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Abstract

We introduce a model of homophily that does not rely on the assumption of ho-

mophilous preferences. Rather, it builds on the dual process account of Theory of Mind

in psychology which focuses on the role of introspection in decision making. Homophily

emerges because players find it easier to put themselves in each other’s shoes when they

share a similar background. The model delivers novel comparative statics that emphasize

the interplay of cultural and economic factors. We investigate how the socially optimal

level of homophily varies with the economic environment.
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1. Introduction

Homophily, the tendency of people to interact with similar people, is a widespread phe-

nomenon that has been studied in a variety of different fields, ranging from economics (Ben-

habib et al., 2010), to organizational research (Borgatti and Foster, 2003), social psychology

(Gruenfeld and Tiedens, 2010), political science (Mutz, 2002), and sociology (McPherson et al.,

2001). Homophily produces segregated social and professional networks, affect hiring and pro-

motion decisions, investment in education, and the diffusion of information. For decades,

these matters have been at the center of political confrontations and public policy. Thus,

understanding the root sources of homophily is of paramount importance.

Much of the existing literature explains homophily by assuming a direct preference for

associating with similar others (see Jackson, 2008, for a survey). However, without a theory

of the determinants of these preferences, it is difficult to explain why homophily is observed

in some cases, but not in others (beyond positing homophilous preferences only in the former

cases). Moreover, it is difficult to assess the welfare implications of policy interventions in

such models.

We provide a theory of homophily that is not based on homophilous preferences. Rather,

we explain these preferences by showing that people can gain by interacting with similar

others if that reduces strategic uncertainty. This makes it possible to evaluate different policy

interventions. Moreover, it allows us to derive clear and intuitive comparative statics.

Our starting point is that to understand people’s tendency to interact with similar others,

we need to unpack the black box of cultural identity. Following Kreps (1990), we view culture

as a means to reduce strategic uncertainty. When there is uncertainty about what action

is appropriate, cultural rules can act as focal principles. As a metaphor for situations that

are characterized by strategic uncertainty, we consider (pure) coordination games like the

following:

s1 s2

s1 1,1 0,0

s2 0,0 1,1

Such games are rife with strategic uncertainty: the payoff structure provides little guidance.

However, there may be a focal point, which may depend on the context in which the game is

played. If players share a cultural code, and may successfully coordinate by jointly inferring

the focal point from the context of the game.

To model players’ behavior, we build on the dual process account of Theory of Mind in

psychology.1 The dual process account of Theory of Mind posits that an individual can form

1See Epley and Waytz (2010) for a survey. The dual process account of Theory of Mind relies on a rapid
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an instinctive understanding of another person’s beliefs, by putting himself in the other’s

position, and then adapt his views through reasoning. To capture this, we assume that each

player has some initial (random) impulse telling him which action is appropriate. A player’s

first reaction is to follow his impulse. After some introspection, the player realizes that he

may act on instinct and so, his opponent may also act on instinct. In addition, the impulse

of the opponent may be similar to his own. This means that impulses can be used as input to

form initial beliefs. But if the player thinks a little more, he realizes that his opponent may

have gone through a similar reasoning process, leading the player to revise his initial beliefs.

This process continues to higher orders. The limit of this procedure, where players go through

the entire reasoning process in their mind before making a decision, defines an introspective

equilibrium.

A key assumption is that players find it easier to project themselves into the role of players

that are similar to them, in line with neurological and behavioral evidence (de Vignemont and

Singer, 2006; Jackson and Xing, 2014). In the context of our model, this is because players

with a shared cultural background may have similar ideas about which action is appropriate

in a given context. Formally, players belong to different groups, and initial impulses are

(imperfectly) correlated within groups and independent across groups. So, if impulses are

highly correlated, players from the same group are likely to agree on which action is focal in

a particular context.

Our first result shows that in the unique introspective equilibrium, each player follows his

initial impulse. So, the naive response of following one’s initial impulse is optimal under the

infinite process of reasoning through higher-order beliefs. This holds even if impulses are noisy

and people from different subcultures have uncorrelated impulses. It now follows that players

coordinate more effectively if they belong to same group. This provides an incentive to choose

activities that enhance the chances of meeting similar people, that is, to be homophilous.2

If group membership is not observable, players can enhance their chances of interacting

with members of their own group, for example, by choosing a project (e.g., a hobby, profession,

or neighborhood). We consider an an extended game where players first choose a project and

subsequently play the coordination game with an opponent that has chosen the same project.

We analyze this extended game using the same method as before. Players introspect on their

impulses, use them to form initial beliefs and modify them through higher-order reasoning.

instinctive process and a slower cognitive process. As such, it is structurally similar to the two-systems account

of decision-making under uncertainty, as popularized by Kahneman (2011). The foundations of dual process

theory go back to the work of the psychologist William James (1890/1983). See Section 2 for an extended

discussion.
2Alternatively, players could reduce the risk of miscoordinating by learning the cultural code of the other

group (Lazear, 1999). However, this may be costly.
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We show that there is a unique introspective equilibrium. In the unique equilibrium, similar

players overwhelmingly choose the same project, regardless of their intrinsic sentiments over

projects. Thus, the introspective process leads players to coordinate effectively. The level of

homophily depends on economic incentives (i.e., the coordination payoffs) and the strength of

cultural identity (i.e., similarity in impulses within a group). So, when focal points depend on

cultural background and on the context, introspection leads to homophily.

These results allow us to explain why we observe homophily in some settings, but not in

others, even if the underlying game is the same. For example, in rapidly changing environ-

ments, organizational culture may not strongly guide initial impulses, and this leads to more

integrated networks (Staber, 2001). Consistent with these observations, our model predicts

that the level of homophily is lower when cultural identity is weaker. In addition, the mech-

anism that leads people to seek out similar others may also lead them to become similar on

other dimensions as well. For example, in order to associate with others that have similar

values, people choose the same hobbies, professions, or clubs as they do (Kossinets and Watts,

2009).3

We then turn to the question of optimal social structure. We consider a policy maker

who faces uncertainty about the game. With some probability, both actions are equally

profitable; and with some probability, coordination on one of the actions is more profitable

than coordination on the other, and potentially much more so, perhaps following an innovation.

The policy maker chooses the level of homophily before payoffs are realized. Players observe

the payoffs and then play the game, following the introspective process introduced earlier. We

investigate how the social structure that maximizes social welfare depends on the economic

environment.

If the economic environment is stable, so that with high probability, the game is close to

the pure coordination game considered above, it is socially optimal to have high levels of ho-

mophily. Intuitively, increasing the probability that players interact with members of their own

group reduces strategic uncertainty. Naturally, strengthening players’ cultural identity further

reduces strategic uncertainty, and increases social welfare, even if it leads to segregation. This

could shed light on the effects of policies aimed at strengthening cultural identity, for example

in organizations (e.g., Tichy and Sherman, 2005) and at the national level (Macdonald, 2012).

The conclusions are starkly different in an uncertain economic environment, where there

is a high probability that an innovation makes one of the actions much more profitable than

the others. In this case, social welfare is maximal if there is a minority of a significant size.

3This is different from the well-known phenomenon that individuals who interact frequently influence each

other, and thus become more similar in terms of behavior (e.g., Benhabib et al., 2010). Here, becoming more

similar is a pre-condition for interaction, not the result thereof.
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Intuitively, a member of the minority group faces less pressure to conform than a member

of the majority group. This is because a player from the minority group is unlikely to be

matched with a player from his own group, and thus faces only a weak incentive to select

the action that he thinks members of his own group are likely to take. He may thus take

the high-payoff action even if it goes against his impulse. To maximize social welfare, this

non-conformist behavior of the minority has to spill over to the majority, so that all players

choose the high-payoff action. This can happen only if the minority has a critical mass. Again,

strengthening players’ cultural identity reduces strategic uncertainty, but the welfare effects

are now opposite: social welfare is lower when cultural identity is stronger. Intuitively, the

stronger players’ cultural identity, the stronger the pressure to conform, and thus the harder

it is for players to choose the high-payoff action when it is against their impulse.

So, whereas a segregated society with a strong cultural identity does well in a stable

economic environment, the same factors that make such a society successful at coordinating

in a stable economic environment limits its flexibility when an innovation may make one of

the actions superior. By contrast, more integrated societies with a weaker cultural identity

have the agility to perform well in such an uncertain environment. Formally modeling a

mechanism that can capture these common intuitions has several benefits. First, it allows

us to characterize the conditions under which segregation or integration are socially optimal.

Moreover, it allows us to ask how the optimal size of the minority varies with primitives such

as the strength of players’ cultural identity and the coordination payoff. Finally, it suggests

a rationale for promoting diversity even in the absence of complementarity of skills across

groups: a more diverse society harbors dissent, and dissent may prevent excessive conformism

in the face of innovations, even if it hampers players’ ability to coordinate in other settings.

Thus far, we have assumed that all players are matched with exactly one other player.

Section 5 develops an extension of the model that can capture network formation, by allowing

players to interact with multiple players at a cost. The level of homophily can now be even

higher, as greater success in coordinating with similar others translates into greater incentives

to form connections. In addition, the model accommodates important properties of social

and economic networks. Since these features arise endogenously, the model provides novel

testable hypotheses about how these properties change when the fundamentals vary. For

example, when cultural identity is strong, networks tend to be densely connected, with high

levels of homophily and significant inequality in the number of connections. This means that

the network consists of a tightly connected core of gregarious players from one group, with a

periphery of hermits from the other group that are loosely connected with the core, consistent

with empirical observations of social and economic networks (Jackson, 2008).

The heart of our contribution lies in the modeling of players’ reasoning process. In a
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setting where standard equilibrium refinements have no bite,4 we show that simply taking

into account players’ reasoning process is a powerful method to obtain uniqueness in a range

of different settings. This equilibrium uniqueness in turn allows us to derive intuitive yet

subtle comparative statics, and allows us to assess the welfare implications of commonly used

policies.

1.1. Related literature

Homophily is a widespread phenomenon that has important economic implications, af-

fecting hiring and promotion decisions, the spread of information, and educational outcomes

(Jackson, 2014). The literature on homophily in economics mostly assumes homophilous pref-

erences and investigates the implications for network structure and economic outcomes (e.g.,

Schelling, 1971; Alesina and La Ferrara, 2000; Currarini et al., 2009; Golub and Jackson, 2012;

Alger and Weibull, 2013), with Baccara and Yariv (2013) and Peski (2008) being notable ex-

ceptions.5 By contrast, we derive players’ incentives to interact with similar others from a

desire to reduce strategic uncertainty. This makes it possible to obtain intuitive comparative

statics and to evaluate the tradeoffs inherent in diversity policies. In its aim to explain in-

teraction patterns from underlying economic drivers, our paper is related on the literature on

residential segregation (e.g., Bénabou, 1993, 1996; Durlauf, 1996; Cutler and Glaeser, 1997).

Unlike much of that literature, we abstract away from specific sources of complementarities

or externalities. Our results thus suggest that segregation can be a natural outcome in a wide

range of environments, even if none of the mechanisms previously considered in the literature

(e.g., peer effects, externalities in public good provision) are present. Moreover, in contrast

with much of the literature, there is no asymmetry across groups in skills, wealth, or spillovers

in our model (either exogenous or endogenously derived). Again, this greatly expands the

range of settings where homophily and segregation can be expected to arise, and it allows us

to analyze measures aimed at influencing interactions when no group is universally seen as a

4Like other models that explain homophily and segregation, the games we study have multiple equilibria

with sometimes very different properties (Appendix B). While other papers have dealt with equilibrium mul-

tiplicity by focusing on the subset of equilibria that satisfy a stability property (e.g., Alesina and La Ferrara,

2000; Bénabou, 1993; Sethi and Somanathan, 2004), such refinements are not always strong enough to give

uniqueness.
5In a public good provision model, Baccara and Yariv (2013) show that groups are stable if and only if their

members have similar preferences. Peski (2008) shows that segregation is possible if players have preferences

over the interactions that their opponents have with other players (also see Peski and Szentes, 2013). No

such assumption is needed for our results. Also, Greif (1993) shows that it may be optimal for individuals to

interact with members of the own group if there are market imperfections. We show that homophily may be

optimal even in the absence of market imperfections.
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more desirable partner than another.

The process we consider bears some resemblance with level-k models (see Crawford et al.,

2013, for a survey). A key difference is that we are interested in equilibrium selection, while the

level-k literature focuses on nonequilibrium behavior. Indeed, one contribution of our paper

is that it demonstrates that modeling players’ reasoning process can give rise to new insights

even if one focuses on the equilibrium limit. Another difference is that the level-k literature

does not consider payoff-irrelevant signals such as impulses, which are critical in our setting.

Our model is also very different from global games (e.g., Morris and Shin, 2003), as there is

no payoff uncertainty in our model. Importantly, global games do not select an equilibrium

in all pure coordination games, while our process does.6

Our work sheds light on experimental findings that social norms and group identity can

lead to an efficient equilibrium and can improve coordination, as in the minimum-effort game

(Weber, 2006; Chen and Chen, 2011), the provision point mechanism (Croson et al., 2008)

and the Battle of the Sexes (Charness et al., 2007; Jackson and Xing, 2014). Chen and Chen

(2011) explain the high coordination rates on the efficient equilibrium in risky coordination

games in terms of social preferences. Our model provides an alternative explanation, based on

beliefs: players are better at predicting the actions of players with a similar background. Our

mechanism operates even if no equilibrium is superior to another, as in some pure coordination

games.

2. Coordination, culture and introspection

There are two groups, A and B, each consisting of a unit mass of players. Members of

these groups are sometimes called A-players and B-players, respectively. Group membership

is not observable. Players are matched with an opponent of the same group with probability

p̂ ∈ (0, 1]. In this section, the probability p̂ is exogenous. In Section 3, we endogenize p̂.

Players that are matched interact in a coordination game, with payoffs given by:

s1 s2

s1 v,v 0,0

s2 0,0 v,v

Payoffs are commonly known. Nature draws a (payoff-irrelevant) state θG = 1, 2 for each

group G = A,B, independently across groups. The state is the focal point of the group. So,

6The introspective process also bears some formal resemblance to the deliberative process introduced by

Skyrms (1990). Skyrms focuses on the philosophical underpinnings of learning processes and the relation with

classical game theory.
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if θA = 1 then the culture of A-players takes s1 to be the appropriate action in the current

context. Ex ante, states 1 and 2 are equally likely for both groups.

Each player has an initial impulse to take an action. Their impulse is influenced by their

culture. That is, a player’s initial impulse is more likely to match the focal point of his group

than the alternative action. So, if θA = 1 then A-players initial impulse is to take action s1

with probability q > 1
2
, independently across players. The same statement holds for B-players.

When q is close to 1, a player’s culture strongly guides initial impulses. When q is close to 1
2
, a

player’s culture has a negligible influence on initial impulses. Thus, players have an imperfect

understanding of their cultural code.

A player’s first instinct is to follow his initial impulse, without any strategic considerations.

We refer to this initial stage as level 0. At higher levels, players realize that if their opponent

is in the same group, then they are likely to have a similar impulse. So, by introspecting

(i.e., by observing their own impulses), players obtain an informative signal about what their

opponents will do. At level 1, a player formulates a best response to the belief that his

opponent will follow her impulse. This process needs not stop at level 1. At level k > 1,

players formulate a best response to the belief that the opponent is at level k − 1. Together,

this constitutes a reasoning process of increasing levels. These levels do not represent actual

behavior; they are constructs in a player’s mind. We are interested in the limit of this process,

as the level k goes to infinity. If such a limit exists for each player, then the profile of such

limiting strategies is referred to as an introspective equilibrium.

This approach is motivated by the dual process account of the Theory of Mind in psychology

(Apperly, 2012; Baron-Cohen et al., 2013; Epley and Waytz, 2010; Fiske and Taylor, 2013).

The key idea behind this approach is that reasoning about other people’s beliefs and desires

involves reasoning about unobservable mental states, which starts from a base of readily

accessible knowledge and proceeds by adjusting instinctive responses in light of less accessible

information, for example, how the other person’s mental state may differ from one’s own. So,

while people have instinctive reactions (modeled here with impulses), they may modify their

initial views using theoretical inferences about others (captured here by the different levels).7,8

7These ideas have a long history in philosophy. According to Locke (1690/1975) people have a faculty

of “Perception of the Operation of our own Mind” which, “though it be not Sense, as having nothing to do

with external Objects; yet it is very like it, and might properly enough be call’d internal Sense,” and Mill

(1872/1974) writes that understanding others’ mental states first requires understanding “my own case.” Kant

(1781/1997) suggests that people can use this “inner sense” to learn about mental aspects of themselves, and

Russell (1948) observes that “[t]he behavior of other people is in many ways analogous to our own, and we

suppose that it must have analogous causes.”
8Kimbrough et al. (2013) interpret Theory of Mind as the ability to learn other players’ payoffs, and shows

that this confers an evolutionary benefit in volatile environments.
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A critical assumption is that players’ impulses are correlated (perhaps mildly) within groups

(i.e., q > 1
2
), that is, a player’s own impulses are informative of the impulses of similar players.

Thus, players find it easier to put themselves in the shoes of those from their own group. This

is consistent with experimental evidence from neuroscience and psychology that shows that

it is easier to predict the behavior or feelings of similar people (de Vignemont and Singer,

2006). This is also supported by experimental studies in economics (Currarini and Mengel,

2013; Jackson and Xing, 2014).

Our first result shows that the seemingly naive strategy of following one’s initial impulse

is the optimal strategy that follows from the infinite process of high order reasoning.

Proposition 2.1. There is a unique introspective equilibrium. In this equilibrium, each player

follows his initial impulse.

So, the reasoning process delivers a simple answer: it is optimal to act on instinct. In-

tuitively, the initial appeal of following one’s impulse is reinforced at higher levels, through

introspection: if a player realizes that his opponent follows his impulse, it is optimal for her

to do so as well; this, in turn, makes it optimal for the opponent to follow his impulse.

As is well-known, coordination games have multiple (correlated) equilibria. For example,

all players choosing action s1, regardless of their signal, is a correlated equilibrium. Moreover,

standard equilibrium refinements have no bite in pure coordination games such as the one

considered here. By contrast, the introspective process selects only one equilibrium. This

uniqueness will prove critical for predictions and comparative static results in the next sec-

tions.9

While it is natural to assume that nonstrategic players follow their impulse, our results

do not depend on this. For example, as long as each player is more likely than not to follow

his impulse, our results continue to hold. What is needed for our results is that players do

not have a strong predisposition to choose a fixed action, independent of context. Also, the

result does not hinge on the states of the groups being independent, or on impulses coming

in the form of action recommendations (as opposed to, say, beliefs about the other’s belief or

action).

Let Q := q2+(1−q)2 > 1
2

be the odds that two players from the same group have the same

initial impulse. If Q is close to 1, impulses are strongly correlated within a group. If Q is close

to 1
2
, impulses within a group are close to independent, as they are across groups. We refer to

Q as the strength of players’ cultural identity. Indeed, in a complex and unpredictable world,

9Bacharach and Stahl (2000) similarly show that if nonstrategic players favor a certain option in a coor-

dination game, then this advantage gets magnified at higher levels. However, they focus on nonequilibrium

outcomes, and their procedure does not guarantee uniqueness.
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cultural identity is a critical means to simplify otherwise excessive information flows (Jenkins,

2014, Ch. 12). While we focus on this particular aspect of identity, our notion of cultural

identity is broad in its scope: it encompasses social, ethnic, religious, and organizational

identity, among others, as these can all be a source of greater predictability.

In the unique introspective equilibrium, expected payoffs are:[
pQ+ (1− p) · 1

2

]
· v.

Thus:

Corollary 2.2. For every Q > 1
2
, the expected utility of a player strictly increases with the

probability p of being matched with a player from the own group.

Similar players are more likely to coordinate their actions on the focal point determined by

their culture (which may be context-dependent). If players share common cultural identity,

they are more likely to coordinate their actions on the focal point determined by their culture

(which may be context-dependent). This is consistent with experimental evidence that shows

that focal points may differ across groups, and may depend on the fine details of the decision

context (Weber and Camerer, 2003; Bardsley et al., 2009).

By Corollary 2.2, players have an incentive to seek out similar players,10 consistent with

work in social psychology and sociology showing that people want to interact with members of

their own group to reduce uncertainty (Hogg, 2007; Jenkins, 2014). We explore the implications

in the next section.

3. Homophily

In ordinary life, there is often no exogenous matching mechanism. People meet after they

have independently chosen a common place or a common activity. Accordingly, we model

an extended game in which there are two projects (e.g., occupations, clubs, neighborhoods),

labeled a and b. Players first choose a project and are then matched uniformly at random

with someone that has chosen the same project. Once matched, players play the coordination

game described in Section 2.

Each player has an intrinsic value for each project. Players in group A have a slight

tendency to prefer project a. Specifically, for A-players, the value of project a is drawn

uniformly at random from [0, 1], while the value of project b is drawn uniformly at random

10Similar results have been shown in other settings. See, for example, Phelps (1972) and Cornell and Welch

(1996) on hiring practices, Sethi and Yildiz (2014) on prediction and information aggregation, and Crawford

(2007) and Ellingsen and Östling (2010) on coordination and communication.
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from [0, 1 − 2ε], for small ε > 0. For B-players, an analogous statement holds with the roles

of projects a and b reversed. So, B-players have a slight tendency to prefer project b. Values

are drawn independently (across players, projects, and groups). Under these assumptions, a

fraction 1
2

+ ε of A-players intrinsically prefer project a, and a fraction 1
2

+ ε of B-players

intrinsically prefers project b (Appendix A). Thus, project a is the group-preferred project for

group A, and project b is the group-preferred project for group B. Such a slight asymmetry

in preferences between could result if some project fits better with culture-specific norms than

others (Akerlof and Kranton, 2000). Players’ payoffs are the sum of the intrinsic value of the

chosen project and the (expected) payoff from the coordination game.

Players follow the same process as before. At level 0, players follow their impulse and

select the project they intrinsically prefer. At level k > 0, players formulate a best response

to actions selected at level k− 1: a player chooses project a if and only if the expected payoff

from a is at least as high as from b, given the choices at level k − 1. Let pak be the fraction of

A-players among those with project a at level k, and let pbk be the fraction of B-players among

those with project b at level k. The limiting behavior, as k increases, is well-defined.

Lemma 3.1. The limit pπ of the fractions pπ0 , p
π
1 , . . . exists for each project π = a, b. Moreover,

the limits are the same for both projects: pa = pb.

Let p := pa = pb be the limiting probability in the introspective equilibrium. So, p is the

probability that a player with the group-preferred project is matched with a player from the

same group. Let the level of homophily h := p − 1
2

be the difference between the probability

that a player with the group-preferred project meets a player from the same group in the

introspective equilibrium and the probability that he is matched with a player from the same

group uniformly at random, independent of project choice. When the level of homophily is

close to 0, there is almost full integration. When the level of homophily is close to 1
2
, there is

nearly complete segregation.

There is a fundamental difference between exogenous and endogenous matching. When

matching is exogenous, as in Section 2, players end up following their impulses after they have

gone through the entire reasoning process. Thus, their ability to successfully coordinate is

determined by their cultural identity, that is, by the degree to which their culture shapes their

initial impulses over actions. In contrast, in the case of endogenous matching, players may

not act on impulse. Intuitively, at level 1, player realize that there is a slightly higher chance

of meeting a similar player if they choose the group-preferred project. So, players may select

the group-preferred project even if their intrinsic value for the alternative project is slightly

higher. At level 2 an even higher fraction of agents may select the group-preferred project

because the odds of finding a similar player this way are now higher than at level 1. So, the
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attractiveness of the group-preferred project is reinforced throughout the entire process in

this case. It is possible that all players, even those who have a strong intrinsic preference for

the alternative project, choose the group-preferred project. Complete segregation may arise

even in cases where there would be almost complete integration if players were to act on their

initial impulses (i.e., ε small). In this sense, introspection and reasoning are root causes of

segregation. This intuition is formalized in the next result.

Proposition 3.2. There is a unique introspective equilibrium. In the unique equilibrium, there

is complete segregation (h = 1
2
) if and only if

v(Q− 1
2
) ≥ 1− 2ε.

If segregation is not complete (h < 1
2
), then the equilibrium level of homophily is given by:

h =
(1− 2ε)

4v2(Q− 1
2
)2
·
[
2v(Q− 1

2
)− 1 +

√
4v2(Q− 1

2
)2

1− 2ε
− 4v(Q− 1

2
) + 1

]
.

In any case, the equilibrium level of homophily exceeds the initial level of homophily (i.e.,

h > ε).

Proposition 3.2 characterizes the introspective equilibrium. In the unique equilibrium, a

large share of players choose the group-preferred project. In fact, strategic considerations

always produce more segregation than would follow from differences in intrinsic preferences

over projects alone (i.e., h > ε). The result demonstrates that a strong cultural identity

may give rise to segregation. If cultural identity is sufficiently strong, then all players choose

the group-preferred project, regardless of their intrinsic preferences. So, introspection and

reasoning may lead to complete segregation even if players do not have any direct preferences

for interacting with similar others and, ex ante, players have arbitrarily similar preferences

over projects (i.e., ε small). The comparative statics for the level of homophily follow directly

from Proposition 3.2:

Corollary 3.3. The level of homophily h increases with the strength of the cultural identity Q

and with the coordination payoff v. Cultural identity and economic incentives are complements:

the level of homophily is high whenever either cultural identity or the coordination payoff is

high.

Figure 1 shows the level of homophily as a function of the coordination payoff v and the

strength of players’ cultural identity Q. Regardless of the strength of the cultural identity,

the level of homophily increases with economic incentives to coordinate. These comparative

statics results deliver clear and testable predictions for the model. That is, even if it is not
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Figure 1: The equilibrium level of homophily h as a function of the coordination payoff v and

the strength of players’ cultural identity Q.

possible to observe the strength of players’ cultural identity, the model still predicts a positive

correlation between coordination payoffs and homophily. Also, when cultural rules provide

clear guidance (i.e., Q close to 1), the level of homophily increases.

While intuitive, these predictions require a form of equilibrium selection, which we obtain

here through the dual process account of Theory of Mind. Standard analysis delivers a mul-

tiplicity of equilibria. Some of these equilibria are highly inefficient. For example, there may

be equilibria in which all players choose the non-group preferred project (e.g., all A-players

choose project b); see Appendix B. In such equilibria, the majority of players choose a project

that they do not intrinsically prefer. Choosing a project constitutes a coordination problem,

and inefficient lock-in can occur in equilibrium. In contrast, when players are introspective,

the majority always chooses the group-preferred project, society avoids inefficient lock-in, and

successful coordination on the payoff-maximizing outcome ensues. In turn, this gives rise to

unambiguous and intuitive comparative statics for the introspective equilibrium.

Our framework suggests that any aspect of identity that affects predictability, like religion,

a shared upbringing, educational background or profession, may be a basis for homophily,

while other aspects, such as height, are less likely sources. Thus, our framework captures

what sociologists call value homophily (McPherson et al., 2001). By emphasizing predictability

and strategic uncertainty, our model can shed light on why preferences for interacting with

other groups are often situational. For example, homophily on the basis of race is reduced

substantially when individuals are similar on some other dimension, such as socioeconomic

status (Park et al., 2013). This suggest that individuals do not have some immutable preference

or dislike of other groups. It can also help understand why individuals may have a tendency

13



to identify with groups that strongly distinguish themselves in their values and practices,

even if these distinctions are valued negatively (Ashford and Mael, 1989). Also, if homophily

is driven by a desire to reduce strategic uncertainty, this may explain interaction patterns

when identities are nested. As strategic uncertainty is reduced more when groups have a

stronger identity, individuals may have a preference for interacting with people that match

their narrowly defined identity rather than a more broadly defined one (e.g., Korean-Americans

vs. Asian-Americans); but when given the choice between individuals that fit their broader

identity and people with a distinct cultural background, they prefer to interact with someone

with whom they share some some commonality (e.g., Asian-Americans vs. Americans at

large), consistent with empirical evidence (Nagel, 1994; Ashford and Johnson, 2014). Finally,

the incentives for segregation are not affected by the type of the other group in our model,

provided that the degree of strategic uncertainty is kept constant. If a group, say B, is

replaced by another group B′, and B′-players are as unpredictable for members of group A as

B-players (and vice versa), then the level of homophily remains unchanged. This is consistent

with empirical evidence which shows that homophily often stems from beneficial interaction

with similar players, rather than a dislike of a particular group of outsiders (e.g., Marsden,

1988; Jacquemet and Yannelis, 2012). While these features can potentially be captured by

models that directly posit homophilous preferences (e.g., Alesina and La Ferrara, 2000), this

would require tailoring preferences to observed phenomena. More fundamentally, it would not

allow one to predict interaction patterns ex ante, from primitives.

Our results do not depend on our specific assumptions, such as the exact assumptions

on preferences or the signal structure.11 Moreover, similar results obtain in variations of the

model. In Appendix C, we show that our results also go through if players cannot sort by

choosing projects, but instead can signal their identity using markers, that is, observable

attributes such as tattoos or specific attire. Again, high levels of homophily can arise in

equilibrium, with a large share of players choosing the group-preferred marker. These results

help explain why groups are often marked by seemingly arbitrary traits (Barth, 1969).

On the other hand, our framework can also be used to investigate the conditions under

which homophily is limited. One possibility is that players from different groups can have

complementary skills. Our model can easily accommodate this possibility, by assuming that

11For example, the assumption that there are group-preferred projects can be relaxed substantially. All we

need is that there is some asymmetry in intrinsic preferences over projects between groups. In particular, our

results go through if a (large) majority of both groups (intrinsically) prefer a certain project, say a, as long as

one of the groups has an even stronger preference for that project than the other. Our results also continue

to hold if players can “opt out” of the coordination game by choosing an outside option that gives each player

a fixed utility ū, independent of which other players choose this option or what further actions players take.
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players receive a payoff V > v if they coordinate with someone from the other group (and

a payoff v if they coordinate with a member of their own group). This makes that players

need to trade off the greater likelihood of successfully interacting with the own group with the

higher payoffs from interacting with the other group, conditional on successful coordination. In

Appendix D, we define the marginal benefit of interacting with the own group, which captures

this tradeoff. We show that there is significant homophily in equilibrium if and only if the

marginal benefit of interacting with the own group is positive.

4. Welfare and policy implications

Our model can help elucidate economic tradeoffs inherent in policies aimed at enhancing

diversity or strengthening cultural identity. We consider a policy maker who aims to maximize

social welfare, that is, the sum of coordination payoffs and product values. As social interaction

patterns are typically stable and do not readily adjust, a policy maker may want to take into

account how payoffs are likely to change in setting his policy. To capture this, we consider a

policy maker that faces uncertainty about payoffs at the time he chooses a policy. Specifically,

one of the actions may give higher payoffs than the other, perhaps following a technological

innovation. That is, the game is given by:

s1 s2

s1 v∗,v∗ 0,0

s2 0,0 v,v

where v∗ ≥ v > 0. Thus, successful coordination on action s2 gives players a payoff of v, as

before, while coordinating on s1 gives them a potentially higher payoff, v∗. We refer to action

s1 as the Pareto superior action. Before payoffs are realized, the policy maker chooses the

level of homophily to maximize social welfare, that is, the sum of coordination payoffs and the

value of derived from projects. After payoffs are realized, players observe the payoffs v and

v∗ to both actions and play the coordination game, taking the level of homophily as given.

When choosing their action in the coordination game, they follow the same introspective

process described earlier: each player has an impulse, and goes through infinitely many levels

of introspection.12

We contrast the case where a technological innovation is unlikely to the case where the

gains from an innovation can be large. We capture this by assuming that the ratio v∗/v of

12Again, the results presented in this section are robust to changes in distributional assumptions. In addition,

similar results are obtained in a multi-period extension where payoffs are fixed for some time, with an innovation

occurring at some random time.
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coordination payoffs follows a Pareto distribution. Thus, the probability that the ratio v∗/v

is at least y ≥ 1 is y−α, for some α > 1. When α is large, the payoff v∗ equals v with high

probability, and we say that the economic environment is stable. In the limit α = ∞, we

are back in the benchmark case where payoffs are fixed: v∗ = v with probability 1. On the

other hand, if α is close to 1, then the expected value of v∗ grows arbitrarily large, and we

say that the economic environment is uncertain. The parameter α thus measures the degree

of economic stability.

The socially optimal level of homophily hα is the level of homophily that maximizes social

welfare Wα(h), given by

Wα(h) = Cα(h) + Π(h),

where Cα(h) is the total coordination payoff and Π(h) is the total value that players assign

to projects (assuming that the share p = h+ 1
2

of players with the highest intrinsic preference

for the group-preferred project chooses that project).13

4.1. Stable economic environments

In a stable economic environment, there is only a small probability that a technological

innovation increases the payoffs of one of the actions. In the limit α = ∞, payoffs are fixed:

the coordination payoff to either action is v. This is the benchmark case we have studied so

far. The next result shows that the socially optimal level of homophily in a stable economic

environment is arbitrarily close to the socially optimal level of homophily when payoffs are

fixed.

Proposition 4.1. The socially optimal level of homophily in a stable economic environment

is arbitrarily close to the socially optimal level of homophily when payoffs are fixed, that is, hα

converges to h∞ as α→∞. Moreover, social welfare also converges: Wα(hα)→ W∞(h∞).

In the remainder of this section, we concentrate on the benchmark case, for simplicity. By

Proposition 4.1, the results hold approximately for stable economic environments where there

is a small probability of a technological innovation. The next result characterizes the socially

optimal level of homophily for the benchmark case:

Proposition 4.2. Suppose payoffs are fixed (i.e., α =∞). Full segregation is socially optimal

(i.e., h∞ = 1
2
) if and only if

Q · (v − 1
2
) ≥ 1

2
− ε.

13We can thus think of the policy maker as setting a threshold t such that players whose intrinsic preference

for the group-preferred project is at least t choose that project, in such a way that the share of the players

choosing the group-preferred project equals p = h+ 1
2 .
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If full segregation is not socially optimal (i.e., h∞ < 1
2
), then the socially optimal level of

homophily is given by:

h∞ =
(1− 2ε)

4(Qv − 1
2
V )2
·
[
Qv − 1

2
V − 1

4
+

√
4(Qv − 1

2
V )2

1− 2ε
− 1

2
(Qv − 1

2
V ) + 1

16

]
.

In all cases, the fraction of players choosing the group-preferred project exceeds the initial level

(i.e., h∗ > ε).

When the level of homophily h is high, strategic uncertainty is limited, so that the total

coordination payoff C∞(h) is high. However, players may choose a project that they do not

intrinsically prefer, and this is reflected in the value derived from projects Π(h). The social

optimum trades off these two factors.

Like the equilibrium level of homophily, the socially optimal level of homophily depends

on the strength of players’ cultural identity Q and on the economic benefits of coordination

v. When players’ cultural identity is strong and the economic benefits of coordination are

high, there are large gains from coordination, and the socially optimal level of homophily is

high. On the other hand, if cultural identity and economic incentives are weak, the benefit

from players choosing their intrinsically preferred project is relatively large, and the socially

optimal level is low. Thus:

Corollary 4.3. Suppose payoffs are fixed (i.e., α = ∞). The socially optimal level of ho-

mophily h∞ increases with the strength of the cultural identity Q and with the coordination

payoff v. Cultural identity and economic incentives are complements: the level of homophily

is high whenever either cultural identity or the coordination payoff is high.

As in the introspective equilibrium, the socially optimal level of equilibrium increases with

economic incentives and the strength of players’ cultural identity; and if cultural identity and

economic incentives are sufficiently strong, then full segregation is socially optimal. This is

illustrated in Figure 2.

We can compare the socially optimal level of homophily to the equilibrium level. It turns

out that there can be too little homophily in equilibrium:

Corollary 4.4. Suppose payoffs are fixed (i.e., α = ∞). The level of homophily in the

unique introspective equilibrium never exceeds the socially optimal level of homophily; and if

v · (Q − 1
2
) ≤ 1 − 2ε, the equilibrium level of homophily is strictly below the socially optimal

level of homophily.

The equilibrium level of homophily can be substantially lower than in the social optimum.

If cultural identity and economic benefits are of intermediate strength, full segregation is so-

cially optimal, while there is only partial segregation in equilibrium. Intuitively, there are
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Figure 2: The socially optimal level of homophily as a function of the coordination payoff v

and the strength of players’ cultural identity Q when payoffs are fixed (α =∞).

both positive and negative externalities associated with players choosing the group-preferred

project. Consider a player who considers switching to the group-preferred project. His switch-

ing increases the expected coordination payoff for the players with the group-preferred project,

as it increases the probability that they interact with players of their own group. On the other

hand, the switch lowers the expected coordination payoff to the players with the other project,

as there are now fewer players of their group with that project.14 Since there are more players

with the group-preferred project, the positive externality dominates the negative one, and

there tends to be too little homophily in equilibrium.

In a stable economic environment, a policy maker may thus want to increase the level of

homophily. While the economic incentives for coordination are typically determined by the

production technology (and thus outside the reach of the policy maker), we often observe

policies to strengthen cultural identity, such as subsidizing cultural programs. Such policies

can have both short-term and long-run effects. In the short run, strengthening cultural identity

affects the chances that players from the same group coordinate. This effect is given by the

partial derivative, ∂W∞

∂Q
, of social welfare with respect to Q. In the long run, the equilibrium

level of homophily also adjusts to a new level, and this in turn affects welfare. The long run

14A player’s choice also affects the payoffs of members of the other group. These effects go in the same

direction.
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Figure 3: (a) The socially optimal level of homophily as a function of players’ cultural identity

Q, for v = 1 (blue solid line), v = 2 (green dashed line), v = 10 (red dash-dotted line); (b)

Social welfare in equilibrium as a function of Q, again for different values of v. Payoffs are

fixed (α = ∞) and social welfare levels are normalized such that social welfare is equal to 1

(for all v) when Q = 1
2
.

effect of enhancing cultural identity is thus given by

dW∞

dh
=
∂W∞

∂Q
+
∂W∞

∂h
· dh
dQ

.

The next result shows that policies that strengthen cultural identity have positive effects both

in the short and the long run.

Corollary 4.5. Suppose payoffs are fixed (i.e., α = ∞). Policies that strengthen cultural

identity improve welfare both in the short run and in the long run, and lead to higher levels of

homophily.

The results are illustrated in Figure 3. Strengthening players’ cultural identity directly

reduces strategic uncertainty by increasing the chance that players from the same group co-

ordinate successfully. In addition, when cultural identity is stronger, the equilibrium level

of homophily increases, as players face now aa stronger incentive to interact with their own

group (Corollary 4.3). This further reduces strategic uncertainty, as the behavior of members

of the own group can be predicted with greater accuracy. Again, this is a robust prediction:

even if players’ cultural identity cannot be measured, the model still predicts that measures

that make the behavior of members of the own group more predictable improves welfare, while

leading to more segregation.
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These results could explain the popularity of policies that aim to strengthen cultural iden-

tity. For example, policies that strengthen an organization’s culture are often seen as key

to its success (e.g., Tichy and Sherman, 2005). Also, in 19th-century Europe, newly formed

nation states built national museums to strengthen national identity (Macdonald, 2012). And

social movements in 19th-century U.S. stimulated public school enrollment to build a new,

common identity (Meyer et al., 1979). While intuitive, the effects of such policies are difficult

to formalize within the standard framework, as the standard framework does not explicitly

model players’ their cultural identity. In addition, welfare implications may be ambiguous in

the standard framework. Since any introspective equilibrium is a correlated equilibrium, there

is a correlated equilibrium where strengthening cultural identity improves welfare. But, there

are also correlated equilibria in which a majority of the A-players chooses the non-group pre-

ferred project b (and analogously for the B-players). When cultural identity is strengthened,

the share of A-players choosing project b increases (as the incentive to segregate increases), as

in the unique introspective equilibrium. However, unlike in the introspective equilibrium, this

may lower social welfare.

4.2. Uncertain economic environments

Oftentimes, the economic environment is not stable, and a policy maker may need to choose

a policy before uncertainty is resolved. We consider the case where the potential gains from a

technological innovation grows without bounds: as the degree of economic stability α decreases

to 1, the expected payoff v∗ of coordination on the Pareto superior action goes to infinity. As

before, this is a useful benchmark case that allows us to emphasize the driving forces. To gain

more insight, it will be instructive to first consider the case where the policy maker cares only

about coordination payoffs. In other words, the policy maker does not put any weight on the

value that players derive from projects, so that his objective is to maximize Cα(h). Our first

result characterizes the level of homophily that maximizes coordination payoffs.

Proposition 4.6. The level of homophily that maximizes the total coordination payoff Cα(h)

converges to

hC :=
1

8Q− 2

as α decreases to 1.

So, the level of homophily that maximizes total coordination payoffs decreases with the

strength of players’ cultural identity. This is in sharp contrast with the results for stable

economic environments. In a stable economic environment, a policy maker that aims to
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maximize coordination payoffs (as opposed to social welfare) would opt for full segregation,

for any value of the parameters.

While the result may appear surprising at first sight, there is a clear intuition. Suppose a

player’s impulse is to choose the Pareto inferior action. At level 1, he realizes that members

of his own group are likely to have a similar impulse. Choosing the Pareto superior action is

a best response only if the payoff gain of going against his impulse is high relative to the risk

of miscoordinating, that is, if

v∗ · [p̂ · (1−Q) + (1− p̂) · 1
2
] ≥ v · [p̂ ·Q+ (1− p̂) · 1

2
]. (4.1)

For a player with the non-group preferred project, say, a B-player with project a, the proba-

bility that he interacts with a member of his own group is p̂ = 1− p if the level of homophily

is h = p− 1
2
. In that case, condition (4.1) becomes:

v∗

v
≥

p · 1
2

+ (1− p) ·Q
p · 1

2
+ (1− p) · (1−Q).

(4.2)

This holds for a large range of payoff ratios v∗/v if the probability 1 − p that the player

interacts with his own group is low. Intuitively, at level 1, a player formulates a best response

to the belief that other players are following their impulse. Since a player’s impulse is not

informative of the impulses of members of the other group, the risk of miscoordinating by

going against one’s impulse is mitigated if there is only a small probability of interacting with

the own group. In other words, the pressure to conform is limited. In that case, choosing the

Pareto superior action, even if it goes against one’s impulse, is a best response already for

moderate payoff ratios.

To maximize coordination payoffs, it is not sufficient that a small minority chooses the

Pareto superior action; the probability that players with the group-preferred project choose

the Pareto superior action should also be substantial. If B-players form a small minority

among the players with project a (i.e., 1 − p is low), A-players with project a face a high

probability of interacting with their own group, so that Eq. (4.1) is hard to satisfy for such

players. However, even if these players are unwilling to choose the Pareto superior action at

level 1 if it is against their impulse, they may be willing to do so after more introspection.

Suppose Eq. (4.2) holds, so that B-players with project a choose the Pareto superior action

at level 1. Also suppose that at level 1, it is not a best response for A-players with project a

to choose the Pareto superior action if it is against their impulse. At level 2, an A-player with

project a thus formulates a best response to the belief that A-players follow their impulse,

while B-players (with project a) choose the Pareto superior action regardless of their impulse.

Hence, it is a best response for this player to go against his impulse and choose the Pareto
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superior action if

v∗ · [p · (1−Q) + 1− p] ≥ v · [p ·Q],

where we have used that the probability p̂ of interacting with the own group equals p for

players with the group-preferred project. This holds if and only if

v∗

v
≥ pQ

1− pQ
. (4.3)

This condition holds for a large range of payoff ratios if the probability 1−p that a player with

the group-preferred project interacts with a member of the other group is high. Intuitively,

while having a small minority (i.e., 1 − p low) increases the probability that the minority

chooses the Pareto superior action even if it is against their impulse (i.e., Eq. (4.2) is satisfied

for a large range of payoff ratios), it decreases the chances that the majority will follow: when

the minority is small, members of the majority face a high risk of miscoordinating if they

choose the Pareto superior action against their impulse.

A policy maker thus has to balance two factors: the level of homophily has to be such

that (1) the minority is willing to choose the Pareto superior action even if it is against their

impulse and they expect all other players to follow their impulse (i.e., (4.2) holds); and (2) the

majority is willing to follow the minority (i.e., (4.3) holds). The optimal level of homophily in

Proposition 4.6 achieves this balance: it ensures that there is a minority that is small enough

so that it faces limited pressure to conform, while having the critical mass to influence the

majority. This is consistent with work on team composition and creativity. For example,

De Dreu and West (2001) and Gibson and Vermeulen (2003) show empirically that minority

dissent can make teams more innovative, but only if the minority can influence the decision

making process of the majority.

If a policy maker cares not only about coordination payoffs, but also about the value that

players derive from projects, the same intuitions apply, but the optimal level of homophily is

no longer monotonic in the strength of players’ cultural identity:

Proposition 4.7. In an uncertain economic environment (i.e., α ↓ 1), the socially optimal

level of homophily hα converges to the limiting level h1. There is Q∗ ∈ (1
2
, 1) such that:

• If the strength of players’ cultural identity is below Q∗, then h1 is strictly below the level

hC that maximizes coordination payoffs, and increases with Q; and

• If Q exceeds Q∗, then the socially optimal level of homophily h1 and the level of homophily

that maximizes coordination payoffs hC coincide, and decreases with Q.

So, there are two regimes, as can be seen in Figure 4(a). If cultural identity is strong (i.e.,

Q > Q∗), there is a strong pressure to conform. Any level of homophily that deviates from the
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Figure 4: (a) The socially optimal level of homophily as a function of players’ cultural identity

Q, for v = 1 (blue solid line), v = 2 (green dashed line), v = 10 (red dash-dotted line); (b)

Social welfare as a function of Q, again for different values of v. Results are for an uncertain

economic environment (α ↓ 1); and social welfare levels are normalized such that social welfare

is equal to 1 (for all v) when Q = 1
2
.

level hC that maximizes coordination payoffs results in a low probability that players choose

the Pareto superior action. Hence, it is socially optimal to set the level of homophily equal

to the level of homophily that maximizes coordination payoffs. On the other hand, if players’

cultural identity is weak (i.e., Q < Q∗), then the pressure to conform is not very strong, either

for the minority or the majority. This gives room to choose a level of homophily that is lower

than hC , so as to increase the share of players that chooses the project that they intrinsically

prefer.

As the coordination payoff v increases, the coordination motive gains in importance relative

to the value associated with players choosing the project that they intrinsically prefer. This

implies that there is a larger range of parameters for which the level of homophily is chosen

such that it maximizes coordination payoffs. This is formalized in the following result.

Corollary 4.8. The threshold Q∗ decreases with the coordination payoff v.

Figure 4(a) provides an illustration: as the coordination payoff v increases, it is optimal

to set the level of homophily equal to the level that maximizes coordination payoffs already

when cultural identity is not very strong. This is because the payoffs from coordination now

trump the value derived from projects.

Using the characterization in Proposition 4.7, we can ask how social welfare depends on

players’ cultural identity in an uncertain economic environment.
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Corollary 4.9. In an uncertain economic environment (i.e., α ↓ 1), social welfare decreases

with the strength of players’ cultural identity.

The result is illustrated in Figure 4(b). It is again in a marked contrast with the results

for stable economic environments. While in a stable economic environment, strengthening

cultural identity enhances players’ ability to coordinate, in an uncertain economic environment

this can be harmful, as it increases the pressure to conform. This means it is harder for a

policy maker to achieve a good balance, that is, to choose a level of homophily such that

the minority is small enough for it to face limited pressure to conform, yet large enough so

that it can influence the majority (i.e., to ensure that Eqs. (4.2) and (4.3) both hold). While

the conclusions of Corollaries 4.5 and 4.9 are different, the results really are two sides of the

same coin: strengthening players’ cultural identity decreases strategic uncertainty, and thus

enhances the pressure to conform. In a stable economic environment, this is beneficial, but in

an uncertain economic environment, this is not the case.

Proposition 4.7 suggests that it is optimal if the groups are integrated to some degree.

Policies that limit contact between individuals, while enhancing contact between others, can

be highly successful in shaping social interaction patterns. For example, in schools that limit

social choices and have prescribed formats of interaction, the share of intergroup friendships

is significantly higher than in schools where students are less restricted in their choice of peers

(McFarland et al., 2014). This may motivate policies that assign students to dormitories at

random, rather than letting them choose their own roommate (Boisjoly et al., 2006; Burns

et al., 2013; Sacerdote and Marmaros, 2006).

Standard equilibrium analysis cannot be used to derive results like the ones presented here.

In a standard equilibrium framework, one might argue that the Pareto superior equilibrium is

focal, and this is indeed the outcome of a dynamic process that operates through the gradual

accretion of precedent (Young, 1993). An advantage of our approach is that it can explain

why conformist societies may find it difficult to break out of low-payoff equilibria than more

open-minded societies (Mokyr, 1990), and how this interacts with social structure. In a more

integrated society or societies with a weak cultural identity, there is more behavioral variation,

and this gives the society an opportunity to escape bad equilibria, just like the unintentional

errors in the work of Young allow societies to establish efficient conventions.

5. Network formation

In many situations, people can choose how many people they interact with. So, we extend

the basic model to allow players to choose how much effort they want to invest in meeting
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others. We show that the basic mechanisms that drive the tendencies to segregate may be

reinforced, and that the model gives rise to network properties that are commonly observed

in social and economic networks.

To analyze this setting, it is convenient to work with a finite (but large) set of players.15

Each group G = A,B has N players, so that the total number of players is 2N . Players

simultaneously choose effort levels and projects in the first stage. They then interact in the

coordination game (with fixed payoffs, i.e., v∗ = v). Effort is costly: a player that invests

effort e pays a cost ce2/2. By investing effort, however, a player meets more partners to play

the coordination game with (in expectation). Specifically, if two players j, ` have chosen the

same project π = a, b, and invest effort ej and e`, respectively, then the probability that they

are matched (and play the coordination game) is

ej · e`
Eπ

,

where Eπ is the total effort of the players with project π.16 Thus, efforts are complements:

players tend to meet each other when they both invest time and resources. This is related

to the assumption of bilateral consent in deterministic models of network formation (Jackson

and Wolinsky, 1996). By normalizing by the total effort Eπ, we ensure that the network does

not become arbitrarily dense as the number of players grows large.17 So, the probability of

being matched with a member of the own group is endogenous here, as in Section 3. Matching

probabilities are now affected not only by players’ project choice, as in Section 3, but also by

their effort levels.

As before, at level 0 players choose the project that they intrinsically prefer. So, the

probability that a player chooses the group-preferred project is 1
2

+ ε. In addition, each player

chooses some default effort e0 > 0, independent of his project or group. At higher levels k,

each player formulates a best response to their partners choices at level k− 1. As before, each

player receives a (single) signal that tells him which action is appropriate in the coordination

game. He then plays the coordination game with each of the players he is matched to.18

A preliminary result is that the limiting behavior is well-defined, and that it is independent

of the choice of effort at level 0.
15Defining networks with a continuum of players gives rise to technical problems. Our results in Sections

2 and 3 continue to hold under the present formulation of the model (with a finite player set), though the

notation becomes more tedious.
16To be precise, to get a well-defined probability, if Eπ = 0, we take the probability to be 0; and if ej ·e` > Eπ,

we take the probability to be 1.
17See, e.g., Cabrales et al. (2011) and Galeotti and Merlino (2014) for applications of this model in economics.
18We allow players to take different actions in each of the (two-player) coordination games he is involved in.

Nevertheless, in any introspective equilibrium, a player chooses the same action in all his interactions, as it is

optimal for him to follow his impulse (Proposition 2.1).
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Figure 5: The level of homophily h as a function of the coordination payoff v and the strength

of players’ cultural identity Q (c = 1).

Lemma 5.1. The limiting probability p and the limiting effort choices exist and do not depend

on the effort choice at level 0.

As before, we have a unique introspective equilibrium, with potentially high levels of

homophily:

Proposition 5.2. There is a unique introspective equilibrium. In the unique equilibrium,

all players choose positive effort. Players that have chosen the group-preferred project exert

strictly more effort than players with the other project. In all cases, the fraction of players

choosing the group-preferred project exceeds the initial level (i.e., h > ε).

As before, players segregate for strategic reasons and the level of homophily is greater than

what would be expected on the basis of intrinsic preferences alone (i.e., h > ε). Importantly,

players with the group-preferred project invest more effort in equilibrium than players with the

other project. This is intuitive: a player with the group-preferred project has a high chance

of meeting people from her own group, and thus a high chance of coordinating successfully.

In turn, this reinforces the incentives to segregate.

Figure 5 illustrates the comparative statics of the unique equilibrium. As before, the

level of homophily increases with the strength of players’ cultural identity and with economic

incentives, and the two are complements. While the proof of Proposition 5.2 provides a full

characterization of the equilibrium, the comparative statics cannot be analyzed analytically, as
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the effort levels and the level of homophily depend on each other in intricate ways. We therefore

focus on deriving analytical results for the case where the network becomes arbitrarily large

(i.e., |N | → ∞). As a first step, we give an explicit characterization of the unique introspective

equilibrium:

Proposition 5.3. Consider the limit where the number of players in each group goes to infin-

ity. The effort chosen by the players with the group-preferred project in the unique introspective

equilibrium converges to

e∗ =
v

4c
·

(
1 + 2Q− 1

2h
+

√
4Q2 − 1 +

1

4h2

)
,

while the effort chosen by the players with the other project converges to

e− =
v

c
· (Q+ 1

2
)− e∗,

which is strictly smaller than the effort e∗ (while positive).

Proposition 5.3 shows that in the unique introspective equilibrium, the effort levels depend

on the level of homophily. The level of homophily, in turn, is a function of the equilibrium

effort levels. For example, by increasing her effort, an A-player with the group-preferred

project a increases the probability that players from both groups interact with her and thus

with members from group A. This makes project a more attractive for members from group

A, strengthening the incentives for players from group A to choose project a, and this leads

to higher levels of homophily. Conversely, if more players choose the group-preferred project,

this strengthens the incentives of players with the group-preferred project to invest effort, as

it increases their chances of meeting a player from their own group. This, in turn, further

increases the chances for players with the group-preferred project of meeting someone from

the own group, reinforcing the incentives to segregate. On the other hand, if effort is low,

then the incentives to segregate are attenuated, as the probability of meeting similar others is

small. This, in turn, reduces the incentives to invest effort.

As a result of this feedback loop, there are two different regimes. If effort costs are small

relative to the benefits of coordinating, then players are willing to exert high effort, which in

turn leads more players to choose the group-preferred project, further enhancing the incentives

to invest effort. In that case, groups are segregated, and players are densely connected.

Importantly, players with the group-preferred project face much stronger incentives to invest

effort than players with the other project, as players with the group-preferred project have

a high chance of interacting with players from their own group. On the other hand, if effort

costs are sufficiently high, then the net benefit of interacting with others is small, even if
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society is fully segregated. In that case, choices are guided primarily by intrinsic preferences

over projects, and the level of homophily is low. As a result, players face roughly the same

incentives to invest effort, regardless of their project choice, and all players have approximately

the same number of connections. Hence, high levels of homophily go hand in hand with

inequality in the number of connections that players have. The following result makes this

precise:19

Proposition 5.4. Consider the limit where the number of players in each group goes to in-

finity. In the unique introspective equilibrium, the distribution of connections of players with

the group-preferred project first-order stochastically dominates the distribution of the number

of connections of players with the other project. The difference in the expected number of con-

nections of the players with the group-preferred project and the other project strictly increases

with the level of homophily.

These results are consistent with empirical evidence. More homogeneous societies have a

higher level of social interactions (Alesina and La Ferrara, 2000); and the distribution of the

number of connections in social and economic networks has considerable variance (Jackson,

2008). Furthermore, consistent with the theoretical results, friendships are often biased to-

wards own-group friendships, and larger groups form more friendships per capita (Currarini

et al., 2009).

Our results put restrictions on the type of networks that can be observed. When relative

benefits v/c are high and there is a strong cultural identity Q, networks are dense and are

characterized by high levels of homophily and a skewed distribution of the number of connec-

tions that players have. Moreover, the network consists of a tightly connected core of players

from one group, with a smaller periphery of players from the other group. When v/c increases

further, segregation is complete (h = 1
2
), and a densely connected homogenous network results.

On the other hand, when economic benefits are limited and cultural identity is weak, networks

are disconnected, and feature low levels of homophily and limited variation in the number of

connections. Most data on network on social and economic networks is consistent with the case

where there is a strong cultural identity and sizeable economic benefits to coordination, with

many networks featuring high levels of homophily, a core-periphery structure, high levels of

connectedness, and a skewed degree distribution (Jackson, 2008). More research is needed, of

course, to establish to what extent these observations can indeed be attributed to the economic

and cultural factors that drive players’ preferences for reducing strategic uncertainty.

19This result follows directly from Proposition 5.2 and Theorem 3.13 of Bollobás et al. (2007). In fact, more

can be said: the number of connections of a player with the group-preferred project converges to a Poisson

random variable with parameter e∗, and the number of connections of players with the other project converges

to a Poisson random variable with parameter e− < e∗.
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6. Conclusions

This paper introduces a novel approach to model players’ introspective process, grounded

in evidence on Theory of Mind in psychology. We use the framework to show that high levels

of homophily are possible when players benefit from reducing strategic uncertainty. This is

true even if there are no group-specific externalities and players have no direct preference for

interacting with the own group. Modeling players’ introspective process explicitly makes it

possible to derive unique predictions in a number of different setting and to derive robust and

intuitive comparative statics results. Consistent with empirical and experimental evidence,

homophily is high when cultural identities are strong, benefits from coordination are large,

and networks are formed endogenously. The theory elucidates how the socially optimal level

of homophily varies with the economic environment. While segregated societies with a strong

cultural identity have an advantage in a stable economic environment, more diverse societies

with a weak identity do better in more uncertain environments.

There are a number of directions for future research. On the methodological side, we

plan to examine the potential of our approach in general games. In ongoing experimental

work, we are investigating to what extent a preference to reduce strategic uncertainty drives

homophily. Another promising direction is to study how players’ cultural identity coevolves

with social structure. Indeed, members of inclusive societies may gain a better understanding

of the cultural background of others, while individuals belonging to more segregated societies

specialize in their own culture. If that is the case, different social structures may develop

depending on initial conditions, and interaction patterns may be persistent, consistent with

empirical evidence (Ellison and Powers, 1994). Opening the black box of how intergroup

contact affects intergroup understanding may also make it possible to assess which types of

interventions are welfare improving: for example, is it important that individuals become

sensitive to each other’s culture, or is it necessary that they develop a joint identity? To

answer these types of questions, it is critical to model cultural identity and players’ reasoning

processes, and this paper presents a first step in that direction.

Appendix A Intrinsic preferences

We denote the values of an A-player j for projects a and b are denoted by wA,aj and

wA,bj , respectively; likewise, the values of a B-player for projects b and a are wB,bj and wB,aj ,

respectively. As noted in the main text, the values wA,aj and wA,bj are drawn from the uniform

distribution on [0, 1] and [0, 1 − 2ε], respectively. Likewise, wB,bj and wB,aj are uniformly

distributed on [0, 1] and [0, 1−2ε]. All values are drawn independently (across players, projects,
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and groups). So, players in group A (on average) intrinsically prefer project a (in the sense of

first-order stochastic dominance) over project b; see Figure 6. Likewise, on average, players in

group B have an intrinsic preference for b.
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Figure 6: The cumulative distribution functions of wA,ai (solid line) and wA,bi (dashed line) for

x = 0.75.

Given that the values are uniformly and independently distributed, the distribution of the

difference wA,aj −w
B,a
j in values for an A-player is given by the so-called trapezoidal distribution.

That is, if we define x := 1−2ε, we can define the tail distribution Hε(y) := P(wA,aj −w
A,b
j ≥ y)

by

Hε(y) =



1 if y < −(1− 2ε);

1− 1
2−4ε · (1− 2ε+ y)2 if y ∈ [−(1− 2ε), 0);

1− 1
2
· (1− 2ε)− y if y ∈ [0, 2ε);

1

4(
1
2
−ε)
· (1− y)2 if y ∈ [2ε, 1];

0 otherwise.

By symmetry, the probability P(wB,bj −w
B,a
j ≥ y) that the difference in values for the B-player

is at least y is also given by Hε(y). So, we can identify wA,aj − wA,bj and wB,bj − w
B,a
j with the

same random variable, denoted ∆j, with tail distribution Hε(·); see Figure 7.

The probability that A-players prefer the a-project, or, equivalently, the share of A-players

that intrinsically prefer a (i.e., wA,aj − wA,bj > 0), is 1 − 1
2
x = 1

2
+ ε, and similarly for the

B-players and project b.
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Figure 7: The probability that wA,aj − wA,bj is at least y, as a function of y, for ε = 0 (solid

line); ε = 0.125 (dotted line); and ε = 0.375 (dashed line).

Appendix B Equilibrium analysis

@@@@Lattice of equilibria? Do we get different comparative statics?

We compare the outcomes predicted using the introspective process to equilibrium predic-

tions. As we show, the introspective process selects a correlated equilibrium of the game that

has the highest level of homophily among the set of equilibria in which players’ action depends

on their signal, and thus maximizes the payoffs within this set.

We study the correlated equilibria of the extended game: in the first stage, players choose

a project and are matched with players with the same project; and in the second stage, players

play the coordination game with their partner. It is not hard to see that every introspective

equilibrium is a correlated equilibrium. The game has more equilibria, though, even if we fix

the signal structure. For example, in the coordination stage, the strategy profile under which

all players choose the same fixed action regardless of their signal is a correlated equilibrium,

as is the strategy profile under which half of the players in each group choose s1 and the other

half of the players choose s2, or where players go against the action prescribed by their signal

(i.e., choose s2 if and only the signal is s1). Given this, there is a plethora of equilibria for the

extended game.

We restrict attention to equilibria in anonymous strategies, so that each player’s equilib-

rium strategy depends only on his group, the project of the opponent he is matched with,

and the signal he receives in the coordination game. In the coordination stage, we focus on

equilibria in which players follow their signal. If all players follow their signal, following one’s

signal is a best response: for any probability p of interacting with a player of the own group,

and any value wj of a player’s project, choosing action si having received signal i is a best
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response if and only if[
pQ+ (1− p) · 1

2

]
· v + wj ≥

[
p · (1−Q) + (1− p) · 1

2

]
· v + wj.

This inequality is always satisfied, as Q > 1
2
.

So, it remains to consider the matching stage. Suppose that mA,a and mB,b are the shares

of A-players and B-players that choose projects a and b, respectively. Then, the probability

that a player with project a belongs to group A is

pA,a =
mA,a

mA,a + 1−mB,b
;

similarly, the probability that a player with project b belongs to group B equals

pB,b =
mB,b

mB,b + 1−mA,a
.

An A-player with intrinsic values wA,aj and wA,bj for the projects chooses project a if and only

if [
pA,aQ+ (1− pA,a) · 1

2

]
· v + wA,aj ≥

[
(1− pB,b) ·Q+ pB,b 1

2

]
· v + wA,bj ;

or, equivalently,

wA,aj − wA,bj ≥ −(pA,a + pB,b − 1) · β,

where we have defined β := v · (Q − 1
2
). Similarly, a B-player with intrinsic values wB,bj and

wB,aj chooses b if and only if

wB,bj − w
B,a
j ≥ −(pA,a + pB,b − 1) · β

In equilibrium, we must have that

P
(
wA,aj − wA,bj ≥ −(pA,a + pB,b − 1) · β

)
=mA,a; and

P
(
wB,bj − w

B,a
j ≥ −(pA,a + pB,b − 1) · β

)
=mB,b.

Because the random variables wA,aj − wA,bj and wB,bj − wB,aj have the same distribution (cf.

Appendix A), it follows that mA,a = mB,b and pA,a = pB,b in equilibrium. Defining p := pA,a

(and recalling the notation ∆j := wA,aj − wA,bj from Appendix A), the equilibrium condition

reduces to

P(∆j ≥ −(2p− 1) · β) = p. (B.1)

Thus, equilibrium strategies are characterized by a fixed point p of Equation (B.1).

It is easy to see that the introspective equilibrium characterized in Proposition 3.2 is an

equilibrium. However, the game has more equilibria. The point p = 0 is a fixed point of (B.1)
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if and only if β ≥ 1. In an equilibrium with p = 0, all A-players adopt project b, even if

they have a strong intrinsic preference for project a, and analogously for B-players. In this

case, the incentives for interacting with the own group, measured by β, are so large that they

dominate any intrinsic preference.

But even if β falls below 1, we can have equilibria in which a minority of the players chooses

the group-preferred project, provided that intrinsic preferences are not too strong. Specifically,

it can be verified that there are equilibria with p < 1
2

if and only if ε ≤ 1
2
− 2β(1 − β). This

condition is satisfied whenever ε is sufficiently small.

So, in general, there are multiple equilibria, and some equilibria in which players condition

their action on their signal are inefficient as only a minority gets to choose the project they

(intrinsically) prefer. Choosing a project is a coordination game, and society can get stuck

in an inefficient equilibrium. The introspective process described in Section 3 selects the

payoff-maximizing equilibrium, with the largest possible share of players coordinating on the

group-preferred project.

Appendix C Signaling identity

Thus far, we have assumed that players can choose projects to sort. An alternative way

in which people can bias the meeting process is to signal their identity to others. Here, we

assume that players can use markers, that is, observable attributes such as tattoos, to signal

their identity. This alternative model helps explain why groups are often marked by seemingly

arbitrary traits.

There are two markers, a and b. Players first choose a marker, and are then matched to

play the coordination game as described below. As before, each A-player has values wA,aj and

wA,bj for markers a and b, drawn uniformly at random from [0, 1] and [0, 1− 2ε], respectively;

and mutatis mutandis for a B-player. Thus, a is the group-preferred marker for group A, and

b is the group-preferred marker for group B.

Players can now choose whether they want to interact with a player with an a- or a

b-marker. Each player is chosen to be a proposer or a responder with equal probability,

independently across players. Proposers can propose to play the coordination game to a

responder. He chooses whether to propose to a player with an a- or a b-marker. If he chooses

to propose with a player with an a-marker, he is matched uniformly at random with a responder

with marker, and likewise if he chooses to propose to a player with a b-marker. A responder

decides whether to accept or reject a proposal from a proposer, conditional on his own marker
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and the marker of the proposer.20 Each player is matched exactly once.21 Players’ decision

to propose or to accept/reject a proposal may depend on project choices, but do not depend

on players’ identities or group membership, which is unobservable. If player j proposed to

player j′, and j′ accepted j’s proposal, then they play the coordination game; if j’s proposal

was rejected by j′, both get a payoff of zero. For simplicity, assume that there are no skill

complementarities (i.e., V = v).

Players’ choices are determined by the introspective process introduced earlier. At level 0,

players choose the marker that they intrinsically prefer. Moreover, players propose to/accept

proposals from anyone. At level 1, an A-player therefore has no incentive to choose a marker

other than his intrinsically preferred marker, and thus chooses that marker. However, since at

level 0, a slight majority of players with marker a belongs to group A, proposers from group A

have an incentive to propose only to players with marker a, unless they have a strong intrinsic

preference for marker b. Because players are matched only once, and because payoffs in the

coordination game are nonnegative, a responder always accepts any proposal. The same holds,

mutatis mutandis, for B-players.

We can prove an analogue of Proposition 3.2 for this setting:

Proposition C.1. There is a unique introspective equilibrium. In the unique equilibrium,

there is complete segregation (h = 1
2
) if and only if

v · (Q− 1
2
) ≥ 1

2
− ε;

If segregation is not complete (h < 1
2
), then the level of homophily is given by:

1
2
− 1

2− 4ε

(
1− 2ε− v

2
· (Q− 1

2
)
)2
.

In all cases, the fraction of players choosing the group-preferred project exceeds the initial level

(i.e., h > ε).

Also the comparative statics are similar:

20So, a proposer only proposes to play, and a responder can only accept or reject a proposal. In particular,

he cannot propose transfers. The random matching procedure assumed in Section 2 can be viewed as the

reduced form of this process.
21Such a matching is particularly straightforward to construct when there are finitely many players, as in

Section 5. Otherwise, we can use the matching process of Alós-Ferrer (1999) (where the types need to be

defined with some care). The results continue to hold when players are matched a fixed finite number of times,

or when there is discounting and players are sufficiently impatient. Without such restrictions, players have

no incentives to accept a proposal from a player with the non-group preferred marker, leaving a significant

fraction of the players unmatched.
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Corollary C.2. The level of homophily h increases with the strength of the cultural identity Q

and with the coordination payoff v. Cultural identity and economic incentives are complements:

the level of homophily is high whenever the coordination payoff is high and cultural identity is

strong.

So, even if players cannot influence the probability of meeting similar others by locating

in a particular neighborhood or joining an exclusive club, they can nevertheless associate

preferentially with other members of their own group, provided that they can signal their

identity.22

Appendix D Complementary skills

Players with different backgrounds may have complementary skills (Page, 2007). To model

that players from different groups have complementary skills, we assume that players receive

a higher payoff if they successfully coordinate with a member of the other group. That is,

payoffs are now given by:

s1 s2

s1 v,v 0,0

s2 0,0 v,v

Own group

s1 s2

s1 V ,V 0,0

s2 0,0 V ,V

Other group

where V > v. Players follow the same process as before. At level 0, players follow their

impulse and select the project they intrinsically prefer. At level k > 0, players formulate a

best response to actions selected at level k − 1: a player chooses project a if and only if the

expected payoff from a is at least as high as from b, given the choices at level k − 1.

If the probability that players are matched with an opponent of the same group is p̂ ∈ (0, 1],

then a player’s expected payoff is

p̂Qv + (1− p̂)1
2
V,

so the marginal benefit of interacting with the own group is

βCS := Qv − 1
2
V.

Note that βCS can be positive or negative, depending on the relative strengths of players’

cultural identity, economic incentives, and skill complementarities. If βCS < 0, the effect

22Unlike classical models of costly signaling, adopting a certain marker is not inherently more costly for one

group than for another. The difference in signaling value of the markers across groups is endogenous in our

model.
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of skill complementarities on payoffs is greater than the benefit of interacting with the own

group, and we say that skill complementarities dominate. Otherwise, if βCS > 0, players benefit

from interacting with members of their own group as that reduces strategic uncertainty. The

analysis from Section 3 extends directly to this case. We therefore focus on the case βCS < 0

here.

As before, let pak be the fraction of A-players among those with project a at level k, and

let pbk be the fraction of B-players among those with project b at level k. We can prove the

analogue of Lemma 3.1 for this setting:23

Lemma D.1. Suppose skill complementarities dominate and that βCS > −1
2
. The limit pπ of

the fractions pπ0 , p
π
1 , . . . exists for each project π = a, b. Moreover, the limits are the same for

both projects: pa = pb.

Proof. Suppose βCS ∈ (−1
2
, 0). By an argument similar to the one in the proof of Lemma

3.1, it follows that the sequence {pπk}k is weakly decreasing and bounded for every project π.

Moreover, pπk <
1
2

+ ε for all k. Again, by the monotone convergence theorem, the sequences

{pak}k and {pbk}k converge to a common limit p. �

The next result shows that there is a unique introspective equilibrium also in this case, and

characterizes the equilibrium level of homophily.

Proposition D.2. Suppose skill complementarities dominate and that βCS > −1
2
. There is

a unique introspective equilibrium. The equilibrium fraction of players choosing the group-

preferred project is strictly below the initial level (i.e., h < ε), and is given by

h =
ε

1− 2(Qv − 1
2
V )

> 0.

Proof. By Lemma D.1, pk ≤ pk−1 for all k. By the monotone sequence convergence theorem,

p = infk pk. As before, we can find p by solving the fixed-point equation

p = Hε(−(2p− 1) · βCS).

Writing y := −(2p− 1) · βCS, we now need to consider two regimes: y ∈ (0, ε) and y ∈ [2ε, 1]

(cf. Appendix A). In the second regime, Hε(y) = 1
2x

(1 − y)2, and the fixed-point equation

p(y) = Hε(y) has two roots y1, y2 that lie outside the domain (0, 2ε). So consider the first

23It can be checked that if βCS < − 1
2 , then the sequence pπ0 , p

π
1 , . . . does not settle down. Intuitively, players

have an incentive to “flee” from players of their own group to reap the high payoffs from interacting with the

other group. For example, if A-players make up the majority of players with project a at level k, then even

an A-player for whom it is optimal to choose project a at level k may find it beneficial to choose project b at

level k + 1, and A-players form the minority of players with project a at that level.
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regime, where Hε(y) = 1 − 1
2
x − y. The fixed-point equation has a unique solution y∗, with

corresponding limiting probability

p = 1
2
− ε

2βCS − 1
.

It can be checked that p is increasing in βCS, and lies in (1
2
, 1
2

+ ε) for βCS < 0. �

This is consistent with empirical evidence that skill complementarities across groups can

reduce the level of homophily (Aldrich and Kim, 2007). Our model shows how these factors in-

teract: if cultural identities are weak, then complementarities of skills become more important

in shaping interactions.

The next result characterizes the socially optimal level of homophily in the presence of

skill complementarities.

Proposition D.3. Suppose skill complementarities dominate. Full segregation is never opti-

mal. The socially optimal level of homophily is given by:

h∗ = 4(Qv − 1
2
V )(1− 2ε) + 5ε− 2 +

√
4(Qv − 1

2
V )2 − 5(Qv − 1

2
V ) + 1 +

(Qv − 1
2
V )

1− 2ε
.

The fraction of players choosing the group-preferred project in the social optimum is below the

initial level (i.e., h∗ < ε).

This result follows readily from the proof of Proposition 4.2 if we modify the expression

C̃∞(p) for the coordination payoffs to take into account that coordinating with a member of

the other group provides payoff V ≥ v.

Proposition D.3 demonstrates that if skill complementarities dominate, there can be too

much homophily in equilibrium. This is consistent with other arguments that show that

reducing segregation can improve welfare when there are significant complementarities of skill

(e.g. Alesina and La Ferrara, 2005; Ottaviano and Peri, 2006). However, the difference between

the socially optimal and equilibrium level of homophily is minimal in our setting, as both are

below ε, which can be taken to be arbitrarily small. Intuitively, if skill complementarities

dominate, an A-player that chooses the group-preferred project a exerts a negative externality

on A-players that choose project a (and a positive one on B-players with project a), as well

as a positive externality on A-players that choose project b (and a negative one on B-players

that choose b), and likewise for B-players that choose project b (as βCS < 0). However, in

this case, players face a strong incentive to form integrated groups in equilibrium. This means

that the share of players experiencing a negative externality is about as large as the share of

players experiencing a positive externalities, so that the two types of externalities essentially

cancel out.
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Appendix E Proofs

E.1 Proof of Proposition 2.1

By assumption, a player chooses action si at level 0 if and only if his initial impulse is

i = 1, 2. For k > 0, assume, inductively, that at level k − 1, a player chooses si if and only

if his initial impulse is i. Consider level k, and suppose a player’s impulse is i. Choosing si

is the unique best response for him if the expected payoff from choosing si is strictly greater

than the expected payoff from choosing the other action sj 6= si. That is, if we write j 6= i for

the alternate impulse, si is the unique best response for the player if

p · v · P(i | i) + (1− p) · V · P(i) > p · v · P(j | i) + (1− p) · V · P(j) · v,

where P(m | i) is the conditional probability that the impulse of a player from the same group

is m = 1, 2 given that the player’s own impulse is i, and P(m) is the probability that a player

from the other group has received signal m. Using that P(m) = 1
2
, P(i | i) = q2 + (1− q)2 and

P(j | i) = 1− q2 − (1− q)2, and rearranging, we find that this holds if and only if

pv(q2 + (1− q)2) > p(1− q2 − (1− q)2),

and this holds for every p > 0, since q2 + (1 − q)2 > 1
2
. This shows that at each level, it is

optimal for a player to follow his impulse. So, in the unique introspective equilibrium, every

player follows his impulse. �

E.2 Proof of Lemma 3.1

At level 0, players choose the project that they intrinsically prefer. So, the share of players

that choose project a that belong to group A is

pa0 =
1
2
+ε

1
2
+ε+(1−( 1

2
+ε))

= 1
2

+ ε.

Likewise, the share of players that choose project b that belong to group B is pb0 = 1
2

+ε. Also,

recall that x := 1− 2ε (Appendix A).

If the probability that players are matched with an opponent of the same group is p̂ ∈ (0, 1],

then a player’s expected payoff is

v · (p̂Q+ (1− p̂)1
2
).

The marginal benefit of interacting with the own group is thus

β := v · (Q− 1
2
).
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As Q > 1
2
, the marginal benefit of interacting with the own group is positive. We show that

the sequence {pπk}k is (weakly) increasing and bounded for every project π.

At higher levels, players choose projects based on their intrinsic values for the project as

well as the coordination payoff they expect to receive at each project. Suppose that a share

pak−1 of players with project a belong to group A, and likewise for project b and group B.

Then, the probability that an A-player with project a is matched with a player of the own

group is pak−1, and the probability that a B-player with project a is matched with a player of

the own group is 1− pk−1. Applying Proposition 2.1 (with p̂ = pk−1 and p̂ = 1− pk−1) shows

that both A-players and B-players with project a follow their signal in the coordination game,

and similarly for the A- and B-players with project b.

So, for every k > 0, given pak−1, a player from group A chooses project a if and only if[
pak−1 ·Q+ (1− pak−1) · 12

]
· v + wA,aj ≥

[
(1− pak−1) ·Q+ pak−1 · 12

]
· v + wA,bj .

This inequality can be rewritten as

wA,aj − wA,bj ≥ −(2pak−1 − 1) · β, (E.1)

and the share of A-players for whom this holds is

pak := Hε

(
−(2pk−1 − 1) · β

)
,

where we have used the expression for the tail distribution Hε from Appendix A. The same

law of motion holds, of course, if a is replaced with b and A is replaced with B.

Fix a project π. Notice that −(2pπ0−1) ·β < 0. We claim that pπ1 ≥ pπ0 and that pπ1 ∈ (1
2
, 1].

By the argument above,

pπ1 = P(wA,aj − wA,bj ≥ −(2pπ0 − 1) · β)

= Hε(−(2pπ0 − 1) · β)

=

{
1− 1

2−4ε · (1− 2ε− (2pπ0 − 1) · β)2 if (2pπ0 − 1) · β ≤ 1− 2ε;

1 if (2pπ0 − 1) · β > 1− 2ε;

where we have used the expression for the tail distribution Hε(y) from Appendix A. If (2pπ0 −
1) · β > 1 − 2ε, the result is immediate, so suppose that (2pπ0 − 1) · β ≤ 1 − 2ε. We need to

show that

1− 1
2−4ε · (1− 2ε− (2pπ0 − 1) · β)2 ≥ pπ0 .

Rearranging and using that pπ0 ∈ (1
2
, 1], we see that this holds if and only if

(2pπ0 − 1) · β ≤ 2 · (1− 2ε).
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But this holds because (2pπ0 − 1) ·β ≤ 1− 2ε and 1− 2ε ≥ 0. Note that the inequality is strict

whenever β < 1− 2ε, so that pπ1 > pπ0 in that case.

For k > 1, suppose, inductively, that pπk−1 ≥ pπk−2 and that pπk−1 ∈ (1
2
, 1]. By a similar

argument as above,

pπk =

{
1− 1

2−4ε · (1− 2ε− (2pπk−1 − 1) · β)2 if (2pπk−1 − 1) · β ≤ 1− 2ε;

1 if (2pπk−1 − 1) · β > 1− 2ε.

Again, if (2pπk−1− 1) · β > 1− 2ε, the result is immediate, so suppose (2pπk−1− 1) · β ≤ 1− 2ε.

We need to show that

1− 1
2−4ε · (1− 2ε− (2pπk−1 − 1) · β)2 ≥ pπk−1,

or, equivalently,

2 · (1− 2ε) · (1− pπk−1) ≥ (1− 2ε− (2pπk−1 − 1) · β)2.

By the induction hypothesis, pπk−1 ≥ pπ0 , so that 1− 2ε ≥ 2− 2pπk−1. Using this, we have that

2 · (1− 2ε) · (1− pπk−1) ≥ 4 · (1− pπk−1)2. Moreover,

(1− 2ε− (2pπk−1 − 1) · β)2 ≤ 4 · (1− pπk−1)2 − 2β(1− 2ε)(2pπk−1 − 1) + (2pπk−1 − 1)2β2.

So, it suffices to show that

4 · (1− pπk−1)2 ≥ 4 · (1− pπk−1)2 − 2β(1− 2ε)(2pπk−1 − 1) + (2pπk−1 − 1)2β2.

The above inequality holds if and only if

(2pπk−1 − 1)β ≤ 2 · (1− 2ε),

and this is true since (2pπk−1 − 1) · β ≤ 1− 2ε.

So, the sequence {pπk}k is weakly increasing and bounded when β > 0. It now follows from

the monotone sequence convergence theorem that the limit pπ exists. The argument clearly

does not depend on the project π, so we have pa = pb. �

E.3 Proof of Proposition 3.2

Recall that the marginal benefit of interacting with the own group is β > 0. The first step

is to characterize the limiting fraction p, and show that p > 1
2

+ ε. By the proof of Lemma

3.1, we have pk ≥ pk−1 for all k. By the monotone sequence convergence theorem, p = supk pk,

and by the inductive argument, p ∈ (1
2

+ ε, 1]. It is easy to see that p = 1 if and only if

Hε(−(2 · 1− 1) · β) = 1, which holds if and only if β ≥ 1− 2ε.
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So suppose that β < 1 − 2ε, so that p < 1. Again, p = Hε(−(2p − 1) · β), or, using the

expression from Appendix A,

p = 1− 1
2−4ε · (1− 2ε− (2p− 1) · β)2.

It will be convenient to substitute x = 1− 2ε for ε, so that we are looking for the solution of

p = 1− 1
2x
· (x− (2p− 1) · β)2. (E.2)

Equation (E.2) has two roots,

r1 = 1
2

+ 1
4β2

(
(2β − 1) · x+

√
4β2x− (4β − 1) · x2

)
and

r2 = 1
2

+ 1
4β2

(
(2β − 1) · x−

√
4β2x− (4β − 1) · x2

)
.

We first show that r1 and r2 are real numbers, that is, that 4β2x − (4β − 1) · x2 ≥ 0. Since

x > 0, this is the case if and only if 4β ≥ (4β − 1) · x. This holds if β ≤ 1
4
, so suppose that

β > 1
4
. We need to show that

x ≤ 4β2

4β − 1
.

Since the right-hand side achieves its minimum at β = 1
2
, it suffices to show that x ≤ (4 ·

(1
2
)2)/(4 · 1

2
− 1) = 1. But this holds by definition. It follows that r1 and r2 are real numbers.

We next show that r1 >
1
2
, and r2 <

1
2
. This implies that p = r1, as p = supk pk > p0 >

1
2
.

It suffices to show that 4β2x − (4β − 1) · x2 > (1 − 2β)2x2. This holds if and only if

β > (2 − β) · x. Recalling that β ≤ 1 − 2ε < 1 by assumption, we see that this inequality is

satisfied. We conclude that p = r1 when β > 0. �

As for the comparative statics in Corollary 4.3, it is straightforward to verify that the

derivative of p with respect to β is positive whenever p < 1 (and 0 otherwise). It then follows

from the chain rule that the derivatives of p with respect to v and Q are both positive for any

p < 1 (and 0 otherwise).

E.4 Proof of Proposition 4.2

Suppose payoffs are fixed, that is, α =∞. We first calculate coordination payoffs and the

value derived from projects. It will be convenient to work with payoffs per project. Define

C̃∞(p) to be the total (expected) coordination payoff attained by players with project a when

a share p of players choose the group-preferred project. Also, let Π̃(p) be the total project

value for players that choose project a when a share p of players with the strongest intrinsic

preference for the group-preferred project choose it. That is, Π̃(p) is the sum (i.e., integral)
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of the values wA,aj of the players j in group A that belong to the share p of the A-players with

the strongest intrinsic preference for project a, plus the sum of the values wB,aj of the players

j in group B that belong to the share 1 − p of the B-players with the strongest intrinsic

preference for project a. By symmetry, C̃∞(p) and Π̃(p) are equal to the total expected

coordination payoffs and the total value derived from projects, respectively, for players with

project b. Thus, the total coordination payoff and total value derived from projects (over all

projects) as a function of the level of homophily h = p− 1
2

are equal to C∞(h) = 2C̃∞(p) and

Π(h) = 2Π̃(p), respectively, and social welfare is

2
[
C̃∞(p) + Π̃(h)

]
. (E.3)

The next two preliminary results characterize C̃∞(p) and Π̃(p).

Lemma E.1. Suppose that payoffs are fixed (i.e., α = ∞), and that a share p of players

chooses the group-preferred project. The per-project coordination payoff is

C̃∞(p) := v · [Q ·
(
p2 + (1− p)2

)
+ 2 · p · (1− p) · 1

2

]
. (E.4)

Proof. First note that it is never optimal to have less than half the players choose the group-

preferred project (i.e., p < 1
2
). To see this, suppose by contradiction that a share p < 1

2
of

players (of a given group, say A) chooses the group-preferred project (say a). Then social

welfare increases if the share 1 − p of players with the strongest preference for the group-

preferred project chooses that project (and the other players choose the other project). This

does not impact total coordination payoffs (as it does not affect the probability that players

interact with a member of their own group), while it increases the share of players that choose

the project that they intrinsically prefer.

Let p ∈ [1
2
, 1] be the share of players that have chosen the group-preferred project. Fix a

project, say a, and consider an A-player with that project, that is, a player that has chosen

the group-preferred project. The expected coordination payoff to such a player is

v · [pQ+ (1− p)1
2
];

and since the share of A-players with project a is p, the total expected payoff to A-players

with project a is

p · v ·
[
pQ+ (1− p)1

2

]
.

Similarly, the expected coordination payoff to a B-player with project a is

v · [(1− p)Qv + p
2
];

42



and the total expected payoff to B-players with project a is

(1− p) · v ·
[
(1− p)Q+ p

2

]
.

Adding all terms together gives C̃∞(p). �

Lemma E.2. Suppose that players with the strongest preference for the group-preferred project

choose that project. When the share of players choosing the group-preferred project equals p,

the total value derived from a project is

Π̃(p) :=


1
2x
·
[
x+ x3

3
− 2x

(
1− p− x

2

)2
+ 1

3

(
1− p− x

2

)3]
if p ∈ [1

2
, 1
2

+ ε);

1
2x
·
[
x+ x3

3
− x
(
x−

√
2x(1− p)

)2
+ 2

3

(
x−

√
2x(1− p)

)3]
if p ∈ [1

2
+ ε, 1).

Proof. To calculate total project value Π̃(p), fix a group, say A. In the social optimum, all

A-players for whom the difference wA,aj −wA,bj exceeds a certain threshold y choose project a,

and the other A-players choose project b. The share of players for whom wA,aj − wA,bj is at

least y is given by p = Hε(y), where Hε(y) is the tail distribution introduced in Appendix A.

Since this tail distribution has different regimes, depending on y, we need to consider different

cases. Rather than considering different ranges for the threshold y, it will be easier to work

with different ranges for p = Hε(y).

Case 1: p ∈ [1
2
, 1
2
+ε). First suppose that the share p of players choosing the group-preferred

project lies in the interval [1
2
, 1
2
+ε). As noted above, the threshold y = y(p) solves the equation

p = Hε(y). It is easy to check that for every p ∈ [1
2
, 1
2
+ε), the equation p = Hε(y) has a solution

y ∈ [0, 2ε), so that (by the definitions in Appendix A) the equation reduces to p = 1− x
2
− y,

or, equivalently,

y = 1− x
2
− p.

For a given y = y(p), if every A-player chooses project a if and only if wA,aj − wA,bj ≥ y, then

the share of A-players choosing project a is p. If the A-players with wA,aj − wA,bj ≥ y choose

project a, then their total project value is

1
x

∫ x

0

∫ 1

wA,a
j +y

wA,aj dwA,aj dwA,bj ,

where the factor 1/x comes from the uniform distribution of wA,bj on [0, x]. The total project

value for A-players that choose project b is given by

1
x

∫ x

y

∫ x

wA,a
j −y

wA,bj dwA,bj dwA,aj + 1
x

∫ y

0

∫ x

0

wA,bj dwA,bj dwA,aj .
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The second term is for A-players for whom wA,aj is so small (relative to the threshold y) that

they choose b for any value wA,bj ∈ [0, x] (that is, wA,aj − y < 0). The first term describes the

total value for A-player for whom wA,aj − y ≥ 0. Working out the integrals and summing the

terms gives the expression for Π̃(p) in the lemma for p ∈ [1
2
, 1
2

+ ε).

Case 2: p ∈ [1
2

+ ε, 1]. Next suppose p ∈ [1
2

+ ε, 1]. Again, fix a group, say A, and note that

the A-players for whom wA,aj − wA,bj exceeds a threshold z = z(p) choose project a (and the

other A-players choose project b). The threshold is again given by the equation p = Hε(z),

and for p ∈ [1
2

+ ε, 1], this equation reduces to

p = 1− 1
2x

(x+ z).

It will be convenient to work with a nonnegative threshold, so define y := −z ≥ 0. Then,

rewriting gives24

y = x−
√

(2x(1− p)).

The total project value for A-players that choose project a (given p) is

1
x

∫ y

0

∫ 1

0

wA,aj dwA,aj dwA,bj + 1
x

∫ x

y

∫ 1

wA,b
j −y

wA,aj dwA,aj dwA,bj ,

where the first term is for A-players for whom wA,bj is sufficiently low that they choose project

a for any wA,aj ∈ [0, 1] (given y), and the second term describes the total project value for the

other A-players for whom wA,aj − wA,bj ≥ −y, analogously to before. Again, working out the

integrals and summing the term gives the expression for Π̃(p) for p ∈ [1
2

+ ε, 1]. �

We are now ready to prove Proposition 4.2. As in the proof of Lemma E.2, we need to

consider two cases. We characterize the socially optimal level of homophily both for the case

that the marginal benefit of interacting with the own group β is positive, as well as for the case

that β is negative. The characterization for this latter case will be useful when we consider

complementarities of skills between groups in Appendix D.

Case 1: p ∈ [1
2
, 1
2

+ ε). In this case, the derivative of social welfare with respect to p is given

by

2 · (2p− 1)β + 1
2x

[
4x(1− p− x

2
)− (1− p− x

2
)2
]
.

24Note that y′ = x +
√

(2x(1− p)) also solves the equation. However, a threshold z′ = −y less than −x is

not feasible: it corresponds to a share of players that choose the group-preferred project that is greater than

1.
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Setting the derivative equal to 0 and solving for p gives two roots:

r1 = 4βx− 5x
2

+ 1 +
√

4β2 − 5β + 1 + β
x
,

and

r2 = 4βx− 5x
2

+ 1−
√

4β2 − 5β + 1 + β
x
.

It is straightforward to verify that r2 ≤ 1
2

whenever x ≥ 1
9
. Also, if x ≥ 1

9
, the root r1 lies in

[1
2
, 1
2

+ ε) if and only if β < 0. It can be checked that the second-order conditions are satisfied,

so h∗ = r1 − 1
2

is the optimal level of homophily if β < 0.

Case 2: p ∈ [1
2

+ ε, 1]. In this case, the derivative is

2 · (2p− 1)β +
√

2x(1− p)− x.

Again, the first-order condition gives two solutions:

r′1 = 1
2

+
x

4β2

[
β − 1

4
+

√
β2

x
− β

2
+ 1

16

]
,

and

r′2 = 1
2

+
x

4β2

[
β − 1

4
−
√

β2

x
− β

2
+ 1

16

]
.

For any combination of parameters, r′2 ≤ 1
2
. Clearly, r′1 > r′2; moreover, r′1 is a saddle point

(and thus a point of inflection) if and only if 2β ≥ x. If 2β ≥ x, then the derivative of

social welfare with respect to p is positive in the neighborhood of r′1. In that case, social

welfare attains its maximum at the boundary p = 1, and the optimal level of homophily is

h∗ = 1 − 1
2

= 1
2
. If 2β ∈ (0, x), then r′1 ∈ (1

2
+ ε, 1], and conversely, if r′1 ∈ [1

2
+ ε, 1], then

β ∈ (0, x
1−x ]. Hence, if 2β ∈ (0, x), the optimal level of homophily is h∗ = r′1 − 1

2
> ε. �

E.5 Proof of Lemma 5.1

Recall that at level 0, players invest effort e0 > 0 in socializing. Moreover, they choose

project a if and only if they intrinsically prefer project a over project b. It follows from the

distribution of the intrinsic values (Appendix A) that the number NA,a
0 of A-players with

project a at level 0 follows the same distribution as the number NB,b
0 of B-players with project

b at level 0; similarly, the number NA,a
0 of A-players with project b at level 0 has the same

distribution as the number NB,a
0 of B-players with project a at level 0. Let ND

0 and NM
0 be

random variables with the same distribution as NA,a
0 and NB,a

0 , respectively (where D stands

for “dominant group” and M stands for “minority group”; the motivation for this terminology
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is that a slight majority of the players with an intrinsic preference for project a belongs to

group A).

Conditional on ND
0 and NM

0 , the expected utility of project a to an A-player at level 1 is25

v ·
[
ej ·ND

0 · e0 ·Q+ ej ·NM
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
+ wA,aj − cej

2

if he invests effort ej and his intrinsic value for project a is wA,aj . Likewise, conditional on ND
0

and NM
0 , the expected utility of project b to an A-player at level 1 is

v ·
[
ej ·NM

0 · e0 ·Q+ ej ·ND
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
+ wA,bj −

cej
2

if he invests effort ej and his intrinsic value for project b is wA,bj . Taking expectations over

ND
0 and NM

0 , it follows from the first-order conditions that the optimal effort levels for an

A-player at level 1 with projects a and b are given by

eA,a1 =
(v
c

)
· E
[
ND

0 · e0 ·Q+NM
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
; and

eA,b1 =
(v
c

)
· E
[
NM

0 · e0 ·Q+ND
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
;

respectively, independent of the intrinsic values. It can be checked that the optimal effort

levels eB,a1 and eB,b1 for a B-player at level 1 with projects a and b are equal to eA,b1 and eA,a1 ,

respectively. It will be convenient to define eD1 := eA,a1 = eB,b1 and eM1 := eA,b1 = eB,a1 . We claim

that eD1 > eM1 . To see this, note that ND
0 is binomially distributed with parameters |N | and

p0 := 1
2
+ε > 1

2
(the probability that a player has an intrinsic preference for the group-preferred

project) and that NM
0 is binomially distributed with parameters |N | and 1 − p0 < 1

2
. If we

define

gD1 (ND
0 , N

M
0 , e0) :=

(v
c

)
·
(
ND

0 · e0 ·Q+NM
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

)
; and

gM1 (ND
0 , N

M
0 , e0) :=

(v
c

)
·
(
NM

0 · e0 ·Q+ND
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

)
;

so that eD1 and eM1 are just the expectations of gD1 and gD1 , respectively, then the result follows

immediately from the fact that ND
0 first-order stochastically dominates NM

0 , as gD1 is (strictly)

increasing in ND
0 and (strictly) decreasing in NM

0 , and gM1 is decreasing in ND
0 and increasing

in NM
0 (again, strictly).

25If ND
0 = NM

0 = 0, then the expected benefit from networking is 0. In that case, the player’s expected

utility is thus wA,aj − cej
2 . A similar statement applies at higher levels.
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Substituting the optimal effort levels eD1 and eM1 into the expression for the expected utility

for each project shows that the maximal expected utility of an A-player at level 1 of projects

a and b is given by

c

2
(eD1 )2 + wA,aj ; and

c

2
(eM1 )2 + wA,bj ;

respectively. At level 1, an A-player therefore chooses project a if and only if

wA,aj − wA,bj ≥ − c
2

(
(eD1 )2 − (eM1 )2

)
.

The analogous argument shows that a B-player chooses project b at level 1 if and only if

wB,bj − w
B,a
j ≥ − c

2

(
(eD1 )2 − (eM1 )2

)
.

Since wA,aj −w
A,b
j and wB,bj −w

B,a
j both have tail distribution Hε(·) (Appendix A), the proba-

bility that an A-player chooses project a (or, that a B-player chooses project b) is

p1 := Hε

(
− c

2

(
(eD1 )2 − (eM1 )2

))
.

Since eD1 > eM1 , we have p1 > p0. Note that both the number NA,a
1 of A-players at level 1

with project a and the number NB,b
1 of B-players at level 1 with project b are binomially

distributed with parameters |N | and p1 >
1
2
; the number NA,a

1 of A-players at level 1 with

project b and the number NB,a
1 of B-players at level 1 with project a are both binomially

distributed with parameters |N | and 1 − p1. Let ND
1 and NM

1 be random variables that are

binomially distributed with parameters (|N |, p1) and (|N |, 1 − p1), respectively, so that the

distribution of ND
1 first-order stochastically dominates the distribution of NM

1 .

Note that while NA,a
1 and NA,a

1 are clearly not independent (as NA,a
1 + NA,a

1 = N), NA,a
1

and NB,a
1 are independent (and similarly if we replace NA,a

1 , NA,a
1 , and NB,a

1 with NB,b
1 , NB,a

1 ,

and NA,a
1 , respectively). When we take expectations over the number of players from different

groups with a given project (e.g., NA,a
1 and NB,a

1 ) to calculate optimal effort levels, we therefore

do not have to worry about correlations between the random variables. A similar comment

applies to levels k > 1.

Finally, it will be useful to note that

eD1 + eM1 =
v

c
(Q+ 1

2
).

Both eD1 and eM1 are positive, as they are proportional to the expectation of a nonnegative

random variable (with a positive probability on positive realizations), and we have

eD1 − eM1 > eD0 − eM0 = 0,
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where eD0 = eM0 = e0 are the effort choices at level 0.

For k > 1, assume, inductively, that the following hold:

• we have pk−1 ≥ pk−2;

• the number NA,a
k−1 of A-players with project a at level k − 1 and the number NB,b

k−1 of

B-players with project b at level k − 1 are binomially distributed with parameters |N |
and pk−1;

• the number NA,a
k−1 of A-players with project b at level k − 1 and the number NB,a

k−1 of

B-players with project a at level k − 1 are binomially distributed with parameters |N |
and 1− pk−1;

• for every level m ≤ k−1, the optimal effort level at level m for all A-players with project

a and for all B-players with project b is equal to eDm;

• for every level m ≤ k−1, the optimal effort level at level m for all A-players with project

b and for all B-players with project a is equal to eMm ;

• we have eDk−1 > eMk−1 > 0 for k ≥ 2;

• we have eDk−1 − eMk−1 ≥ eDk−2 − eMk−2.

We write ND
k−1 and NM

k−1 for random variables that are binomially distributed with param-

eters (|N |, pk−1) and (|N |, 1− pk−1), respectively.

By a similar argument as before, it follows that the optimal effort level for an A-player

that chooses project a or for a B-player that chooses b is

eDk :=
(v
c

)
· E
[
ND
k−1 · eDk−1 ·Q+NM

k−1 · eMk−1 · 12
ND
k−1 · eDk−1 +NM

k−1 · eMk−1

]
,

and that the optimal effort level for an A player that chooses project b or for a B-player that

chooses a is

eMk :=
(v
c

)
· E
[
NM
k−1 · eMk−1 ·Q+ND

k−1 · eDk−1 · 12
ND
k−1 · eDk−1 +NM

k−1 · eMk−1

]
.

Again, it is easy to verify that

eDk + eMk =
v

c
(Q+ 1

2
). (E.5)

We claim that eDk ≥ eDk−1 (so that eMk ≤ eMk−1). It then follows from the induction hypothesis

that eDk > eMk and that eDk − eMk ≥ eDk−1 − eMk−1.
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To show this, recall that form = 1, . . . , k−1, we have that eDm > eMm and eDm+eMm = v
c
(Q+ 1

2
).

Define

gDk−1(N
D
k−2, N

M
k−2, e

D
k−2) :=

(v
c

)
·
(
ND
k−2 · eDk−2 ·Q+NM

k−2 · eMk−2 · 12
ND
k−2 · eDk−2 +NM

k−2 · eMk−2

)
gDk (ND

k−1, N
M
k−1, e

D
k−1) :=

(v
c

)
·
(
ND
k−1 · eDk−1 ·Q+NM

k−1 · eMk−1 · 12
ND
k−1 · eDk−1 +NM

k−1 · eMk−1

)
so that eDk−1 and eDk are just proportional to the expectation of gDk−1 and gDk (over ND

k−1 and

NM
k−1), respectively, analogous to before. It is easy to verify that gDk (ND

k−1, N
M
k−1, e

D
k−1) ≥

gDk (ND
k−1, N

M
k−1, e

M
k−1). Consequently,

eDk ≥
(v
c

)
· E
[
ND
k−1 · eMk−1 ·Q+NM

k−1 · eMk−1 · 12
ND
k−1 · eMk−1 +NM

k−1 · eMk−1

]
=

(v
c

)
· E
[
ND
k−1 ·Q+NM

k−1 · 12
ND
k−1 +NM

k−1

]
.

Using that gDk is decreasing in its second argument, and that the distribution of NM
k−2 first-order

stochastically dominates the distribution of NM
k−1, we have

eDk ≥
(v
c

)
· E
[
ND
k−1 ·Q+NM

k−2 · 12
ND
k−1 +NM

k−2

]
. (E.6)

From the other direction, use that gDk−1(N
D
k−2, N

M
k−2, e

M
k−2) ≤ gDk−1(N

D
k−2, N

M
k−2, e

D
k−1) to obtain

eDk−1 ≤
(v
c

)
· E
[
ND
k−2 · eDk−2 ·Q+NM

k−2 · eDk−2 · 12
ND
k−2 · eDk−2 +NM

k−2 · eDk−2

]
.

Using that gDk−1 is increasing in its first argument, and that the distribution of ND
k−1 first-order

stochastically dominates the distribution of ND
k−2, we obtain

eDk−1 ≤
(v
c

)
· E
[
ND
k−1 ·Q+NM

k−1 · 12
ND
k−1 +NM

k−1

]
. (E.7)

The result now follows by comparing Equations (E.6) and (E.7). Also, using that gDk is

increasing and decreasing in its first and second argument, respectively, we have that

eDk ≥
(v
c

)
· E
[
N · eMk−1 · 12
N · eMk−1

]
=

v

2c

eDk ≤
(v
c

)
· E
[
N · eDk−1 ·Q
N · eDk−1

]
=
v ·Q
c

,

and it follows from (E.5) that eDk , e
M
k ∈ [ v

2c
, v·Q

c
].
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By a similar argument as before, the probability at level k that an A-player chooses project

a (or, that a B-player chooses project b) is

pk := Hε

(
− c

2

(
(eDk )2 − (eMk )2

))
.

Hence, the number NA,a
k of A-players with project a (or, the number NB,b of B-players with

project b) at level k is a binomially distributed random variable ND
k with parameters |N | and

pk. Similarly, the number NA,a
k of A-players with project b (or, the number NB,a of B-players

with project a) at level k is a binomially distributed random variable with parameters |N | and

1− pk.
Using that eDk − eMk ≥ eDk−1 − eMk−1 > 0, and Equation (E.5) again, it follows that (eDk )2 −

(eMk )2 ≥ (eDk−1)
2 − (eMk−1)

2 > 0, it follows that pk ≥ pk−1, and the induction is complete.

We thus have that the sequences p0, p1, p2 and eD1 , e
D
2 , . . . are monotone and bounded,

so that by the monotone convergence theorem, their respective limits p := limk→∞ pk and

eD := limk→∞ e
D
k exist (as does eM := limk→∞ e

M
k = v

c
(Q+ 1

2
)− eD). �

E.6 Proof of Proposition 5.2

Recall the definitions from the proof of Lemma 5.1. It is straightforward to check that the

random variables ND
k and NM

k converge in distribution to a binomially distributed random

variable ND with parameters |N | and p and a binomially distributed random variable NM

with parameters |N | and 1 − p. It then follows from continuity and the Helly-Bray theorem

that eD satisfies

eD =
(v
c

)
· E
[
ND · eD ·Q+NM · eM · 1

2

ND · eD +NM
k−2 · eM

]
.

where the expectation is taken over ND and NM , so that eD is a function of p. Also, by

continuity, the limit p satisfies

p = Hε

(
− c

2

(
(eD)2 − (eM)2

))
.

By the proof of Lemma 5.1, we have 0 < eM < eD < v
c
(Q+ 1

2
). Moreover, eD +eM = v

c
(Q+ 1

2
).

It remains to show that the equilibrium is unique (after all, the equations above could have

multiple solutions). Define

hD(eD) :=
(v
c

)
· E
[
ND · eD ·Q+NM · eM · 1

2

ND · eD +NM · eM

]
,

so that eD = hD(eD) in the introspective equilibrium.26 Since eD + eM = v
c
(Q + 1

2
) and

eM > 0, we have eD ∈ (0, v
c
(Q + 1

2
)). It is easy to check that limeD↓0 h

D(eD) = v
2c
> 0 and

26As before, the expectation is taken over ND, NM such that ND > 0 or NM > 0.
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that lim
eD↑v

c
(Q+

1
2
)
hD(eD) = vQ

c
< v

c
(Q + 1

2
). So, to show that there is a unique introspective

equilibrium, it suffices to show that hD(eD) is increasing and concave.

To show that hD(eD) is increasing, define

gD(ND, NM , eD) :=
ND · eD ·Q+NM · eM · 1

2

ND · eD +NM
k−2 · eM

,

so that hD(eD) is proportional to the expectation of gD over ND and NM , as before. It is

easy to verify that gD(ND, NM , eD) is increasing in eD for all ND and NM , and it follows that

hD(eD) is increasing in eD.

To show that hD(eD) is concave, consider the second derivative of hD(eD):27

d2hD(eD)

deD
=

2v2

c2
·
(
Q2 − 1

4

) N∑
nD=1

(
N

nD

)
pnD(1− p)N−nD

N∑
nM=1

(
N

nM

)
pN−nM (1− p)nM · nDnM(nM − nD)

(nD · eD + nM · eM)3
.

We can split up the sum and consider the cases nM > nD and nD ≥ nM separately. To prove

that hD(eD) is concave, it thus suffices to show that

N∑
nD=1

(
N

nD

)
pnD(1− p)N−nD

N∑
nM=nD+1

(
N

nM

)
pN−nM (1− p)nM · nDnM(nM − nD)

(nD · eD + nM · eM)3
−

N∑
nM=1

(
N

nM

)
pN−nM (1− p)nM

N∑
nD=nM

(
N

nD

)
pnD(1− p)N−nD · nDnM(nD − nM)

(nD · eD + nM · eM)3
≤ 0.

We can rewrite this condition as

N∑
nD=1

N∑
nM=nD+1

(
N

nD

)(
N

nM

)
· nDnM(nM − nD)

(nD · eD + nM · eM)3
·
[
pnD(1− p)N−nD

pN−nM (1− p)nM−

(1− p)nDpN−n
D

(1− p)N−nMpn
M
]
≤ 0.

But this is equivalent to the inequality

N∑
nD=1

N∑
nM=nD+1

(
N

nD

)(
N

nM

)
nDnM(nM − nD)

(nD · eD + nM · eM)3
·
[
1−

( p

1− p

)2nM−2nD
]
≤ 0,

and this clearly holds, since p > p0 >
1
2

and nM > nD for all terms in the sum.

27As before, we can ignore the case nD = nM = 0; and if nD = 0 and nM > 0, then the contribution to the

sum is 0, and likewise for nD > 0, nM = 0.
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It remains to make the connection between the effort level eD of the dominant group and

the effort level e∗ of the players with the group-preferred project. By definition, the two are

equal (see the proof of Lemma 5.1). For example, A-players with project a are the dominant

group at project a, but they are also the players with the group-preferred project among the

players from group A. Similarly, the effort level eM of the minority group and the effort level

e− of the players with the non-group preferred project are equal. For example, A-players with

project b form the minority group at project b, and are the A-players that have chosen the

non-group preferred project among A-players. �

E.7 Proof of Proposition 5.3

Recall the notation introduced in the proof of Lemma 5.1. By the results of Bollobás et al.

(2007, p. 8, p. 10), the total number ND + NM of players with a given project converges

in probability to |N |, and the (random) fraction ND

|N | converges in probability to p. It is then

straightforward to show that the fraction ND

ND+NM converges in probability to p. Hence, the

function hD(eD) (defined in the proof of Proposition 5.2) converges (pointwise) to

hD(eD) =
(v
c

)
·
[
p · eD ·Q+ (1− p) · eM · 1

2

p · eD + (1− p) · eM

]
.

The effort in an introspective equilibrium thus satisfies the fixed-point condition eD = hD(eD).

This gives a quadratic expression (in eD), which has two (real) solutions. One root is negative,

so that this cannot be an introspective equilibrium by the proof of Proposition 5.2. The other

root is as given in the proposition (where we have substituted eD for e∗, eM for e− (see the

proof of Proposition 5.2), and where we have used that h = p− 1
2
). �
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