrium as long as the optimal demand functions are evaluated at realized

equilibrium prices9.

Transaction Cost

The most important aspect of the distinction between owning and renting arises from the

transaction cost for selling houses. In the absence of the transaction cost, the recursive

structure of the problem implies that in addition to the household’s age, only the beginning-

of-period net worth and income are relevant state variables. In other words, if there was no

transaction cost, we could think of homeowners as simply purchasing the house always only

for one period, and thus at the beginning of the period -after selling the house and paying

back the mortgage- it is irrelevant whether a household owned or rented in the previous

period. However, with the transaction cost in place, homeowners have the option of not

selling their house and thus not incurring the cost. This creates inertia in homeowners’

adjustments to changes in the economic environment. Hence the quantity of housing owned

at the beginning of the period, Ht−1, becomes a state variable. To account for mobility

profiles over the life-cycle observed in the data, the shock Mt is a reduced-form way of

modeling that homeowners may have to move and sell their house for reasons exogenous

to the model, such as job-related relocations etc. Without the mobility shocks, but with

reasonably high transaction costs, the model would not be able to match the amount of sales

in the data.

Leverage and Mortgage Default

Young households face a life-cycle labor income profile with a deterministic component that is

increasing but not tradable. The net present value of this non-risky trend part of future labor

9Of course, an implicit restriction on equilibrium results from the assumed time-series properties of house
prices as specified in equation 12.
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income is similar to a long position in a safe asset. For realistic parametrizations of the income

process and housing returns, it is optimal for the young household to offset this position by

taking a short position in the actual risk-free bond. Due to the collateral constraint, going

short the risk-free bond means taking out a mortgage to finance the purchase of a house,

and in this way achieve the optimal portfolio composition of risky and safe assets10. As

households in the model age, they reduce their leverage and instead hold a positive position

of the safe assets. The amount of savings of old households largely depends on the strength

of the bequest motive.

The possibility of default on the mortgage interacts with the optimal leverage choice. A

defaultable mortgage means that households hold a call option on their house, with leverage

taking on the role of the strike price. Exercising the option is equivalent to keeping the

house and not defaulting on the mortgage. The net value of the option is decreasing in the

cost of default κ (which is akin to the option premium): if κ was prohibitively large, the

optionality would disappear and households would simply hold a long position in the housing

asset. Further, the value of the call option is decreasing in the strike price (i.e. leverage),

but increasing in the mean m and the volatility σH of the house price. Any increase in the

value of the option makes the household wealthier today. Everything else equal, this leads

to higher consumption and greater leverage today. For example, if house price volatility

goes up, the option becomes more valuable ceteris paribus, and households optimally react

by increasing the strike price of the option (the leverage ratio) and consuming some of this

option value today. In summary, this means that leverage is increasing in the option value,

so any factor that raises the option value also raises optimal leverage.

Owning versus Renting

There are two basic channels in this model that determine the household’s optimal ownership

decision: I will refer to the first as the “user-cost” channel and the second as the “life-cycle”

channel. The “user-cost” channel is based on comparison of the contemporaneous costs

and benefits of owning versus renting, such as the rent-to-price ratio α and the housing

maintenance cost ψ.

10See Yao and Zhang (2005) for a detailed discussion of the optimal portfolio composition with labor
income and housing as collateral.
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The “life-cycle” channel is in part due to the upward sloping labor income profile of

young households. These households want to frequently adjust the level of housing services

as their incomes rise during the early part of their life-cycle. However, if they chose to

become home owners, the transaction cost would punish frequent upgrades in house size,

and the down payment requirement makes a house that would also be large enough later in

life unaffordable to the young household. Thus, the down payment constraint in equation

(4) deters young households from becoming home owners too early. Instead, the cash-

poor, but human capital-rich constrained young households rent and save until they have

enough cash for the down payment of a house that is large enough. As previous quantitative

analyses have found, the life-cycle pattern of ownership induced by borrowing constraints

is however not effective in explaining the low rate of ownership among young households

who have sufficient funds for their down payment. This feature of the data necessitates the

introduction of another force that keeps the ownership rate among young households low.

The model specified above matches this aspect of the life-cycle profile of ownership through

a preference for rental housing that is declining in household age. This preference stands

in for non-financial considerations driving the home ownership decision of young household,

such as uncertainty about future family size.

3 Empirical Strategy and Data

3.1 Estimation Procedure

Overview

The goal of the empirical approach is to infer changes in short-term household expectations

and the magnitude of credit constraints over the period of the recent housing boom. In

order to do this, I use the cross-sections from years 1992 to 2010 of the Survey of Consumer

Finances (SCF), which contains detailed information on the wealth composition and income

of a representative sample of U.S. households11. Since the data are only available in three-

year increments, I set the length of a model period to three years. I estimate (i) several

11The Federal Reserve conducts the survey every three years. The SCF oversamples rich households who
hold the majority of aggregate U.S. wealth, but also provides sampling weights that can be used to calculate
statistics based on a representative U.S. sample. This paper only computes means and variances from the
SCF using the sampling weights.
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preference parameters, which I restrict to be identical for all periods, (ii) expected house

price growth {m̂t}t and its volatility {σ̂H,t}t, and (iii) average down payments requirements

{δt}t, which I allow to take different values for each period.

Some assumptions about household belief formation are necessary to execute the estima-

tion. First, I assume that households have short-term beliefs about price growth and credit

constraints over the next three years, and long-term beliefs about all following life-cycle pe-

riods. The long-term beliefs are set to long-run averages based on past observed data. The

short-term parameters are allowed to vary from period to period, hence being a potential

source of short-term swings in household choices. In the current setup, I do not allow for

heterogeneity in household beliefs. I execute the estimation of the time-varying house price

process and credit constraint parameters for the years 1998, 2001, 2004, and 2007.

Secondly, to estimate the preference parameters, I use additional moments from the

survey years 1992 and 1995. For these years, I assume that the economy is in a long-run

“steady state”, with short term beliefs about house prices and short term credit constraints

being equal to their long term values. The reason for this strategy is that I do not want to

overuse preference parameters such as risk aversion and discount factor to explain household

choices during the extreme boom-bust episode of the years 1998-200712.

Preference Parameters

The four preference parameters to be estimated are

- the Cobb-Douglas weight on housing ρ,

- the discount factor β,

- the bequest strength B̄,

- and the age preference for renting φ.

12Since all parameters are jointly estimated, preference parameters are of course partially identified from
the moments of the boom years. However, including additional moments of the preceding years stabilizes
the estimates to reasonable values.
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Structure of Household Beliefs

To state the structure of household beliefs more concisely, let t denote the calendar dates in

three-year increments, with t = 1 corresponding to 1998, t = 2 to 2001, and so on. At each

date t, a household optimizing at this date faces an interest rate rt = Rt − 1, a mortgage

spread of ζt, a rent-to-price ratio αt, and a minimum down payment share δt. Further, the

household believes that mean house price growth until t + 1 is given by m̂t, with volatility

σ̂H,t. Table 1 shows short-run parameter values for each year.

Interest rates, rent-to-price ratios and mortgage spreads are observable both to the house-

hold and the econometrician in the short-term, and I assume that at date t households sign

savings, rental, or mortgage contracts until t+ 1 subject to the rates listed in the table. To

calculate the rent-to-house-price ratio, I deflate the aggregate FHFA house price index by

the CPI for rental prices to obtain a series for the price-to-rent ratio. I then take the value of

5.5% as computed by Davis, Lehnert, and Martin (2008) and extrapolate this number over

the sample period by scaling it with the inverse of the FHFA/CPI index growth. Mortgage

spreads are computed as the difference between the 30-year fixed mortgage rate reported by

Freddie Mac and yields on 20-year Treasuries13.

The last two columns of table 1 contain realized aggregate income and house price growth

for each three-year period. Real aggregate income growth is estimated from NIPA disposable

household income. House price growth is calculated from the FHFA house price index

(deflated by the CPI).

Mean and volatility of house price growth are latent parameters and will be inferred from

observed household choices.

I further assume that households must on average at least pay for δt percent of the

house value from their own funds when purchasing a house. Note that this parameter does

not specify the average size of the down payments actually made by households. It rather

determines the minimum possible down payment allowed. This parameter will be inferred

from observed household choices jointly with expectations and utility parameters, under the

13An alternative way to isolate the mortgage spread would be to compute the difference between 1-year
ARM rates and 1-year T-bill yields. However, 1-year ARM are far less common and their pricing may not
be representative of the majority of mortgages. The results when using this alternative measure would be
similar.
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assumption that each household can borrow at the terms characterized by (rt, ζt, δt).

Table 1 specifies beliefs for a household optimizing at date t over the next period. One

still needs to specify household beliefs for all remaining life-cycle periods, i.e. for dates t+ s,

s > 0. These long-run beliefs are constant and set to long-run averages of the data series for

the variables in table 1. Table 2 shows these long-run values.

The long-run values for interest rate and rent-to-price ratio are computed from the series

described above for the short-run values. I set the minimum down payment constraint to

15%. This number reflects that for the majority of borrowers over the sample period, it

was possible to get a mortgage with a down payment amount below the 20% limit that the

government-sponsored enterprises set for conforming loans. If we think of the parameter δ

as a stand-in for the average ease of access to credit, setting it to the GSE-imposed limit

for prime conforming loan is to tight, as low down payment loans were available both in the

prime and subprime segments of the market from the beginning of the sample14.

The expected long-run price growth of the housing asset is set to 2.5%. The underlying

assumption is that aggregate house prices are growing at the same rate as aggregate income

in the long term. The number is also consistent with average growth rates of regional

and national house price indexes, such as the FHFA or the Case-Shiller S&P 500 index.

The volatility of house price growth is set to 18% annually. This number reflects purely

idiosyncratic house price risk, which Landvoigt, Piazzesi, and Schneider (2014) document to

be between 9% and 11%. In addition, the innovation εYt also includes aggregate housing risk

at the regional and national level, which is between 5% and 9% based on MSA house price

indexes (see e.g. Flavin and Yamashita (2002)).

The way in which household beliefs are “rolling forward” through time is best illustrated

by means of an example. Consider a household at date t = 1 (i.e. in 1998). From table 1, we

know that this household is facing an interest rate of 3.42%, a rent-to-price ratio of 5.40%,

and a down payment requirement of δ1998 percent. Further, this household believes that

house prices will on average grow by m̂1998 percent until 2001 with a standard deviation of

σ̂H,1998. For all dates beyond 2001, the household believes that the values of these variables

14Of course a literal interpretation of δ as the minimum possible down payment for all available loan
contracts in the market would imply a number around zero for most of the sample. However, this would not
be representative of the typical mortgage options offered to the average borrower.
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are given in table 2. In other words, the household believes that the interest rate is rt+s = 3%,

the rent-to-price ratio αt+s = 5.5%, etc., for all dates with s > 0. Once time passes and the

household gets to date t = 2 (2001), the realizations of the variables are given by the values

in table 1, and now the household believes that the long-run values from table 2 apply to all

dates beyond 2004.

This structure of beliefs is consistent with mean reversion, in the sense that households

believe that variables fluctuate in the short-run but always return to long-run averages. In

addition, it is a computationally tractable approach.

Model-to-Data Mapping

The data do not have a panel structure, hence each year-t-sample is a cross-section of different

households. Keeping this in mind, index households for each year by i = 1, . . . , Nt (with i

generally indexing a different household in years t and t+1). Then for each year t, I construct

a sample St ≡ {ait, τit−1,Wit, PitHit−1, Yit}Nt

i=1 from the SCF, where ait is the household age,

τit−1 indicates ownership status (rent vs. own), and the remaining variables denote net

worth, house value, and labor income as defined in the previous section.

Denote the vector of short-run model parameters for year t, corresponding to table 1 in

the previous section, as θt, and the vector of long-run parameters corresponding to table 2

and preference parameters as θLR. Given the model’s optimal policy functions conditional

on parameters, it is possible to calculate the optimal choices for each household in the

sample, Z(St, θt, θ
LR) = {Cit, τit, Lit, Hit}Nt

i=1, with Cit denoting numéraire consumption, τit

next period’s ownership status, Lit the mortgage or savings amount, and Hit the size of

the house being rented or owned in the next period. These year-t choices can in turn be

mapped to year-t + 1 state variables by simulating the house price, income, and mobility

shock realizations for each household in the sample, and by applying the realized price and

income growth from t to t+ 1 (the last two columns of table 1). Applying the model policies

to sample St in this way thus leads to a simulated sample of next year’s state variables

Ŝt+1(St, θt, θ
LR), that is a function of this year’s observed state variables and the model

parameters.

The estimation procedure essentially entails finding the parameter vectors {θ̂t}2007t=1998 and
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θ̂LR that minimize the distance (in a method-of-moments sense) of the simulated t+1-samples

Ŝt+1 constructed in the way outlined above, and the observed t + 1-samples St+1 for each

of the years t = 1992/1995, 1998, 2001, 2004, and 2007. Thus it is a Simulated Method of

Moments (SMM) approach applied to a dynamic model and repeated cross-sections.

To implement the belief structure in practice, I need to solve the dynamic program once

for each estimation period t. For the estimation periods 1998 to 2007, short-run and long-run

parameters differ. This difference requires to first compute a long-run value function using

the long-run parameters, and then a separate short-run value function for each period using

the long-run value function as continuation value. Fortunately, expected house price growth

and the credit constraint are fixed at their long-run values for the initial period (the combined

1992/1995 sample). Hence in this initial period the distinction between short- and long-run

does not apply, and the initial value function can be used as the long-run value function in

all subsequent periods. Thus computing the model for one parameter combination and for

all estimation periods requires solving the life-cycle dynamic program five times.

Estimation

As objective function for the estimation step I use a weighted sum of squared deviations of

a set of data averages from averages of the simulated sample. Since the data are repeated

cross-sections and the model is dynamic in nature, a pseudo-panel approach is needed to

apply the SMM approach described above.

The basic methodology follows Browning, Deaton, and Irish (1985). Using the same

notation as above, let Ŝt and St denote the simulated and the data samples for year t,

respectively. Since the sample Ŝt was generated by applying the model solution to the year-t

data sample St−1, these samples generally consist of different individual households, so it is

not possible to state moment conditions at the level of an individual observation. However,

one can divide each sample into Q cells based on observed characteristics that are stable

between times t and t + 1, which here is a three-year period between two consecutive SCF

samples. Index cells by q = 1, . . . , Q, and let gqt = g(q, St) denote a K-vector of sample

means for cell q in year t, where in the application the elements of gqt are the average

homeownership rate, the value-to-income ratio and the loan-to-value ratio (i.e. K = 3).
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In practice, I use seven birth cohorts and three education groups to get a total of Q = 21

cells. Let the vector ĝqt(θ) ≡ g(q, Ŝt; θ
LR, θt) denote the vector of sample means for the same

variables, but computed from the simulated sample. By treating each cell q as an observation

with variables taking on the values of cell means, I can hence create a pseudo-panel with Q

observations.

Let gq and ĝq(θ) denote the TK-vectors of the stacked cell means for all T years. Then

the TK sample moment conditions are

1

Q

Q∑
q=1

gq − ĝq(θ) ≡ GQ − ĜQ(θ) = 0, (16)

and for the case of fewer than TK parameters in θ, the Generalized Method of Moments

(GMM) objective function to be minimized in θ is

(GQ − ĜQ(θ))′D(GQ − ĜQ(θ)), (17)

where D is a positive definite weighting matrix. I use the inverse variance-covariance matrix

of the data moments for D, i.e. D = Ĉov(gq)
−1. Note that GQ and ĜQ are simply the

aggregate sample means in the real and simulated data, for all K variables and T years.

However, for the computation of the estimated variance-covariance matrix of the moment

conditions, it is necessary to have the pseudo-panel structure and a well-defined notion of

an observation.

Equation 17 is a conventional GMM objective function with a constant weighting matrix,

and the asymptotic standard errors can generally be obtained in the well-known way (see e.g.

Wooldridge (2002)). Since this is a simulation estimator, the estimated covariance matrix of

the moment conditions needs to be adjusted by a factor taking into account the number of

simulations. Appendix B contains details on how the standard errors are calculated, drawing

on the econometric results of Pakes and Pollard (1989) and Hall and Rust (2002).

3.2 Other Parameters

Table 3 shows those parameters of the model that I do not estimate and that do not vary

over the time period included in the estimation.
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All parameters are annual. The sales transaction cost and the maintenance share are

in line with the values used by other studies of the housing market. The transaction cost

reflects the actual cost of selling such as realtor’s fees and the cost of moving for homeowners

(over renters). The maintenance share is the fraction of the house value that homeowners

have to spend to offset depreciation.

The annual standard deviation of the shock to permanent income growth is set to 13%

based on the results of Cocco, Gomes, and Maenhout (2005). The correlation of both shocks

is set to 0%, based on the low estimate by Flavin and Yamashita (2002). Other studies have

found similarly low correlations.

Finally, I take three sets of parameters from the literature that enter the houshold problem

due to its life-cycle character.

- The deterministic part of labor income growth (f(a) in equation 13) follows a third-

degree polynomial whose coefficients are taken from Cocco, Gomes, and Maenhout

(2005), and thus are consistent with the shock to income growth. Specifically, I use

coefficients decsribing the income profile of high-school graduates estimated by Cocco,

Gomes, and Maenhout (2005) using data from the PSID. The life-cyle profile has the

common hump-shape.

- The survival probabilities λa are computed from the mortality rates reported by the

National Center of Health Statistics.

- For the life-cycle profile of mobility (i.e. the probailities of moving) I use the estimates

by Li, Liu, and Yao (2009). The basic shape of the mobility rate function over the

life-cycle is convex and declining in age.

3.3 Data

For each of the SCF surveys from 1992 to 2010, I use the prepared extract sample of the

SCF15. I remove all observations with the household head being younger than 25 years of

age, which is the starting age of the life-cycle labor income profile I use. I take labor income

15These samples already contain some pre-generated variables, and some observations with unlikely answers
have been removed.
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to be broadly definined as the sum of wage income, income from social security and other

retirement funds, income from own businesses, and government transfers. As defintion of

networth, I use the pre-generated variable “networth” from the SCF, which is the balance

of all household assets and liabilities. For the house value of homeowners, I use the SCF

variable “houses”, which is the value of the primary residence16. As the mortgage principal

of homeowners, I use the SCF variable “mrthel”, which includes home equity loans and other

types of loans that use the primary residence as collateral.

Further, I remove all households with more than 5 million dollars of networth (in year

2000 dollars) from the sample. The life-cycle income process of these very wealthy households

is usually not well described by the one assumed in equation 13, since a large fraction of their

income is from dividends and capital gains. The problem is aggravated by the fact that these

households tend be older, with traditional sources of retirement income only being a very

small fraction of their overall income. The removal of these households has the additional

advantage of being able to economize on grid points during the estimation. The disadvantage

is a loss of about 15% of raw observations for each year, but due to the strong oversampling

of wealthy households in the SCF this only amounts to about 1.5% of effective observations

after applying the SCF-provided sampling weights.

4 Results

4.1 Target Moments and Estimation Results

As moments in the objective function, I use the average homeownership rate, the value-

to-income ratio and the loan-to-value ratio for each of the years 2001, 2004, 2007, and

2010, and for the combined sample 1992/1995. In addition, I include the average loan-

to-value ratio among older households (age 58 or older) for the initial 1992/1995 sample.

This gives 16 moments and 12 parameters when only the utility parameters, the means

of the house price growth process and the minimum down payment shares are estimated.

Four parameters are added when the volatilities of house price growth are estimated in

addition. Table 4 displays the targeted moments. All moments are sample means computed

16This implies that other real estate investments of the household will be included in networth and hence
are counted as savings in the sense of the model.
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using SCF sampling weights. House values and loan-to-value ratios are reported only for

homeowners (and are zero for renters). The choice of these moments rests mainly on their

natural connection to model quantities. The homeownership rate is calculated as the sample

average of households’ discrete own-versus-rent decisions. Similarly, the house value-to-

income ratio is the sample average of a state variable of the model, and the loan-to-value

ratio is the ratio of two choice variables, mortgage principal and house value. The model

is designed to capture several important features of homeownership, house size, and general

life-cycle mortgage dynamics; hence these moments represent the set of quantities that the

model is best suited to match. The model also makes predictions about the household net

worth-to-income ratio, but due to the lack of other, higher-yielding assets such as stocks, it

is impossible for the model to match general wealth dynamics in a period like the late 1990s,

and thus I do not include this moment in the set of targets.

I use aggregate moments since all parameters are assumed to be identical across age and

income groups. However, because the model’s key mechanisms rest on its life-cycle character,

I will examine the fit across household age and wealth in the next section to see whether the

general life-cycle shape of model-implied moments lines up with their data counterparts.

Table 5 shows results of the estimation step. The asymptotic standard errors in paren-

thesis are calculated using the GMM formula for the case with a constant weighting matrix.

Appendix B contains details on how the standard errors were computed. Specification (1)

keeps the short-run volatility of house price expectations fixed at the long-run value of 0.18,

while specification (2) also estimates these parameters.

The point estimates of the preference parameters in specification (1) and (2) are very

close, suggesting that they are pinned down by average levels of the different moments across

all periods. In general, the addition of the volatilities as free parameters does not significantly

affect the estimates of other parameters, and the standard errors of the volatility estimates

in specification (2) imply that the long-run volatility of 0.18 is within the 95% confidence

interval for each year.

The point estimates of the minimum down payment shares exhibit an increasing trend

in specification (2), even though they are not statistically different from the long-run value

of 0.15 at the 5% level. The point estimates of the mean growth rate are all close to the
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long-run mean of 2.5%. The estimates for 1998 and 2007 are somewhat higher, while the

estimate in 2001 is clearly lower. The estimated subjective volatility of house price growth

is below the long-run mean in 1998, but above the mean during the boom years of 2001 and

2004.

Specification (1) is overidentified by four moment conditions. The J test for overidenti-

fying restrictions yields a test statistic of 8.76, implying that the model cannot be rejected

at the 5% level (the χ2
4,0.95 threshold value is 9.45).

4.2 Identification

In the following, I will explore the sources of identification for the results17. First, I will

analyze the features of the data that compel the estimates of the preference parameters.

Then I will argue that most of the identifying variation comes from young households who

are on the margin of becoming home owners. The transaction cost creates an inactivity

region that prevents older existing homeowners from adjusting their house size or selling

their house in response to small changes in expectations or credit constraints. Finally, I will

discuss how expected house price growth, borrowing constraints and the volatility of house

price growth are separately identified.

Preference Parameters

The chief source of identification for the preference parameters are the four moments in the

base year (1992/1995) of the estimation, for which beliefs and credit constraint are set to

their long-run values. The Cobb-Douglas weight ρ is the most important determinant of

value-to-income ratios in the model, and thus is identified from the mean of this ratio in the

data. The discount factor β determines model leverage and is hence identified from LTV

ratios in the data. The estimated value of 0.85 is for one model period of three years, implying

an annual discount factor of 0.94. The discount factor interacts with the bequest motive to

determine the effective age-dependent discount factor in the model. The parameter B̄ that

governs the strength of the bequest motive is therefore identified from the leverage ratio of

older households. The combined estimates of β and B̄ imply a reasonable life-cycle profile of

17I am using the term identification loosely throughout this section as referring to those aspects of model
and data interaction that allow me to tell apart the different effects.
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effective discount factors when combined with the survival probabilities. The parameter of

the rental preference factor, φ, regulates the home ownership rate among young households.

It is identified from the average home ownership rate in the data.

Transaction Cost and Persistence in Choices

Before discussing of the estimation results for down payments and expectations, it is helpful

to examine the model’s cross-sectional fit along a specific dimension. Particularly, table 6

shows, both for model and data, the fraction of home owners who did not purchase their

home in the last three years (at the parameter estimates from table 5).

The model matches this aspect of the data rather well. The numbers demonstrate that,

both in model and data, the majority of young home owners have recently purchased their

home, while the majority of older owners live in the same house that they bought more than

three years ago. This is the case for the base year 1992/1995 as well as for the subsequent

years of the sample that experienced substantial changes to interest rates, rent-to-price

ratios, and the level of house prices. Despite these changes in the economic environment

that existing home owners were facing, the transaction costs of selling their house prevented

these owners from adjusting their housing choices.

The flip side of this inertia for existing home owners is that most of the reaction in

response to short term changes in the environment, both for the intensive and extensive

margin, will come from young household who are first time home buyers.

Expectations, Down Payment Constraints, and Volatility

The three sets of time-varying model parameters – expectations, down payments constraints,

and house price volatilities, are identified from three sets of moments that represent different

choice margins – tenure, house value-to-income ratios and loan-to-value ratios.

Generally each parameter simultaneously affects all three choice margins for a given

year. Therefore describing the identification amounts to understanding which moment is

quantitatively most important for each type of parameter.

The estimates for down payment constraints are mainly identified from the intensive

margin of housing demand, i.e., house value-to-income ratios. This is because the two other
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parameters governing expected house price gains (mean and volatility) are less powerful in

determining model-predicted house values. There are two reasons for the relatively weak

effect of short-term expectations on optimal house values. First, given the large transaction

cost of selling a house, existing home owners will not adjust their house size in response

to a moderate short term change in expected house prices. Secondly, new home buyers

(previously renters) are mostly at their leverage constraint. Hence changing these buyers’

degree of optimism has little effect on their optimal house values.

However, changing the minimum down payment for these constrained buyers directly

affects their optimal house value choice. Loosely speaking, the much stronger impact of the

collateral constraints on model-implied house values relative to the other parameters forces

the estimation to “use” variation in the constraints to match data house values. This means

in turn that the estimates of the down payment constraints are effectively pinned down by

the house value-to-income ratios in the data.

Even though expectations have a limited effect on the intensive margin, they do have a

large effect on the extensive margin – they decision whether to own or rent. Again home

buyers who enter the period as renters are the source of identification. Their short term

benefit of owning versus renting is directly affected by expected house price gains. Thus

households on the margin of buying will decide to advance (delay) their purchase of a house

in response to a positive (negative) change in expected price growth.

It follows logically that the third set of parameters to be estimated – price growth volatili-

ties – are mainly identified from the third set of moments, which are the loan-to-value ratios.

The main effect of an increase in subjective house price risk is greater optimal leverage,

through the call option channel discussed in section 2.4 above. Since debt is frictionlessly

adjustable in the model, households consume the additional future wealth from the increased

value of the call option by borrowing more18. The effects on the intensive and extensive

margins of housing demand are smaller, and they are ambiguous. A rise in the option value

makes owning a house more attractive, but from a portfolio perspective, higher house price

18It turns out that household optimization keeps the option value roughly constant. When volatility
increases and the option value rises holding everything else equal, households choose higher leverage which
is equivalent to choosing a higher strike price of the call option. This reduces the option value and increases
current consumption.
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risk makes housing less attractive as an investment.

It is instructive to break the identification argument in several steps using graphical

representations of the objective function. Each step involves comparing data moments to

model-implied moments for a different set of model inputs, while the utility function param-

eters are set to their estimated values from table 5. First, I will consider the hypothetical

case that the only variation in model inputs over time is the estimation sample. In other

words, all model parameters, including the realized price and income growth, are set to their

long-run values for each year. Figure 1 shows data and model-generated moments for this

case. The model almost perfectly matches ownership rates over time, but significantly misses

data value-to-income ratios and loan-to-value ratios.

The next step is to feed in the non-estimated time-varying parameters from table 1.

These are interest rates, rent-to-price ratios, mortgage spreads, and realized price and income

growth for each 3-year period. The resulting model-generated moments are shown in figure

2 by the solid red line. Simulating the model using the realized price gains and low interest

rates and spreads in 2004 to 2010 drives value-ot-income ratios up significantly. For the 2001-

2004 period, interest rates are already lower than the long-term average, but rent-to-price

ratios are still close to the long-term average, which results in a model-predicted ownership

rate that is too high. From 2004 to 2010, the drop in interest rates is counteracted by a

simultaneous drop in rent-to-price ratios, keeping the ownership rate stable. Leverage is

too low for the 2001-2007 period, but somewhat too high for 2007-10. Note that in 2001

and 2004, even though households substantially increase their mortgage debt, leverage stays

roughly constant due to the large realized rise in house values. In the last model period, the

large realized drop in house prices pushes leverage above the data value.

We can think of the solid red line in figure 2 as the starting point for the estimation of

the time-varying parameters, m̂t, δt, and σ̂H,t. The estimation procedure can choose these

parameters for each period to make the model-implied moments match the data.

Figure 3 shows the model fit if only the mean expectation parameters are set to their

estimates from specification (1), but volatilities and credit constraints are held fixed at their

long run values (the solid green line). The lower expected price growth from 2001-04 reduces

the model-predicted ownership rate for that period to a value slightly below the data. This
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has the additional effect of also lowering model leverage and VTI ratios for that period. The

slightly more optimistic expectation for 2001-04 and 2007-10 cause the ownership rate to

move slightly above the data values.

Next, I will also set the down payment parameters to their estimated values from spec-

ification (1), so that the only parameters still held fixed at their long run values are the

volatilities σ̂H,t. The solid blue lines in figure 4 show the result. By relaxing the constraints

in 2001 and 2004, and tightening the constraints in 2007 and 2010, the estimation matches

home ownership rates and house value-to-income ratios closely. These moments have a lower

variance in the data, and the GMM objective function penalizes deviation for loan-to-value

ratios less. The end result of specification (1) with fixed volatility parameters therefore

predicts too much leverage in 2001 and too little leverage in 2007-10.

Freeing up the volatility parameters allows the estimation to also match loan-to-value

ratios, as can be seen in figure 5. This requires lower volatility from 1998-2001 to decrease

leverage, and higher volatility from 2004-2010 to increase leverage, which is what we see in

specification (2) in table 5.

To summarize, the estimates of mean expected house price growth are mainly identified

from the extensive margin – the home ownership rate – in the data. As one can see in figure

2, however, model-predicted ownership rates are close to their data counterparts without

any deviation from long run parameter values for all but the 2001-04 period. This is because

time variation in interest rates and rent-to-price ratios has opposing effects, keeping the

ownership rate roughly stable. Hence the estimated values of m̂t are close to the long-run

value of 2.5% annually for all periods but 2001.

The estimated values of the credit constraints, on the other hand, are mainly identified

from the intensive margin – house value-to-income ratios. Here the estimation finds lax

constraints for the 1998-2004 period and a tightening of constraints for the 2004-10. The

ultimate reason for this finding is the inertia of household choices due to transaction costs.

If the majority of households stay in their current house, then housing quantities are mostly

fixed, and a change in the price per unit of housing (as measured by a repeat sales index) is

directly reflected in values. Low interest rates and mortgage spreads during the boom years

induce an additional expansion in housing quantities of new home buyers. This force would

30



inflate average model-predicted house values beyond their data counterparts at persistently

low down payment constraints. Thus the model matches the data by slightly restricting the

maximum feasible house size of credit constrained buyers during the boom period.

4.3 Model Fit

As an “out-of-sample” test for the model, this section evaluates the fit of the model for more

narrowly defined age and wealth groups. Since the estimation only targets averages of home

ownership rate, value-to-income ratio and loan-to-value ratio, the model’s cross-sectional fit

is useful to understand how well the model’s mechanisms capture the actual heterogeneity

in choices in the data.

Table 7 shows the three main model outcomes, broken down by age and net worth, ans

comparing the data to the model-generated sample. For all three choice margins, the model

is able to qualitatively match the pattern in the data.

With respect to the home ownership rate, the pattern in the data is best described by

the statement that young/poor households rent, whereas old/wealthy households own their

homes. While the model generally matches this pattern, the model is not able to explain

the steep increase of the ownership rate in net worth for the oldest group of households.

The credit constraint in the model mainly affects young households in connection with their

upward-sloping labor income profile and the transaction cost. As the income process of the

oldest households is much less variable, the credit constraint is not a good reason for these

households to avoid ownership. Since most of the poor old households also have a small

income, the optimal choice for these agents according to the model is simply to also own a

small house19. The flip side of this issue is that the model’s ownership rate among wealthy

old households is too low. The need of some wealthy old households to save additional

funds for their bequest causes them to downsize to a smaller house and save in bonds. Since

downsizing requires them to sell their house and incur the transaction cost, they optimally

decide to rent for their remaining life span to avoid incurring the transaction cost again when

their final wealth is liquidated for the bequest.

19Some other studies impose a minimum house size for owner occupancy to deal with this issue. While
such a restriction would improve the cross-sectional fit of this model as well, it would not significantly alter
the estimation results based on targeting data averages.
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The model matches the cross-sectional distribution of house value-to-income ratios rea-

sonably well, again with the exception of the data values for poor and old households, who

report very low ratios in the data.

Similar to the ownership rate, the model generates the overall pattern for leverage across

age and wealth groups that we observe in the data. However, it somewhat overstates the

leverage of young households, and it undershoots for older households. The reason for the

too low LTV ratios of old households is the lack of other assets that can function as savings

devices in the model. Specifically, not a small fraction of older households in the data have

both a mortgage and a portfolio of liquid assets such as stocks and mutual funds. These

households then have both a non-zero LTV and a non-zero portfolio of liquid funds. Given

the two-asset structure of the portfolio choice, this portfolio composition cannot represented

within the model. Put differently, home owners with positive savings automatically have an

LTV of zero in the model. To match average LTV ratios, the model has to compensate for

this low leverage of old households by overutilizing the life-cycle borrowing motive of young

households.

Overall, the model matches the cross-sectional distribution of ownership, house values,

and leverage reasonably well. Table 7 demonstrates that the inference about the estimated

parameters does not come at the expense of highly counterfactual cross-sectional implica-

tions.

5 Conclusion

This paper estimates short-run expectations of house price appreciation and minimum down

payment requirements during the recent housing boom. The inference is based on structural

estimation of a life-cycle dynamic program that encompasses housing demand choices at the

extensive and intensive margin, applied to repeated cross-sections from the Survey of Con-

sumer Finances. I implement the estimation by constructing a pseudo-panel and applying a

Simulated Method of Moments estimator.

The main result is that model-implied aggregate expectations of future price growth were

very close to the long-term average throughout the period from 1998 to 2010, with slightly

higher expectations at the beginning and the end of the boom period. The estimation also
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finds that down payment constraints were less strict at the beginning of the boom, and then

tightened toward its end and during the bust. These findings are driven by the need for

the model to jointly rationalize the dynamics of the home ownership rate, loan-to-value, and

house value-to-income ratios, in an environment of high house prices, low interest rates, and

high price-to-rent ratios. The stability in expected house price gains is needed to explain

the stability in the ownership rate – with very high expectations, the model would predict a

counterfactually large rise in the ownership rate. Since expectations are pinned down in this

way by the ownership rate, the initially loose and then subsequently tighter credit constraints

are required to explain the evolution of value-to-income ratios over time.

The realistically large transactions costs associated with selling houses and moving in

the model are crucial for identifying these estimates. The transactions costs cause most

existing home owners to simply stay in the same house despite large swings in prices (as is

confirmed by the data), rent-to-price ratios, and interest rates. Therefore changes in house

prices translate directly into changes in house values (prices times quantities), and a further

relaxation of credit constraints would lead to an even higher rise of value-to-income ratios

than in the data.

The estimation further finds that high uncertainty about future house prices during the

boom years may have contributed to the increase in mortgage debt. Everything else equal,

higher uncertainty leads to an increase in the value of the call option on housing that is

implied by the combination of owning a house with a defaultable mortgage. If debt is more

easily adjusted than housing, households will optimally consume part of this higher option

value through higher debt.

Overall, the quantitative results are consistent with households beliefs in mean-reverting

house prices, in the sense that they expect long-run future price growth to follow the historical

average of roughly 2.5% real growth per year.

Apart from the quantitative results, the paper’s main methodological contribution is

the way in which it infers subjective short-run expectations by closely tracking household

choices over time using a life-cycle portfolio choice model. An important aspect of the method

is that it takes into account short-term movements of other variables that characterize the

economic environment for housing choices, while keeping household expectations of the long-
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term values of these variables set to their long-run averages.

The results of this paper do not contradict the notion that the recent housing boom was

partly fueled by overly optimistic expectations of house price appreciation. Only a relatively

small share of the housing stock gets traded per year, and these transactions form the basis

for price measurement. It is hence possible that few very optimistic households caused

the price spike by increasing short-term demand in local housing markets - Piazzesi and

Schneider (2009) make this point using a simple search model. Aggregate beliefs, however,

are identified from observing the majority of households who did not substantially adjust

their housing choices during the boom.

It would be an interesting extension to allow heterogeneous beliefs across age or income

groups to see whether the approach taken here could identify those subgroups with optimistic

beliefs that possibly were the driving force behind the strong price movement.
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A Dynamic Programming Solution

First, denote the value function of the household who did not own a house or has sold its

house as vMt (wt), where wt = Wt/Yt and Wt is defined as in equation 10 in the main text.

vMt (·) is further defined as the value conditional on survival until age at+1, and after all

shocks are realized. Thus one gets

vMt (wt) = max
ct,lt,τt,ht

u(ct, ht) + β Et

[
vt+1(xt+1)

(
GY
t+1(R

H
t+1)

−ρ)1−γ] (18)

subject to

wt = ct + lt + (1− τt)αtht + τt(1 + ψ)ht, (19)

lt ≥ −τt (1− δt)ht. (20)

where vt(xt) is defined as in equation 15, the constraints 19 and 20 are obtained by nor-

malizing the budget constraint 5 and the downpayment constraint 4 by income Yt, and the

utility function u(c, h) is defined in equation 9. Secondly, denote the value function of a

home owner who is forced to stay in the same house as vSt (wt, h̄t−1). Again, I define vSt (·) as

the value conditional on survival until at+1, and after realization of the mobility shock. This

yields

vSt (wt, h̄t−1) = max
ct,lt

u(ct, h̄t−1) + β Et

[
vt+1(xt+1)

(
GY
t+1(R

H
t+1)

−ρ)1−γ] (21)

subject to

wt + νh̄t−1 = ct + lt + (1 + ψ)h̄t−1. (22)

lt ≥ −(1− δt)h̄t−1. (23)
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Due to the definition of wt as including the house value net of the transaction cost, the house-

hold that stays in the same house receives this cost back on the LHS of budget constraint

22. Thus the house value h̄t−1 cancels on both sides of the constraint, i.e. the constraint

becomes

1 + (Rt + 1[lt−1<0]ζt)lt−1 = ct + lt + ψh̄t−1.

One can now express the normalized value function vt(·) in terms of vMt (·) and vSt (·)

vt(τt−1,Mt, wt, h̄t−1) =λt+1

[
τt−1(1−Mt) max

{
vMt (1− κ), vMt (wt), v

S
t (wt, h̄t−1)

}
+(1− τt−1 + τt−1Mt) max

{
vMt (1− κ), vMt (wt)

}]
+ (1− λt+1) b(wt).

(24)

The first term in square brackets represents the choices of the household who enters the

period owning a house (τt−1 = 1) and does not have to move (Mt = 0). This household can

either stay in the same house (vS(·)), sell the current house and face the same optimization

problem as a renter (vM(wt)), or default on its mortgage and face the problem of a renting

household with cash equal to 1− κ percent of its income.

The second term represents the choices of the households entering the period without

owning a home (τt−1 = 0), or the home owner who has to move (τt−1Mt = 1). This household

also has the choice of defaulting, which can of course only be optimal for owners who are

forced to move.

The two endogenous state variables of the model are wt, and h̄t−1. To express their

transition laws, it is useful to define the discrete choice variable d ∈ {0, 1}, with d = 1

indicating that the household defaults on its mortgage. Then the transitions for wt and h̄t−1

are

wt+1 = (1− d)[(Rt+1 + 1[lt<0]ζt+1) + τt(1− ν)htR
H
t+1]

1

GY
t+1

+ 1− dκ, (25)

h̄t = (1− d)τtht
RH
t+1

GY
t+1

, (26)

where lt, ht, and τt denote the optimal savings and housing policies for period t.

The dynamic program specified by equations 18 to 26 can be solved recursively starting

in period T , where

vT (xT ) = b(wT )
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since λT+1 = 0. To compute the value functions vMt (·) and vSt (·) in practice, I discretize

the continuous state variables wt and h̄t−1 on grids with 80 points each. The spacing of

the grid points for wt and h̄t−1 is chosen with the goal of estimation in mind such that the

points are denser on intervals where more households from the SCF are located. Further,

the boundaries are chosen such that almost all observations fall within the state space. The

innovations to the income an house price processes εYt+1 and εHt+1 are assumed to be jointly

normally distributed, and are discretized using the method of Tauchen (1986). I use 3

nodes for the income innovation and 7 nodes for the house price innovation. Since for house

price growth, the variance is also estimated, it is important to have enough nodes in the

discretization. Increasing the number of nodes above 7 did not affect the estimation results.

The shock forcing a home owner to move Mt+1 is independent of both the house price and

income shocks, and distributed as a {0, 1}-Bernoulli random variable with Pr(Mit+1 = 1 | ait)

set according to table 3. I use linear interpolation to compute the continuation value in case

the the next period state variables do not lie on the grid.

B Estimation Procedure

Define the year-t sample of variables from the SCF that correspond to the model’s normalized

state variables

st =
{
ait, τit−1, wit, h̄it−1

}Nt

i=1
,

which are as defined in section 3. The goal is to create the model-implied sample ŝt+1(st, θ)

of simulated year-t+ 1 state variables. From the transition equations for the state variables

25 and 26 it is clear that the required ingredients for this step are

- the model policy functions for housing, bonds, and home ownership related choices,

- simulated random variables for the move shock Mt and the shocks to income and house

price growth (εYt+1, ε
H
t+1) for each observation,

- and the realized aggregate return to housing ∆Pt+1 and realized aggregate income

growth ∆Yt+1.
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In the following, I will state the algorithm to be applied to each observation of sample st

in order to construct the simulate sample ŝt+1.

1. Take observation i from sample st. Dropping the observation and time subscripts,

denote age by a, liquid funds by w, homeownership status by τ , and the value of the

house owned or rented by h̄. Denote the realized aggregate growth in house prices and

income from t to t+ 1 as gH and gY .

2. If τ = 1, that is the current observation is a home owner, draw a uniform random

variable u1 and simulate move shock M = 1[u1 < Pr(M = 1 |a)], where 1[·] denotes

the indicator function.

3. Using the optimal policies from the model’s computational solution with parameter

vector θ, calculate the model-implied household choices

l = l̂a(M,w, τ, h̄; θ)

τ ′ = τ̂a(M,w, τ, h̄; θ)

d = d̂a(M,w, τ, h̄; θ)

h = ĥa(M,w, τ, h̄; θ),

where d̂(·) denotes the optimal mortgage default decision.

4. Draw a pair of normally distributed random variables (εY , εH) for the innovations to

house price and income growth.

5. Apply the transition equation for the state variables to get next period’s implied states,

i.e. compute

w′ = (1− d)[Rl + τ ′ (1− ν)exp(gH + εH)h] exp(−(f(a+ 1) + gY + εY )) + 1− dκ

h̄′ = (1− d)τ ′ h exp(gH + εH − f(a+ 1)− gY − εY ).

6. Set ait+1 = a + 1, τit = τ ′, wit+1 = w′, and h̄it+1 = h̄′ to obtain the simulated state

variables for this observation for year t+ 1.
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By applying this algorithm to each observation in the sample st once, one obtains the

simulated sample ŝt+1(st, θ). In practice, one needs to repeat the whole procedure multiple

times with different seeds for the random number generator and obtain multiple simulated

samples. During the calculation of the moments for the distance function, one then uses an

average over the moments calculated from each simulation. Denote the number of simulations

conducted by Z. All estimation results reported in this paper are computed with Z = 5,

which turns out to be sufficient to get stable results.

After repeating this procedure for each pair of consecutive years, one has the complete

set of data and simulated samples, st+1 and ŝt+1(st, θ).

Given these samples, the computation of moments and the construction of the GMM

objective function proceeds as outlined in the main text. Denote by gq the TK-vector of

data means for birth cohort-education cell q, and by ĝq the corresponding vector of simulated

means. The aggregate moment conditions are computed as in equation 16, and the estimator

for θ is defined based on equation 17 as

θ̂ = argminθ(GQ − ĜQ(θ))′D(GQ − ĜQ(θ)). (27)

To minimize this distance function, I employ a global pattern search algorithm over a

range of model parameters for which the dynamic programming solution is well-behaved.

This algorithm is essentially an intelligent grid search that only uses direct function eval-

uation and does not compute any numerical derivatives. Once the search seems close to a

minimum, I employ a simplex search algorithm until convergence. In the case of the exactly

identified model (with free volatility parameters) the search succeeds to find a local minimum

as it manages to reduce the objective function to a value very close to zero.

The objective is sufficiently smooth to be numerically differentiable using bi-directional

differentiation at a delta of 0.01. This should be sufficient to calculate approximate gradients

for standard errors once the minimum is found.

Based on the results of Pakes and Pollard (1989), the SMM estimator’s asymptotic dis-

tribution is normal with

√
Q(θ̂ − θ∗) d→ N(0, (1 + 1/Z)Λ−11 Λ2Λ

−1
1 ).
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To write the expressions for Λ1 and Λ2, first define the Jacobian matrix of the population

moments with respect to the parameters evaluated at θ∗

A = E [∇θ(gq − ĝq(θ∗))] .

Then one gets

Λ1 = A′DA,

and

Λ2 = A′DΩDA,

where Ω is the variance-covariance matrix of the population moments

Ω = E [(gq − ĝq(θ∗))(gq − ĝq(θ∗))′] .

A consistent estimator for the variance-covariance matrix of θ̂ is thus

1

Q
(Â′DÂ)−1 (Â′DΩ̂DÂ) (Â′DÂ)−1,

where Â and Ω̂ are consistent estimators of A and Ω and are calculated as

Â = ∇θ(GQ − ĜQ(θ̂)) and

Ω̂ =
1

Q

Q∑
q=1

(gq − ĝq(θ̂))(gq − ĝq(θ̂))′.
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Figure 1: Target and model-generated moments, all parameters fixed at initial values
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Data
Only data samples

The figure compares model-generated to data moments when all model parameters are fixed at their base
level (for the 1992/1995 samp). The only model input varying over time are the SCF samples that are fed
into the model as distribution of households’ state variables. Panel (A) shows home ownership rates, panel
(B) value-to-income ratios, and panel (C) loan-to-value ratios. Optimal model policies cause the majority
of existing home owners to stay in their current houses. Without taking into account realized price growth,
this implies counterfactually low model-implied value-to-income ratios.

43



Figure 2: Target and model-generated moments, with time-varying prices and interest rates.
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Data
Only data samples
Long run parameters

The figure compares model-generated to data moments when all estimated model parameters are fixed at
their base level (for the 1992/1995 samp). The only model input varying over time are the SCF samples
and realized rent-to-price ratios, interest rates, and price and income growth rates. Panel (A) shows home
ownership rates, panel (B) value-to-income ratios, and panel (C) loan-to-value ratios. Low interest rates and
rent-to-price ratios cause time variation in the model-predicted moments. Taking into account realized price
growth moves model-predicted value-to-income ratios close to their data value.
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Figure 3: Target and model-generated moments, estimated mean growth rate.
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Data
Long run parameters
Short run mean

The figure compares model-generated to data moments when the expected growth rate of house prices is set
to its estimated value for each period in addition to the time-varying inputs from 2. Panel (A) shows home
ownership rates, panel (B) value-to-income ratios, and panel (C) loan-to-value ratios. The mean estimates
are mainly identified from the home ownership rate in the data.
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Figure 4: Target and model-generated moments, estimated mean and down payment requirements.
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Data
Short run mean
Short run mean & δ

The figure compares model-generated to data moments when the expected growth rate of house prices and
down payment requirements are set to their estimated values for each period in addition to the time-varying
inputs from 2. Panel (A) shows home ownership rates, panel (B) value-to-income ratios, and panel (C)
loan-to-value ratios. The estimates of δt are mainly identified from house value-to-income ratios.
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Figure 5: Target and model-generated moments, all estimated parameters.
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Data
Short run mean & δ (1)
Short run  mean, vol & δ (2)

The figure compares model-generated to data moments when the expected growth rate of house prices, its
volatility, and down payment requirements are set to their estimated values for each period in addition to
the time-varying inputs from 2. Panel (A) shows home ownership rates, panel (B) value-to-income ratios,
and panel (C) loan-to-value ratios. The volatility estimates are mainly identified from loan-to-value ratios.
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Table 1: Short-run Model Inputs

Year t rt ζt αt δt m̂t σ̂H,t ∆Pt+1 ∆Yt+1

1998 3.24 1.43 5.40 * * * 10.0 8.0
2001 0.86 1.10 5.19 * * * 14.0 6.0
2004 0.73 0.93 4.02 * * * 16.0 5.0
2007 0.73 1.18 3.30 * * * −19.0 −2.0

All values annual in percent. rt is real average annualized in-
terest rate over the three-year period based on 3-year treasury
yields. αt is rent-to-price ratio calculated by rescaling 1992 base
value of 0.06 over time. ζt is calculated as the difference of the
30-year fixed conventional mortgage rate and 20-year treasury
yields.
* Minimum down payment (as percentage of house value) δt,
expected house price growth m̂t and volatility σ̂H,t are to be
estimated.
The last two columns contain realized aggregate house price and
income growth from t to t+ 1.

Table 2: Long-run Beliefs (s > 0)

Parameter Value

Interest rate rt+s 3
Rent-to-price ratio αt+s 5.5
Mortgage spread ζt+s 1.5
Minimum down payment δt+s 15
Expected price growth m̂t+s 2.5
Volatility of price growth σ̂H,t+s 17

All values annual in percent. The volatility
includes both aggregate regional (7%) and id-
iosyncratic (10%) components of housing re-
turn risk.

Table 3: Time-invariant Parameters

Parameter Value

Risk aversion γ 3
Sales transaction cost ν 10%
Maintenance share ψ 2%
Std.Dev.(εYit) 13%
Corr(εYit , ε

H
it ) 0%

Income growth ĝ 2.5%
Cost of default κ 12%
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Table 4: Target Moments

Year HOR VTI LTV LTV(>58)

1992/1995 0.708 3.174 0.369 0.148
1998 0.712 3.168 0.380
2001 0.728 3.591 0.363
2004 0.744 4.114 0.387
2007 0.739 4.612 0.378
2010 0.718 3.977 0.436

VTI and LTV ratios computed for the subsample of
homeowners.

Table 5: Estimation Results

Parameter σ = 0.18 σ flexible

ρ 0.124 (0.007) 0.124 (0.007)
β 0.824 (0.013) 0.824 (0.023)
B̄ 2.585 (0.186) 2.113 (0.454)
φ 0.722 (0.222) 0.671 (0.114)

δ1998 0.127 (0.047) 0.098 (0.065)
δ2001 0.113 (0.067) 0.106 (0.044)
δ2004 0.152 (0.038) 0.152 (0.021)
δ2007 0.183 (0.043) 0.189 (0.055)

µ̂1998 0.033 (0.004) 0.034 (0.003)
µ̂2001 0.008 (0.003) 0.007 (0.005)
µ̂2004 0.026 (0.004) 0.027 (0.003)
µ̂2007 0.033 (0.004) 0.034 (0.006)

σ̂H,1998 0.124 (0.106)
σ̂H,2001 0.171 (0.077)
σ̂H,2004 0.259 (0.116)
σ̂H,2007 0.199 (0.065)

Asymptotic standard errors in parenthesis. The
estimates of m̂t and σ̂H,t are annual
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Table 6: Fraction of home owners who did not purchase their house during last three years

Data Model

Net wortha Net worth
≤ 30 > 30 > 150 ≤ 30 > 30 > 150

≤ 150 ≤ 150

1992/1995

Age ≤ 40 0.025 0.360 0.691 0.060 0.474 0.759
> 40 ≤ 61 0.025 0.547 0.826 0.045 0.585 0.922
> 61 0.045 0.782 0.924 0.070 0.905 0.997

1998

Age ≤ 40 0.020 0.322 0.693 0.026 0.448 0.867
> 40 ≤ 61 0.026 0.502 0.819 0.053 0.608 0.961
> 61 0.072 0.868 0.928 0.111 0.917 0.986

2001

Age ≤ 40 0.002 0.297 0.638 0.050 0.276 0.504
> 40 ≤ 61 0.006 0.515 0.836 0.014 0.433 0.939
> 61 0.087 0.714 0.913 0.093 0.835 0.992

2004

Age ≤ 40 0.010 0.345 0.563 0.093 0.393 0.464
> 40 ≤ 61 0.056 0.481 0.803 0.027 0.377 0.837
> 61 0.024 0.631 0.875 0.054 0.736 0.995

2007

Age ≤ 40 0.095 0.396 0.592 0.171 0.551 0.603
> 40 ≤ 61 0.012 0.487 0.831 0.006 0.416 0.762
> 61 0.043 0.723 0.877 0.005 0.730 0.980

All averages computed for the subsample of home owners in each
cell, using SCF sampling weights.
a

Net worth is the SCF variable with that name measured in thou-
sands of 2001 dollars.
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Table 7: Cross-sectional model fit in base period (1992/1995)

Data Model

Net wortha Net worth
≤ 30 > 30 > 150 ≤ 30 > 30 > 150

≤ 150 ≤ 150

Home Ownership Rate

Age ≤ 40 0.165 0.588 0.946 0.090 0.442 0.790
> 40 ≤ 61 0.139 0.698 0.961 0.687 0.942 0.933
> 61 0.098 0.806 0.966 0.634 0.778 0.799

Value-to-Income Ratio

Age ≤ 40 2.449 2.056 2.458 2.174 2.491 2.665
> 40 ≤ 61 2.469 2.394 2.629 2.590 2.901 2.703
> 61 0.998 3.737 5.585 2.766 3.821 5.072

Loan-to-Value Ratio

Age ≤ 40 0.678 0.632 0.493 0.847 0.718 0.284
> 40 ≤ 61 0.631 0.459 0.353 0.817 0.480 0.098
> 61 0.197 0.174 0.086 0.781 0.144 0.009

All averages computed using SCF sampling weights.
a

Net worth is the SCF variable with such name measured in thou-
sands of 2001 dollars.
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