
Submitted to the Annals of Statistics

arXiv: arXiv:1312.0531

OPTIMAL A PRIORI BALANCE
IN THE DESIGN OF CONTROLLED EXPERIMENTS

By Nathan Kallus

Massachusetts Institute of Technology

We develop a unified theory of designs for controlled experiments
that balance baseline covariates a priori (before treatment and before
randomization) using the framework of minimax variance. We estab-
lish a “no free lunch” theorem that indicates that, without struc-
tural information on the dependence of potential outcomes on base-
line covariates, complete randomization is optimal. Restricting the
structure of dependence, either parametrically or non-parametrically,
leads directly to imbalance metrics and optimal designs. Certain
choices of this structure recover known imbalance metrics and de-
signs previously developed ad hoc, including randomized block de-
signs, pairwise-matched designs, and re-randomization. New choices
of structure based on reproducing kernel Hilbert spaces lead to new
methods, both parametric and non-parametric. ⇤

1. Introduction. Achieving balance between experimental groups is a
corner stone of causal inference, otherwise any observed di↵erence may be
attributed to a di↵erence other than the treatment alone. In clinical trials,
and more generally controlled experiments, where the experimenter controls
the administration of treatment, complete randomization of subjects has
been the golden standard for achieving this balance on average.

The expediency of complete randomization, however, has been contro-
versial since the founding of statistical inference in controlled experiments.
William Gosset, “Student” of Student’s T-test, said of assigning field plots
to agricultural interventions that it “would be pedantic to continue with an
arrangement of [field] plots known beforehand to be likely to lead to a mis-
leading conclusion,” such as arrangements in which one experimental group
is on average higher on what he calls the “fertility slope” than the other
experimental group [1]. Of course, as the opposite is just as likely under
complete randomization, this is not an issue of estimation bias in its mod-
ern definition, but of estimation variance. Gosset’s sentiment is echoed in
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2 N. KALLUS

the common statistical maxim “block what you can, randomize what you
cannot” attributed to George Box and in the words of such individuals as
James Heckman (“Randomization is a metaphor and not an ideal or ‘gold
standard”’ [2]) and Donald Rubin (“For gold standard answers, complete
randomization may not be good enough” [3]). In one interpretation, these
can be seen as calls for the experimenter to ensure experimental groups are
balanced at the onset of the experiment, before applying treatments and
before randomization.

There is a variety of designs for controlled experiments that attempt to
achieve better balance in terms of measurements made prior to treatment,
known as baseline covariates, under the understanding that a predictive
relationship possibly holds between baseline covariates and the outcomes of
treatment. We term this sort of approach a priori balancing as it is done
before applying treatments and before randomization (the term a priori
is chosen to contrast with post hoc methods such as post stratification,
which may be applied after randomization and after treatment [4]). The
most notable a priori balancing designs are randomized block designs [5],
pairwise matching [6], and re-randomization [7].1

Each of these implicitly defines imbalance between experimental groups
di↵erently. Blocking attempts to achieve exact matching (when possible): a
binary measure of imbalance that is zero only if the experimental groups are
identical in their discrete or coarsened baseline covariates. Pairwise match-
ing treats imbalance as the sum of pairwise distances, given some pairwise
distance metric such as Mahalanobis. There are both globally optimal and
greedy heuristic methods that address this imbalance measure [12]. In [7], the
authors define imbalance as the group-wise Mahalanobis distance and pro-
pose re-randomization as a heuristic method for reducing it non-optimally.

It is unclear when each of these di↵erent characterizations of imbalance
is appropriate and when is deviating from complete randomization justified.
The connection between an imbalance metric such as the sum of pairwise dis-
tances before treatment and estimation variance after treatment is also un-
clear. We here argue that, without structural information on the dependence
of outcomes on baseline covariates, complete randomization is minimax op-
timal. Furthermore, when structural knowledge is expressed as membership
of conditional expectations in a normed vector space of functions, an alter-
native minimax-optimal rule arises for the a priori balancing of experimental

1There are also sequential methods to address the case where allocation must be decided
before all subjects are admitted [8, 9, 10]. These are beyond the present scope of this paper.
Response-adaptive designs that use outcome data to inform future assignments (see [11])
lie between a priori and post hoc and are also beyond our scope.
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groups. We show how certain choices of this structure reconstruct each of the
aforementioned methods or associated imbalance metrics. We study other
choices of structure using reproducing kernel Hilbert spaces (RKHS), which
give rise to new methods, both parametric and non-parametric.

We study in generality the characteristics of any such method that arises
from our framework, including its estimation variance and consistency, inti-
mately connecting a priori balance to post-treatment estimation. Whenever
a parametric model of dependence is known to hold, we show that, relative
to complete randomization, the variance due to the optimal design converges
linearly (2�⌦(n) for n subjects) to the best theoretically possible – a gener-
alization of the observation on linear convergence made in [13]. We provide
algorithms for finding the optimal designs using mixed integer optimization
(MIO) and semi-definite optimization (SDO) and hypothesis tests that are
appropriate for these designs. We make connections to Bayesian experimen-
tal design and shed light on the usefulness of a priori balance in designing
experiments plagued by non-compliance.

1.1. Structure of the paper. In Section 2, we consider the e↵ect of struc-
ture and the lack thereof. In particular, we set up the problem, argue that
complete randomization is optimal in the absence of structural informa-
tion (Section 2.1), define structural information and the resulting imbalance
metrics and optimal designs (Section 2.2), show how this recovers existing
imbalance metrics and designs (Section 2.3), study the designs that arise
from RKHS structure (Section 2.4), and consider a Bayesian interpretation
(Section 2.4.1). We end Section 2 with simulation studies of fictitious data
(Example 2.2) and of clinical data (Example 2.3). In Section 3, we char-
acterize the variance (Section 3.1), consistency (Section 3.2), and rate of
convergence (Section 3.3) of estimators arising from a priori balancing de-
signs. In Section 4, we provide algorithms for finding the optimal designs. In
Section 5, we provide hypothesis tests for making inferences on treatment
e↵ects. We o↵er some concluding remarks in Section 6.

All proofs are given in the supplement. In the supplement, we also consider
the benefit of a priori balancing to experiments plagued by non-compliance
(Section 7.1) and generalizations of structural information (Section 7.2).

2. The e↵ect of structural information and lack thereof. We be-
gin by describing the set up. Let m denote the number of treatments to be
investigated (including controls). We index the subjects by i = 1, . . . , n and
assume n = mp is divisible by m. We assume the subjects are independently
randomly sampled but we will consider estimating both sample and popu-
lation e↵ects. We denote assigning subject i to a treatment k by W

i

= k.
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We let w
ik

= I [W
i

= k] and W = (W
1

, . . . ,W
n

). When m = 2, we will use
u
i

= w
i1

�w
i2

. As is common for controlled trials, we assume non-interference
(see e.g. [14, 15] and p. 19 of [16]). I.e., a subject assigned to a certain treat-
ment exhibits the same outcome regardless of others’ assignments. Under
this assumption we are able to define the potential post-treatment outcome
Y
ik

of subject i were it to be subjected to the treatment k. We let Y denote
the matrix of all potential outcomes. We assume throughout Y

ik

has second
moments. Let X

i

, taking values in some X , be the baseline covariates of
subject i that are recorded before treatment and let X = (X

1

, . . . , X
n

).
We denote by TE

kk

0
i

= Y
ik

�Y
ik

0 the unobservable causal treatment e↵ect
for subject i. There are two unobservable quantities that will be of interest
to estimate. One is the sample average (causal) treatment e↵ect (SATE):

SATE
kk

0 =
1

n

n

X

i=1

TE
kk

0
i

=
1

n

n

X

i=1

Y
ik

�

1

n

n

X

i=1

Y
ik

0 .

Another is the population average (causal) treatment e↵ect (PATE):

PATE
kk

0 = E [TE
kk

0
1

] = E [SATE
kk

0 ] .

By construction, SATE is an unbiased and strongly consistent estimate of
PATE. Our estimator will always be the simple mean di↵erences estimator

⌧̂
kk

0 =

P

i:Wi=k

Y
ik

P

i:Wi=k

1
�

P

i:Wi=k

0 Y
ik

0
P

i:Wi=k

0 1
.

We drop subscripts when m = 2 and set k = 1, k0 = 2.
Throughout we will consider only designs that

do not depend on future information, that is, W is independent
of Y , conditional on X;

(2.1)

blind (randomize) the identity of treatments, that is,
P (W = (k

1

, . . . , k
n

) |X) = P (W = (⇡(k
1

), . . . ,⇡(k
n

)) |X) for
any permutation ⇡ of 1, . . . ,m; and

(2.2)

split the sample evenly, that is, surely
P

i:Wi=k

1 = p 8k.(2.3)

We interpret conditions (2.1)-(2.3) as the definition of a priori balance as
they require that all balancing be done before applying treatments (con-
dition (2.1)) and before randomization (conditions (2.2)-(2.3)). Condition
(2.1) is a reflection of the temporal logic of first assigning, then experiment-
ing. Condition (2.2) says that balancing is done before randomization and it
ensures that the estimators ⌧̂

kk

0 resulting from the design are always unbi-
ased, both conditionally on X, Y (i.e., in estimating SATE) and marginally
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(i.e., in estimating PATE; more detail given in Theorem 3.1). Condition
(2.3) is a way to achieve (2.2) in non-completely-randomized designs. If W
is an even assignment then randomly permuting treatment indices will blind
their identity. Else, given one fixed uneven assignment, a treatment can be
identified by the size of its experimental group.

We denote by W ⇢ {1, . . . ,m}

n the space of feasible assignments sat-
isfying (2.3) and by � ⇢ [0, 1]|W| the space of feasible designs (distri-
butions over assignments) satisfying (2.1)-(2.3). For m = 2 we also write
W

⇠= U = {u 2 {�1,+1}n :
P

i

u
i

= 0} and P = covex-hull(U).

2.1. No free lunch. We will now argue that without structural informa-
tion on the relationship between X

i

and Y
ik

, complete randomization is
minimax optimal. For the rest of this subsection we will restrict to m = 2.

Among estimators that are unbiased, the standard way of comparing ef-
ficiency is variance. By the law of total variance and by the conditional
unbiasedness of any estimator resulting from a design satisfying (2.1)-(2.3),

Var (⌧̂) = E [Var (⌧̂ |X,Y )] + Var (SATE) .

The variance of SATE is independent of our choice of a priori balancing
design. This choice can only a↵ect the first term. Therefore, an e�cient
design will seek to minimize Var (⌧̂ |X,Y ) path-by-path, i.e. for the given
subjects at hand. Whatever the design does to minimize this term will not
a↵ect the second term as long as the design adheres to the above conditions.

Denote by ⌧̂CR the estimator arising from complete randomization, which
randomizes uniformly over equal partitions independently of X. Then,

Var
�

⌧̂CR

|X,Y
�

=
4

n(n� 1)

�

�

�

�Y
�

�

�

�

2

2

where Ŷ
i

=
Y
i1

+ Y
i2

2
, µ̂ =

1

n

n

X

i=1

Ŷ
i

, and Y
i

= Ŷ
i

� µ̂.

Using this as a benchmark, we compare e�ciency based on the normalized
unitless ratio Var (⌧̂ |X,Y ) /Var

�

⌧̂CR

|X,Y
�

.
However, we do not know Y , only X (condition (2.1)), and we assume

no structural information on their relationship. Therefore, we consider an
adversarial Nature that chooses Y so to increase our variance. The following
shows that in this situation, complete randomization is optimal.

Theorem 2.1. Fix X 2 X

n. Let ||·|| be any permutationally invariant
seminorm on Rn. Then, among designs satisfying (2.1)-(2.3) (i.e., among
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all � 2 �), complete randomization minimizes either of

max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

kY
1

k

2 + kY
2

k

2

= max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

kŶ k

2

= max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

kY k

2

or, for ||·|| = ||·||

2

, max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

Var (⌧̂CR

|X,Y )
.

In particular, if one randomly permutes a single fixed partition then

(2.4) max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

Var (⌧̂CR

|X,Y )
= n� 1.

Example 2.1. Fix n = 2b a power of two and m = 2. Let

X
i

=

b�max{2,log2 i}
X

t=0

(�1)di/2
t�1e2�2

b�1
+2

b�t�1
+(i�1 mod 2

t�1),

Y
i

= (�1)i = (�1)log2(round(|Xi|)).

This rather complicated construction essentially yields

X ⇡ round(X) =
⇣

�1,�2,�4, . . . ,�22
b�1�1, 1, 2, 4, . . . , 22

b�1�1

⌘

with some perturbations so that the assignment W = (1, 2, 1, 2, . . . , 1, 2)
uniquely minimizes the group-wise Mahalanobis distance of [7]. Although X

i

completely determines Y
ik

, we are going to see that complete randomization
beats blocking, pairwise matching, and re-randomization in this case. For
blocking for b � 4, let us coarsen the space of baseline covariates into eight
consecutive intervals so that each contains the same number of subjects,
2b�3. For pairwise matching, let us use the pairwise Mahalanobis distance.
And, for re-randomizaiton of [7], we consider both a 1% acceptance probabil-
ity and an infinitesimal acceptance probability that essentially minimizes the
group-wise Mahalanobis metric. We plot the resulting conditional variances
Var

�

⌧̂
�

�X,Y
�

in Figure 1. Specifically, we get that complete randomization
has a variance of 4/(n�1) whereas blocking has 4/(n�8), pairwise matching
has 8/n, and re-randomization with infinitesimal acceptance probability has
4, which realizes the worst-case ratio of (2.4) (it can be verified that this con-
struction also realizes the corresponding worst-case ratios for blocking and
pairwise matching). The variance of re-randomization with 1% acceptance is
similar to infinitesimal acceptance probability for small n and becomes more
similar to randomization as n grows. In each case, complete randomization
does better, providing a concrete example of the conclusion of Theorem 2.1.
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Fig 1: Variance of estimating e↵ect size under various designs in Example
2.1 conditional on the given X and Y values.

2.2. Structural information and optimal designs. In the above we argued
that from a minimax-variance perspective, complete randomization is opti-
mal when no structural information about the dependence between X

i

and
Y
ik

is available. We now consider the e↵ect of such information, which we
express as structure on the conditional expectations of outcomes.

Let us denote

f
k

(x) := E
h

Y
ik

�

�

�

X
i

= x
i

and ✏
ik

:= Y
ik

� f
k

(X
i

) .

The non-random function f
k

is interchangeably called the conditional expec-
tation function or regression function. The law of iterated expectation yields
that ✏

ik

has mean 0, is mean-independent of X
i

, and is uncorrelated with
any function of X

i

. Combined with independence of subjects, this yields2

Var (⌧̂) = E
h

Var
⇣

B(W, f̂)
�

�X
⌘i

+
1

n
Var (✏

11

+ ✏
12

) + Var (SATE) ,

where B(W, f̂) =
2

n

X

i:Wi=1

f̂(X
i

)�
2

n

X

i:Wi=2

f̂(X
i

), f̂(x) =
f
1

(x) + f
2

(x)

2
.

As before, the marginal variances of SATE and of (✏
11

+ ✏
12

) are completely
independent of our choice of design and an e�cient design will seek to min-

imize Var
⇣

B(W, f̂)
�

�X
⌘

= E
h

B(W, f̂)2
�

�X
i

path-by-path, i.e. for the given

subjects. Now the unknown is f̂ and we let Nature choose it adversarially.

2Theorem 3.1 gives an explicit derivation of this decomposition (for general m � 2).
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We will seek to minimize E
h

B(W, f̂)2
�

�X
i

relative to the magnitude of f̂ ,

instead of the magnitude of Ŷ .
To define a magnitude of f̂ , we assume that f

k

2 F 8k, where F is
a normed vector space with norm ||·|| : F ! R

+

. This will represent our
structural information about the dependence betweenX

i

and Y
ik

. This space
is a subspace of the vector space V of all functions X ! R under the usual
point-wise addition and scaling. For functions f that are not in F we formally
define ||f || = 1. When F is finite-dimensional, the assumption kf

k

k < 1

is a parametric one. When F is infinite-dimensional, it is non-parametric.
Because B(W, f̂) is invariant to constant shifts to f̂ , i.e.,

B(W, f̂) = B(W, f̂ + c) for c 2 R representing a constant function x 7! c,

we will want to factor this artifact away. The quotient space F/R consists
of the classes [f ] = {f + c : c 2 R} with the norm ||[f ]|| = min

c2R ||f + c||.
Without loss of generality, we always restrict to this quotient space and
write ||f || to actually mean the norm in this quotient space. Moreover, for
worst-case variances to exist, we will restrict our attention to Banach spaces
and require that di↵erences in evaluations are continuous (i.e., the map
f 7! (f(X

i

)� f(X
j

)) is continuous for each i, j). A Banach space is a normed
vector space that is a complete metric space (see [17] and Chapter 10 of [18]).

With all structural information summarized by kf
k

k < 1, the motivation
for the designs we develop next is the bound on the variance that arises:

E
h

B2(W, f̂)|X
i

 kf̂k2max
f2F

E
⇥

B2(W, f)|X
⇤

kfk2
= kf̂k2 max

kfk1

E
⇥

B2(W, f)|X
⇤

.

Minimizing the above bound is independent of the actual value of kf̂k as it
merely scales the objective. We will study this bound further and in greater
generality in Theorems 3.1 and 3.2, leaving this as mere motivation for now.3

Borrowing terminology from game theory, we define two type of designs
that seek to minimize this bound: the pure-strategy optimal design and the
mixed-strategy optimal design. We now consider general m � 2 and define

B
kk

0(W, f̂) =
1

p

X

i:Wi=k

f̂(X
i

)�
1

p

X

i:Wi=k

0

f̂(X
i

).

The pure-strategy optimal design finds single assignments W that on their
own minimize these quantities.

3It can also be noted that this bound is of the same form as the objective in Theorem
2.1 but employing the potentially non-symmetric norm kŶ k = minf(Xi)=Ŷi

||f || induced
by the quotient of F over the subspace {f 2 F : f(Xi) = 0 8i}.
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Definition 2.1. Given subjects’ baseline covariatesX 2 X

n and a mag-
nitude function ||·|| : V ! R[{1}, the pure-strategy optimal design chooses
W uniformly at random from the set of optimizers

W 2 arg min
W2W

⇢

M2

p

(W ) := max
||f ||1

max
k 6=k

0
B2

kk

0(W, f)

�

.

We denote by M2

p-opt

the random variable equal to the optimal value.

The mixed-strategy optimal design directly optimizes the distribution of
assignments.

Definition 2.2. Given subjects’ baseline covariatesX 2 X

n and a mag-
nitude function ||·|| : V ! R[{1}, the mixed-strategy optimal design draws
W randomly according to a distribution � such that

� 2 argmin
�2�

(

M2

m

(�) := max
||f ||1

max
k 6=k

0

X

W2W
�(W )B2

kk

0(W, f)

)

.

We denote by M2

m-opt

the random variable equal to the optimal value.

Both designs satisfy (2.1)-(2.3). The pure-strategy optimal design does
due to the symmetry of the objective function (thus, if W is optimal then a
treatment-permutation of W is also optimal). The mixed-strategy optimal
design does by the construction of �. Because the pure-strategy optimal
design is feasible in �, it is also immediate that M2

m-opt

 M2

p-opt

.
The objectives M2

p

(W ) and M2

m

(�) are the imbalance metrics that the
designs seek to minimize. The two are di↵erent in nature as one expresses
imbalance of a single assignment and the other the imbalance of a whole
design. Since evaluation di↵erences are linear and by assumption continuous,
both M2

p

(W ) and M2

m

(�) are in fact norms taken in the continuous dual
Banach space (and this guarantees they are defined). For mixed strategies,
M2

m

(�) is actually determined by n(n� 1)/2 su�cient statistics from �.

Theorem 2.2. Let � 2 � be given. Then

M2

m

(�) = M2

m

(P (�)) := max
||f ||1

2

pn

n

X

i,j=1

P
ij

(�)f(X
i

)f(X
j

),

where P
ij

(�) = � ({W
i

= W
j

})� 1

m�1

� ({W
i

6= W
j

}).

In the case ofm = 2, P (�) = P is the space of feasible P matrices, which are
always positive semi-definite (i.e., symmetric with nonnegative eigenvalues).
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2.3. Structural information and existing designs and imbalance metrics.
We now show how the above framework of optimal design in fact recovers
various existing designs that balance baseline covariates a priori. In this
section we consider two treatments, m = 2.

2.3.1. Blocking and complete randomization. Randomized block designs
are probably the most common non-completely-randomized designs. In a
complete block design the sample is segmented into b disjoint evenly-sized
blocks {i

1,1

, . . . , i
1,2p1}, . . . , {ib,1, . . . , ib,2pb} so that baseline covariates are

equal within each block and unequal between blocks, i.e., X
i`,j = X

i`0,j0 if
and only if ` = `0. (If any coarsening is done, we assume it was done prior
and X

i

represents the coarsened value.) Then complete randomization is
applied to each block separately and independently of the other blocks.

A complete block design is not always feasible, e.g. when there are subjects
with a unique value of covariates or there is an otherwise odd number of
subjects with a particular equal value of covariates. In an incomplete block
design, there are left-over subjects i

0,1

, . . . , i
0,b

0 . One blocks subjects into
evenly-sized blocks so that the number b0 is as small as possible, breaking
ties randomly as to which subject is left over; complete randomization is
then also applied to the left-overs.4

Complete blocking can be thought of as minimizing a binary measure of
imbalance: 0 if the sets of baseline covariates in each experimental groups
are exactly the same, infinity otherwise. Incomplete blocking can be thought
of as minimizing a discrete measure of imbalance equal to the complement
of the number of exact perfect matches across experimental groups (i.e.,
b0). If complete blocking is feasible, then incomplete blocking necessarily
recovers it. If all values of X

i

are distinct, then incomplete blocking is the
same as complete randomization. As it is the most general, we will only treat
incomplete blocking. It turns out that incomplete blocking’s exact matching
metric corresponds to the space L1, i.e., the space F of bounded functions
endowed with the norm ||f ||1 = sup

w2W f(w).

Theorem 2.3. Let ||f || = ||f ||1. Then the pure-strategy optimal design
is equivalent to incomplete blocking.

As noted before, this also recovers complete blocking (if it is feasible) and
complete randomization (if all subjects’ baseline covariates are distinct).

4Incomplete block designs are much more general than this and cover a much larger
scope, especially when treatments outnumber block size, but in our simple setup they
amount to breaking ties randomly while maintaing an even partition.
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2.3.2. Pairwise matching. In optimal pairwise matching, two treatments
are considered, subjects are put into pairs so to minimize the sum of pairwise
distances in their covariates, and then each pair is split randomly among the
two treatments. Any pairwise distance metric � on X can be chosen to define
the pairwise distances � (X

i

, X
j

). Usually the pairwise Mahalanobis distance
is used for vector-valued covariates. The motivation behind pairwise match-
ing is that subjects with similar covariates should have similar outcomes.
This corresponds to the space of Lipschitz functions.

Theorem 2.4. Let a distance metric � on X be given. Let

||f || = ||f ||
lip

= sup
x6=x

0

f(x)� f(x0)

�(x, x0)
.

Then the pure-strategy optimal design is equivalent to optimal pairwise match-
ing with respect to the pairwise distance metric �.5

Corollary 2.1. Let �
0

> 0 and a distance metric � be given. Define
�0(x, x0) = max {�(x, x0), �

0

} for x 6= x0 and �0(x, x) = 0. Let ||f || = ||f ||
lip

with respect to �0. Then the pure-strategy optimal design is equivalent to
caliper matching if it is feasible, i.e., choose at random from pairwise match-
ings that have all pairwise distances at most �

0

after blocking exact matches.

This interpretation of pairwise matching recasts its motivation as struc-
ture. Comparing with blocking we see that, whereas blocking treats any two
subjects with unequal covariates as potentially having expected outcomes
that are as di↵erent as any, pairwise matching presumes that unequal but
similar covariates should lead to similar expected outcomes. This interpre-
tation of pairwise matching also allows us to generalize it to m � 3 by using
the same space of Lipschitz functions and employing our definition of the
optimal designs for general m. We study these new designs in Section 4.1.2.

If we modify the norm and augment it with the sup-norm, we will instead
recover an a priori (rather than on-the-fly) version of the method of [10].

Theorem 2.5. Let �
0

> 0 and a distance metric � be given and let

||f || = max
n

||f ||
lip

, ||f ||1
�

�
0

o

.

5While ||·||lip is only a seminorm on functions (i.e., ||f ||lip = 0 doesn’t necessarily
mean f = 0), in the quotient space with respect to constant functions (the kernel of this
seminorm) it is a norm and it forms a Banach space. Evaluation di↵erences are well-defined
and continuous because they are bounded, |f(Xi)� f(Xj)|  ||f ||lip �(Xi, Xj).
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Then the pure-strategy optimal design is equivalent to the following: min-
imizes the sum of pairwise distances with respect to � with the option of
leaving a subject unmatched at a penalty of �

0

(thus no pairs at a distance
greater than 2�

0

will ever be matched); then matched pairs are randomly split
between the two groups and unmatched subjects are completely randomized.

2.3.3. Re-randomization of [7]. The method of [7] formalizes the com-
mon, but arguably often haphazard, practice of re-randomization as a prin-
cipled, theoretically-grounded a priori balancing method. The authors con-
sider two treatments, vector-valued baseline covariates X = Rd, and an
imbalance metric equal to a group-wise Mahalanobis metric

(2.5) M2

[7]

(W ) =

 

2

n

n

X

i=1

u
i

X
i

!

T

⌃̂�1

 

2

n

n

X

i=1

u
i

X
i

!

,

where ⌃̂ is the sample covariance matrix of X. The authors reinterpret re-
randomization as a heuristic algorithm that repeatedly draws random W
in order to solve the constraint satisfaction problem 9?W : M2

[7]

 t for a

given t (they also propose a normal-approximation method for selecting t to
correspond to a particular acceptance probability of a random W ).

We can recover (2.5) using our framework. Let F = span {1, x
1

, . . . , x
d

}

and define ||f ||2 = �T ⌃̂� + �2

0

for f(x) = �
0

+ �Tx. Using duality of norms,

M2

p

(W ) = max
||f ||1

B2(W, f) =

 

max
�

T
ˆ

⌃�1

�T

 

n

2

n

X

i=1

u
i

X
i

!!

2

= M2

[7]

(W ).

In [7], the authors argue that when a linear model is known to hold, i.e.,

Y
ik

= �
0

+ �TX
i

+ ⌧I [k = 1] + ✏
i

i = 1, . . . , n, k = 1, 2,(2.6)

then fixing t and re-randomizing until M2

[7]

(W )  t yields a reduction in
variance relative to complete randomization that is constant over n:

1�Var(⌧̂)/Var(⌧̂CR) = ⌘(1�Var (✏
i

) /Var (Y
i1

)), ⌘ 2 (0, 1) constant over n.

For us, the imbalance metric is a direct consequence of structure ((2.6)
implies f

k

2 F) and fully minimizing M2

p

(W ) leads to near-best-possible
reduction in variance (see Corollary 3.1 and Section 3.3):

1�Var(⌧̂)/Var(⌧̂CR) �! 1�Var (✏
i

) /Var (Y
i1

) at a linear rate 2�⌦(n).

It is important to keep in mind, however, that the assumption that such a
finite-dimensional linear model (2.6) is valid is a parametric, and therefore
fragile, assumption. Indeed, we saw in Example 2.1 that fully minimizing
M2

[7]

when the model is misspecified can lead to worse variance.
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2.3.4. Other finite-dimensional spaces and the method of [13]. We can
generalize the idea of parametric balancing methods using finite-dimensional
spaces with general norms. Consider any finite-dimensional subspace of V,
F = span{�

1

, . . . , �
r

}, and any norm on it. Any such space is always a
Banach space and evaluations are always continuous (see Theorems 5.33 and
5.35 of [19]). An important example is the q-norm: k�

1

�
1

+· · ·+�
r

�
r

k = ||�||
q

where ||�||
q

= (
P

i

|�
i

|

q)1/q for 1  q < 1 and ||�||1 = max
i

|�
i

|. This yields

M2

p

(W ) =

�

�

�

�

�

�

�

�

�

�

 

n

2

n

X

i=1

u
i

�
1

(X
i

) , . . . ,
n

2

n

X

i=1

u
i

�
r

(X
i

)

!

�

�

�

�

�

�

�

�

�

�

2

q

⇤

for 1/q + 1/q⇤ = 1. Hence, the optimal design matches the sample �
j

mo-
ments between the groups by minimizing a norm in the vector of mismatches.

The covariance-scaled 2-norm on F = span{1, x
1

, . . . , x
d

} was considered
in Section 2.3.3 and gave rise to the group-wise Mahalanobis metric. En-
dowing F = span{1, x

1

, . . . , x
d

, x2
1

/⇢, . . . , x2
d

/⇢, x
1

x
2

/(2⇢), . . . , x
d�1

x
d

/(2⇢)}
with the 1-norm and normalizing the data will recover the method of [13].

2.4. New designs using RKHS structure. In our framework, one starts
with structural information about the relationship between X

i

and Y
ik

and
this leads to measures of imbalance and to optimal designs that minimize
them. In the previous section we saw how di↵erent structures led to well-
known measures of imbalance and designs. We now explore how other choices
of structure lead to new designs. We treat general m � 2 in this section.

We will express structure using reproducing kernel Hilbert spaces (RKHS).
A Hilbert space is an inner-product space such that the norm induced
by the inner product, kfk2 = hf, fi, yields a Banach space. An RKHS
F is a Hilbert space of functions for which evaluation f 7! f(x) is con-
tinuous for each x 2 X (see [20]). Continuity and the Riesz representa-
tion theorem imply that for each x 2 X there is K(x, ·) 2 F such that
hK(x, ·), f(·)i = f(x) for every f 2 F . The symmetric map K : X ⇥ X ! R
is called the reproducing kernel of F . The name is motivated by the fact
that F = closureF (span {K(x, ·) : x 2 X}). Thus K fully characterizes F .
Prominent examples of kernels are:

1. The linear kernel K(x, x0) = xTx0. This spans the finite-dimensional
space of linear functions and induces a 2-norm on coe�cients.

2. The polynomial kernel K
s

(x, x0) = (1 + xTx0/s)s. It spans the finite-
dimensional space of all polynomials of degree up to s.

3. Any kernel K(x, x0) =
P1

i=0

a
i

(xTx0)i with a
i

� 0 (subject to conver-
gence). This includes the previous two examples. Another case is the
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exponential kernel K(x, x0) = ex
T
x

0
, which can be seen as the infinite-

dimensional limit of the polynomial kernel. The corresponding space
is infinite-dimensional (non-parametric).

4. The Gaussian kernel K(x, x0) = e�||x�x

0||2 . The corresponding space is
infinite-dimensional (non-parametric) and is studied in [21].

For given X 2 X

n and an RKHS with kernel K, we will often use the Gram
matrix K

ij

= K(X
i

, X
j

). The Gram matrix is always positive semi-definite
and as such it has a matrix square root K =

p

K
p

K.
As mentioned above, an RKHS induces a norm. Therefore, in our frame-

work, it also induces imbalance metrics and optimal designs.

Theorem 2.6. Let F be an RKHS with kernel K. Then,

M2

p

(W ) =
1

p2
max
k 6=k

0

n

X

i,j=1

(w
ik

� w
ik

0)K
ij

(w
jk

� w
jk

0), and(2.7)

M2

m

(P ) =
2

np
�
max

⇣

p

KP
p

K
⌘

.(2.8)

Notice that (2.7) corresponds to a discrepancy statistic known as maxi-
mum mean discrepancy between the experimental groups. Maximum mean
discrepancy is used as a test statistic in two-sample testing (see [22, 23, 24]).

The problem of minimizing (2.7) or (2.8) can be interpreted as a multi-
way multi-criterion number partitioning problem. For m = 2, X = R, and
K(x, x0) = xx0 (K = XXT ), we get the usual balanced number partitioning
problem for both (2.7) and (2.8): recalling our definitions of U and P,

n

2
M

p-opt

=
q

min
u2U

uT (XXT )u = min
u2U

�

�

�

�

�

n

X

i=1

u
i

X
i

�

�

�

�

�

,

n

2
M

m-opt

=
q

min
P2P

trace (P (XXT )) = min
u2U

�

�

�

�

�

n

X

i=1

u
i

X
i

�

�

�

�

�

,

where the last equality is due to the facts that �
max

(M) = trace(M) if M
is rank-1 positive semi-definite and that a linear objective on a polytope is
optimized at a corner point. This reduction also shows that both problems
are NP-hard (see problem [SP12] and comment on p. 223 of [25]).

Such partitioning problems generically have unique optima up to permu-
tation so the pure-strategy optimal design usually randomizes among the
m! permutations of a single partition of subjects. This is not generally the
case for the mixed-strategy optimal design. Consider m = 2. Since the a�ne
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hull of U is (n � 1)-dimensional, the mixed-strategy optimal design mixes
at the very least 2(rank(K)� 1) assignments. Moreover, by Carathéodory’s
theorem any P 2 P can be identified as the convex combination of n(n� 1)
points in {uuT : u 2 U} (whose a�ne hull is (n(n� 1)� 1)-dimensional) so
that the mixed-strategy objective M2

m

(�) of any a priori balancing design
� 2 � can also be achieved by mixing no more than 2n(n� 1) assignments.

In Sections 4.1.3 and 4.2 we will study how we solve the pure- and mixed-
strategy optimal designs, respectively. For now let us consider two concrete
examples with the various designs we have so far studied.

Example 2.2. Consider the following setup: we measure d � 2 baseline
covariates for each subject that are uniformly distributed in the population
X

i

⇠ Unif
�

[�1, 1]d
�

, the two treatments m = 2 have constant individual
e↵ects Y

i1

�Y
i2

= ⌧ , and the conditional expectation of outcomes depends on
two covariates only E

⇥

Y
i1

�

�X = x
⇤

� ⌧/2 = E
⇥

Y
i2

�

�X = x
⇤

+ ⌧/2 = f̂(x
1

, x
2

).
We consider a variety of conditional expectation functions:6

Linear: f̂(x
1

, x
2

) = x
1

� x
2

.
Quadratic: f̂(x

1

, x
2

) = x
1

� x
2

+ x2
1

+ x2
2

� 2x
1

x
2

.
Cubic: f̂(x

1

, x
2

) = x
1

� x
2

+ x2
1

+ x2
2

� 2x
1

x
2

+ x3
1

� x3
2

� 3x2
1

x
2

+ 3x
1

x3
2

.
Sinusoidal: f̂(x

1

, x
2

) = sin(⇡
3

+⇡x1
3

�

2⇡x2
3

)�6 sin(⇡x1
3

+⇡x2
4

)+6 sin(⇡x1
3

+⇡x2
6

).

To simulate the common situation where some covariates matter and some
do not and which is which is not known a priori, we consider both the case
d = 2 (only balance the relevant covariates) and d = 4 (also balance some
covariates that turn out to be irrelevant).

We consider the following designs: (1) complete randomization, i.e., the
pure-strategy optimal design for L1; (2) blocking on the orthant of X

i

(d two-level factors), i.e., the pure-strategy optimal design for L1 after
coarsening; (3) re-randomization with 1% acceptance probability and Maha-
lanobis objective; (4) pairwise matching with Mahalanobis distance, i.e., the
pure-strategy optimal design for the Lipschitz norm; (5) the pure-strategy
optimal design with respect to the linear kernel; (6) the pure-strategy op-
timal design with respect to the quadratic kernel (polynomial kernel with
s = 2); (7) the mixed-strategy optimal design with respect to the Gaussian
kernel; and (8) the mixed-strategy optimal design with respect to the ex-
ponential kernel.7 All of these designs result in an unbiased estimate of
SATE = PATE = ⌧ and can therefore be compared on their variance.

6We do not consider the case of no relationship (f̂(x1, x2) = c) because Theorem 3.1
proves that in this case any a priori balancing design yields the same estimation variance.

7For the mixed-strategy designs we use the heuristic solution given by Algorithm 4.3.
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In Figure 2 we plot the variances of the resulting estimators relative to
V
n

= Var (SATE) + Var (✏
11

+ ✏
12

) /n (see Theorem 3.1).
There are several features to note. One is that when a parametric model

is correctly specified and specifically optimized for, the variance (relative to
V
n

) shrinks linearly (inverse exponentially) – we argue this is a general phe-
nomenon in Section 3.3. This phenomenon is clearest in the case of linear
conditional expectation and the pure-strategy optimal design with respect
to the linear kernel, but the same design does not do so well when the linear
model is misspecified. The pure-strategy optimal design with respect to the
quadratic kernel also has a linear, but slower, convergence for the linear con-
ditional expectation, but it performs better in the other cases, both when a
quadratic model is correctly specified and when it is not. The mixed-strategy
optimal designs with respect to the Gaussian and exponential kernels seem
to have uniformly good performance in all cases and in particular still ex-
hibit what would seem to be linear convergence for the linear and quadratic
cases.8 It would seem that these non-parametric methods strike a good com-
promise between e�ciency and robustness. Finally, we note that compared
to balancing only those covariates that matter most (d = 2), balancing also
other covariates (d = 4) leads to loss of e�ciency, as would be expected, but
the order of convergence (linear) is the same.

Example 2.3. We now consider the e↵ect of a priori balance on a real
dataset. We use the diabetes study dataset from [26] described therein as
follows: “Ten [d = 10] baseline variables [X

i

], age, sex, body mass index,
average blood pressure, and six blood serum measurements were obtained
for each of [442] diabetes patients, as well as the response of interest [Y 0

i

],
a quantitative measure of disease progression one year after baseline.” We
consider a hypothetical experiment where the prognostic features X

i

are
measured at the onset, a control or treatment is applied, and the response
after one year is measured. In our hypothetical setup, the treatment reduces
disease progression by exactly ⌧ so that Y

i1

= Y 0
i

and Y
i2

= Y 0
i

�⌧ . Fixing n,
we draw n subjects with replacement from the population of 442, normalize
the covariate data so that the sample of n has zero sample mean and identity
sample covariance and divide by d = 10, apply each of the a priori balancing
designs considered in Example 2.2 to the normalized covariates, and finally
apply the treatments and measure the responses and the mean di↵erences
⌧̂ . Again, we consider either balancing all d = 10 covariates or only the

8The argument in Section 3.3 concerns only finite-dimensional spaces and does not
support this observation as a general phenomenon.



OPTIMAL A PRIORI BALANCE 17

d = 2 d = 4
L
in
ea
r

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁ

······························

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60
10-18

10-15

10-12

10-9

10-6

0.001

1 ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÚÚ
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

·
·
····························

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60
10-10

10-8

10-6

10-4

0.01

1
Q
u
ad

ra
ti
c

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Ú
Ú
Ú
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

·
·
·
······················

·····

Ì
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Û
ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60

10-7

10-5

0.001

0.1

Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡
‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

Ï
Ï
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Ú
Ú

Ú
Ú
Ú
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á

Á
Á
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

·

·
··
·
·························

Ì
Ì
ÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Û
ÛÛÛÛ

ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ
ÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60

10-4

0.001

0.01

0.1

1

C
u
b
ic

Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡
‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

Ï
Ï
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Ú

Ú
Ú
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á

Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

·

·
·
·
··························

Ì
Ì
Ì
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Û
Û
Û
ÛÛ
ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60
10-5

10-4

0.001

0.01

0.1

1
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡
‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

Ï
Ï
Ï
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Ú
Ú

Ú
Ú
Ú
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á

Á

Á
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

·

·
·
·
·
·························

Ì
Ì
Ì
ÌÌ
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Û
Û
Û
ÛÛ
ÛÛ
ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60

0.001

0.01

0.1

1

S
in
u
so
id
al

Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡
‡
‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

Ï
Ï
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Ú

Ú
Ú
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á

Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ

·

·
·
·
··························

Ì
Ì
Ì
ÌÌ
Ì
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌ

Û
Û
Û
ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60

10-4

0.001

0.01

0.1

1
Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡

‡
‡‡
‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

Ï
Ï
Ï
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

Ú
Ú

ÚÚ
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Á

Á
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

·

·
·
·
·
·
························

Ì
Ì
Ì
ÌÌ
Ì
ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Û
Û
Û
ÛÛ
Û
ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ

10 20 30 40 50 60

0.005
0.010

0.050
0.100

0.500
1.000

Number of subjects n
Ê Opt L•HComp. rand.L Á Opt linear

‡ Opt L• coarsenedHBlockingL · Opt quadratic

Ï Opt LipschitzHpairwise matchL Ì Opt Gaussian

Ú Re-randomization Û Opt exponential

Fig 2: The estimation variance
Var(⌧̂) � V

n

under various designs,
covariate dimensions, and conditional
expectations in Example 2.2.
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Fig 3: Relative estimation variance
Var(⌧̂)/Var(⌧̂CR) under various de-
signs and covariate dimensions for the
diabetes dataset in Example 2.3.

d = 4 covariates that are ranked first by [26] (these are {3, 9, 4, 7}). We plot
estimation variances relative to complete randomization in Figure 3.

For larger n, the relative variance of each method stabilizes around a par-
ticular ratio. Each of blocking, pairwise matching, and re-randomization re-
sult in a higher ratio when attempting to balance all covariates compared to
balancing only the four most important. For example, re-randomization on
all 10 covariates gives ⇠60% of complete randomization’s variance whereas
restricting to the important covariates yields ⇠53%. On the other hand, the
RKHS-based optimal designs yield lower relative variances for both d = 10
and d = 4, converging slower for d = 10 but using the small additional
prognostic content of the extra covariates to reduce variance further. For
example, the pure-strategy optimal designs with respect to the linear and
quadratic kernels both yield ⇠40% of complete randomization’s variance for
d = 4 and ⇠35% for d = 10, taking only slightly longer to get below ⇠40%
when d = 10. This can be attributed to the linear rate at which the optimal
designs eliminate imbalances (see Section 3.3). Thus, even if there are some
less relevant variables, all are immediately near-perfectly balanced for mod-
est n; the only limiting factors are the residuals (✏

ik

), which, by definition,
cannot be controlled for using the covariates X alone (see Corollary 3.1).

2.4.1. Aside: a Bayesian interpretation. The pure-strategy optimal de-
sign can also be interpreted in a Bayesian perspective as an optimal design.
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The interpretation is very similar to the standard Bayesian interpretation
of regularized regression using Gaussian processes (see e.g. [27] and §6.2 of
[28]). Let m = 2 and let F be a given RKHS with kernel K. Let us assume
a Gaussian prior on f̂ with covariance operator K, i.e. f̂(x) is Gaussian for
every x 2 X and the covariance of f̂(x) and f̂(x0) is equal to K(x, x0). Then
we have that the Bayes variance risk of a design W is

E
⇥

B2(W, f)|X,Y,W
⇤

=
4

n2

n

X

i,j=1

u
i

u
j

E [f(X
i

)f(X
j

)|X,Y ]

=
4

n2

n

X

i,j=1

u
i

u
j

K(X
i

, X
j

) =
4

n2

uTKu = M2

p

(W ).

Note however that randomization is not necessary from a standard Bayesian
perspective (for futher discussion see [29, 30]) and therefore a Bayesian de-
sign may not satisfy (2.1)-(2.2). In contrast, the pure- and mixed-strategy
optimal designs both randomize by construction. Moreover, for the mixed-
strategy optimal design, it is generally optimal to randomize beyond just
random permutations of one partition.

3. Characterizations of a priori balancing designs. We now try
to characterize the estimators that arise from pure- and mixed-strategy op-
timal designs as well as a priori balancing designs in general. We argue the
estimator is unbiased and then bound its variance in terms of a priori im-
balance – a result that intimately connects imbalance prior to treatment to
variance of estimation after treatment. We also discuss consistency and the
convergence rate of imbalance (and hence variance).

3.1. Variance. We begin by decomposing the variance of any estimator
arising from an a priori balancing design, that is, one satisfying (2.1)-(2.3).

Theorem 3.1. Suppose (2.1)-(2.3) are satisfied. Then, for all k 6= k0,

(a) ⌧̂
kk

0 is conditionally and marginally unbiased, i.e.,

E
⇥

⌧̂
kk

0
�

�X,Y
⇤

= SATE
kk

0 , E [⌧̂
kk

0 ] = PATE
kk

0 .

(b) ⌧̂
kk

0 = SATE
kk

0 +D
kk

0 + E
kk

0 ,

where D
kk

0 :=
1

m

X

l 6=k

B
kl

(f
k

)�
1

m

X

l 6=k

0

B
k

0
l

(f
k

0) ,

E
kk

0 :=
1

n

n

X

i=1

((mw
ik

� 1)✏
ik

� (mw
ik

0
� 1)✏

ik

0) .
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(c) SATE
kk

0, D
kk

0, and E
kk

0 are all uncorrelated so that

Var (⌧̂
kk

0) =
1

n
Var (Y

1k

� Y
1k

0) + Var (D
kk

0)

+
1

n
Var (✏

1k

+ ✏
1k

0) +
m� 2

n
(Var (✏

1k

) + Var (✏
1k

0)) .

(Note that the last term drops when only two treatments are considered.)

Note that in part (c), every term except for Var (D
kk

0) is completely
una↵ected by any a priori balancing. Below we provide a bound on it based
on the expected minimal imbalance produced by an optimal design.

Theorem 3.2. If the pure- or mixed-strategy optimal design is used,

(3.1) Var (D
kk

0) 
(||f

k

||+ ||f
k

0
||)2

2

✓

1�
1

m

◆

E
⇥

M2

opt

⇤

,

where M2

opt

= M2

p-opt

or M2

opt

= M2

m-opt

, respectively.

In (3.1), (||f
k

||+ ||f
k

0
||)2 is unknown but constant, merely scaling the bound.

Combining the two theorems we get that when the pure- or mixed-strategy
optimal design is used, the variance of our estimator is bounded as follows:

Var (⌧̂
kk

0) 
1

n
Var (Y

1k

� Y
1k

0) +
(||f

k

||+ ||f
k

0
||)2

2

✓

1�
1

m

◆

E
⇥

M2

opt

⇤

+
1

n
Var (✏

1k

+ ✏
1k

0) +
m� 2

n
(Var (✏

1k

) + Var (✏
1k

0)) .

This intimately connects balance prior to treatment and randomization to
estimation variance afterward. For example, for pairwise matching this ex-
plicitly connects the sum of pair di↵erences before treatment to estimation
variance after via the Lipschitz constant of the unknown regression function.

Basic arithmetic with this bound yields the following simplification.

Corollary 3.1. Suppose m = 2 and that individual e↵ects are constant
Y
i1

� Y
i2

= ⌧ . Denote �2 = Var (Y
i1

) = Var (Y
i2

), ⇠2 = Var (✏
i1

) = Var (✏
i2

),
and R2 = 1�⇠2/�2 (explained variance fraction). Then, the variance due to
the optimal design relative to complete randomization is bounded as follows:

1�R2



Var (⌧̂)

Var (⌧̂CR)
 1�R2

�

n

16�2

(||f
k

||+ ||f
k

0
||)2 E

⇥

M2

opt

⇤

.
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Alternatively, the relative reduction in variance is simply one minus the
above. Despite the constant e↵ect assumption, this bound provides impor-
tant insights. On the one hand, it says that any a priori balancing e↵ort
can never do better than (1�R2) relative to complete randomization. This
makes sense: balancing based on X alone can only help to the extent that it
is predictive of outcomes. On the other hand, it says that if E

⇥

M2

opt

⇤

decays
super-logarithmically, i.e. o(1/n), then the relative variance converges to the
best possible, which is (1 � R2). In Section 3.3 we study a case where the
convergence is linear, i.e. 2�⌦(n), much faster than logarithmic.

When f
k

/2 F we have ||f
k

|| = 1 and the bound (3.1) is trivial. Account-
ing for the distance between f

k

and F , an alternative bound is possible.

Theorem 3.3. If the pure- or mixed-strategy optimal design is used,

Var (D
kk

0) 

✓

1�
1

m

◆

inf
gk,gk02F

⇣

(||g
k

||+ ||g
k

0
||)2 E

⇥

M2

opt

⇤

+
2

m
(||f

k

� g
k

||

2

+ ||f
k

0
� g

k

0
||

2

)2
⌘

,

where M2

opt

= M2

p-opt

or M2

opt

= M2

m-opt

, respectively, and ||g||2
2

= E
⇥

g(X
1

)2
⇤

is the L2 norm with respect to the measure of X
1

. (By the assumption that
potential outcomes have second moments, we have ||f

k

||

2

< 1.)

3.2. Consistency. An estimator is said to be strongly consistent if it con-
verges almost surely to the estimand, the quantity it tries to estimate. In
light of Theorem 3.1(b), an a priori balancing design results in a strongly
consistent estimator if and only if D

kk

0 converges to 0 almost surely (since
SATE

kk

0 +E
kk

0 is already strongly consistent). Employing laws of large num-
bers in Banach spaces, we can express su�cient conditions for strong consis-
tency in terms of a functional analytical property of F known as B-convexity.

Definition 3.1. A Banach space is said to be B-convex if there exists
N 2 N and ⌘ < N such that for every g

1

, . . . , g
N

with ||g
i

||  1 8i there
exists a choice of signs so that ||±g

1

± · · · ± g
N

||  ⌘.

It is easy to verify that all the Banach spaces so far considered are B-
convex with the exception of L1. In particular, every Hilbert space or finite-
dimensional Banach space is B-convex. We use this condition to characterize
consistency in the following.

Theorem 3.4. Suppose f
k

, f
k

0
2 F . If either
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(a) F is B-convex and E
✓

max
||f ||1

(f(X
1

)� f(X
2

))

◆

2

< 1 or

(b) F is a Hilbert space and E
�

�

�

�

max
||f ||1

(f(X
1

)� f(X
2

))

�

�

�

�

< 1

then the estimator ⌧̂
kk

0 arising from either the pure- or mixed-strategy opti-
mal design is strongly consistent.

3.3. Linear rate of convergence for parametric designs. In Theorem 3.4,
we argued that the estimator converges, i.e., it is consistent, but we did
not discuss its rate of convergence. In this section, we study the rate of
convergence of EM2

opt

for the pure- and mixed-strategy designs and hence
the convergence of the corresponding estimator’s variance as per Theorem
3.2. In particular, we now argue that EM2

opt

= 2�⌦(n) for the case m = 2 and
F finite dimensional (i.e., parametric). We will also study m � 3 empirically
and observe similar convergence.

Let �
1

, . . . , �
r

be a basis for the finite-dimensional F and �
ij

= �
j

(X
i

).
Because all norms in finite dimensions are equivalent, i.e., c ||·||0  ||·|| 

C ||·||

0 (see Theorem 5.36 of [19]), it follows that any rate of convergence that
applies when F is endowed with the 2-norm (||�

1

�
1

+ · · ·+ �
r

�
r

|| = ||�||
2

)
also applies when F has any given norm. Next note that since M2

m-opt



M2

p-opt

, any rate of convergence for M2

p-opt

applies also to M2

m-opt

. So, we
restrict our attention to pure-strategy optimal designs under the 2-norm.

Our argument is a heuristic one (not a precise proof) and will follow the
asymptotic approximation of the configurations W with energies M2

p

(W )
as a spin glass following the random energy model (REM) where energies
are assumed independent. This approximation is commonly used to study
the distributions of the optima of combinatorial optimization problems with
random inputs and has been found to be valid asymptotically for partition
problems similar to the one we are considering (see [31, 32, 33]).

Let ⌃
ij

= Cov (�
i

(X
1

),�
j

(X
1

)) and let �
1

, . . . , �
r

0 > 0 be its positive
eigenvalues where r0 = rank (⌃). The distribution of M2

p

(W ) is the same for
any one fixedW . FixW

i

= (i mod 2)+1 (u
i

= (�1)i+1). By the multivariate
central limit theorem we have the following convergence in distribution,
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Fig 4: The convergence of EM2

p-opt

as the
number of subjects per group, p, increases for
Banach spaces of finite dimension
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the weighted sum of independent chi-squared random variables with one
degree of freedom. Denote the corresponding CDF by H and PDF by h,
which are given in series representation in [34]. In following with the REM
approximation we assume independent energies so that M2

p-opt

is distributed
as the smallest order statistic among

�
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n/2
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-many independent draws from

H. By Theorem 11.3 of [35] and lim
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Thus, EM2
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� (2/r0 + 1) asymptotically. By Stirling’s formula,
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We plot the convergence of EM2

p-opt

for a range of cases in Figure 4. We

consider m = 2, 3, X
i

⇠ N (0, I
d

), �
✓

(x) = s1�
P

i ✓i
Q

d

i=1

x✓i
i

, d = 1, 2, 3,

r =
�

d+s

s

�

(all monomials up to degree s) for s = 1, 2, 3, and q-norms 1, 2,
and 1. All exhibit linear convergence (note log scale).

4. Algorithms for optimal design. We now address how to actu-
ally realize the optimal designs, i.e., solve the optimization problems in the
definitions of the pure- and mixed-strategy optimal designs. For complete
randomization, blocking, and pairwise matching (with two treatments), how
to do so is already clear; here we address the other designs that arouse
from our framework. For the pure-strategy optimal designs, the optimiza-
tion problems will be linear, quadratic, and second-order cone optimization
problems subject to integer constraints on some of the variables. Therefore,
for these we can use integer optimization software to find the optimal de-
sign. In all numerical results in this paper, we use Gurobi v5.6 [36]. For the
mixed-strategy optimal design, the problem is too hard to solve exactly and
we provide heuristics based on semi-definite optimization.

4.1. Optimizing pure strategies. The pure-strategy optimization problem
can be written as
q

min
W2W

M2

p

(W ) = min
�2R, w2{0,1}n

�

s.t. � � max
||f ||1

1
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n
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i=1

(w
ik

� w
ik

0) f(X
i

) 8k < k0(4.1)

m

X

k=1

w
ik

= 1 8i = 1, . . . , n

n

X

i=1

w
ik

= p 8k = 1, . . . ,m,

where we have used the fact that optimizing the square is the same as op-
timizing the absolute value and then used the symmetry of the norm to
remove the absolute value and rid of excess constraints (k > k0). What re-
mains is to write the constraints (4.1) in a way fitting for a linear, quadratic,
or second-order cone optimization problem. We assume the solver software
will arbitrarily return any one optimal solution at random. In case this is
not so, we still randomly permute the result to ensure condition (2.2) holds.

4.1.1. Finite-dimensional q-space. For the setup as in Section 2.3.4,

max
||f ||1
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for 1/q + 1/q⇤ = 1. It follows that for q = 1, 1, the pure-strategy opti-
mization problem is a linear optimization problem with integer variables.
For q = 2, the problem for m = 2 is a quadratic optimization problem with
integer variables and for m � 3 it is a second-order cone optimization prob-
lem with integer variables (the di↵erence being whether the quadratic term
is in the objective or constraints). Rational q can also be dealt with using
second-order cone optimization via the results of [37]. For example, m = 2,
q = 2, and �

ij

= �
j

(X
i

), leads to a binary quadratic optimization problem:

M2(W ) =
4

n2

min
u2U

uT��Tu.

4.1.2. Lipschitz functions. Given a pairwise distance metric �, we de-
fine the norm ||f || = ||f ||

lip

. When m = 2, Theorem 2.4 shows that the
pure-strategy optimal design is equivalent to pairwise matching. The corre-
sponding optimization problem is weighted non-bipartite matching, which
can be solved in polynomial time using Edmond’s algorithm [38]. For m � 3,
we let D

ij

= � (X
i

, X
j

) and use linear optimization duality [39] to write
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yielding a linear optimization problem with integer variables.

For the modification ||f || = max
n

||f ||
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, ||f ||1
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�
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o

considered in The-

orem 2.5, we can instead write
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This also leads to a linear optimization problem with integer variables.

4.1.3. RKHS. As in Theorem 2.6 we have
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Therefore, for m = 2 the pure-strategy optimization problem is a quadratic
optimization problem with integer variables and for m � 3 it is a second-
order cone optimization problem with integer variables. Namely, for m = 2,
we get the binary quadratic optimization problem:

M2(W ) =
4

n2

min
u2U

uTKu.

4.2. Optimizing mixed strategies. For the case of mixed strategies we
only consider the case of m = 2 and F being an RKHS. As per Theorems
2.2 and 2.6, the corresponding optimization problem is

4

n2

min
P2P

�
max

⇣

p

KP
p

K
⌘

.

From the proof of Theorem 2.1 it can be gathered that if � 2 � then,

max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

Var (⌧̂CR

|X,Y )
=

✓

1�
1

n

◆

�
max

(P (�)) .

Therefore, if we wish, we may ensure that we do not stray too far from com-
plete randomization in the worst realization of outcomes by instead solving

4

n2

min
P2P

�
max

⇣

p

KP
p

K
⌘

(4.2)

s.t.

✓

1�
1

n

◆

�
max

(P )  ⇢.

Since setting ⇢ = 1 eliminates the constraint, we will only treat (4.2) as it is
most general. Setting ⇢ = 1 forces (4.2) to choose complete randomization.

While the problem (4.2) has a convex objective and convex feasible region,
we have already observed in Section 2.4 that the problem is NP-hard. When
⇢ = 1, the feasible region is P, which is a polytope. But what makes (4.2)
with ⇢ = 1 more di�cult than the problem encountered in Section 4.1.3 is
that, at the same time as being NP-hard, it is not amenable to the branch-
and-bound techniques employed by integer optimization software because
its optimum generally does not occur at a corner point of the polytope, as
we observed in Section 2.4. The polytope P is known as the equipartition
polytope of the complete graph on n vertices [40, 41].

Therefore, we propose only heuristic solutions to the problem. These
heuristics are based on semi-definite optimization (SDO), i.e., optimization
over the cone Sn

+

of n⇥ n positive semi-definite matrices (see [42] for more
information on SDO). In particular, the heuristics run in polynomial time.
We use Mosek [43] to solve all SDO problems in our numerical experiments.
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The first heuristic is based on a semidefinite outer approximation
P ⇢

�

P 2 Sn

+

: diag(P ) = e, Pe = 0
 

and is motivated by [44] and [45].

Algorithm 4.1. Let P̂ be a solution to the SDO

min
�2R, P2Sn

+

�

s. t. �I �
p

KP
p

K 2 Sn

+

⇢I �

✓

1�
1

n

◆

P 2 Sn

+

diag(P ) = e, Pe = 0.

Let �̂ be the distribution of u
i

= sign (v
i

�median(v)) where v ⇠ N (0, P̂ ).
(This provides a sampling mechanism without needing to fully specify �̂).

The second heuristic is based on an inner approximation of P.

Algorithm 4.2. Given u
1

, . . . , u
T

2 U , let ✓̂ be the solution to the SDO

min
�2R, ✓2RT

�

s. t. �I �
T

X

t=1

✓
t

p

Ku
t

uT
t

p

K 2 Sn

+

⇢I �

✓

1�
1

n

◆

T

X

t=1

✓
t

u
t

uT
t

2 Sn

+

✓ � 0,
T

X

t=1

✓
t

= 1.

Let �̂ be the distribution of u = ±u0 equiprobably where u0 is drawn ran-
domly from {u

t

} according to weights ✓̂.

The inputs to Algorithm 4.2 can be generated in two ways. One way is
to run Algorithm 4.1 and use the solution to draw u

t

(filtering non-unique
values up to negation). Another way is to use as inputs the top T solutions
to the pure-strategy problem. As this is the method we use in our numerical
experiments we describe it explicitly below.

Algorithm 4.3. Let U
1

= U \ {u
1

= 1}. For t = 1, . . . , T do:

1: Solve u
t

2 argmin
u2Ut u

TKu.
2: Set U

t+1

= U

t

\

�

uT
t

u  n� 4
 

.
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Run Algorithm 4.2 using u
1

, . . . , u
T

.

The definition of U
1

simply eliminates the symmetry of negation. Each
further refinement in step 2 cuts away the last optimal solution.

5. Algorithms for inference. A priori balance has the potential to
significantly reduce estimation variance. One would expect therefore that
inferences on the treatment e↵ect can also have higher statistical power. In
this section, we will consider m = 2 and the sharp null hypothesis

H
0

: (TE
i

= 0 8i = 1, . . . , n) .

Under H
0

all post-treatment responses are exchangeable regardless of
treatment given (Y

i1

= Y
i2

). We can therefore simulate what would happen
under another assignment and compare. This is the idea behind Fisher’s
randomization test, where new simulated assignments are drawn from the
same design as used at the onset of the experiment. However, the pure-
strategy optimal design when F is an RKHS generally only randomizes over
treatment-permutations of a single partition, which does not provide enough
comparison (applying Fisher’s randomization test will always yield p = 1).
Therefore, we develop an alternative test based on the bootstrap [46]:

Algorithm 5.1. For a confidence level 0 < 1� ↵ < 1:

1: Draw W 0 from the pure-strategy optimal design for the baseline co-
variates X

1

, . . . , X
n

, assign subjects, apply treatments, measure out-
comes Y

iW

0
i
, and compute ⌧̂ .

2: For t = 1, . . . , T do:

2.1: Sample it
j

⇠ Unif{1, . . . , n} independently for j = 1, . . . , n.

2.2: Draw W t from the pure-strategy optimal design for the baseline
covariates X

i

t
1
, . . . , X

i

t
n
.

2.3: Compute ⌧̃ t = 1

p

P

i:W

t
i =1

Y
iW

0
i
�

1

p

P

i:W

t
i =2

Y
iW

0
i
.

(Notice we only use the outcomes we chose to observe in step 1.)

3: The p-value of H
0

is p =
�

1 +
�

�

�

t :
�

�⌧̃ t
�

�

� |⌧̂ |
 

�

�

� �

(1 + T ).
If p  ↵, then reject H

0

.

Algorithm 5.1 can also be used to answer inferential questions for mixed-
strategy designs, lettingW t be drawn from the corresponding mixed-strategy
optimal design �t in step 2.2. However, the additional randomization of
mixed-strategy optimal designs (and of complete randomization, blocking,
pairwise matching, and re-randomization for that matter) allows one to use
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Fig 5: Probability of rejecting H
0

un-
der no e↵ect (⌧ = 0) and a positive
e↵ect (⌧ = 0.15) at ↵ = 5% under
various designs as in Example 5.1.

the standard randomization and exact permutation tests instead (where
new assignments are drawn from the same design as used at the onset of
the experiment). As these tests are standard we defer further discussion to
supplemental Section 7.3. We next consider an example using Algorithm 5.1.

Example 5.1. Consider the setup as in Example 2.2 with d = 2, quadra-
tic f̂ , and ✏

i1

= ✏
i2

= 0. For various values of ⌧ , we test H
0

at significance
↵ = 0.05 for each of the designs in Example 2.2 (replacing the mixed-strategy
optimal designs with corresponding pure-strategy optimal designs) using Al-
gorithm 5.1 for all RKHS-based optimal designs and the standard random-
ization test for all other designs (see Algorithm 7.2 in supplemental Section
7.3). We plot in Figure 5 the probability of rejecting H

0

as n grows.
When ⌧ is positive, the quadratic and exponential RKHS-based designs

detect the di↵erence in treatments almost immediately, the Gaussian a bit
later. The linear RKHS-based design parametrically misspecifies the regres-
sion function in this particular case but does not do much worse than
the other designs nonetheless. Interestingly, as imbalance disappears, Al-
gorithm 5.1 has much lower type I error than the significance ↵ = 0.05.

6. Concluding remarks. Designs that provide balance in controlled
experiments before treatments are applied and before randomization provide
one answer to the criticism that complete randomization may lead to assign-
ments that the experimenter knows will lead to misleading conclusions. In
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this paper we unified these designs under the umbrella of a priori balance.
We argued that structural information on the dependence of outcomes on
baseline covariates was the key to any a priori balance beyond complete ran-
domization and developed a framework of optimal designs based on structure
expressed on the conditional expectation function. We have shown how ex-
isting a priori balancing designs, including blocking, pairwise matching, and
other designs, are optimal for certain structures and how existing imbalance
metrics, such as the group-wise Mahalanobis metric of [7], arise from other
choices of structure. That this theoretical framework fit so well into exist-
ing practice, led us to endeavor to discover what other designs may arise
from it. We considered a wide range of designs that follow from structure
expressed using RKHS, encompassing both parametric and non-parametric
methods. We argued and shown numerically that parametric models (when
correctly specified) coupled with optimization lead to estimation variance
that converges very fast to the best theoretically possible.

I hope this paper provides a better understanding of the intuitively at-
tractive ambition to always balance experimental groups at the onset of an
experiment along with the practical benefits of insights that accompany this
understanding and of a wider range of procedures that achieve optimal bal-
ance. It has not escaped my notice that this unified perspective on a priori
balance suggests a possible rephrasing of Box’s maxim: “balance what you
can, randomize what you cannot.”

Acknowledgements. I would like to thank the anonymous reviewers
for their helpful comments, my brother Yoav Kallus for interesting conver-
sations and editorial inputs, and Dimitris Bertsimas, a discerning advisor.
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7. Supplement.

7.1. A priori balance in estimating treatment e↵ect on compliers. In
many experimental endeavors involving human subjects the researcher does
not fully control the treatment actually administered. Consider two treat-
ments, “treatment” (k = 1) and “control” (k = 2). Situations where a
subject receives a treatment di↵erent from their assignment include refusal
of surgery, ethical codes that allow subjects assigned to control to demand
treatment, or the leakage of information to some control subjects in a teach-
ing intervention. This issue is termed non-compliance. In such situations, W
represents initial assignment intent and our estimator ⌧̂ estimates the e↵ect
of the intent to treat (ITT). Often a researcher is interested in the compliers’
average treatment e↵ect in the sample (CSATE) or population (CPATE),
disregarding all non-compliers. Subjects that always demand treatment are
known as always-takers, those that always refuse treatment as never-takers,
and those that always choose the opposite of their assignment as defiers
(this is exhaustive if subjects comply based only on their own assignment).
Denote by ⇡

c

and ⇧
c

the unknown fraction of compliers in the sample and
population, respectively. In the absence of defiers we can observe the identity
of never-takers in the treatment group and of always-takers in the control
group. We can estimate the fraction of compliers as the complement of those:

⇡̂
c

= 1�
2

n

X

i:Wi=1

NT
i

�

2

n

X

i:Wi=2

AT
i

where NT
i

= 1 if i is a never-taker and AT
i

= 1 if i is an always-taker (both
0 for compliers). Under an assignment that blinds the identity of treatment,
such as complete randomization, ⇡̂

c

is conditionally (for ⇡
c

) and marginally
(for ⇧

c

) unbiased if there are no defiers. Moreover, without defiers,

CSATE = SATE /⇡
c

CPATE = PATE /⇧
c

since the individual ITT e↵ect for an always- or never-taker is identically 0.
It has been often advocated (see [47, 48]) in completely randomized trials
to estimate the compliers’ average treatment e↵ect by a ratio estimator
⌧̂
c

= ⌧̂/⇡̂
c

. Such an estimator need not be unbiased but because it is the
ratio of two unbiased estimators it has been argued to be approximately
unbiased (ibid.). Under a design that blinds the identity of treatments the
two estimators remain unbiased and the very same approach can be taken.

We can do even better if we use a priori balance to improve the precision
of the compliance fraction estimator. The di↵erence between the sample
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compliance fraction and our estimator of it can be seen to be

⇡̂
c

� ⇡
c

=
2

N

X

i:Wi=1

(AT
i

�NT
i

)�
2

n

X

i:Wi=2

(AT
i

�NT
i

) =
2

n

n

X

i=1

u
i

C
i

where C
i

=

8

<

:

1 i is always-taker
0 i is complier

�1 i is never-taker
is i’s compliance status.

Therefore, matching the means of f
c

(x) = E [C
i

|X
i

= x] will eliminate vari-
ance in estimating the compliance fraction and get us closer to the true
CSATE and CPATE. Moreover, if the two unbiased estimators, ⌧̂ and ⇡̂

c

,
are both more precise, their ratio ⌧̂

c

is both more precise and less biased.
To achieve this through our framework we need only incorporate our belief
F

c

about f
c

into the larger F and proceed as before. (See also supplemental
Section 7.2 for a discussion about combining spaces.)

7.2. Generalizations of F . In this supplemental section we consider more
general forms of the space F . For the most part, the theorems presented in
the main text will still apply. We deferred this discussion to this supplement
to avoid overly cumbersome notation in the main text.

First, we consider the restriction to cones in F . A cone is a set C ⇢ F

such that f 2 C =) cf 2 C 8c > 0. We may then further restrict to
f 2 C, ||f ||  1 in the definitions of M2

p

(W ) and M2

m

(�). By symmetry, this
is the same as restricting to C [ (�C). Since it is still the case that ||cf || =
c ||f ||, Theorems 3.2 and 3.4 still apply. One example of a cone is the cone
of monotone functions (either nondecreasing or nonincreasing). In a single
dimension and for two treatments, this will result in a pure-strategy optimal
design that sorts the data and assigns subjects in an alternating fashion. This
is also a feasible assignment for pairwise matching in one dimension. More
generally and in higher dimensions, we can consider a directed acyclic graph
(DAG) on the nodes V = {1, . . . , n} with edge set E ⇢ V 2 and its associated
topological cone C = {f : f(X

i

)  f(X
j

) 8(i, j) 2 E}. Other cones include
nonnegative/positive functions and ±-sum-of-squares polynomials.

Second, we consider re-centering the norms. We might have a nominal
regression function g that we believe is approximately right, perhaps due to a
prior regression analysis or based on models from the literature. In this case,
it would make sense to solve the minimax problem against perturbations
around this g. Given a norm ||·||

0 on F we can formally define the magnitude

(7.1) ||f || = max
�

min
�

||f � g||0 , ||f + g||0
 

, 1
 

.
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We consider both g and �g because it has no e↵ect on the imbalance met-
rics due to symmetry of the objective while it can only reduce magnitudes.
Using this alternate definition of ||·|| in (7.1), Theorem 3.2 still applies and
Theorem 3.4 applies if its conditions apply to the Banach space F with its
usual norm and E |g(X

1

)| < 1. In the Bayesian interpretation discussed in
Section 2.4.1, this is equivalent to making the prior mean of f(x) be g(x).

Third, we consider combining multiple spaces F

1

, . . . ,F
b

. There are two
ways. The first way is to combine these via an algebraic sum. The space
F = F

1

+ · · · + F

b

= {�
1

+ · · · + �
b

: �
j

2 F

j

8j} endowed with the norm
||f || = min

�j2Fj :f=�1+···+�b

max
j=1,...,b

||�
j

||Fj
is Banach space and as such a valid

choice. In particular, the algebraic sum F can be identified with the quotient
of the direct sum F

0 = F

1

� · · · � F

b

by its subspace {(�
1

, . . . ,�
b

) 2 F

0 :
�
1

+ · · · + �
b

= 0}. We can decompose the pure-strategy imbalance metric
corresponding to this new choice as follows:

M2

p

(W ) = max
k 6=k

0

0

@

b

X

j=1

sup
||�j ||Fj

1

B
kk

0(W,�
j

)

1

A

2

.

Theorems 3.2 and 3.4 still apply (in particular the conditions of Theorem
3.4 hold for F if they hold for each F

j

).
The second way is to combine these formally via a union. Consider the

space F = F

1

[ · · · [ F

b

= {f : f 2 F

j

for some j}. This is not a vector
space but we can formally define the magnitude ||f || = min

j=1,...,b

||f ||Fj
.

We can then decompose the pure-strategy imbalance metric corresponding
to this new choice as follows:

M2

p

(W ) = max
k 6=k

0
max

j=1,...,b

sup
||�j ||Fj

1

B2

kk

0(W,�
j

).

Theorem 3.2 still applies and Theorem 3.4 applies if its conditions hold for
each Banach space F

j

.
We can even take several spaces F

1

, . . . ,F
b

, re-center each norm with
its own g

j

as in (7.1), and then combine them in either of the two ways,
defining the combined magnitudes strictly formally. In this way, we can
have multiple centers to represent various beliefs about the same or di↵erent
regression functions f

k

. Theorem 3.2 still applies and Theorem 3.4 applies
if its conditions hold for each F

j

and E |g
j

(X
1

)| < 1 for for each j.

7.3. Inference for mixed-strategy designs. As noted in Section 5 Algo-
rithm 5.1 can be used to answer inferential questions for mixed-strategy
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designs as well, but their additional randomization allows for the standard
randomization and exact permutation tests to be used instead. The fol-
lowing is the standard permutation test when applied to a non-completely
randomized design, including the mixed-strategy optimal design.

Algorithm 7.1. Let � be given. For a confidence level 0 < 1� ↵ < 1:

1: Draw W 0 from �, assign subjects, apply treatments, measure Y
iW

0
i
,

and compute ⌧̂ . Let W 0 = {W 2 W : �(W ) > 0}.
2: For W 2 W

0 compute ⌧̃W = 1

p

P

i:Wi=1

Y
iW

0
i
�

1

p

P

i:Wi=2

Y
iW

0
i
.

3: The p-value of H
0

is p =
P

W2W 0 �(W )I
⇥

�

�⌧̃W
�

�

� |⌧̂ |
⇤

.
If p  ↵ then reject H

0

.

The above exact test requires that we have a full description of � and that
we iterate over all feasible assignments. This works well for the output of
Algorithm 4.2 but can be prohibitive for the output of Algorithm 4.1. The
standard randomization test eschews these issues.

Algorithm 7.2. Let � be given. For a confidence level 0 < 1� ↵ < 1:

1: Draw W 0 from �, assign subjects, apply treatments, measure Y
iW

0
i
,

and compute ⌧̂ .
2: For t = 1, . . . , T do:

2.1: Draw W t from �.

2.2: Compute ⌧̃ t = 1

p

P

i:W

t
i =1

Y
iW

0
i
�

1

p

P

i:W

t
i =2

Y
iW

0
i
.

3: The p-value of H
0

is p =
�

1 +
�

�

�

t :
�

�⌧̃ t
�

�

� |⌧̂ |
 

�

�

� �

(1 + T ).
If p(H

0

)  ↵ then reject H
0

.

7.4. Proofs.

Proof of Theorem 2.1. Simple arithmetic yields,

⌧̂ � SATE =
2

n

X

i:Wi=1

✓

Y
i1

+ Y
i2

2

◆

�

2

n

X

i:Wi=2

✓

Y
i1

+ Y
i2

2

◆

=
2

n

n

X

i=1

u
i

Ŷ
i

.

By conditional unbiasedness, we have

Var (⌧̂ |X,Y ) = E
h

(⌧̂ � SATE)2
�

�X,Y
i

= E

2

4

 

2

n

n

X

i=1

u
i

Ŷ
i

!

2

�

�

�

�

�

�

X,Y

3

5 .
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Consider any feasible � 2 � and let W be drawn from it. Because shifting
Y
1

by one constant and Y
2

by another amounts to shifting Ŷ by a constant,
which does not change ⌧̂ , by minimizing norms we have that

max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

kY
1

k

2 + kY
2

k

2

= max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

kY k

2

= max
Y 2Rn⇥2

Var (⌧̂ |X,Y )

kŶ k

2

= max
ˆ

Y 2Rn
:k ˆY k1

X

W2W
� (W )

 

2

n

n

X

i=1

u
i

Ŷ
i

!

2

.(7.2)

Suppose � 2 � minimizes (7.2). For any ⇡ 2 S
n

a permutation of {1, . . . , n},
define �

⇡

((W
1

, . . . ,W
n

)) = �((W
⇡(1)

, . . . ,W
⇡(n)

)). Then by the symmetry of
||·||, �

⇡

is also optimal. Next note that (7.2) is a maximum over linear forms
in � and is therefore convex. Therefore, �⇤(W ) = 1

n!

P

⇡2Sn
�
⇡

(W ) is also
optimal. By construction we get �⇤((W

1

, . . . ,W
n

)) = �⇤((W
⇡(1)

, . . . ,W
⇡(n)

))
for any ⇡ 2 S

n

. Hence, �⇤((W
1

, . . . ,W
n

)) = �⇤((1, 2, 1, 2, . . . , 1, 2)) is con-
stant for every W 2 W, and therefore �⇤ is complete randomization.

Proof of Theorem 2.2. First note that by (2.2), for any i, j, k, k0,

�
��

W
i

= W
j

, W
i

2 {k, k0}, W
j

2 {k, k0}
 �

=
2

m
� ({W

i

= W
j

}) ,

�
��

W
i

6= W
j

, W
i

2 {k, k0}, W
j

2 {k, k0}
 �

=
2

m

1

m� 1
� ({W

i

6= W
j

}) .

Therefore, by squaring and interchanging sums, we have

M2

m

(�) = max
||f ||1

max
k 6=k

0

1

p2

n

X

i,j=1

f(X
i

)f(X
j

)
X

W2W
�(W )(w

ik

� w
ik

0)(w
jk

� w
jk

0)

= max
||f ||1

max
k 6=k

0

2

pn

n

X

i,j=1

P
ij

(�)f(X
i

)f(X
j

)

= max
||f ||1

2

pn

n

X

i,j=1

P
ij

(�)f(X
i

)f(X
j

).

Proof of Theorem 2.3. Let {x
1

, . . . , x
`

} be the set of values taken by
the baseline covariates X

1

, . . . , X
n

(`  n). Let an assignment W be given.
Let {i

1

, i0
1

}, . . . , {i
q

, i0
q

} denote a maximal perfect exact match across the two
groups (W

ij = 1, W
i

0
j
= 2, X

ij = X
i

0
j
, and q maximal) with {i00

1

, . . . , i00
q

0},

{i000
1

, . . . , i000
q

0} being the remaining unmatched subjects (W
i

00
j
= 1, W

i

000
j0

= 2,
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X
i

00
j
6= X

i

000
j0
). For i = 1, . . . , `, if there are more x

i

’s in group 1 set f 0(x
i

) = 1

otherwise set f 0(x
i

) = �1. This f 0 is feasible (||f 0
||1  1) and hence

max
||f ||1

|B(W, f)| �
�

�B(W, f 0)
�

� =
2

n
⇥ q0 ⇥ 2 = 2�

4

n
q.

At the same time, we have

max
||f ||1

|B(W, f)| = max
||f ||1

�

�

�

�

�

n

X

i=1

u
i

f(X
i

)

�

�

�

�

�



2

n

q

X

j=1

max
||f ||1

�

�

�

f(X
ij )� f(X

i

0
j
)
�

�

�

+
2

n

q

0
X

j=1

max
||f ||1

�

�

�

f(X
i

00
j
)� f(X

i

000
j
)
�

�

�

= 0 +
2

n
⇥ q0 ⇥ 2 = 2�

4

n
q.

To summarize,
q

M2

p

(W ) = 2�
4

n

✓

number of perfect exact matches
across the experimental groups

◆

.

Proof of Theorem 2.4. Let D
ij

= �(X
i

, X
j

). The pure-strategy opti-
mal design solves the optimization problem

(7.3) min
W2W

max
||f ||lip1

|B(W, f)| =
2

n
min

u 2 {�1, 1}nPn
i=1 ui = 0

max
y 2 Rn

yi � yj  Dij

uT y.

We will show that the set of optimal solutions u to (7.3) is equal to the set
of assignments of +1,�1 to the pairs in any minimal-weight pairwise match.
Since the pure-strategy optimal design randomizes over these, this will show
that it is equivalent to pairwise matching, which randomly splits pairs.

Consider any non-bipartite matching µ = {{i
1

, j
1

}, . . . , {i
n/2

, j
n/2

}} and

any t 2 {�1,+1}n/2. Let u
il = t

l

, u
jl = �t

l

. Enforcing only a subset of the
constraints on y, the cost of u in (7.3) is bounded above as follows

max
yi�yjDij

uT y = max
yi�yjDij

n/2

X

l=1

t
l

(y
il � y

jl) 

n/2

X

l=1

D
iljl ,

which is the matching cost of µ. Now let instead a feasible solution u to
(7.3) be given. Let S = {i : u

i

= +1} = {i
1

, . . . , i
n/2

} and its complement

SC = {i : u
i

= �1} = {i0
1

, . . . , i0
n/2

}. By linear programming duality we have

(7.4) max
yi�yjDij

uT y = min
Fe�F

T
e=u, F�0

n

X

i,j=1

D
ij

F
ij
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since the LHS is bounded ( D
i1i

0
1
+ · · ·+D

in/2i
0
n/2

) and feasible (y
i

= 0 8i).

The RHS is an uncapacitated min-cost transportation problem with sources
S (with inputs 1) and sinks SC (with outputs 1). Consider any j

s

2 S, j
t

2

SC and any path j
s

, j
1

, . . . , j
p

, j
t

. By the triangle inequality,

D
jsjt  D

jsj1 +D
j1j2 + · · ·+D

jpjt .

Therefore, it is always preferable to send flow along edges between S and
SC only. Thus, erasing all edges within S or SC , the problem is seen to be
a bipartite matching problem. The min-weight bipartite matching is also a
non-bipartite matching and by (7.4) its matching cost is the same as the
cost of the given u in the objective of (7.3).

Proof of Theorem 2.5. The argument is similar to the above. This
time the network flow problem has an additional node with zero external
flow (neither sink nor source), uncapacitated edges into it from every other
node with a unit cost of �

0

, and uncapacitated edges out of it to every other
node with a unit cost of �

0

.

Proof of Theorem 2.6. For the pure-strategy case we have,

M2

p

(W ) = max
k 6=k

0
max
||f ||1

 

1

p

n

X

i=1

(w
ik

� w
ik

0)f(X
i

)

!

2

= max
k 6=k

0

�

�

�

�

�

�

�

�

�

�

1

p

n

X

i=1

(w
ik

� w
ik

0)K(X
i

, ·)

�

�

�

�

�

�

�

�

�

�

2

=
1

p2
max
k 6=k

0

*

n

X

i=1

(w
ik

� w
ik

0)K(X
i

, ·),
n

X

i=1

(w
ik

� w
ik

0)K(X
i

, ·)

+

=
1

p2
max
k 6=k

0

n

X

i,j=1

(w
ik

� w
ik

0)K
ij

(w
jk

� w
jk

0)

Now, consider the maximum over f in M2

m

(P ). Let f
0

be a feasible solu-
tion. Write f

0

= f + f? with f 2 S = span{K(X
i

, ·) : i = 1, . . . , n}
and f?

2 S?, its orthogonal complement. By orthogonality f?(X
i

) =
⌦

K(X
i

, ·), f?↵ = 0 and ||f ||2 = ||f
0

||

2

�

�

�

�

�f?�
�

�

�

2

 1 so that f achieves the
same objective value as f

0

and remains feasible. Therefore we may restrict
to S and assume that f =

P

i

�
i

K(X
i

, ·) such that �TK�  1.
By positive semi-definiteness of K and P , we get

M2

m

(P ) =
2

np
sup

�

T
K�1

n

X

i,j=1

P
ij

(K�)
i

(K�)
j

=
2

np
sup

�

T
K�1

�TKPK�
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=
2

np
sup

�

T
�1

�T
p

KP
p

K� =
2

np
�
max

⇣

p

KP
p

K
⌘

.

Proof of Theorem 3.1. By blinding of treatments (2.2), each W
i

by
itself (but not the vector W ) is statistically independent of X,Y so that

E
⇥

w
ik

Y
ik

�

�X,Y
⇤

= E [w
ik

]Y
ik

=
1

m
Y
ik

, and therefore

E
⇥

⌧̂
kk

0
�

�X,Y
⇤

=
1

p

n

X

i=1

1

m
Y
ik

�

1

p

n

X

i=1

1

m
Y
ik

0 = SATE
kk

0 .

Note that we can rewrite E
kk

0 as

E
kk

0 =
1

m

X

l 6=k

⌅
kl

�

1

m

X

l 6=k

0

⌅
k

0
l

where ⌅
kl

:=
1

p

n

X

i=1

(w
ik

� w
il

) ✏
ik

.

Using the notation A
kk

0 = 1

p

P

i:Wi=k

0 Y
ik

, C
kl

= B
kl

(f
k

) + ⌅
kl

, we have

⌧̂
kk

0
� SATE

kk

0 = A
kk

�A
k

0
k

0
�

1

m

m

X

l=1

A
kl

+
1

m

m

X

l=1

A
k

0
l

=
m� 1

m
A

kk

�

1

m
A

kk

0 +
1

m
A

k

0
k

�

m� 1

m
A

k

0
k

0

�

1

m

X

l 6=k,k

0

(A
kk

� C
kl

) +
1

m

X

l 6=k,k

0

(A
k

0
k

0
� C

k

0
l

) = D
kk

0 + E
kk

0 .

Let i, j be equal or unequal, k, k0, l, l0 equal or unequal. Then,

Cov(w
il

f
k

(X
i

), w
jl

0✏
jk

0) = E
⇥

w
il

w
jl

0f
k

(X
i

)E
⇥

✏
jk

0
|X,Z

⇤⇤

� E [w
il

f
k

(X
i

)]E
⇥

w
jl

0E
⇥

✏
jk

0
|X,Z

⇤⇤

= 0� 0 = 0,

Cov((w
ik

� w
il

)f
k

(X
i

), f
k

0(X
j

)) = E [w
ik

� w
il

] Cov (f
k

(X
i

), f
k

0(X
j

)) = 0,

Cov((w
ik

� w
il

)✏
ik

, f
k

0(X
j

)) = E [w
ik

� w
il

] Cov (✏
ik

, f
k

0(X
j

)) = 0,

where the latter two equalities are due to the independence of W
i

due to
blinding treatments. This proves uncorrelateness. The rest follows from an
application of the law of total variance and rearranging terms.

Proof of Theorem 3.2. Define

Z(f, g) = E
" 

1

p

n

X

i=1

(w
i1

� w
i2

) f(X
i

)

! 

1

p

n

X

i=1

(w
i1

� w
i2

) g(X
i

)

!#

.
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By construction, Z(f, f)  ||f ||2 E
⇥

M2

opt

⇤

. By condition (2.2),

Var (B
kl

(f)) = Z(f, f) for l 6= k,

Cov (B
kl

(f), B
kl

0(f)) =
1

2
Z(f, f) for k, l, l0 distinct,

Cov (B
kl

(f), B
k

0
l

0(g)) =

8

>

>

>

>

<

>

>

>

>

:

1

2

Z(f, g) for l = l0 /2 {k, k0},
�

1

2

Z(f, g) for l = k0, l0 6= k,
�

1

2

Z(f, g) for l 6= k0, l0 = k,
�Z(f, g) for l = k0, l0 = k,
0 for k, k0, l, l0 distinct.

It follows that

Var (D
kk

0) =
1

m2

✓

m2

�m

2
Z(f

k

, f
k

) +
m2

�m

2
Z(f

k

0 , f
k

0)

◆

+
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m2

Z(f
k

, f
k

0)

=
1

m2

✓

m2

2
�m� 1

◆

(Z(f
k

, f
k

) + Z(f
k

0 , f
k

0))

+
1

m2

✓

m+ 2

2

◆

Z(f
k

+ f
k

0 , f
k

+ f
k

0)



1

m2

✓

m2

2
�m� 1

◆

⇣

E
⇥

M2

opt

⇤

||f
k

||

2 + E
⇥

M2

opt

⇤

||f
k

0
||

2

⌘

+
1

m2

✓

m+ 2

2

◆

E
⇥

M2
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⇤

||f
k

+ f
k

0
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(||f
k

||+ ||f
k

0
||)2

2

✓

1�
1

m

◆

E
⇥

M2

opt

⇤

since ||f + g||2  (||f ||+ ||g||)2 and
⇣

||f ||2 + ||g||2
⌘

 (||f ||+ ||g||)2.

Proof of Theorem 3.3. Fix f and g. Using
⇣

P

b

i=1

z
i

⌘

2

 b
P

b

i=1

z2
i

,

Z(f, f) = E
 

1

p

n

X

i=1

(w
i1

� w
i2

) (f � g)(X
i

) +
1

p

n

X

i=1

(w
i1

� w
i2

) g(X
i

)

!

2

 2E
 

1
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n

X

i=1

(w
i1

� w
i2

) (f � g)(X
i

)

!

2

+ 2E
 

1

p

n

X

i=1

(w
i1

� w
i2

) g(X
i

)

!

2



2

p2
⇥ p⇥ p⇥

2

m
⇥ E((f � g)(X

1

))2 + 2Z(g, g) =
4

m
||f � g||2

2

+ 2Z(g, g)

The rest is as in the proof of Theorem 3.2, choosing g 2 F .
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Proof of Theorem 3.4. Fix the assignment W 0
i

= (i mod p) + 1 and

let ⇠(k,k
0
)

i

: f 7!

�

f
�

X
m(i�1)+k

�

� f
�

X
m(i�1)+k

0
��

. Then, since ⇠(k,k
0
)

i

is in

the continuous dual space F⇤, we can write M2

p

(W 0) = max
k 6=k

T (k,k

0
)

n

where

T (k,k

0
)

n

= sup
||f ||1

 

1

p

p

X

i=1

⇠(k,k
0
)

i

(f)

!

2

=

�

�

�

�

�

�

�

�

�

�

1

p

p

X

i=1

⇠(k,k
0
)

i

�

�

�

�

�

�

�

�

�

�

2

F⇤

.

Note ⇠(k,k
0
)

i

are independent and identically distributed with expectation 0
(i.e., Bochner integral). B-convexity of F implies the B-convexity of F⇤. By
B-convexity and the main result of [49] (or by [50] for the Hilbert case),

T (k,k

0
)

n

! 0 almost surely as n ! 1.

As there are only finitely many k, k0, we haveM2

p

(W 0) ! 0 almost surely. By
construction, M2

m-opt

 M2

p-opt

 M2

p

(W 0). Hence, the distance between ⌧̂
kk

0

and SATE
kk

0 +E
kk

0 is |D
kk

0
| 

�

1� 1

m

�

(||f
k

||+ ||f
k

0
||)
q

M2

opt

! 0 almost

surely. Therefore, as SATE
kk

0 +E
kk

0 is strongly consistent, so is ⌧̂
kk

0 .
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