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Abstract

This paper proposes a way to model boundedly rational dynamic programming in

a parsimonious and tractable way. It first illustrates the approach via a boundedly

rational version of the consumption-saving life cycle problem. The consumer can pay

attention to the variables such as the interest rate and his income, or replace them,

in his mental model, by their average values — this way using a “sparse” model of the

world. Endogenously, the consumer pays little attention to the interest rate but pays

keen attention to his income. This helps resolve some extant puzzles in consumption

behavior, especially the tenuous link between interest rates and consumption growth.

The model is then applied to a Merton-style portfolio choice problem. This problem

is usually quite complex and formidable. We see how a sparse agent will handle the

problem, and will have a simpler solution to it: the agent may for instance pay limited

or no attention to the varying equity premium and hedging demand terms.

Finally, the paper studies the impact of bounded rationality on macroeconomic

outcomes, in a prototypical DSGE model with one variable, capital. We find that in

general equilibrium, bounded rationality leads to more persistent shocks, and to larger

aggregate fluctuations.

∗xgabaix@stern.nyu.edu. I thank Jerome Williams for very good research assistance. For useful
comments I thank Nick Barberis, Robert Barro, Harrison Hong, Jennifer La’O, Ali Lazrak, Bentley
MacLeod, Thomas Sargent, Alp Simsek and seminar participants at Chicago, the Federal Reserve
Board, the Minnesota macro theory conference, NBER, NYU, Penn and Yale. I am grateful to
INET and the CGEB for financial support.

1



1 Introduction

This paper proposes a way to do dynamic programming, but with an element of bounded

rationality. This is first illustrated in microeconomic contexts, in canonical consumption-

investment problems. Then, the framework is used to study some macroeconomic implica-

tions of bounded rationality. One conclusion is that with bounded rationality, macroeco-

nomic fluctuations are larger and more persistent.

Before the macro consequences, let us study the micro motivation.

Modelling bounded rationality: first, microeconomics. The issue of rationality is impor-

tant. One of the criticisms of traditional economic models is the potential unrealism of

the infinitely forward-looking agent who computes the whole equilibrium in her own head.

This lack of realism has long been suspected to be the cause of some empirical misfits that

we will review below. Behavioral economics aims to provide an alternative. However, the

greatest successes of behavioral economics change the agents’ tastes (e.g. prospect theory

or hyperbolic discounting) or their beliefs (e.g. overconfidence), but keeps the assumption

of rationality. When tackling the rationality assumption, there is much less agreement and

no dynamic alternative to the traditional model has really emerged. This paper proposes

a compromise that keeps much of the generality of the rational approach and injects some

of the wisdom of the behavioral approach, mostly inattention and simplification. It does so

by proposing a way to insert some bounded rationality into a large class of problems, the

“recursive” contexts, i.e. with dynamic programming in some stochastic steady state.

To illustrate these ideas, let us consider a canonical consumption-savings problem. The

agent maximizes utility from consumption, subject to a budget constraint, with a stochastic

interest rate and stochastic income. In the rational model, the agent solves a complex DP

problem with three state variables (wealth, income and the interest rate). This is a complex

problem that requires a computer to solve it.

How will a boundedly rational agent behave? I assume that the agent starts with a

much simpler model, where the interest rate and income are constant — this is the agent’s

“default” model. Only one state variable remains, his wealth. He knows what to do then, but

what will he do in a more complex environment, with stochastic interest rate and stochastic

income? In the sparse version, he considers parsimonious enrichments to the value function,

as in a Taylor expansion. He asks, for each component, whether it will matter enough for

his decision. If a given feature (say, the interest rate) is small enough compared to some

threshold (taken to be a fraction of standard deviation of consumption), then he drops the

feature, or partially attenuates it. The result is a consumption policy that pays partial

attention to income, and possibly no attention at all to the interest rate. This does seem

realistic.

The result is a sparse version of the traditional permanent-income model. We see that it

is often simpler than the traditional model. Indeed, the agent typically ends up using a rule

which is simpler (e.g., not paying attention to the interest rate). Hence, the framework can

avoid the pitfall of some behavioral models, which often lead to agents solving problems that

are more complex than those of the traditional model. Arguably, the reason those models
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are more complex is indeed their maintained assumption of some form of hyper-rationality.

One application is a Merton-style dynamic portfolio choice problem, i.e. allocating one’s

wealth between stocks and bonds when the expected returns are stochastic and correlated

with past returns. This is a notoriously complicated problem for a rational agent. I study

how a sparse agent would handle it. The sparse agent first anchors his action by imagining

he’s facing a simpler problem — a world with a constant equity premium. Then, he can

sparsely enrich his model to take into account the more complex features (the stochasticity

of the equity premium, its correlation with past returns, which creates a hedging demand).

Hence the agent will take these complex features into account only partially, or not at all.

This may be a more satisfying description than the hyper-rational model of how people

behave in a complex environment. At the very least, it is important to have a concrete

alternative to that hyper-rational model.

Let us now turn to macro consequences of this approach. The main conclusion is: with

bounded rationality, macroeconomic fluctuations are larger and more persistent.

I illustrate this proposition, and qualify it, as it appears to hold for most reasonable

values of the parameters, but can be overturned for extreme values.

To see the idea, which is fundamentally quite simple, imagine first an economy with only

one state variable, capital. It starts with a steady state amount of capital. Then, there is a

positive shock to the endowment of capital. In a rational economy, agents would consume

a certain fraction of it, say 6%, every period. That will lead the capital stock to revert

quickly to its mean. However, in a an economy with sparse agents, investors will not pay

full attention to the additional capital. They will consume less of it than a rational agent

would. Hence, capital will be depleted more slowly and will mean-revert more slowly. The

shock has more persistent effects.

Given that shocks are more persistent, past shocks accumulate more. Mechanically, this

leads to larger average deviations of capital from its trend. As a consequence, the interest

rate and GDP also have larger, and more persistent, deviations from trend.

The model allows us to express those ideas in simple, quantitative ways. It allows us to

explore them in richer environments, e.g. with shocks to both productivity and the capital

stock. The proposition, “BR leads to larger and more persistent fluctuations,” still holds

true for most parameter values.

Literature review. Besides behavioral lit, cite Krusell Smith (but accent here is on the con-

sequences of BR), Caballero (1995), Campbell-Mankiw (1989), Sims, Máckowiak & Wieder-

holt, Greenwood-Hanson (2013), Mankiew-Reis, Veldkamp, Woodford. One difference: no

entropy, so much more simplicity.

The rest of the paper is as follows. Section 2 studies the best response of an agent. The

leading example is a consumption-savings problem. Once it is well understood, I formulate

the more general notation of sparse DP, in section 3, which also treats the Merton portfolio

problem. Section 4 uses the framework to study a general equilibrium situation. If formulates

and illustrates the amplifying effect of sparsity on aggregate fluctuations. Section 5 presents

an application to the (failure of) Ricardian equivalent. Section 7 concludes. The Appendix
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contains the more technical material and derivations.

2 Partial equilibrium: Sparse dynamic programming in

a consumption-savings problem

2.1 Bounded Rationality in a 2-Period Problem

Consider for concreteness the following decision problem with just two periods: the agent’s

value function is:

 ( b b) =  () +  ((1 +  + b) ( − ) +  + b) 
and he wishes to solve max  ( b b). That is, the consumer starts from an initial wealth
, and picks his consumption  in order to maximize his utility, given that next period’s

consumption will be next period’s income,  = +b, plus today’s savings, −, compounded
by the interest rate,  =  + b. Here  is the average value of the interest rate (I take the
default value to be the average), and b is the (mean-zero) deviation of the interest rate from
its average; the same holds for , the average income, and b, the deviation of income from
its average.

A rational consumer will solve: max  ( b b). What will a sparse consumer do? Using
a mix of psychological and economic reasoning, I propose in Gabaix (2013) a reasonably

systematic way of handling this. The agent trades off the cost of having an imperfect

decision against the benefits of saving on “thinking costs” . This leads to an algorithm that

boils down to the following procedure in our consumption-investment case.

First, the consumer knows what to do under a “default model” where (b b) = (0 0),

i.e., all variables are at their average values. Then, the consumer has cognitive access to

 = − at the default model, i.e., by how much consumption should change if the
interest rate goes up by a small amount. It may seem a bit strange that the consumer might

know so much, but this assumption captures parsimoniously the fact that people do have a

sense that some quantities (e.g., their income) matter a lot, while others (e.g., the volatility

of the 1-year interest rate and, perhaps, that interest rate itself) do not matter very much.

Step 1. Replace the interest rate b (to be more precise, the deviation of the interest rate
from its average) with its truncated version: the interest rate perceived by a sparse agent is

(very shortly I will motivate and explain this particular formula):

b = 

Ã
1






!b (1)

where  is taken at the default model, and the truncation function

 ( ) = max

µ
1− 2

2
 0

¶
(2)
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Figure 1: The truncation function  . A sparse agent replaces a slope  by a truncated slope

 ( ), where  is a context-dependent threshold.

is represented in Figure 1. b is the deviation of the interest rate from its default perceived

by a sparse consumer.

Likewise, the perceived income innovation is: b = 

µ
1 






¶b.
Step 2: Then, the sparse agent solves max  ( b  b ).
Step 2 is unproblematic: given the perceived interest rate and income, the agent optimizes

consumption. The heart of the model is in Step 1. To interpret rule (1), note that it implies:

“Replace the interest rate with 0 if taking the interest rate into account changes consumption

by less than  standard deviations, i.e., if
¯̄



¯̄
 .”

This means: on average, a one-standard-deviation change in the interest rate makes the

sparse agent change his consumption by only 




standard deviations of consumption. If

that ratio is small enough (I calibrate the model to  = 03, so that features which account

for less than 2 = 9% of the variance are eliminated), then replace the interest rate by 0.1

The penalty for lack of sparsity, , is akin to an index of bounded rationality: if  = 0,

the agent is fully rational.

Take the case where
¯̄̄






¯̄̄
 , so that b = 0 and the agent proceeds as if the interest

rate was the average interest rate  rather than the true interest rate . We have the picture

of a sensible agent: he does not pay attention to the interest rate all the time, he saves (so

he is not “myopic” in the sense of heavily discounting the future), but he does not obsess

about smoothing his consumption given all fluctuations in the interest rate. This agent

is arguably more sensible and realistic than the traditional agent (below I will offer some

empirical evidence for that intuition).

1The main paper provides a microfoundation based on the welfare loss from a suboptimal answer.
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Here, we use the “average values” for the interest rate and income shocks. In a one-shot

problem, we would use the above rule, replacing || by |b|, so that instead of (1) we obtainb = 
³b 



´
. Then, the rule becomes: “Replace the interest rate by 0 iff taking it into

account makes consumption change by less than  standard deviations.” Indeed, the agent

does not respond to the interest rate at all if
¯̄


× b ¯̄  . Thus, most of the time,

the agent will not take the small fluctuations in the interest rate into account, but will pay

attention to changes in the interest rate only when changes are very large (e.g., if there is a

large, one-time discount of, say, cars).

The truncation rule embodies the idea that an agent who seeks “sparsity” (uncluttering

his mind from lots of small things) should sensibly drop relatively unimportant features: if

they account for less than  standard deviations of the actions, they are dropped entirely.

In addition, if the features are larger than that cutoff, they are still dampened: in Figure

1,  ( ) is below the 45 degree line (for positive ; in general, | ( )|  ||). This
reflects Kahneman and Tversky’s “anchoring-and-adjustment” process, in which there is

an anchor in the default model, and then a partial adjustment toward the truth. This

feature could be abandoned, using the “hard-thresholding” function 0 ( ) = 1||√2||,
see Appendix A. However, the above function  has the advantage of yielding continuous

demand curves, which are likely in practice. For many cases, the smooth adjustment makes

more empirical sense than the “all-or-nothing” adjustment, which predicts discontinuities

that we are unlikely to see empirically.

I hope that the reader has gotten a sense of the intuition for the model in a (quasi-)static

context. Let us now see how to proceed in more dynamic contexts.

2.2 Infinite-Horizon Problem

One important payoff from the framework is that it allows for boundedly rational dynamic

programming (BRDP). This is important because many models in macroeconomics and

finance take the form of dynamic programming (Ljungqvist and Sargent 2004). The outcome

will be a model that is often simpler than the traditional model, because agents pay attention

to fewer things and, in particular, do not react to all future variables.

In addition, it is well-known that an important conceptual and practical problem when

dealing with dynamic programming is the curse of dimensionality. Strictly speaking, there are

perhaps over 1,000 state variables that should matter in our decisions, but solving dynamic-

programming problems with more than a few state variables (let alone 1,000 state variables)

is extremely hard in practice because of the combinatorial explosion of the problem’s com-

plexity. Even the most powerful computers cannot handle such complexity and solve the

problems exactly. Given that, how would a boundedly rational agent proceed?

I illustrate the approach in a canonical consumption-investment problem. The agent

has utility E
P∞

=0 

1−
  (1− ). We assume he has solved the life-cycle problem in a

simple model, where the interest rate is constant at  (for simplicity, assume here that
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 ≡ 1 +  = −1) and his income is constant at : his wealth  evolves according to

+1 = (1 + ) ( − ) + 

(that is, wealth at  + 1 is savings at ,  − , invested at rate , plus current income,

). Then, the optimal consumption is  () = ( + ) , and the value function is

  () =  ( + )
1−

for a constant .

Now, the agent is told that the world is more complicated: the interest rate is actually

+b and his income is + b, where b and b are deviations of the interest rate and income
from their means, respectively, and follow AR(1) processes:

+1 = b + 

+1 +1 = b + +1

·+1 are independent disturbances with mean zero. Hence, wealth follows:

+1 = (1 +  + b) ( − ) +  + b
What will the consumption function  ( b b) of a sparse agent be? It is difficult,

because this is a dynamic-programming problem with 3 state variables, and has no closed-

form solution. Under the previous approach, one might think that one should solve for

the value function  ( b b); but that would be a very difficult task in general: dynamic
programming with 3 or more (and in practice perhaps 20) state variables is very difficult.

However, we obviate this difficulty by using the following algorithm.

Step A (Taylor expansion around the simple, default model with just one

state variable). We observe that a rational agent would consume, for small disturbancesb and b:
ln  ( b b) = ln  () + b + b

+ 2nd-order terms. (3)

Importantly, the terms  and  are easy to derive by a local expansion of the simple, one-

dimensional value function   () (i.e., without solving for the full function  ( b b)).
Indeed, by perturbation arguments, detailed in the Appendix, we find:

 =



¡
− 

¢

  =


³


− 1
´
− 1

− 
 (4)

Then, we assume that the sparse agent somehow has cognitive access to  and : while

it may seem counterintuitive, this merely represents that the sparse agent senses that, for

instance, the interest rate is not a very important decision for his consumption (|| is small).
Step B (Simplification of the reaction function). The agent does a sparse trunca-

tion of (3), according to equation (1). Hence, we obtain the following.
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Proposition 1 A sparse agent has the following consumption policy, up to second order

terms:

ln  = ln 
 () + b + b (5)

where (for  =  )  := 
³


ln 


´
and  are in (4).

Equation (5) shows a “feature-by-feature” truncation. It is useful because it embodies in

a compact way the policy of a sparse agent in quite a complicated world. Note that the agent

can solve this problem without solving the 3-dimensional (and potentially 21-dimensional,

say, if there are 20 state variables besides wealth) problem. Only local expansions and

truncations are necessary.

In this manner, we arrive at a quite simple way to do sparse dynamic programming. There

is just one continuously-tunable parameter, . When  = 0, the agent is (to the leading

order) the traditional rational agent. When  is large enough, the agent is fully sparse, and

does not react to any variable. Hence, we have a simple, smooth way to parametrize the

agent, from very sparse to fully rational.

2.3 Application: Insensitivity to the Interest Rates and Low Mea-

sured Intertemporal Elasticity of Substitution

To get a feel for the effects, consider a calibration with (using annual units):  = 1,  = 5,

 = 2,  = 1,  = 08%,  = 02,  = 095, ln  = 5%, and  = 07: as income shocks

are persistent, they are important to the consumer’s welfare.

Then, Figure 2 shows the impact of a change in the interest rate and income on consump-

tion. Consider the left panel, . If the cost of rationality is  = 0, then the agent reacts

like the rational agent: if interest rates go up by 1%, then consumption falls by 28% (the

agent saves more). However, for a sparsity parameter  ' 05, the agent essentially does not
respond to interest rates. Psychologically, he thinks “the interest rate is too unimportant, so

let me not take it into account.” Hence, the agent does not react much to the interest rate,

but will react more to a change in income (right panel of Figure 2), which is more important:

the sensitivity of consumption to income remains high even for a high cognitive friction .

Note that this “feature-by-feature” selective attention could not be rationalized by just a

fixed cost to consumption, which is not feature-dependent.

The same reasoning holds in every period. The above describes a practical way to do

sparse dynamic programming. In some cases, this is simpler than the rational way (as the

agent does not need to solve for the equilibrium), and it may also be more sensible.

Consequence. A behavioral solution to puzzles and controversies regarding the

intertemporal elasticity of substitution For many finance applications (e.g., Bansal

and Yaron 2004, Barro 2009, Gabaix 2012), a high intertemporal elasticity of substitution

(IES, denoted  = 1) is important (  1). However, micro studies point to an IES

of less than 1 (e.g., Hall 1988). I show how this may be due to the way econometricians
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Figure 2: Impact of a change in the interest rate (resp. income) on consumption, as the

function of weight on sparsity, .  = 0 is the rational-agent model.
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Figure 3: Measured intertemporal elasticitiy of substitution (IES), b, if the consumer is
sparse with cost , while the econometrician assumes he is fully rational. The true IES is

 = 1.
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proceed, by fitting the Euler equation, which yields ln +1 − ln  = 

+ constant, whereb is the measured IES. If the consumer “under-reacts to the interest rate,” the measured

IES will be biased towards 0. Using the above model, we can more precisely calculate that

if consumers are boundedly rational (in the sense laid out above), the estimated IES will

be: b = 
¡



 − 1

¢ − 
¡
− 

¢
. This is a point prediction that goes beyond Chetty

(forth.)’s prediction of an interval bound. Hence we obtain:

Proposition 2 An econometrician fitting an Euler equation even though the agent is sparse

will estimate a downwardly-biased IES (intertemporal elasticity of substitution):b =  −
¡
− 

¢
( − )  

where b is the estimated IES,  the true IES and −  is the difference between the sparse

agent’s and the traditional agent’s interest-rate sensitivity of consumption.

The above calibration yields Figure 3, which plots the measured IES b if the consumer
is sparse with sparsity cost . If  = 0, the consumer is the traditional, frictionless rational

agent. We see that as  increases, the IES becomes more and more biased. Hence, inattention

may explain why while macro-finance studies require a high IES, microeconomic studies find

a low IES.2

2.4 Application: Source-dependent Marginal Propensity to Con-

sume

The agent has initial wealth , future income , can consume  at time 1, and invest the

savings at a rate . Hence, the problem is as follows. Given an initial wealth , solve

max  =  ()+E [ ( + ( − ))], where income is  = ∗+
P

=1 : there are  sources

of income  with mean 0. Let us study the solution of this problem with the algorithm.

The agent observes the income sources sparsely: he uses the model  () = ∗ +
P

=1,

with  to be determined. Applying the model, we obtain (assuming exponential utility

with absolute risk aversion  for simplicity)

Proposition 3 Time-1 consumption is:  = 1
1+

(+  − 22 + ∗ +
P

),  =

(1
2


). The marginal propensity to consume (MPC) at time 1 out of income source  is:


 =

 · (6)

where 
 = ()


is the MPC under the sparse model, and 

 = ()

is

the MPC under the traditional rational-actor model. Hence, in the sparse model, unlike in

the traditional model, the marginal propensity to consume is source-dependent.

2This is in the spirit of Gabaix and Laibson (2002)’s analysis of the biases in the estimation of the

coefficient of risk aversion with inattentive agents, in a different context and a more tractable model. See

also Fuster, Laibson and Mendel (2010) for a model where agents’ use of simplified models leads to departures

from the standard aggregate model.
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Different income sources have different marginal propensities to consume — this is remi-

niscent of Thaler (1985)’s mental accounts. Equation (6) makes another prediction, namely

that consumers pay more attention to sources of income that usually have large consequences,

i.e., have a high . Slightly extending the model, it is plausible that a shock to the stock

market does not affect the agent’s disposable income much — hence, there will be little sen-

sitivity to it: the MPC out of wage income will be higher than the MPC to consume out of

portfolio income.

This model shares similarities with models of inattention based on a fixed cost of observing

information. Those models are rich and relatively complex (they necessitate many periods,

or either many agents or complex, non-linear boundaries for the multidimensional   rules,

or signal extraction as in Sims 2003), whereas the present model is simpler and can be

applied with one or several periods. As a result, the present model, with an equation like

(6), lends itself more directly to empirical evaluation. Some interesting “low-complexity”

models include Bordalo, Gennaioli, and Shleifer (2011) and Koszegi and Szeidl (2011). A

distinctive feature of the model presented in this note is its ability to handle continuous

choices (e.g., a consumption level) rather than the discrete choice between distinct goods.

3 General Framework

Here we present the more general procedure underlying the model of the previous section.

First, we present the smax operator, an operator representing sparse maximization. Then,

we state the dynamic programming problem, and some results that make its computation

easy.

3.1 Previous results on the sparse max operator

In Gabaix (2013), I defined a sparse max or smax operator, which is a sparse version of the

max operator. The agent faces a maximization problem which is, in its rational version,

max  ( ). The  are viewed by the agent as being drawn with a standard deviation ,

and covariance . There is a nonnegative parameter , which is a taste for sparsity. When

 = 0, the agent is the traditional agent.

Definition 1 (Sparse max operator, Gabaix 2013) The sparse maximum, , and maximand,

, of a function  ( ) written:

 := smax


 ( )   := arg smax


 ( )

are defined by the following procedure.

Step 1: choose the attention vector ∗:

∗ = argmin


1

2

X
=1

(1−)Λ (1−) + 
X
=1

|| (7)
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with Λ = − , and  := −−1 .
Define  = ∗

, the sparse representation of .

Step 2: Choose the action

 = argmax


 ( ) (8)

and set the resulting utility to be  =  ( ). In the expressions above, derivatives are

evaluated at  = 0 and  = argmax  ( 0).

In other terms, the agent solves for the optimal ∗ that trades off a proxy for the utility
losses (the first term in the right-hand side of equation (7)) and a psychological penalty

for deviations from a sparse model (the second term on the left-hand side of equation (7)).

Then, the agent maximizes over the action , as if ∗ were the true model.
The following proposition derives the main case.

Proposition 4 (Gabaix 2013) When variables are perceived to be uncorrelated, the smax

operator can be equivalently formulated as:

 = argmax


 (∗
11 

∗
)

with

∗
 = A

Ã
1

12

 ||12
!

(9)

and  = −−1 · .

The intuition is that the ’s are truncated. If || is small enough, so that 
shouldn’t matter much any way, then  = 

 , and the agent doesn’t pay attention to 
(if 

 = 0).

For instance, in the first part of this paper, equation (1) came from the above proposition,

with  = 
³
1 





´
.

The following proposition gives a more explicit version of the action:3

Proposition 5 If the rational action is:

 () =  +
X


 +
¡kk2¢

then the sparse action is:

 () =  +
X




µ






¶
 +

¡kk2¢ (10)

3This proposition suggests a potential generalization of the SparseBR algorithm: just postulate the pro-

cedure in the propositions, with a potentially different truncation function  . For instance, we could have

 ( 0) = 1||≥|0|, or some smoother function.
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with

 := ( ||)12 .
For a quadratic utility function  = − (−P )

2
, the above expressions are exact (i.e.

hold without the 
¡kk2¢ terms ).

We see the contrast. In the first procedure, the slope is chosen before seeing . Hence,

the policy is still linear in . In the second policy, the truncation is chosen after seeing the

. The policy is now non-linear in . The linearity of policies make the first procedure

useful for macro. Equipped with this piece of machinery, we turn to dynamic problems.

3.2 Sparse Dynamic Programming

We consider a stationary environment. The rational version of the DP problem is:

  ( ) = max


 ( ) + E  (0 0)

0 =  (  )  0 =   (  )

where  and   are potentially random functions, i.e. functions of some noise.

In the sparse version, the vector  is always considered (it’s in the default model).

However, the vector  represents variables that may not be considered by the sparse agent.

We define the value function as follows:

Definition 2 The DP value function is the solution (provided it exists) of:

  ( ) = smax


 (  ) + E  (0 0)

0 =  (  )  0 =   (  )

where the smax operator for sparse maximization is defined in Definition 1.

Slightly more explicitly, this is:

  ( ) = smax


 (  )

 (  ) :=  ( ) + E  ( (  )    (  ))

The notion is recursive. However, the problem is actually quite simple to solve, at least

to the first order.

Indeed, we have:

Proposition 6 For small , we have:

  ( ) =   ( ) +  ( )

where  is continuous in ( ) and twice differentiable at  = 0, with  ( 0) negative semi-

definite. In other words, the sparse value function and the rational value functions differ

only by second order terms in .
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This basically generalizes the envelope theorem. It implies that, at  = 0 :

 
 =  

   
 =  

  
 =  

  
 =  

 (11)

However, in most situations we have  
 6=  

, and indeed  
   

: this is because lack

of optimization does lead to second order losses in .

This leads to a simple proposition to calculate the value function.

Proposition 7 (Calculation of the optimal sparse policy). Suppose that  
|=0 = 0 (which

is usually satisfied in models). Consider the first order expansion of the optimal policy for

small ,

 ( ) =  () +
X


 () +
¡
2
¢

Then, the sparse policy is:

 ( ) =  () +
X




µ
 () 





¶
 +

¡
2
¢

(12)

This proposition will be quite useful. To derive policies, first we can simply do a Taylor

expansion of the rational policy around the default model, and then truncate term by term.

I conclude with a remark which will be useful later, drawing again on Gabaix (2013).

As  has the units of utils, it cannot be a primitive parameter. One can make it more

endogenous with the primitive, unitless parameter , by setting:

 = 
X


Λ (13)

3.3 Application: Dynamic Portfolio Choice

I now study a Merton problem with dynamic portfolio choice. The agent’s utility is:

E
h

1
1−

R∞
0

−1− 
i
, and his wealth  evolves according to:

 = (− + ) +  (+ )

where  is the allocation to equities. The equity premium  =  + b has a variable partb, which follows
b = −b−  + 0

The parameter  ≥ 0 indicates that equity returns mean-revert: good returns today lead
to lower returns tomorrow. That will create a hedging demand term — a term that’s quite

complex.

The agent’s problem is to find the policies  and  to maximize expected utility under

the constraints. Hence, the value function for the agent is  ( b ).
We have the following (using the notation  = 1 for the IES):
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Proposition 8 (Behavioral dynamic portfolio choice) The fraction of wealth allocated to

equities is, with  := 
2

 =  + 

µ b
2

 

¶
+  ( )

while consumption is:

 = 

∙
1 + 

µ
1− 

+ Λ
b ln ¶+ 

µ
 (1− )



+ Λ
 ln 

¶¸
using the notations:

 =

³
1− 1



´


+ 
  := + (1− )

¡
 + 

¢


Proposition 8 predicts the choice of a sparse agent. When  = 0, it is the policy of a fully

rational agent, e.g. as worked out by Campbell and Viceira (2002). When   0, it is the

policy of a sparse agent. When  is larger, portfolio choice becomes insensitive to the change

in the equity premium, b, and the agent thinks less about the mean-reversion of asset, the
 terms.

In addition, the agents’ consumption function pays little attention to the mean-reversion

of assets. [Next iteration should have a calibration, and the proof.]

4 Bounded Rationality in General Equilibrium

The raison d’être of this model is the tractability that allows us to study GE effects. We

start with a basic question. Suppose that agents are sparse; what will the impact in general

equilibrium be? The answer is:

Bounded rationality leads to more persistent and larger aggregate fluctuations.

I will illustrate this thesis in a very basic model first, with just one state variable. Then,

we’ll move on to more complex models. We shall see it holds for many (but not all) values

of parameters.

4.1 A simple example with shocks to capital

Let us start with a simple example. The utility function is still E
P

 


1−
  (1− ). In the

aggregate, the capital stock follows:

+1 =  ( ) + (1− ) −  + +1 (14)

where +1 are mean-zero shocks, whose distribution we’ll specify later. This way, there is

just one state variable in the economy, the capital stock.
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The question is: how will a sparse economy react compared to a traditional (i.e., rational-

agent) economy?

This is a textbook example: and can be found in Acemoglu (2009, Chapter 8), Blanchard-

Fischer (1989, Chapter 2), Romer (2012, Chapter 2); it introduces generations of students

to macroeconomics. However, it looks somewhat odd (in my opinion), with these infinitely-

rational forward looking agents that calculate the whole macroeconomic equilibrium in their

heads. I present here an alternative to that presentation.

4.1.1 The essence of the argument

I present first the essence of the argument, sweeping under the rug several specifics that will

be made explicit in the more special models.

If there were no shocks, the economy would be at the steady state, with capital stock ∗.
I use the hat notation for the deviation (not in logs) from the mean, e.g. b =  − ∗.
The law of motion for capital (14) is, in linearized form:

b+1 = (1 + ) b − b + +1 (15)

where  is the steady state interest rate,  = −1 − 1.
Given there is one state variable, the policy function of the agent (rational or not) will

take the form of a deviation of consumption from trend:

b =  b

for some positive .

Plugging this into (15) we obtain: b+1 = (1 +  − ) b + +1, i.e.

b+1 = (1− ) b + +1 (16)

with a speed of mean-reversion:

 = − . (17)

Generally, sparse consumers are less attentive than rational consumers, hence their policy

will take the form: b = 0 b

for some 0 :
0  0  

Hence, the speed of mean reversion in the sparse economy will be less than in the rational

economy:

0 = 0 −   .

Therefore, fluctuations mean-revert less quickly in the sparse economy. This is because

consumers respond less to shocks.
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Finally, squaring equation (16), we obtain:  b+1 = (1− )
2
 b + 2 . As in the

steady state,  b+1 =  b,

 b =
2

1− (1− )
2

When shocks mean-revert more slowly (lower ), the average deviation of the stock price

from trends is higher (shocks “pile up” more). Hence, the variance of shocks will be larger

in the sparse economy than in the rational economy.

The above argument gives the qualitative essence of what is going on. However, we need

to flesh it out more to obtain more quantitative answers. Let us do that now.

4.1.2 The more detailed argument

The rational economy Formally, the rational agent has a value function  (),

which satisfies:

 () = max


 () + E [ ( 0)]

 0 =  () + (1− ) − + 

where  () is gross output, and  () :=  ()−  is output net of depreciation.

The solution is that small deviations of the capital stock mean revert at a speed 

( b = − b0) that we will characterize soon.

It comes from the following policy function of the representative agent (see Appendix):

b =  b

 =  +


 + 

 = −∗ 00 (∗)   0

By the argument above, this leads to a speed of mean-reversion:

 = −  =


 + 
(18)

Hence, solving via rational expectations imposes:

 =
− +

p
2 + 4

2
 (19)

The boundedly rational version The agent has wealth  (and we normalize the

population to be 1, so that in equilibrium will be equal to , the aggregate wealth). It

evolves as:

+1 = (1 + ) ( +  − )
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where  =  () − 
0 () is labor income, and  =  0 () is the interest rate. We

have:

b = −∗ 00 (∗) bb =  00 (∗) b

This leads to the optimal policy:

b = b + 

 + 
b + ∗ − ∗

 + 
b

= b + (−∗ 00 (∗) + (∗ − ∗) 00 (∗))
 + 

b

b = b + 

 + 
b

The sparse version is: b = b + 

µ


 + 





¶ b (20)

We need to solve for the equilibrium. The speed of mean-reversion  affects the impor-

tance of aggregate fluctuations on the agent’s policy, and hence affects the attention that

the consumer brings to it. In turns, this attention affects the MPC, hence the speed of

mean-reversion. Hence, we have a fixed-point to solve, featuring speed of mean-reversion,

and attention.

To solve it, we use the “scale-free” version of , equation (13).




=

µ


−

¶12
1


=

µ−2
−

¶12
1



=
√




=
√


¡



¢



=
√


µ




¶

=
√


µ
 +



 + 

¶
Hence, we obtain:

b = b + 

µ


 + 

√


µ
 +



 + 

¶¶ b

so that in equilibrium, b =  b

 =  + 

µ


 + 

√


µ
 +



 + 

¶¶
Hence, the equilibrium mean-reversion  is:  =  − :

 = 

µ


 + 

√


µ
 +



 + 

¶¶
(21)
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Figure 4: This Figure plots the speed of mean-reversion of fluctuations, , as a function of

the cost of rationality, .

Hence,  is a solution of:

 =

Ã


 + 
− 

µ
 +



 + 

¶2
 + 



!+


Proposition 9 Shocks are more persistent in the sparse economy:    if   0. More

precisely, the speed of mean-reversion is given by

 =

h
− (22 + 2+ )  + 

p
2 + 4(1− )

i+
2( + 2)

(22)

In particular,  is decreasing in ,  ( = 0) = . We have   0 iff  ≤ ∗ := (1 + 2)
−2
.

The following proposition studies the variance of the stocks,  b =
2

1−(1−)2 .

Proposition 10 Shocks are larger in the sparse economy. More precisely, the quadratic

deviation from trend in capital, interest rate and GDP is multiplied by  () =
1−(1−)2
1−(1−())2 ,

where  is given by (22). The effect can be unboundedly large: lim↑∗ () =∞.

Calibration The parametrization is conventional,  () = 1− (1− ) − ,  =

5%  = 8%, a capital share 1 −  = 13, log utility ( = 1). This yields the following

graphs:
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Figure 5: This Figure plots the “multiplier of fluctuations” as a function of the cost of

rationality, . This is capital’s average squared deviation from its mean under the boundedly

rational model, divided by the same quantity under the rational model.

Figure 4 plots the speed of mean-reversion, , of fluctuations, as a function of the cost

of rationality, . At  = 0, we have the rational persistence level. We see that the impact

can be quite high.

Figure 5 plots the “multiplier of fluctuations,”  (). We see that the impact can be

substantial indeed.

5 Partial Failure of Ricardian equivalence

Intuitively, a sparse agent will violate Ricardian equivalence (Barro (1974)). I study the

magnitude and dynamics of that violation.

For simplicity, we use continuous time. The interest rate is  = − ln. The government
needs to collect a present value of . This could be done by taxing the population (of size

normalized to 1) by  =  , starting at a period  .4 Hence, the path of taxes is: 0 for

   , and  for  ≥  .

What is a consumer’s response at time   ? If the consumer is perfectly attentive,

then he should start saving at time 0. However, a sparse agent might not pay attention to

those future taxes increases, and start cutting on consumption only later, or indeed perhaps

just when the tax cuts are enacted.

Let us analyze this more in detail. At  , the tax  is enacted, so that for  ≥  , the

agent is aware of it. This yields: b =  b −.

Before the enactment of taxes (   ), will the consumer think of the tax ? That tax

4If taxes are collected later, then to guarantee the same present value, they need to be larger by a factor

 .
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Figure 6: Reaction of consumption and wealth to an increase of future taxes, for different

level of . Notes. At time 0, it is announced that taxes will be paid start at time  = 10.

This Figure plots the change in consumption and wealth. The solid line is the prediction of

the rational model (i.e. = 0), the other lines the reaction for different value of  ( = 001

(blue, dotted),  = 0025 (red, dashed-dotted),  = 1 (green, dashed)). The very BR agents

does not react at first, but starts reacting when he is closer to  . He reacts even more when

taxes are in effect. As he delayed his savings, he needs to cut more on consumption when

taxes start. Units are percentage points of previous steady state consumption. The amount

is  = 2% of permanent income.

lowers the present value of his income by −(−), so the consumer’s response is:

b =  b − 
¡
−(−) 

¢
Hence, the consumer will not think about the tax increase  when −(−) ≤ . Call

 ∈ [0  ) the first moment when he thinks about them (if it exists, i.e. if   ), otherwise

we set  =  .

The next Proposition details the dynamics.

Proposition 11 (Myopic behavior and failure of Ricardian equivalence) Suppose that taxes

will go up at time  . While a rational agent would cut consumption at time 0, a sparse agent

cuts consumption later, at a time  = max
¡
0min

¡
 1


ln 

−
¢¢
. His consumption path is:

b =
⎧⎨⎩ 0 for   

−−(−) +  (1−  (− )) for  ≤   

 b − for  ≥ 

with b =



¡
1− −(−)

¢−  ( − ) 

Let us take an example illustrated in Figure 6, with  = 5%,  = 2%,  = 10 years.

This Figure plots the change in consumption and wealth for the rational actor  = 0 (black,
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solid), and progressively less rational agents:  = 001 (blue, dotted),  = 0025 (red, dashed-

dotted),  = 1 (green, dashed). The traditional Ricardian consumer ( = 0) immediately

decreases his consumption by 2%, which leads to wealth accumulation at until time  . In

constrast the very BR consumer ( = 01) doesn’t react at all until  = 10 (hence he doesn’t

accumulated any wealth), and then cuts a lot on consumption. The value  = 001 and

 = 0025 display an intermediary behavior. For  = 0025, the consumer initially doesn’t

pay attention to the future tax. However, at a time  = 45 years, (i.e., when there are 3.6

years remaining until the taxes are effective), he starts paying attention, and starts savings

for the future taxes. As the tax looms larger, the agent saves more. As the agent delayed

his savings, he ends up cuttings down on consumption more drastically when taxes are in

effect.

Smaller taxes generate a more delayed reaction. Controlling for the PV of taxes, con-

sumers are better off with early rather than delayed taxes (as this allows them to smooth

more).

6 Discussion

6.1 Active decision: Consumption or Savings?

Here we assume that the active decision was one of consumption. One could imagine that it

would be in savings. Does this matter? First, for many variables, it does matter: the impact

of interest rates, future taxes, future income shocks etc are the same whether a sparse agent

uses the the consumption frame or saving frame. However, the frame does matter for one

variable: current income. Indeed, take the permanent-income setup. 5

Which frame does the agent use? Here, we’ll use the working hypothesis that the agent

takes the frame that yields the higher expected utility. We use the following Proposition.

Proposition 12 (Welfare under the consumption vs savings frame) The consumption frame

yields greter utility than the savings frame if and only if   , i.e. if income shocks mean-

revert not too slowly. More precisely, under the “active consumption” frame, the utility loss

5Recall that b = 
+

b, so
b = 

 + 
b under the consumption frame

However, if the consumer choose savings, , and then consumes  =  − , the rational amount isb = b − b , i.e. b = 
+

b. Hence, the savings of a sparse agent is b = 
+

b, and the deviation of
consumption is: b = b − b , i.e.

b = µ1− 

 + 

¶ b under the savings frame
which is generally not the same as b under the consumption frame.
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from a BR policy is, to the leading order in 2, 
 =  (1−)

2
2, for  =

00(())2
2(+2)(+)

2 ,

while under the “active savings” frame, they are  =  (1−)
2
2.

When    (which is probably the relevant case, if business-cycle fluctuations partly

mean-revert), the “consumption” frame is indeed better for the agent, at least most of

the time. This make sense: savings are there to absorb transitory income shocks, and

consumption should be smooth. When the agent chooses consumption in an inattentive

manner, it makes consumption quite smooth indeed. However, if the agent chooses savings

inattentively, he makes savings smooth, but consumption needs to absorb the shocks, hence

is quite volatile. Hence, generally, to keep consumption smooth, choosing consumption

inattentively is better than choosing savings inattentively.

However, when income shocks are a random walk ( = 0), the savings frame is better.

An inattentive agent will keep a constant savings, and let consumption react one for one to

income shock, which is the normatively correct behavior when income shocks are completely

persistent.

It may be useful to see the effect in a simpler context. Take a 3 period model with

 =  = 1, and an income shock with persistence : b = −1 for  = 0 1 2, with  a

mean-0 shock. Normatively, that should induce the change b = (b)=012 = (1 1 1) 1++23


(indeed, the total value of income has increased by (1 + + 2) ). Let us not consider a

BR agent with  = 0. However, under the consumption frame, b = ¡
0 1

2
 1
2
+ + 2

¢


(as there is no reaction of 0, so that time-1 wealth increases by b1 = , of which 12 is

consumed at time 1, so b1 = 
2
). Under the savings frame, we get b = (1  2)  (savings

doesn’t change, consumption absorbs all the shocks). It is easy to verify that for  small, the

utility is higher under the consumption frame, while the opposite for large .6 Indeed, when

 = 0, b = ¡0 1
2
 1
2

¢
 and b = (1 0 0) , so there is more smoothing under the consumption

frame. Other the other hand, with  = 1, b = ¡0 1
2
 5
2

¢
 and b = (1 1 1) , and there is

more smoothing under the savings frame.

7 Conclusion

I presented a practical way to do boundedly rational dynamic programming. It is portable

and to the first order has just one free continuous parameter, , the penalty for lack of

sparsity, which can also be interpreted as a cost of complexity.

It allows us to revisit canonical models in economics, and give them a behavioral flavor.

From the micro point of view, we obtain inattention and delayed response. Those are not

necessarily very surprising features — however, it is useful to have clean model that generates

those things and can be calibrated. The model could be empirically evaluated, but that

would take us too far away.

6To the leading order, b = 1
2
00
¡

¢

P

 b2 , so b = 1
2
00
¡

¢
2

³
1
4
+
¡
1
2
+ + 2

¢2´
and b =

1
2
00
¡

¢
2
¡
1 + 2 + 4

¢
. This yields b ≥ b iff   ∗ ' 032.
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From the macro point of view, the model allows us to think about bounded rationality

in general equilibrium. The upshot is that compared to the rational model, sparsity leads to

larger and more persistent fluctuations. The reason is that rational actors tend to “dampen”

fluctuations. For instance, they consume more when more capital is available. This channel

is muted with sparse agents. Hence, fluctuations are more persistent, innovations have a

longer-lasting effect, and the average fluctuations (deviations from the mean) are larger.

Given that it seems easy to use and sensible, we can hope that this model may be useful

for other extent issues in macroeconomics and finance.
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Figure 7: Three attention functions A0A1A2, corresponding to fixed cost, linear cost and
quadratic cost respectively. We see that A0 and A1 induce sparsity — i.e. a range where
attention is exactly 0. A1 and A2 induce a continuous reaction function. A1 alone induces
sparsity and continuity.

A Appendix: Attention and Truncation Functions

Here are some good truncation functions. In Gabaix (2013), I study attention functions

A (
2): they are weakly increasing, from 0 (complete inattention) to 1 (full attention).

Here I defined the related truncation function  :

 ( ) := A

µ
2

2

¶
It is the coefficient , times the attention to the coefficient, divided by the scaled cognition

cost . For instance, for the values  = 0 1 2, we have (Gabaix 2013):

A0
¡
2
¢
= 12≥2 A1

¡
2
¢
= max

µ
1− 1

2
 0

¶
 A2

¡
2
¢
=

2

2 + 2
(23)

hence the truncation functions  ( ):

0 ( ) =  · 12≥22  1 ( ) = max

µ
1− 2

2
 0

¶
 2 ( ) =

3

2 + 2

Figure 7 plots the attention functions, and Figure 8 the corresponding truncation func-

tions.

B Appendix: Tools to Expand a Simple Model Into a

More Complex one

Here I develop the method to derive the Taylor expansion of a richer model, when starting

from a simpler one. Here the methods are entirely paper and pencil. They draw from the
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Figure 8: Three truncation functions. Because it gives sparsity and continuity, the 1 function

is recommended.

techniques surveyed by Judd (1998, Chapter 14), who has a more computer-based perspec-

tive.

B.1 General Situation

Consider the fully rational model:

 ( ) = max


 (  ) + E (0 ()  0)

The state variables are  and , and the decision variable is . The state variables evolve

according to:

0 = 0 (  )

0 = 0 ()

We start with a simpler model, where  ≡ 0, i.e.
  () = max


 (  ) + E  (0 ())

where 0 = 0 ( 0 ) 

Using the notation  =  +


 , which is the total derivative with respect to 

(e.g. the full impact of a change in , including the impact it has on a change in the action

). Differentiating the Bellman equation (first with respect to the new variable , then with

respect to the default variable ), we obtain:

 ( ) =  +  0
0

0
 (  ) +  0

0
0


 ( ) =  + 

h
 0
0

0
 (  )

i
+ 0

 
0
00

0
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so

 ( 0) =
 + 

£
0
 ( 0 )

0
0 (

0 0)
¤

1− 0
 0

(24)

Proposition 13 The impact of a change  on the value function is:

 ( 0) =
 + 

£
0
 ( 0 )

0
0 (

0)
¤

1− 0
 0

(25)

The impact of a change  on the optimal action is:

 = −Ψ−1 Ψ

Ψ ( ) =  ( ) +  0
0

0


Ψ =  + 0
  0

00
0
 +  0

0
0


Ψ =  +  0
0

0
 +  0

0
0


They depend only on the transition functions and the derivatives of the simpler baseline value

function  0
0 (

0).

The same procedure can be followed when 0 = 0 (  ), with more complex algebra.

B.2 Life-cycle example

We start from the simple life-cycle example. We assume, for simplicity, a stationary envi-

ronment with no trend growth. The Bellman equation is:

 ( ) = max


 () +  0 ((+ ) ( − ) + 0 0) (26a)

I suppress the expectation operator, as the shocks are assumed to be small. We assume a

law of motion:

0 =  + 0

Call next-period wealth 0:
0 = (+ ) ( − ) + 0

We assume that the agent knows the simple model where the interest rate is always at

its average,  ≡ 0. As is well-known, the optimal policy is  =  + , and, with  = 1+ ,

 () = 
¡
 + 

¢1−
 (1− ) ,  =  =

¡


¢−
First, we differentiate the Bellman equation with respect to the new variable:

 ( ) =  0
0 (

0 0)
0


+  0

0 (
0 0)

0



 ( ) =  0
0 (

0 0) ( − ) +  0
0 (

0 0)  (27)
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Evaluating at  = 0, this leads to:

 ( 0) =  
 ()

 ( − )

1− 

We now take the total derivative with respect to  ,  =  +


 , e.g. the full

impact of a change in , including the impact it has on a change in the consumption .

The baseline policy is  () =  + , so  = , and 
0 = 

¡
 ( − )

¢
 =

− = 1.

 = 


0 = 1

This means that one extra dollar of wealth received today translates into exactly one dollar

of wealth next period: its interest income, , is entirely consumed.

So differentiate (using the total derivative) equation 27. We obtain:

−1 ( ) =  0
00 (

0 0) (0) · ( − ) +  0
0 (

0 0) ( − ) +  0
00 (

0 0) 
0

=  0
00 (

0 0) ( − ) +  0
0 (

0 0) (1− 


) +  0

00 (
0 0) 

so, using

 0
00 (

0 0) = − 0
 ·

1

 + 
= − 0

 ·




 =

 0
0


¡
1− 

¡
−


¢¢
1− 

Finally, let’s derive the impact of a change in  on  : We have

 = 
¡
+ 

¢
 0
0 = 0 ()

so




=



00 ()
=
−1
00 ()





1− 
¡


− 1¢

− 

=
−1

0 () 




1− 
¡


− 1¢

− 




=
1




¡


− 1¢− 1
− 
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B.3 Continuous time

Calculations are typically cleaner in continuous time, so we develop the continuous-time

version of the machinery. We take for now problems without stochastic terms (those should

be added later).

The laws of motion are:

̇ =  (  )

̇ =  ( )

and the Bellman equation is:

 ( ) = max


 (  ) +  ( )
 (  ) +  ( )

 (  )

In the more complex case ̇ =  (  ), we need to solve for a matrix Ricatti equation

— but not here.

Call  =  +  the “total impact” of a change in . Then:

 =  + 

 + 


 + 

 (28)

Now, we differentiate and evaluated at  = 0:

 =  ( + 

 ) + 


 + 




so

 = (−  
 )
−1
[ + 


 ] (29)

 = (−  
 )
−1
[ ( + 


 ) + 


] (30)

As  satisfies Ψ = 0 with

Ψ (  ) =  + 



Hence, the impact of  on the optimal action is

 = −Ψ−1 Ψ

Ψ =  + 



Ψ =  + 

 + 




Calculation of . We now turn to the more difficult case of . Using  = + 
the “total impact” of a change in , we have:

 = + 
 + 


 + 



=  ( + 

 ) +  + 


 + 


 + 
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Next, differentiating at  = 0,

 =  ( + 

 ) + [ + 


 + 


 ] + 




=  [ +  + 

 + 


 + 


]

+  +  + 

 + 


 + 2


 + 




hence

(− 2 
 ) =  [ +  + 


 + 


 + 


]

+  +  + 

 + 


 + 




This is a bit of a complicated expression. Let us note it can be written

(− 2 
 ) (


 −  

) = +  + 

with  =  + 

.

We use the following elementary Lemma:

Lemma 1 Let  () =  + 0 + , for  symmetric negative definite. Let ∗ =
argmax  (), so 

∗ = −1
2
−1. Then, for any ,

 ()−  (∗) = (− ∗) (− ∗) 

Let’s compare  under the sparse vs rational model: the difference is just in the 

 vs


 term. Indeed,


 −

 = (

 − ) 

so, using the previous Lemma,

 
 −  

 = (− 2 
 )
−1
( − ) ( + 


) (


 − ) (31)

We gather the results.

Proposition 14 (Difference in value functions) Consider the value function   under the

optimal policy and   under a potentially suboptimal policy, and   ( ) =   ( ) −
  ( ). Then, evaluating at  = 0, we have:

  = 0  
 = 0 


 = 0 


 = 0 


 = 0

and

 
 = (− 2 

 )
−1
( − ) ( + 


) (


 − ) (32)
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Equation (32) has an intuitive interpretation. At a point in time, as a function of ,

present and continuation utility is  () =  ()  + (1− ) ( +  ( ) ).

Hence (omitting for the  to remove the notational clutter), 0 () =  + 

 and

00() =  + 

. Hence, reacting imperfectly to a small  (with  =  −  ) cre-

ates an instantaneous utility loss of  = −12. The full utility loss is the present
discounted value of that, i.e.

2 =

Z ∞

0

−2 = −
Z ∞

0

−




 with  = −0

= −
Z ∞

0

−−20




0 =

1

+ 2
00

= −0 (− 2 
 )
−1

 ( + 

) 


0 as 


 = −

= −0 
0

It is enough to study the “static” utility losses to derive the dynamic utility losses.

C Appendix: Proofs

Proof of Proposition 5 The rational reaction function satisfies:

 () =  +
X


 +  ()

for a function  () = 
¡kk2¢.

So,  =  and:

∗
 = 

µ
1



 · 

¶
= 

µ
1



 · 

¶
We shall use the notation  () :=  ((∗

)=1), which also satisfies  () = 
¡kk2¢.

The sparse reaction function is:

 () = argmax


 (∗
11 

∗
)

=  (∗
11 

∗
)

=  +
X



∗
 +  ((∗

)=1)

=  +
X




µ
1



 · 

¶
 +  ()

=  +
X




µ






¶
 +  ()

=  +
X




µ






¶
 +

¡kk2¢
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Proof of Proposition 7 Let us consider two functions  and 

∗ (  ) :=  ( ) + E ( (  )    (  ))

∗∗ (  ) :=  ( ) + E  ( (  )    (  ))

and define the associated optimal actions:

∗ ( ) := argmax


∗ ( )  ∗∗ ( ) := argmax


∗∗ ( )

In ∗∗, there is no inattention: however, the continuation policy   is used: the agent

will be inattentive in the future.

First, we will prove:

Lemma 2 Suppose that  
 = 0. We have, at  = 0,

∗()


=
∗∗()



Proof. The key fact comes from Proposition 6, and is:

 ( 0) =  
 ( 0)

 ( 0) =  
 ( 0)

 ( )|=0 =  
 ( )|=0

 ( )|=0 =  
 ( )|=0

and

∗ =  (  ) + E [ · 
 (  ) +  ·  

 (  )]

∗ =  + E [
 ·  · 

 +  · 
]

+ E [ ·  
 +  

 ·  
 ]

Likewise, for ∗∗,

∗∗ =  + E [
 ·  

 · 
 +  

 · 
]

+ E [ 
 ·  

 +  
 ·  



 ]

Hence, we have

∗∗ = ∗ at  = 0

Note that we used  
 = 0. This is necessary, because in general  6=  

.

Likewise,

∗ =  ( ) + E [
 (  ) ·  · 

 (  ) +  · 
 (  )]

+ 2E [ 
 (  ) ·  · 

 (  )]

+ E [ 
 (  ) ·  ·  

 (  ) +  ·  
 (  )]
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and a similar expression for ∗∗ , which leads to:

∗∗ = ∗ at  = 0

Finally, we have:

∗∗ ( )
 |=0

= −∗∗−1 · ∗∗|=0 = −∗−1 · ∗|=0

=
∗ ( )

 |=0


Given  ( ) =  () +
P

  () + (2), we have

 ( )


=  ()

Hence, the lemma gives:
∗∗ ( )


=  ()

so

∗∗ ( ) =  () +
X


 () +
¡
2
¢

Finally,

 () = ∗∗ (∗
)

=  () +
X


 ()
∗
 +

¡
2
¢

=  () +
X


 () 

µ
1



 ()

¶
 +

¡
2
¢

=  () +
X




µ
 () 





¶
 +

¡
2
¢


Proof of Proposition 9 When   0, we saw that

 =

Ã


 + 
− 

µ
 +



 + 

¶2
 + 



!

Let  :=
 + 


6= 0 Then

 = −1 − ( + −1)2
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which is equivalent to

( − ) =  = 1− [( + −1)]2

= 1− ( + 1)2

= 1− (22 + 2 + 1)

Rearranging yields

( + 2)2 + (2− 1) + (− 1) = 0
The quadratic formula then gives

 =
(1− 2) ±

√
∆

2( + 2)


where

∆ = [(2− 1)]2 − 4( + 2)(− 1)
= 2

£
(2− 1)2 − 4(− 1)¤+ 4(1− )

= 2
£
(42 − 4+ 1)− (42 − 4)¤+ 4(1− )

= 2 + 4(1− )

In the case  = 0, the correct root is the higher one for  (i.e., it’s the higher root of

 = 

+
, the one with the +

√
∆ sign). Hence,  =

(1− 2) +
√
∆

2( + 2)
Finally,

 =  − 

=

h
(1− 2) +

√
∆
i
− 2( + 2)

2( + 2)

=
[(1− 2)− 2( + 2)]  + 

√
∆

2( + 2)

=
− [22 + 2+ ]  + 

√
∆

2( + 2)

=
− [22 + 2+ ]  + 

p
2 + 4(1− )

2( + 2)

Proof of Proposition 12 We use the content7 and notations of Proposition 14. We

set  = b. We have  (  ) =  +  −  and   ( ) = −.
7We could also draw on the results in Cochrane (1989), with a variety of adjustments. Proposition 14

extend Cochrane’s results (derive for consumption) to general dynamic problems.
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Under the consumption frame,  = , and 

 = 0, so by Proposition 14, noting

£
 


¤
the value of  

 ( 0) under the consumption frame:£
 


¤
=

00 ()
 + 2

¡
 − 

¢2
(33)

and as  =  with  =


+
,

£
 


¤
=

00 ()
 + 2

(1−)
2

µ


 + 

¶2
and the expected losses are (with 2 =  [b2 ]):

 =
−1
2

£
 


¤
2 =

−1
2

00 ()2
 + 2

(1−)
2

µ


 + 

¶2
=  (1−)

2
2

Under the savings frame,  is savings, so 
 = , and  =  +  − . Hence:£

 


¤
=

00 ()
 + 2

¡

 − 



¢2
and as 

 = 
 , with 

 = 1−  =


+
,

£
 


¤
=

00 ()
 + 2

(1−)
2

µ


 + 

¶2
and expected losses are:

 =
−1
2

£
 


¤
2 =  (1−)

2
2

Losses from a general variable x. Using the same reasoning, the losses from not paying

attention to a variable  is:

 =
−00 ()
 + 2

2
¡
 − 

¢2
=
−00 ()
 + 2

2
2
 (1−)

2

We parametrize the losses by the “equivalent permanent tax”  such that  = 
R∞
0

− [ ()−  ( (

Hence, using a Taylor expansions,  = 
0() . This gives:

 =
1

2

− 00()
0()

 + 2
2

2
 (1−)

2

i.e., using  =
−00()
0() ,

 =
1

2



 + 2

h

(1−)

i2
(34)
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Proposition 15 The losses from paying only attention  to variable , expressed in terms

of an “equivalent proportional losses in consumption”,  are:

 =
1

2



 + 2

h

(1−)

i2
(35)

where  is the standard deviation of , and  =


.

The calibration gives:

 = (1−)
2 × 003%  = (1−)

2 × 30% (36)

Proof of Proposition 11 Taxes lower the present value of his income by −(−),
so the consumer’s response is:

b =  b − 
¡
−(−) 

¢
so wealth accumulation is: 


b =  b−b = 

¡
−(−) 

¢
. The consumer starts thinking

about it at a time  s.t. −(−) =  (assuming that the solution is in (0  )), i.e.

 = max

µ
0min

µ

1


ln



−

¶¶
(37)

First, consider the case:    .

Then, for  ∈ [  ),



b = 

¡
−(−) 

¢
= −(−) − 

b =

Z 



³
−(−

0) − 
´
0

b =



−

¡
 − 

¢−  (− )

b =  b − 
¡
−(−) 

¢
= 

µ



−

¡
 − 

¢−  (− )

¶
− ¡−(−) − 

¢
b = −−(−) +  (1−  (− )) (38)

So at  =  b =




¡
1− −(−)

¢−  ( − )
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At  , the tax  is enacted, so that for  ≥  , the agent is aware of it. This yields:

b =  b −




b =  b − − b = investment income - taxes - consumption change
= 0

hence for    , b = b , and b =  b −.

We conclude that consumption is:

b =
⎧⎨⎩ 0 for   

−−(−) +  (1−  (− )) for  ≤   

 b − for  ≥ 

and wealth is

b =

⎧⎨⎩ 0 for   


− ( − )−  (− ) for  ≤  ≤ 




¡
1− −(−)

¢−  ( − ) = b for  ≥ 
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