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Abstract
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Introduction

1 Introduction

Assuming that storing cash is costless, nominal interest rates cannot turn negative since cash, as

an alternative investment to bonds, provides a zero interest rate (see e.g. Black (1995)). In other

words, the sole existence of currency implies a zero lower bound (ZLB) on bond yields.1 Before

the outbreak of the 2008 �nancial crisis, the Bank of Japan was the only large central bank that

had brought its policy rates � which drive the short-end of the yield curve � to zero. From 2010 on

however, bringing policy rates close to the ZLB has become a common situation for the Fed, the

ECB, and the BoE. In all of these currency areas, sharp decreases of the short-term rates have led

the medium- to long-term yields to drop deeply, pushing the entire yield curves to unprecedented

low levels.

In this context, reproducing low but non-negative interest rates has become a great concern for

term-structure modeling and still represents a challenging task.2 More generally, to the best of our

knowledge, no existing term-structure model is able to simultaneously match the three following

characteristics:3

(i) consistency with non-negative yields;

(ii) availability of closed-form bond pricing formulas; and

(iii) the ability to accommodate extended periods of zero or close-to-zero short-term rates and to

evaluate lift-o� probabilities.

In this paper, we �rst introduce a new a�ne process that opens the way to term-structure models

consistent with (i), (ii), and (iii) at the same time. This process, which we call Autoregressive

Gamma Zero, builds on the original ARG process (see Gourieroux and Jasiak (2006), Dai, Le, and

Singleton (2010) or Creal and Wu (2013)) by extending it to a zero degree-of-freedom parameter.

This process, which we denote ARG0, possesses a crucial distinctive feature: its conditional dis-

tribution given the past encompasses a point-mass at zero.4 This attractive property allows the

non-negative ARG0 dynamics to satisfy (i) and (iii).5 We explore the properties of this univariate

process, explicitly disclosing its exponential-a�ne conditional Laplace transform and its �rst two

conditional and unconditional moments. This univariate a�ne process is then extended to a mul-

tivariate a�ne process which we call Vectorial Autoregressive Gamma (VARG). We adequately

1Note that real interest rates are not constrained by such a lower bound since in�ation is not bounded. However,
building term-structure models of nominal interest rates is essential given the overwhelming importance of nominal
interest-rates instruments (versus in�ation-indexed ones) in �nancial markets. As an illustration, only an average
of 9% of government bonds is indexed to in�ation in G7 countries (OECD (2012)).

2Typically, in the widely-used Gaussian no-arbitrage models, the yields of all maturities can take negative values
with a strictly positive probability (see e.g. Dai and Singleton (2003), Piazzesi (2010), Diebold and Rudebusch
(2013), Du�ee (2012) or Gurkaynak and Wright (2012)).

3While the model proposed by Renne (2012) is consistent with these three points, it can only generate a discrete
number of positive yield curves. That is, in Renne's framework, the support of the positive short-term (policy) rate
is discrete. Here, we consider short rates whose support is R+.

4This appealing feature is obtained by building on Siegel (1979), who introduces a non-central Chi-squared
distribution with zero degree of freedom. This distribution has also a Dirac mass at zero.

5As noted by Kim (2008), coping with those two features for a short-term interest rate is of utmost importance
when building a term-structure model with observed option prices.
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exploit these processes to build a multi-factor term-structure model in which the yields at all ma-

turities are non-negative and the short-term interest rate can stay at zero for extended periods of

time, and the lift-o� probabilities are easily computed under both measures.

We directly address the issue of point (ii), making closed-form bond-pricing formulas available.

Indeed, our short-term interest rate is speci�ed as a linear combination of components that fol-

low VARG processes under both historical and risk-neutral measures. Hence our framework boils

down to an A�ne Term-Structure Model (ATSM) and the zero-coupon yields for all maturities

are explicit a�ne functions of the factors where the loadings are computable recursively (see e.g.

Du�e and Kan (1996) or Darolles, Gourieroux, and Jasiak (2006)).

The historical and risk-neutral a�ne property of our term-structure model allows for a great �exibil-

ity at the estimation stage. First, assuming the presence of latent factors, the estimation technique

is computationally simple using Kalman �ltering techniques. Indeed, transition equations of the

underlying state-space model are simply given by the VAR representation of our factors' dynamics.

Second, it implies that (a) forecasts of yields, (b) conditional variances of yields and (c) excess

bond returns are a�ne functions of the factors. Accordingly, this allows us to easily augment the

set of measurement equations by relating linear combinations of our latent factors with observable

proxies of (a) surveys of professional forecasters, (b) conditional (Garch-based) yield variances

and (c) expected excess bond-returns predictors à la Cochrane and Piazzesi (2005). Including these

equations respectively improves (a) the estimation of the factors' physical dynamics (see Kim and

Orphanides (2012)), (b) the consistency of the estimated model with sample moments of order

two,6 and (c) the ability of the model to predict excess bond returns.

As Japan has been confronted with extremely low interest rates since the mid-90s, the sovereign

bond yields of this country constitute a relevant source of data to examine the ability of term-

structure models to handle the ZLB.7 For the sake of comparison, we use the same yield data

as in Kim and Singleton (2012). Our estimated model both shows a very good �t and strongly

outperforms alternative ZLB-consistent models in capturing conditional yield volatilities across

maturities, especially for the medium and long end.

Since we have a historical and risk-neutral modeling, we exploit our estimated model to investigate

the behavior of risk premia in a low-yield environment, thereby extending the literature that uses

term-structure models to measure the in�uence of agents' risk aversion on bond prices. Over recent

decades, term-structure models have signi�cantly improved our understanding of risk premia.8 By

6Among others, Collin-Dufresne and Goldstein (2002), Trolle and Schwartz (2009), Jacobs and Karoui (2009),
Almeida, Graveline, and Joslin (2011), Andersen and Benzoni (2006), Bikbov and Chernov (2011), Creal and Wu
(2014) and Christensen, Lopez, and Rudebusch (2014) study the ability of term-structure models to �t conditional
volatilities of yields.

7See e.g. Gorovoi and Linetsky (2004), Ueno, Baba, and Sakurai (2006), Ichiue and Ueno (2007), Kim and
Singleton (2012), Christensen and Rudebusch (2013), Kim and Priebsch (2013), Krippner (2013).

8In particular, these models have contributed to build the compelling evidence gathered against the expectation
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de�nition, these premia are the di�erences between observed yields and those that would prevail if

agents were risk-neutral. Through the speci�cation of a stochastic discount factor, bridging the his-

torical and the risk-neutral dynamics, no-arbitrage term-structure models conveniently reproduce

the time variation in risk premia.9 While numerous papers have studied such premia in a context

of far-from-zero yields, a limited number of contributions consider them in a ZLB environment.

Arguably, this comes from the lack of tractable models that satisfyingly capture the dynamics of

rates in this speci�c (but now common) context. Our results suggest that, in a ZLB context, risk

premia remain substantial and explain an important share of yields' �uctuations. Interestingly,

this is not only the case for long-term yields: even for short horizons, risk-neutral distributions

of future short-term yields di�er from their historical counterparts. In particular, it means that

forward rates are biased measures of market expectations of future short-term (policy) rates, even

at short maturities. We show that this translates into sizeable di�erences between historical and

risk-neutral distributions of the lift-o� date, that is the date at which the central bank exits the

ZLB by increasing its policy rate (see e.g. Bauer and Rudebusch (2013) or Swanson and Williams

(2013)). For instance we calculate that, at the 2-year horizon, the di�erence between the risk-

neutral and historical probabilities of exiting the ZLB can be as large as 75 percentage points.

The present article relates to the small but fast-growing literature that develops and investigates

ZLB-consistent models. Three main approaches stand out: shadow-rate models, quadratic term-

structure models (QTSM) and models involving square-root (CIR) processes. The shadow-rate

model was introduced by Black (1995) and has been adopted by several recent contributions (see

e.g. Ueno, Baba, and Sakurai (2006), Ichiue and Ueno (2007), Ichiue and Ueno (2013), Kim and

Singleton (2012), Krippner (2012, 2013), Bauer and Rudebusch (2013), Christensen and Rudebusch

(2013), Kim and Priebsch (2013) and Wu and Xia (2013)). In this model, the short-term rate is

de�ned as the maximum between zero and the so-called shadow rate and ZLB periods occur when

the latter turns negative. Typically, if the shadow rate follows a Gaussian process, the model can

generate prolonged periods of ZLB, making it consistent with features (i) and (iii). However, there

are no closed-form formulas available for bond prices (this inadequately adresses point (ii)) and

one has to resort to simulation or approximation techniques to estimate the model (see Kim and

Priebsch (2013) or Wu and Xia (2013)). By contrast, QTSM and models based on square-root

processes provide closed-form bond pricing formulas and positive yields (seminal contributions are

those of Ahn, Dittmar, and Gallant (2002), Leippold and Wu (2002), Cox, Ingersoll, and Ross

(1985), Pearson and Sun (1994) and Dai and Singleton (2000)). Nevertheless, these models treat

the ZLB as a re�ecting barrier. In that case, the probability of having an unchanged short-term

rate for two subsequent periods is zero, which makes them inconsistent with feature (iii).10

hypothesis. A typical implication of departing from this hypothesis is that forward rates di�er from expected future
interest rates (see e.g. Fama and Bliss (1987), Campbell and Shiller (1991), Backus, Foresi, Mozumdar, and Wu
(2001), Cochrane and Piazzesi (2005), or Faust and Wright (2011)).

9See among others, Kim and Wright (2005), Cochrane and Piazzesi (2009), Kim and Orphanides (2012) and
Jardet, Monfort, and Pegoraro (2013).

10More precisely, in the case of the CIR process, zero is either a re�ecting barrier or an absorbing state.
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The remainder of the paper is organized as follows. Section 2 introduces the non-negative ARG0

process and highlights its ability to stay at zero. Section 3 presents the associated a�ne term-

structure model and derives tractable lift-o� probability formulas. Section 4 describes the esti-

mation strategy and presents the empirical results. Section 5 examines the distributions of future

lift-o� dates. Section 6 concludes and the Appendix gathers proofs and technical results.

2 Non-negative a�ne processes with zero lower bound spells

In this section we introduce the univariate Gamma-zero distribution and extend it to the dynamic

case with a new class of processes that we call Autoregressive Gamma-Zero (see Section 2.1). A

multivariate generalization will be considered in Section 3. Like the continuous-time Cox, Ingersoll,

and Ross (1985) process � or its discrete-time counterpart, the Autoregressive Gamma process of

Gourieroux and Jasiak (2006) � it is a non-negative process. However, the Autoregressive Gamma-

Zero can reach the zero value with a strictly positive probability and stay at this lower bound for

an extended period of time. We present its main properties in Section 2.2 and a generalization to

the Extended Autoregressive Gamma process is developed in Section 2.3.

2.1 The ARG0 process and the zero lower bound

Let us �rst recall that a Gamma distribution γν(µ) is a positive distribution de�ned by a shape (or

degree of freedom) parameter ν > 0 and a scale parameter µ > 0. Its probability density function

(p.d.f.) is given by:

fX(x ; ν, µ) =
exp(−x/µ)xν−1

Γ(ν)µν
1{x>0} .

Note that γν(µ) converges in distribution to the Dirac distribution at zero when ν goes to zero.

A non-central Gamma distribution can be de�ned as an extension of the gamma distribution.

Consider a Poisson random variable Z of positive parameter λ. Then, the non-central Gamma

distribution γν(λ, µ) is a mixture of γν+Z(µ) distributions (Z being the mixing variable), de�ned

on R+, where ν, λ and µ are strictly positive. Remarkably, although its p.d.f. is complicated, its

Laplace transform is extremely simple. Let X ∼ γν(λ, µ), we have:

ϕX(u) = E[exp(uX)] = exp

[
−ν log(1− uµ) + λ

uµ

1− uµ

]
, for u <

1

µ
.

This distribution can be adapted to the case ν = 0 if γ0(µ) is considered as the Dirac distribution

at zero. We thus obtain, by de�nition, a Gamma-zero distribution featuring a point mass at zero.

De�nition 2.1 Let X be a positive random variable. We say that X follows a Gamma-zero dis-

tribution with parameters λ > 0 and µ > 0, denoted X ∼ γ0(λ, µ), if its conditional distribution

given Z ∼ P(λ) is:

X |Z ∼ γZ(µ) . (1)
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The p.d.f. and the Laplace transform of X, respectively fX(x ; λ, µ) and ϕX(u ; λ, µ), are given by:

fX(x ; λ, µ) =

+∞∑
z=1

[
exp(−x/µ)xz−1

(z − 1)!µz
× exp(−λ)λz

z !

]
1{x>0} + exp(−λ)1{x=0} (2)

ϕX(u ; λ, µ) = exp

[
λ

uµ

(1− uµ)

]
for u <

1

µ
.

(Note that the p.d.f is with respect to the sum of the Lebesgue measure on R+ and the unit mass

at zero.)

Again, despite the complexity of the density function of Equation (2), the Laplace transform of the

Gamma-zero distribution is very easy to manipulate. Also, Equation (2) sheds light on a key feature

of the Gamma-zero distribution: it has a point-mass located at x = 0, and P(X = 0) = exp(−λ).

It is extremely easy to simulate in γ0(λ, µ) by �rst simulating Z in P(λ) and then X in γz(µ),

where z is the result of the �rst simulation. As Z equals zero with a strictly positive probability,

X also equals zero with a strictly positive probability.

We now turn to the dynamic case, where (Xt) is a discrete-time random process that we call

Autoregressive Gamma-zero (ARG-Zero) process, denoted by ARG0(α, β, µ) (where α ≥ 0, β ≥ 0,

µ > 0).

De�nition 2.2 The random process (Xt) is a ARG0(α, β, µ) process of order one if the conditional

distribution of Xt+1, given Xt = (Xt, Xt−1, . . .), is the Gamma-zero distribution:

(Xt+1|Xt) ∼ γ0(α+ βXt, µ) for α ≥ 0, µ > 0, β > 0 .

The conditional probability density function f (Xt+1 |Xt;α, β, µ) and the conditional Laplace trans-

form ϕX,t(u ; α, β, µ) of the ARG0(α, β, µ) process are respectively given by:

f (Xt+1 |Xt;α, β, µ) =

+∞∑
z=1

[
exp(−Xt+1/µ)Xz−1

t+1

(z − 1)!µz
× exp[−(α+ β Xt)] (α+ β Xt)

z

z !

]
1{Xt+1>0}

+ exp(−α− β Xt)1{Xt+1=0} ; (3)

ϕX,t(u ; α, β, µ) := E
[
exp (uXt+1) |Xt

]
= exp

[
uµ

1− uµ
(α+ β Xt)

]
, for u <

1

µ
. (4)

As for the static Gamma-Zero distribution, the second element of Equation (3) emphasizes the

zero-point mass of the ARG0 process. The conditional probability of the process reaching zero at

date t+ 1 is time-varying and given by exp(−α− β Xt). Note that there are two main di�erences

between this family of processes and the ARG processes introduced in Gourieroux and Jasiak

(2006). First, in our case we take the shape parameter equal to 0, which allows the presence of the

zero-point mass. Second, we introduce a positive intercept α in the Poisson parameter, preventing

the zero lower bound from being an absorbing state. Indeed, when Xt = 0, the value Xt+1 equals

5



Non-negative a�ne processes with zero lower bound spells

zero with probability P (Xt+1 = 0 |Xt = 0) = exp(−α) < 1.

It is also readily seen from relation (4) that (Xt) is a discrete-time a�ne, or Car(1), process (see

Darolles, Gourieroux, and Jasiak (2006)) since ϕX,t(u;α, β, µ) is exponential-a�ne in Xt. This

class of processes is particularly useful for building term structure models of interest rates, allowing

for simple computation of moments and closed-form or tractable pricing formulas. In particular,

we use in the next sections the fact that recursive formulas are available for the computation of

multi-horizon Laplace transforms de�ned as:

ϕt,h(u1, . . . , uh) = Et [exp(u1Xt+1 + . . .+ uhXt+h)] .

We illustrate the aforementioned properties of the ARG0(α, β, µ) process and its relevance for

interest rate modeling in a ZLB setting with a simple simulation exercise. Let us denote by rt the

risk-free rate between t and t+ 1 (known in t) and let us assume that its dynamics is given by the

following univariate ARG0 process:

(rt | rt−1) ∼ γ0(α+ βrt−1, µ) , (5)

where α and β are positive scalars. A model for the short-term rate dynamics described by relation

(5) can accommodate both protracted periods of zero short-term rates and periods of �uctuations.

We simulate this process for 500 periods with parameters calibrated as α = 0.1, β = 990 and

µ = 0.001. These parameters are such that the marginal mean and standard deviation of process

(rt) are about 0.01 and 0.001, respectively. For such parameters, the conditional probability of

staying at the zero lower bound is around 0.9. Figure (1) presents the simulated trajectory (left

panel) and the computation of the marginal cumulative distribution function (right panel).

As expected, several episodes of prolonged zero lower bound are observed among the 500 simulated

values. The grey-shaded areas emphasize the large persistence of the process, which hardly takes

o� from zero for the �rst 150 periods. Over the sample, the simulated process hits zero for about

250 periods, that is half of the sample length. The right panel of Figure (1) shows that the

unconditional probability of the process to be at zero is 0.6. When it is not at zero, the process

experiences persistent spikes of between 100 to 150 periods. This behavior of the ARG0 process

appears particularly appealing to model the dynamics of short-term interest rates in a zero lower

bound environment.
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Figure 1: Simulation of an ARG0 process: a short-term rate with zero lower bound spells

0.00

0.05

0.10

0.15

0 100 200 300 400 500
Periods

Simulation of an ARGo process

● P(R=0) = 0.6

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15
Values

P
ro

ba
bi

lit
y

Cumulative distribution function

Notes: This �gure displays on the left panel the simulated path of a short-term rate dynamics de�ned by the
following conditional distribution: rt|rt−1 ∼ γ0(0.1 + 990rt−1, 0.001). The grey zones correspond to periods where
the simulated short rate hits zero. On the right panel we have the associated marginal cumulative distribution
function.

2.2 Moments, stationarity and lift-o� probablities of ARG0 processes

The exponential-a�ne form of the Laplace transform given in Equation (4) allows for an easy

derivation of the properties of ARG0(α, β, µ) processes. In this subsection, we show that ARG0

processes possess simple closed-form formulas for conditional and unconditional moments, station-

arity conditions, and especially for calculating conditional probabilities of reaching zero, staying

at zero or leaving zero (lift-o�).

First, note that the a�ne property of the ARG0 process implies that all conditional cumulants are

a�ne functions of the lagged value of the process. Their derivation is made simple by the use of the

log-Laplace transform. Proposition (2.1) and associated corollaries derive the �rst two conditional

and unconditional moments of an ARG0 process.

Proposition 2.1 Let (Xt) be an ARG0(α, β, µ) process. We use the notation ρ := β µ. The

conditional mean Et(Xt+1) and variance Vt(Xt+1) of Xt+1 given its past are respectively given by:

Et(Xt+1) = αµ+ ρXt and Vt(Xt+1) = 2µ2α+ 2µρXt = 2µEt(Xt+1) . (6)

Corollary 2.1.1 (Xt) has the following weak AR(1) representation:

Xt+1 = αµ+ ρXt + εt+1 , (7)

where (εt) is a conditionally heteroskedastic martingale di�erence, whose conditional variance is

V(εt+1 | εt) = 2µ2α+ 2µρXt.

Corollary 2.1.2 (Xt) is stationary if and only if ρ < 1 and, in this case, its unconditional mean

7
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and variance are respectively given by:

E(Xt) =
αµ

1− ρ
and V(Xt) =

2αµ2

(1− ρ)(1− ρ2)
. (8)

Proof See Appendix A.1. �

In particular, from the conditional moments given in Proposition 2.1, we derive simple expressions

for a weak AR(1) representation that helps calculating the unconditional �rst-two moments of the

process. Two key features of the ARG0 are worth noticing. First, the time-varying conditional

variance is proportional to the conditional mean and, thus, it linearly shrinks with the level of Xt.

This implies that, in a low-level environment, the ARG0 process shows low conditional volatility, a

typical feature of interest-rates during zero lower bound periods (see Filipovic, Larsson, and Trolle

(2013)). Note also that the ARG0 process' conditional variance is bounded from below by 2µ2α

when Xt reaches zero. Second, the closed-from availability of the �rst-two conditional and uncon-

ditional moments implies that simple estimation procedures can be used such as the generalized

method of moments, or pseudo-maximum likelihood techniques.

We concentrate now on conditional probabilities of an ARG0 process to reach zero, to stay at zero

for more than a certain number of periods, or to lift-o� in exactly h periods. To investigate this

sojourn in state zero and the associated lift-o� probability, the following lemma proves useful.

Lemma 2.1 Let Z be a random variable valued in R+ and ϕZ(u) is its Laplace transform. Then,

we have:

PZ{0} = lim
u→−∞

ϕZ(u) . (9)

Proof See Appendix A.2. �

This Lemma makes the computation of the conditional probabilities of hitting zero very simple.

The main formulas are presented in the following proposition.

Proposition 2.2 Let (Xt) be an ARG0(α, β, µ) process and let us denote by ϕt,h(u1, . . . , uh) =

Et[exp (u1Xt+1 + . . .+ uhXt+h)] its multi-horizon conditional Laplace transform. Then, the fol-

lowing properties hold:

(i) P(Xt+h = 0 |Xt) = lim
u→−∞

ϕt,h(0, . . . , 0, u)

= exp

{
−(1− ρ)

[
ρh

µ(1− ρh)
Xt + α

h−1∑
k=0

ρk

1− ρk+1

]}
,

(ii) P
[
Xt+1 = 0, . . . , Xt+h = 0

∣∣Xt

]
= lim
u→−∞

ϕt,h(u, . . . , u)

= exp(−αh− β Xt) ,

(iii) P
[
Xt+1 = 0, . . . , Xt+h = 0, Xt+h+1 > 0

∣∣Xt)
]

= exp [−αh− β Xt] [1− exp(−α)] .

Proof See Appendix A.2. �

8



Non-negative a�ne processes with zero lower bound spells

Corollary 2.2.1 If Xt = 0, the probability to stay in state 0 for the next (h− 1) periods only is

(1− p)ph−1 with p = exp(−α), and the average sojourn time in zero is given by:

(1− p)
+∞∑
h=1

hph−1 =
1

1− p
= [1− exp(−α)]−1 .

When α = 0, this average sojourn time is +∞ and the zero lower bound becomes an absorbing

state.

Proposition 2.2 is key for calculating lift-o� probabilities in economic applications. Corollary 2.2.1

stresses the role of the α parameter: the average sojourn time in zero is entirely controlled by α

for univariate ARG0 processes. From an economic point of view, if the short-term interest rate is

modeled by an ARG0 process, α quanti�es the average persistence of zero lower bound regimes.

2.3 The Extended ARGν(α, β, µ) process

The ARG0(α, β, µ) process described in the previous section and the ARGν(β, µ) process of

Gourieroux and Jasiak (2006) are nested in a general class of Extended ARGν(α, β, µ) processes

characterized by a degree of freedom parameter ν ≥ 0 and a parameter α ≥ 0. Combining the

de�nitions of Sections 2.1 and 2.2, we obtain the following:

De�nition 2.3 The univariate random process (Xt) is an Extended ARGν(α, β, µ) process of order

one iif the conditional distribution of Xt+1, given Xt = (Xt, Xt−1, . . .), is a non-centered Gamma

distribution such that:

(Xt+1|Xt) ∼ γν(α+ βXt, µ) , for α ≥ 0, ν ≥ 0, µ > 0, β > 0 .

The conditional probability density function f (Xt+1 |Xt; ν, α, β, µ) and the conditional Laplace

transform ϕX,t(u ; ν, α, β, µ) of the Extended ARGν(α, β, µ) process are respectively given by:

f (Xt+1 |Xt; ν, α, β, µ) =

+∞∑
z=1

[
exp(−Xt+1/µ)Xν+z−1

t+1

Γ(ν + z)µν+z
× exp[−(α+ β Xt)] (α+ β Xt)

z

z !

]
1{Xt+1>0}

+ exp(−α− β Xt)1{Xt+1=0, ν=0} ,

ϕX,t(u ; ν, α, β, µ) := E
[
exp (uXt+1) |Xt

]
= exp

[
uµ

1− uµ
β Xt + α

uµ

1− uµ
− ν log(1− uµ)

]
, for u <

1

µ
. (10)

Note that the di�erence with the ARG0 process, in terms of conditional Laplace transform, is

the additional term [−ν log(1− uµ)] in the exponential. However, a process with Extended ARG

dynamics and ν > 0 does not experience prolonged periods of zero. In line with Proposition 2.1,

and following the same steps as in Appendix A.1, we derive the conditional and unconditional �rst

two moments of an Extended ARG process.

9
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Proposition 2.3 Let (Xt) be an Extended ARGν(α, β, µ) process and ρ := βµ. The conditional

mean and variance of Xt+1 are respectively given by:

Et(Xt+1) = µ (ν + α) + ρXt and Vt(Xt+1) = µ2(ν + 2α) + 2µρXt . (11)

Corollary 2.3.1 (Xt) is stationary if and only if ρ < 1 and, in this case, its unconditional mean

and variance are respectively given by:

E(Xt) =
(α+ ν)µ

1− ρ
and V(Xt) =

2αµ2 + µ2ν(1− ρ)

(1− ρ)(1− ρ2)
.

Setting ν = 0, we get the ARG0(α, β, µ) family presented in Section 2.1 and, assuming α = 0

with ν > 0, we obtain the classical ARGν(β, µ) family. It is also worth noting from relation (10)

that, using the extension to random coe�cients models, in particular regime-switching models (see

Gourieroux, Monfort, Pegoraro, and Renne (2013)), it would be possible to make the parameters

α and ν exogenously random and a�ne, or linearly dependent on Xt, while staying in the class of

a�ne processes for the augmented process.

In the following sections, we use the previous univariate distributions to construct our multivariate

non-negative a�ne term-structure model where the state vector is composed (under both the

risk-neutral and historical probability) of conditionally independent factors with Gamma-zero and

Extended Gamma distributions. This assumption of conditional independence characterizing the

so-called Vector Autoregressive Gamma process (VARG, say) makes the zero-coupon bond pricing

model speci�cation simple while guaranteeing at the same time enough �exibility to match relevant

ZLB-linked interest rates stylized facts (see Section 4). For the sake of completeness, we also present

a general speci�cation of the VARG process in Appendix A.5, where conditional dependence is

introduced, while preserving the risk-neutral and historical a�ne property of the multivariate

process.

3 The Non-Negative A�ne Term Structure Model

3.1 The VARG risk-neutral state dynamics and the a�ne yield curve

formula

In this section we introduce the multivariate non-negative a�ne term-structure model (NATSM)

by directly specifying the risk-neutral (Q) dynamics of the n-dimensional latent state vector Xt =(
X

(1)′

t , X
(2)′

t

)′
, where dim

(
X

(1)
t

)
= n1, dim

(
X

(2)
t

)
= n2, and n = n1 + n2. We also denote by

rt the unobservable short-term rate between t and t + 1, known at date t. More speci�cally, we

assume that the risk-neutral dynamics of Xt is a Vector ARG (or VARG) process.

Assumption 1 Assuming conditional independence given the past, the risk-neutral distribution of

10
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Xt+1, conditionally on Xt, is given by the product of the following conditional distributions:

(Xj,t+1 |Xt)
Q∼ γνj

(
αQ
j + βQ′

j Xt, µ
Q
j

)
, j ∈ {1, . . . , n} , (12)

where νj = 0 for any j ∈ {1, . . . , n1}, while νj ≥ 0 if j ∈ {n1 + 1, . . . , n}; αQ
j ≥ 0, µQ

j > 0 and βQ
j

is an n-dimensional vector of positive components.

In other words, conditionally on Xt, the n1 components of X
(1)
t+1 follow independent Gamma-zero

distributions, while the n2 components of X
(2)
t+1 follow independent Non-central Gamma distribu-

tions.

Given the conditional (on Xt) independence between the scalar components in Xt+1, the risk-

neutral conditional Laplace transform of Xt+1 given Xt is immediately obtained:

Proposition 3.1 The risk-neutral Laplace transform of Xt+1, conditionally on Xt, is given by:

ϕQ
t (u) = EQ

exp

 n∑
j=1

Xj,t+1

 ∣∣∣∣Xt

 = exp

 n∑
j=1

aQj (uj)
′Xt + bQj (uj)

 (13)

where, for any j ∈ {1, . . . , n}, we have:

aQj (uj) =
uj µ

Q
j

1− uj µQ
j

βQ
j and bQj (uj) =

uj µ
Q
j

1− uj µQ
j

αQ
j − νj log(1− uj µ

Q
j ) . (14)

The process (Xt) is therefore a discrete-time a�ne (Car(1)) process.

Corollary 3.1.1 The process (Xt) is stationary if and only if, for all j ∈ {1, . . . , n}, we have

ρj = βj,j µj < 1.

Proof See Appendix A.5. �

Assumption 2 The nominal short rate process (rt) is given by the linear combination of the �rst

n1 components of Xt only, that is:

rt =

n1∑
j=1

δjXj,t = δ′Xt , (15)

where δ = [(δj)
′
j={1,...,n1}, 0n2

]′ has the �rst n1 entries strictly positive, the remaining ones being

equal to zero.11

These assumptions are aimed at replicating relevant stylized facts that characterize interest rates

during ZLB periods.12 First, it is straightforward to see that the short-term interest rate still

11Note that δj and µj cannot be both identi�ed. In the application, we impose that µQj = 1 for all j to ensure
identi�cation constraints.

12Observe that a non-zero short rate lower bound is allowed (as, for instance, in Priebsch (2013)) by simply adding
rmin 6= 0 (say) on the right hand side of relation (15).
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possesses the zero-point mass property given that it is a linear combination of conditionally inde-

pendent variables following Gamma-zero distributions. Second, we introduce more than one factor

in the short-term interest rate equation (15) in order to breakdown the exact proportionality be-

tween conditional mean and variance of univariate ARG0 processes (see Proposition 2.1). Indeed,

as we consider n1 = 2 short rate factors in our model, it easily seen that the conditional short

rate variance-expectation ratio is no more constant but given by the following time-varying convex

combination:

Vt(rt+1)

Et(rt+1)
= 2µ1 δ1

δ1 Et(X1,t+1)

δ1 Et(X1,t+1) + δ2 Et(X2,t+1)
+ 2µ2 δ2

δ2 Et(X2,t+1)

δ1 Et(X1,t+1) + δ2 Et(X2,t+1)
.

Assuming µ1δ1 < µ2δ2, it is easily seen that this ratio �uctuates between 2µ1δ1 and 2µ2δ2.

In matrix form, the conditional Laplace transform presented in Proposition 3.1, can be written as:

ϕQ
t (u) = exp

[
ãQ(u)′Xt + b̃Q(u)

]
where:

ãQ(u) = βQ
(

u� µQ

1− u� µQ

)
b̃Q(u) = αQ′

(
u� µQ

1− u� µQ

)
− ν′ log

(
1− u� µQ)

µQ = (µQ
1 , . . . , µ

Q
n)′ , βQ = (βQ

1 , . . . , β
Q
n )′ ,

αQ = (αQ
1 , . . . , α

Q
n)′ , ν = (0, . . . , 0, νn1+1, . . . , νn)′ ,

and where � denotes the Hadamard product, while, with abuse of notations, the division and log

operators work element-by-element when applied to vectors.

Now, given the exponential-a�ne form of the risk-neutral conditional Laplace transform of (Xt),

it is easy to obtain the following explicit zero-coupon bond pricing formula (see Appendix A.3 for

a proof):

Proposition 3.2 If the n-dimensional state vector (Xt) has risk-neutral dynamics de�ned by

Equation (13) and the short-term interest rate is de�ned as in Assumption 2, then the price at

date t of the zero-coupon bond with residual maturity h, denoted by Pt(h), is given by:

Pt(h) = exp
(
A

′

hXt +Bh

)
, (16)

12
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where Ah and Bh satisfy the following recursive equations:

Ah = −δ + ãQ(Ah−1)

= −δ + βQ
(

Ah−1 � µQ

1−Ah−1 � µQ

)
(17)

Bh = Bh−1 + b̃Q(Ah−1)

= Bh−1 + αQ′
(

Ah−1 � µQ

1−Ah−1 � µQ

)
− ν′ log

(
1−Ah−1 � µQ) , (18)

with starting conditions A0 = 0 and B0 = 0. The date t continuously-compounded yield associated

with a zero-coupon bond maturing in h periods is therefore given by the following non-negative

a�ne function of Xt:

Rt(h) = A
′
hXt +Bh ,

Ah = − 1

h
Ah , and Bh = − 1

h
Bh , h ≥ 1 .

(19)

The non-negativeness of our NATSM can be easily established from the usual no-arbitrage formula

Rt(h) = − 1
h logEQ

t [exp (−rt − . . .− rt−h+1)] since the short-term rate is a positive combination of

the Xi,t's which are all positive.

3.2 The VARG historical state dynamics

We have de�ned the risk-neutral dynamics of Xt in Assumption 1. Let us now determine the

historical (P) dynamics of the state vector (Xt). For this, we assume that the one-period stochas-

tic discount factor is based on an exponential-a�ne change of probability measure
dPt,t+1

dQt,t+1
=

exp
[
θ′Xt+1 − ψQ

t (θ)
]
, where ψQ

t (u) = logϕQ
t (u) denotes the risk-neutral conditional log-Laplace

transform of (Xt), and θ = (θ1, . . . , θn)′ denotes the n-dimensional vector of market prices of risk

factors. Then, we have:

Proposition 3.3 The historical distribution of Xt+1, conditionally on Xt, is given by the product

of the conditional distributions:

(Xj,t+1 |Xt)
P∼ γνj

(
αP
j + βP′

j Xt, µ
P
j

)
, for j ∈ {1, . . . , n} , (20)

where αP
j ≥ 0, µP

j > 0, and βP
j is an n-dimensional vector of strictly positive components and the

historical Laplace transform of Xt+1, conditionally to Xt, is given by:

ϕP
t (u) = exp

 n∑
j=1

aPj (uj)
′Xt + bPj (uj)

 (21)
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where, for any j ∈ {1, . . . , n}, we have:

aPj (uj) =
uj µ

P
j

1− uj µP
j

βP
j and bPj (uj) =

uj µ
P
j

1− uj µP
j

αP
j − νj log(1− uj µ

P
j ) ,

with αP
j =

αQ
j

1− θj µQ
j

, βP
j =

1

1− θj µQ
j

βQ
j and µP

j =
µQ
j

1− θj µQ
j

.

(22)

Proof See Appendix A.4. �

Note that the νj 's arethe same in the risk-neutral and the historical world. In particular, if νj = 0

in the risk-neutral dynamics,it is also true in the historical dynamics, as implied by the fact that

the negligible sets must be the same in both conditional distributions. In line with the notation

adopted in the previous section, this historical conditional Laplace transform can be represented

in matrix form:

ϕP
t (u) = exp

[
ãP(u)′Xt + b̃P(u)

]
where:

ãP(u) = βP
(

u� µP

1− u� µP

)
b̃P(u) = αP′

(
u� µP

1− u� µP

)
− ν′ log

(
1− u� µP)

µP = (µP
1, . . . , µ

P
n)′ , βP = (βP

1 , . . . , β
P
n)′ , and αP = (αP

1, . . . , α
P
n)′ .

3.3 Lift-o� Probabilities

Let us move now to the problem of investigating the sojourn period in state zero of the short rate

process (rt), and the associated lift-o� probability. As we have seen in the previous sections, our

multivariate non-negative yield curve model has the convenient property of being a�ne under both

the risk-neutral and historical dynamics. Consequently, our model allows to easily compute multi-

horizon Laplace transforms in both worlds and, thus, to explicitly calculate lift-o� probabilities.

Let us �rst remember that, given the exponential-a�ne nature of the conditional historical Laplace

transform of (Xt) (see relation (23)), its multi-horizon Laplace transform until t+ k is given by:

ϕP
t,k(u1, . . . , uk) = EP

[
exp

(
u

′

1Xt+1 + . . .+ u
′

kXt+k

) ∣∣∣∣Xt

]
= exp

[
A′

kXt + Bk
] (23)

where, for any i ∈ {1, . . . , k}, ui is an n-dimensional vector. The Ak and Bk loadings are obtained
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as the �nal values Ak = A(k)
k , Bk = B(k)k of the k-step recursion:



A(k)
0 = 0 and B(k)0 = 0 ,

A(k)
i = ãP

(
uk+1−i +A(k)

i−1

)
= βP


(
uk+1−i +A(k)

i−1

)
� µP

1−
(
uk+1−i +A(k)

i−1

)
� µP

 ,

B(k)i = b̃P
(
uk+1−i +A(k)

i−1

)
+ B(k)i−1

= αP′


(
uk+1−i +A(k)

i−1

)
� µP

1−
(
uk+1−i +A(k)

i−1

)
� µP

− ν′ log
[
1−

(
uk+1−i +A(k)

i−1

)
� µP

]
+ B(k)i−1 .

(24)

Proof See Proposition 3 in Gourieroux, Monfort, Pegoraro, and Renne (2013). �

Given that the yield Rt(h) is an a�ne function of Xt, it is easily seen that, for any k-dimensional

vector v:

ϕ
(h)P
R,t,k(v) := ϕ

(h)P
R,t,k(v1, . . . , vk) = E [exp (v1Rt+1(h) + . . .+ vk Rt+k(h)) |Xt]

= ϕP
t,k(v1Ah, . . . , vk Ah) exp

Bh k∑
j=1

vj

 ,

(25)

where v1, . . . , vk are the scalar entries composing v. Therefore, Equation (23) can be used to

calculate the yields' multi-horizon conditional Laplace transform. Now, in order to determine

lift-o� probability formulas, let us introduce the following lemma, generalizing Lemma 2.1 to the

multivariate framework.

Lemma 3.1 If Z is an n-dimensional random variable valued in Rn+ and ϕZ(u1, . . . , un) is its

Laplace transform, we have:

PZ{0, . . . , 0} = lim
u→−∞

ϕZ(u, . . . , u) .

Proof Straightforward generalization of the proof of Lemma 2.1 using the fact that, here, Z = 0

is equivalent to e′Z = 0 (with e = (1, . . . , 1)′). �

Then, as far as the lift-o� probabilities for the short rate are concerned, we have the following

proposition:

Proposition 3.4 Let us consider the short rate process (rt). Then, the following properties hold:

(i) P [rt+k = 0 |Xt] = lim
u→−∞

ϕ
(1)P
R,t,k(0, . . . , 0, u) ;

(ii) P [rt+1 = 0, . . . , rt+k = 0 |Xt] = lim
u→−∞

ϕ
(1)P
R,t,k(u, . . . , u) = pr,t,k (say) ;

(iii) P [rt+1 = 0, . . . , rt+k−1 = 0, rt+k > 0 |Xt] = pr,t,k−1 − pr,t,k .

where pr,t,0 = 1.
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The last relation gives the distribution of the �rst lift-o� date. The average sojourn time in state

zero is then given by:

∞∑
k=1

h (pr,t,k−1 − pr,t,k) .

In the previous proposition we have introduced explicit formulas concerning the probability of lift-

o� from the zero lower bound for the short rate process. Using the formula for truncated Laplace

transform in the case of a�ne processes (see Du�e, Pan, and Singleton (2000) for details), it is

possible to provide some tractable formulas if the zero lower bound is replaced by a positive �oor

λ > 0 (e.g., λ = 10 bps). Besides, such formulas are available for interest rates of any maturity.

More precisely:

Proposition 3.5 Let us consider the yield process (Rt(h)) of maturity h with the multi-horizon

conditional Laplace transform given in Equation (25). Then, the following properties hold:

(i) p̃
(h)
t,k (v, λ) := P

[
v′R

(t+k)
t+1 (h) > λ |Xt

]
=

1

2
+

1

π

∫ +∞

0

Im
[
ϕ
(h)P
R,t,k(i v x) exp(−i λ x)

]
x

dx ;

(ii) P [Rt+k(h) > λ |Xt] = p̃
(h)
t,k (ek, λ) ;

(iii) P
(
Rt+k−m+1(h) +Rt+k−m+2(h) + . . .+Rt+k(h)

m
> λ |Xt

)
= p̃

(h)
t,k

(
1

m
e
(k)
k−m+1, λ

)
,

where R
(t+k)
t+1 (h) = (Rt+1(h), . . . , Rt+k(h))′ and v = (v1, . . . , vk)′ ; ek is the k

th column of the (k, k)

identity matrix and e
(k)
k−m+1 = ( 0, . . . , 0︸ ︷︷ ︸

k−m times

, 1, . . . , 1︸ ︷︷ ︸
m times

)′ denotes here a k-dimensional vector of zeros of

the �rst k −m components and ones on the m others.

Observe that these formulas do not determine the probability that t+ k be the �rst date (between

t and t + k) at which Rt+k(h) > λ. Nevertheless, this latter information can always be obtained

by simulation.

4 Empirical analysis of NATSMs

4.1 Data and stylized facts

Our empirical exercise is based on the same data set as in Kim and Singleton (2012). We concen-

trate on Japanese Government Bond (JGB) yields, sampled weekly (Fridays) from January 1995

to March 2008, with residual maturities of six months and one, two, four, seven and ten years (see

Kim and Singleton (2012)).13 Taking exactly the same data as Kim and Singleton (2012) makes

it possible to compare the performances of our model with the Black (1995)-type shadow-rate

models of the zero lower bound. A graphical representation of the yields is provided on Figure 2

and descriptive statistics are presented in Table 1.

13We are particularly thankful to Don H. Kim for providing the data.
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[ Insert Figure 2 about here. ]

During the �rst year in the data, we observe a large drop of yields at all maturities. From 1996

to 2001, the 6-month yield stabilizes around 40bps whereas other maturities continue to decrease

until 1999, and experience large �uctuations after. From 2001 to 2006, yields literally enter the

zero-lower-bound phase, with the 6-month rate stable at virtually zero.14 As already noted in Kim

and Singleton (2012), during this period, the longer-term yields continued showing larger variance.

We examine more closely this behavior by computing three di�erent measures of univariate condi-

tional variances. For each maturity in the data, we �t a Garch(1,1) and a Egarch(1,1) models

and extract the �tted variances. We also compute a sixty-day rolling-window standard-deviation

measure on daily data. All those measures are normalized in the same fashion, taking volatilities

expressed in annualized terms. Standard descriptive statistics of those proxies are presented in

Table 1, and they are represented in Figure 3 (for the 2-year and 10-year maturities).

[ Insert Figure 3 and Table 1 about here. ]

First, we observe that the behavior of conditional volatility proxies are very distinct across matu-

rities. For instance, for the 2-year maturity (Figure 3, top panel), the conditional volatility proxies

drop very close to zero when the 6-month rate hits the zero lower bound in 2001. For the longest

maturity, the behavior of the three proxies does not show any trend, even though they experience

large spikes in 1995, 1999, and at the end of 2003. Second, for a given maturity, the three volatility

proxies are very close to each other. We hence consider them to be coherent and credible proxies of

conditional volatilities of interest rates. This proximity is con�rmed by Table 2 presenting the cor-

relations between the level of interest rates and the conditional volatility proxies. The correlations

between the three volatility proxies exceed 0.9 for maturities up to four years, and lie between 0.8

and 0.95 for maturities of seven and ten years.

[ Insert Table 2 about here. ]

Table 2 also presents an important typical stylized fact of ZLB period, concerning interest rates

levels and associated conditional volatilities. For maturities up to four years, the correlation be-

tween a given conditional yield volatility proxy and the underlying interest rate level is between 0.5

and 0.65 (see column total of Table 2). As already noted in Filipovic, Larsson, and Trolle (2013),

this linear dependence increases slightly for low yield levels (we calculate the same correlations

for yield levels below the median value, see column low half of Table 2). Nevertheless, it is also

important to highlight that this increasing level-dependence in the conditional volatility, when the

associated yield moves towards the zero lower bound, seems not to concern the 7 and 10-year

maturities. In other words, as can be seen from Figure 4, the magnitude of the above-mentioned

14Between May 2001 and February 2006, the 6-month yield has mean and standard deviations respectively equal
to 1.37bps and 1.42bps.
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correlations seem to diminish at the long end of the yield curve, even in a ZLB environment.

[ Insert Figure 4 about here. ]

We take those stylized facts to be a benchmark of key features that should be reproduced by a

term structure model. As detailed in the next subsection, to be in line with those stylized facts, we

directly incorporate the information given by Egarch conditional variance proxies for the 2-year

and the 10-year maturities in the estimation procedure. Directly �tting the conditional variances

of yields of a short and a long maturity will help to estimate historical and risk-neutral dynamics

coherent with this behavior. The volatility humps observed on Figure 4 can be generated by our

term structure model as long as more than one ARG0 factor enters the short-term interest rate

speci�cation with di�erent loadings (or equivalently with di�erent scaling parameters), thus we

impose n1 = 2.

4.2 Estimation Strategy

Since our term-structure model is a�ne, a natural estimation technique is to use the linear Kalman

�lter (see e.g. Duan and Simonato (1999) and de Jong (2000)). To that purpose, we formulate the

model in state-space form. We take n1 = 2 and n2 = 2, which implies that the short-term interest

rate rt is a linear combination of two factors only. However, since there are causal relationships

between the four factors, longer-term yields are combinations of both X
(1)
t and X

(2)
t . Using the

multivariate adaptation of Equation (11) and the historical dynamics given in Section 3.2, the

transition equations can be expressed as follows:

Xt+1 = µP � (ν + αP) + µP � βP′
Xt︸ ︷︷ ︸

Et(Xt+1)

+
{

diag
[
µP � µP �

(
ν + 2αP + 2βP′

Xt

)]}1/2

︸ ︷︷ ︸
Vt(Xt+1)1/2

εt+1

= m+MXt + Σ
1/2
t εt+1 , (26)

where ν = [0′n1
, ν′2]′ is such that the factors entering the short-term interest rate are conditionally

independent with a γ0 distribution, and (εt) is a i.i.d. martingale di�erence with zero-mean and

unit variance-covariance matrix.

For the measurement equations, we consider four types of observable variables that are directly

used in the estimation procedure: the JGB yields described previously, the Egarch(1,1) condi-

tional variance proxies for the two and ten-year maturities, the three and twelve months-ahead

surveys of professional forecasters of the ten-year yield, and two proxies for the 6-month holding

period expected excess-return for the two and ten year yields.15 We build these two proxies in three

15We do not directly incorporate observed excess returns since they are not coherent with the available set of
information at date t. Using realized excess returns would introduce autocorrelations in the measurement errors,
thus altering the Kalman �lter estimation. Indeed, the realized k-holding-period excess return between t and t+ k
is observable at date t + k. We therefore consider only proxies of expected excess returns that are functions of
observable variables at time t.
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steps, using the same methodology as Cochrane and Piazzesi (2005). First, we construct 6-month

holding period observed excess-returns for a total of 19 maturities (from 1 to 10 years) and com-

pute their average across maturities to obtain a single time-series. Second, we regress this average

series on both the 2-year spot rates, the 2-year-in-4-year forward rate, and the 2-year-in-8-year

forward rate. The �tted values of this regression explain nearly 60% of the excess return average

and represent a nice excess return forecasting factor. Last, we regress the 6-month holding period

excess return for the two and ten year maturities on this factor (6-month-lagged). The �tted val-

ues of these regressions are kept as observable variables as proxies for the expected excess returns.16

Considering additional variables to yields in the observation vector greatly increases the economic

interpretation of our results, and is allowed by our a�ne structure. In fact, the excess return proxies

and the survey of professional forecasters help to identify more e�ciently the parameters under

the historical measure (see for instance Kim and Orphanides (2012)).17 The vector of observed

yields is denoted by Rt = [Rt(h)]h∈H , where H = {26, 52, 104, 208, 364, 520} is the list of available

maturities in weeks. Besides, Vt = [Vt(h)]h∈{104,520} denotes the conditional variance proxies for

yield of maturity h, St = [S
(q)
t (h)]h=520,q∈{12,52} denotes the survey of professional forecasters

q-periods ahead for h-maturity yield, and Kt = [K
(k)
t (h)]k=26,h∈{104,520} denotes the proxies of

expected excess returns for the two and ten-year maturities. We authorize all observable variables

to be measured with errors. The measurement equations for the yields and the survey variables

are directly derived from Equation (19):

Rt(h) = Bh +A
′
hXt + σRηR,h,t, h ∈ H (27)

S
(q)
t (h) = Bh +A

′
h EP

t (Xt+q) + σ
(q)
S,h η

(q)
S,h,t

= Bh +A
′
h

(
q−1∑
i=0

M im+MqXt

)
+ σ

(q)
S,h η

(q)
S,h,t, for


h = 520,

q ∈ {13, 52}
(28)

where σR is the same for all maturities h, and ηR,h,t and η
(q)
S,h,t are i.i.d. Gaussian white noises.

We can derive model-implied excess return predictions in the same fashion:

K
(k)
t (h) =

1

k
EP
t

[
log

(
Pt+k(h− k)

Pt(h)

)]
−Rt(k) + σ

(k)
K,hη

(k)
K,h,t , for


h ∈ {104, 520}

k = 26

=
1

k

[
Bh−k +Bk −Bh + (Ak −Ah)′Xt +A′h−kEP

t (Xt+k)
]

+ σ
(k)
K,hη

(k)
K,h,t

=
1

k

[
Bh−k +Bk −Bh +A′h−k

k−1∑
i=0

M im+ (Ak +Mk′Ah−k −Ah)′Xt

]
+ σ

(k)
K,hη

(k)
K,h,t ,(29)

16R-squared from these regressions are satisfyingly high, with respective values of 0.69 and 0.48.
17Survey-based forecasts are available only from 2003 onward and at the monthly frequency. Therefore, we face

a missing-data problem. This issue is nevertheless easily handled with the Kalman Filter.
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where η
(k)
K,h,t are i.i.d. Gaussian white noises.

We introduce new measurement equations for the volatility proxies based on the conditional covari-

ance of the latent process Xt. As already emphasized, the a�ne property of the VARG distribution

implies that the conditional covariance matrix of Xt+1 given its own past is a�ne in Xt. Speci�-

cally, the new measurement equations read:

Vt(h) = A
′
h

{
diag

[
µP � µP �

(
ν + 2αP + 2βP′

Xt

)]}
Ah + σV,h ηV,h,t

= (Ah �Ah)′
[
µP � µP �

(
ν + 2αP + 2βP′

Xt

)]
+ σV,h ηV,h,t , h ∈ {104, 520} , (30)

where ηV,h,t is a i.i.d. Gaussian white noise. We then denote the vector of observable variables

by Yt = [R′t, S
′
t, V

′
t ,Kt]

′. Our vector of observables therefore contains 12 di�erent variables (6

yields, 2 conditional variance proxies, 2 survey-based forecast series, and 2 expected excess returns

proxies). Stacking the transition and measurement equations, we obtain the following state-space

model representation: 
Xt+1 = m+MXt + Σ

1/2
t εt+1

Yt = Γ0 + Γ1Xt + Ω ηt

, (31)

with:

m = µP � (ν + αP) , MXt = µP � βP′
Xt and Σt = diag

[
µP � µP �

(
ν + 2αP + 2βP′

Xt

)]
,

where ηt ∼ IIN (0, I), and Γ0 and Γ1 are constructed based on Equations (27:30). To estimate

the model, we use pseudo-maximum likelihood of order two with the linear Kalman �lter in a

slightly modi�ed version since the latent factor Xt is conditionally heteroskedastic. To do so, we

run the Kalman �lter replacing the real � intractable � log-likelihood derived from conditional

Gamma distributions by that obtained from Gaussian distributions, i.e. we approximate εt+1 by

a standard Gaussian white noise. The availability of a linear state-space model makes the appli-

cation of such a procedure very easy.For identi�cation purposes, we impose that µQ = (1, . . . , 1)′.

Further, we constrain the latent processes to be stationary under both measures. In addition,

we take a triangular superior β′ matrix, which implies that X
(2)
t (that does not enter directly the

short-term interest rate speci�cation) Granger-causes X
(1)
t (that does enter directly the short-term

interest rate), but X
(1)
t does not Granger-cause X

(2)
t . Also, for parsimony reasons, we impose that

(α1, α2) = (0, 0).18

4.3 Cross-sectional �t

We estimate all risk-neutral parameters and the four market prices of risk in a single step. His-

torical parameters are then deduced from the estimated parameters. We also estimate the two

18Preliminary estimations without that constraint suggested that those estimated α's are not statistically di�erent
from zero. This does not imply that 0 is an absorbing state as (α3, α4) are di�erent from 0.
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short-term interest rate loadings δ1 and δ2, and the measurement-noise standard deviations of the

yields. We end up estimating 21 parameters. The estimation results are presented in Table 3.

[ Insert Table 3 about here. ]

Most of the estimates are highly signi�cantly di�erent from zero. We observe that most of the

factors are highly persistent under both measures with the ρi = µiβi,i parameters reaching values

above 0.96. We present a graphical representation of the �ltered factors on Figure 5.

[ Insert Figure 5 about here. ]

Factors 1 and 2 experience very long periods at zero, during those periods when the 6-month in-

terest rate is at its lowest level (2001 to 2006). Whereas Factor 3 experiences large and persistent

�uctuations during the whole sample, Factor 4 possesses large spikes in 1999 and at the end of

2003. During the rest of the sample, this fourth factor is alternating between staying at zero and

low spikes.

We now turn to the empirical performances of the VARG term-structure model. First, we observe

a very nice cross-sectional �t of the JGB yields with the measurement-noise standard deviations

of yields being 9bps (see also Figure 6). This nice performance is con�rmed on the �rst row of

Table 4, this indicates that the in-sample RMSEs on yield levels are between 5bps for the one-year

maturity, and 12bps for the four-year maturity. This empirical performance is comparable to that

obtained by the Quadratic shadow-rate model of Kim and Singleton (2012).

[ Insert Figure 6 about here. ]

Our model is therefore able to reproduce the behavior of interest-rates with a�ne processes that

are positive and consistent with the zero-lower bound.

4.4 Model-implied yields and volatilities

Looking again at Table 3, we see that the orders of magnitude of the short-term interest rate

loadings (δ1 and δ2) are very di�erent (as stated previously, such a di�erence is key to generate the

volatility humps that we observe in the data). The top panel of Figure 7 presents the �t obtained

by our term structure model for the observable conditional variance proxies Vt.

[ Insert Figure 7 about here. ]

Again, the �t on both proxies is very good: the �uctuations of the 2-year conditional variance proxy

are very closely reproduced, whereas errors on the 10-year conditional variance proxy are slightly
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larger. This di�erence is not surprising as the two-year proxy experience �uctuations similar to the

yield level, whereas the ten-year proxy tells a somewhat di�erent story. To con�rm that our model

is able to capture the �uctuations of conditional yield volatilities for all maturities, we follow Kim

and Singleton (2012) and run regressions of conditional volatility proxies on the model-implied

ones. The regressors are therefore de�ned by the square-root of the right-hand side of Equation

(30) (excluding measurement errors). The results are reported in Table 4.

[ Insert Table 4 about here. ]

For all maturities, the R2 of the regressions are above 0.6. The very short- and long-end of the

yield curve conditional volatilities shows the lowest R2 of our regressions, between 0.64 and 0.76,

and medium-term maturities (1-y, 2-y, 4-y, 7-y) R2 are higher than 0.8, respectively 0.8, 0.92, 0.87,

and 0.8. We also provide the intercept and slope of the regressions, very close respectively to 0

and 1 for all maturities, to ensure that this good �t does not su�er from a scaling e�ect.

The second panel of Figure 7 presents the �t obtained on the survey of professional forecasters

equations. For both the 3-month and 1-year horizons, model-implied forecasts of the 10-year yield

broadly reproduces the behavior of observed surveys. Note that the standard errors on the mea-

surement noise are parameterized with values equal to the disagreement among forecasters (to the

average standard deviations of the professional forecasters declarations), and are accordingly set

to 13 and 21bps, respectively. These high values are consistent with the slightly poorer capacity

of the model to �t the last year of the sample for 12-month ahead forecast of the 10-year yield.

On the whole, these results show a great �exibility of our VARG term-structure model, being able

not only to closely reproduce both the level and the conditional volatility behavior of yields for all

maturities, but also to provide expectations under the historical measure that are coherent with

survey-based forecasts.

5 Bond risk-premia and lift-o� probabilities

In this section, we exploit our model to examine risk premia deriving from our estimation. These

risk premia stem from the fact that we allow for deviations between the historical and the risk-

neutral measures. Their existence implies that excess returns are partially predictable, which we

consider in a �rst part of this section. Second, we show that these risk premia translate into sub-

stantial di�erences between lift-o� probabilities under the two measures. In other words, investors

appear to be averse to the risk of exiting the ZLB regime.

We regress observed excess bond returns for 6 months holding period on their model-implied pre-

dicted equivalent. The intercepts, slopes and R-squared are presented on the last rows of Table
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4. As we directly incorporate our excess return proxies in the measurement equations, the model

nicely shows R-squared between 0.37 for the ten-year to 0.75 for the one-year excess return. This

performance is in line with existing models of the ZLB (see Kim and Singleton (2012)). Also, Table

4 shows that this performance does not hide a scaling e�ect with intercepts and slopes close to

respectively 0 and 1.

This good performance regarding the ability to predict excess bond returns and to �t the surveys

of professional forecasters ensures that we can rely on the historical VARG dynamics of the factors

with con�dence. This is crucial if one wants to use the model to extract agents expectations (under

P) regarding future short rates. As described in previous sections, our term-structure model allows

for both closed-form and semi closed-form formulas for calculating distribution of future short-rates.

As an application, we estimate the probabilities that the short-term interest rate will remain low

for a certain amount of time under both measures. Intuitively, the risk-neutral probability can

be directly backed out from observable market prices of bonds. As long as the representative

investor is risk-averse, this risk-neutral probabilities implicitly incorporates the evolution of the

future short-rate (under P) and the term premia. Conversely, the historical probabilities represents

the real-world future distribution of the short-rate, leaving aside the evolution of term premia. We

�rst consider the time-series behavior of such probabilities in Figure 8.

Our �rst exercise exploits the probability formula of the short-rate hitting zero in k periods

(rt+k = 0, see Proposition 3.4, (i)). We apply the expression for k = 26 and k = 104 weeks

ahead, for both the historical and risk-neutral probabilities (resp. red and black lines of top panels

of Figure 8). A second exercise exploits the Du�e, Pan, and Singleton (2000) formula to calculate

the probabilities of the short-term interest rate being below 10bps for k = 26 and k = 104 weeks

ahead, also for both measures (bottom panels of Figure 8).

[ Insert Figure 8 about here. ]

Let us focus �rst on the top-left panel, representing both Pt(rt+k = 0) and Qt(rt+k = 0) for k = 26

weeks ahead. Until 1999, both probabilities are virtually 0 and begin experiencing �uctuations

from that date on. The ZLB period of 2001-2006 corresponds to large increases in both proba-

bilities, reaching a highest of nearly 70% during 2003. This peak is coherent with a �attening of

the yield curve at that date: as short rates stay low and long-term rates begin to drop, agents

expect a higher probability of the short rate staying at zero for 6 months on. In some sense, those

probabilities are a convenient way to represent information contained in the yield curve. Note also

that probabilities under both measures are not very di�erent from each other in that case, with a

di�erence being below 5 percentage points during the whole period. This implies that for relatively

short horizons, the probability of hitting the ZLB is not very di�erent across the two measures,

and term premia do not play an important role. At the end date of the sample, agents do not
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anticipate a period of short-rates hitting zero in the next 6 months as the interest rates began to

increase since 2007.

We turn now to the same probabilities for a two-year horizon (top-right plot of Figure 8). Unsur-

prisingly, the probabilities under both measures are on average lower than at the 6-month horizon,

to a highest of 40% in 2003 in the historical world. It is worth noticing two fundamental di�erences

with the previous case. First the di�erences between the probabilities under the two measures can

reach nearly 20 percentage points. Second, at the end of the sample, we observe that the P-

probability increases to 20% whereas the Q probability stays close to zero. Consequently, even

if the observed yields are fairly stable during this period the probability of the short-rate hitting

zero can grow subsequently. This phenomenon is also coherent with the out-of-sample evolution

of yields from 2008 on: the 6-month maturity rate continues to grow until October 2008 to 60bps,

i.e. 7 months after the end of our estimation sample, then begins to drop to stabilize around 10bps

in January 2010 for a prolonged period, that is nearly 2 years after the end of our sample.

The bottom panels of Figure 8 help con�rming the previous results. Since the threshold is now

di�erent from 0 (10bps), we observe higher probability values under both measures. For instance,

the historical and risk-neutral probabilities of going below 10bps at the 6-month maturity (bottom-

left tile) is nearly equal to 1 in 2003, and whipsaws between 0.75 and 1 during the ZLB period.

We also observe the same divergence pattern between probabilities under the two measures at the

end of the sample, even for the 6-month horizon. The model consequently predicts the short-rate

being very low with 25% chance 6-month after the end of the sample, but not 0. This information

complements the �rst calculation stating that even if monetary policy has escaped zero, there

is still a large possibility to remain in a very low yield environment. This observation is even

more obvious at the two-year horizon (bottom-right panel). Though the Q-probability possesses

roughly the same pattern as its counterpart for λ = 0, the P-probability is globally increasing

during the whole sample to reach 0.8 at the last date. Again, this evaluation is coherent with the

out-of-sample observations. Strikingly, the divergence between P and Q probabilities goes up to 75

percentage points at the 2-year maturity. This spread is of utmost importance since considering

only observed yields � i.e. the Q-dynamics � for calculating lift-o� dates would result in a large

underestimation. Under the physical measure, the short-term interest rate is expected to stay at

zero for a longer period. It seems that those di�erences grow with the threshold value λ and with

the forecast horizon k. We reinforce this statement considering the probabilities with respect to

the forecast horizon k on Figure 9).

[ Insert Figure 9 about here. ]

Again, we calculate P and Q probabilities for the short rate, for a λ threshold of 0 and 10bps. We

evaluate those probabilities at mid-June 2003 and at the end of the sample (respectively black and
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red lines, Figure 9). The forecast horizon varies between 6 months to 5 years. Our term-structure

model is able to generate di�erent pro�les of probabilities with respect to the forecast horizon: for

the �rst date, the horizon structure is globally increasing whereas it is hump-shaped at the end of

the sample. This particularly implies that the model possesses a signi�cant �exibility in generating

future paths of the short-term interest rate. As noted on the time series of probabilities in Figure

8, the di�erences between probabilities under the two measures tend to increase with the forecast

horizon, although it is nearly negligible for low k. This pattern is particularly remarkable on the

right plot of Figure 9, where the threshold is equal to 10bps. For mid 2003, the probabilities are

both very close to one under the two measures. However, at the two and four years horizon, the

P-probabilities exceed Q-probabilities of respectively around 15p.p. and 30p.p.. These di�erences

tend however to be lower for the zero-threshold case, being comprised between 0 and 25 percentage

points.

6 Conclusion

In this paper, we introduce the �rst A�ne Term Structure Model able to provide at the same time

non-negative yields at any maturity and a short rate staying at zero for extended periods of time

(the ZLB being a non-absorbing state). These characteristics are obtained by the introduction of a

new univariate non-negative a�ne process called Autoregressive Gamma Zero and its multivariate

a�ne extension (VARG), involving conditional distributions with zero-point masses. The a�ne na-

ture of our model allows for a great �exibility at the estimation stage. First, a Kalman-�lter-based

maximum likelihood approach is allowed. Second, the estimation procedure is easily enhanced by

explicitly taking into account relevant information like interest rate survey-based forecasts, condi-

tional yield variance proxies and expected excess return proxies. Third, explicit and quasi-explicit

formulas are easily derived for calculating the physical and risk-neutral probabilities of the short-

term rate staying at zero at di�erent forecast horizon.

We assess our model performances with an application to Japanese government bond yields, using

the same data as Kim and Singleton (2012). Our four-latent-factors VARG term-structure model

either outperforms or equals the shadow-rate, QTSM and CIR models with respect to �tting yield

levels, conditional volatilities of yields, and expected 6-month holding period excess bond returns.

We also compute probabilities of staying at the ZLB for a prolonged period under the historical

and risk-neutral measures. Our results show that even though the di�erence between the prob-

abilities under the two measures tend to be small for short horizons, it can reach 75 percentage

points at the two year horizon. This suggests in particular that using only the risk-neutral measure

to back out lift-o� dates without a no-arbitrage framework results in a systematic underestimation.

The a�ne framework we develop in this paper can also be used to easily price �xed-income deriva-

tives such as options, or to include observable macro variables in the analysis. We left those
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di�erent directions for further future research.
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A Appendix

A.1 Conditional moments of the ARG0(α, β, µ) process

The conditional cumulant-generating function is ψt(u) = log(ϕt(u)) =
uµ

1− uµ
β Xt +

uµ

1− uµ
α.

Deriving this function with respect to u gives us the conditional expectation and variance of Xt+1

given Xt:

d

du
ψt(0) =

ρ(1− uµ) + µ(uρ)

(1− uµ)2
Xt +

µα(1− uµ) + µ(uµα)

(1− uµ)2

∣∣∣∣∣
u=0

=
ρ

(1− uµ)2
Xt +

µα

(1− uµ)2

∣∣∣∣∣
u=0

= αµ+ ρXt

d

du2
ψt(0) =

2µρ

(1− uµ)3
Xt +

2µ2α

(1− uµ)3

∣∣∣∣∣
u=0

= 2µ2α+ 2µρXt

Let us introduce now the following notations: m1,t = E(Xt) and m2,t = V(Xt). It easily seen that

these unconditional moments are de�ned by the following system of di�erence equations:

m1,t = ρm1,t−1 + αµ

m2,t = 2µ2α+ 2µρm1,t−1 + ρ2m2,t−1

that can be represented in matrix form as: m1,t

m2,t

 =

 ρ 0

2µρ ρ2


 m1,t−1

m2,t−1

+

 µα

2µ2α

 . (32)

This system admits a stationary solution if and only if ρ < 1, and it is given by:

 m1

m2

 =


αµ

1− ρ
2αµ2

(1− ρ)(1− ρ2)

 . (33)

m1 and m2 are therefore the marginal mean and marginal variance of the stationary ARG0(α, β, µ)

process.

A.2 Sojourn time and lift-o� probability of the ARG0(α, β, µ) process

Proof of Lemma 2.1

27



Appendix

ϕX(u) =

∫
R+

exp(ux) dPX(x)

= PX{0}+

∫
x>0

exp(ux) dPX(x)

Since x > 0, exp(ux)→ 0 when u→ −∞, and, using Lebesgue theorem, the integral tends towards

0. �

Proof of Proposition 2.2

(i) Let us consider an ARG0(α, β, µ) process Xt and let us study, �rst, the limit of:

E [exp(uXt+h) |Xt] = exp

{
a◦h(u)Xt +

h−1∑
k=0

b[a◦k(u)]

}
,

when u→ −∞, in order to calculate P(Xt+h = 0 |Xt). It can be shown recursively that:

a◦h(u) =
ρhu

1− uµ
[

1− ρh

1− ρ

]
h−1∑
k=0

b[a◦k(u)] = (1− ρ)αuµ

h−1∑
k=0

ρk

1− ρ− uµ+ uµρk+1
,

and, when u→ −∞, we have:

P(Xt+h = 0 |Xt) = exp

− ρhXt

µ

(
1− ρh

1− ρ

) − (1− ρ)α

h−1∑
k=0

ρk

1− ρk+1


= exp

{
−(1− ρ)

[
ρhXt

µ (1− ρh)
+ α

h−1∑
k=0

ρk

1− ρk+1

]}
,

(34)

and the result is proved. �

(ii) From De�nition 2.2 we know that, when Xt follows an ARG0(α, β, µ) process, P(Xt+1 =

0 |Xt) = exp(−α− β Xt). Then, if we denote by fh(Xt) = P(Xt+h = 0, . . . , Xt+1 = 0 |Xt), we can

always write:

fh(Xt) = P(Xt+h = 0, . . . , Xt+1 = 0 |Xt)

= P(Xt+h = 0 |Xt+h−1 = 0, . . . , Xt+1 = 0;Xt) fh−1(Xt)

= P(Xt+h = 0 |Xt+h−1 = 0) fh−1(Xt)

and the result is easily proved by recursion. �
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(iii)

P(Xt+h > 0, Xt+h−1 = 0, . . . , Xt+1 = 0 |Xt)

= P(Xt+h > 0 |Xt+h−1 = 0, . . . , Xt+1 = 0;Xt)P(Xt+h−1 = 0, . . . , Xt+1 = 0 |Xt)

= [1− P(Xt+h = 0 |Xt+h−1 = 0)] exp [−α(h− 1)− β Xt]

= [1− exp(−α)] exp [−α(h− 1)− β Xt] .

A.3 Risk-neutral conditional Laplace transform and yield-to-maturity

formula

Proof of Proposition 3.2

Given that, from Proposition 2, we have rt = δ′Xt, where the �rst n1 components are di�erent

from zero and the remaining ones are equal to zero, we can write:

Pt(h) = exp
(
Ah +B

′

hXt

)
= EQ

t

[
exp(−rt) exp

(
Ah−1 +B

′

h−1Xt+1

)]
= exp (−rt +Ah−1) EQ

t

[
exp

(
B

′

h−1Xt+1

)]
= exp

Ah−1 +

n∑
j=1

bQj (Bj,h−1) +

 n∑
j=1

aQj (Bj,h−1)− δ

′Xt


and the result follows by identi�cation. �

A.4 Historical conditional Laplace transform of the state vector

First of all, the following result holds:

Proposition A.1 Let us consider a scalar Extended ARGν(α, β, µ) process (Xt) with conditional

log-Laplace transform ψt(u) =
ρu

1− uµ
Xt +

uµ

1− uµ
α − ν log(1 − uµ), with ρ = β µ. The asso-

ciated conditional Esscher transform, with parameter θ ∈ R, generates the family of probability

distributions characterized by the following conditional log-Laplace transform:

ψ∗t (u) =
uρ∗

1− uµ∗
Xt +

uµ∗

1− uµ∗
α∗ − ν log(1− uµ∗) , (35)

which is the log-Laplace transform of an EARGν(α∗, β∗, µ∗) process with

ρ∗ =
ρ

(1− θµ)2
, µ∗ =

µ

1− θµ
, α∗ =

α

1− θµ
,

β∗ :=
ρ∗

µ∗
=

ρ

µ(1− θµ)
=

β

1− θµ
.

Proof of Proposition 3.3

If we consider our change of probability measure
dPt,t+1

dQt,t+1
= exp

[
θ′X̃t+1 − ψQ

t (θ)
]
, where Pt,t+1 is
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the Esscher transform of Qt,t+1 associated with (θ), we have ψP
j,t(uj) = ψQ

j,t(uj + θj)− ψQ
j,t(θj) for

any j ∈ {1, . . . , n}, and applying Proposition A.1, Proposition 3.3 is easily proved. �

A.5 Multivariate non-negative a�ne processes with ZLB spells: the

VARGν(α, β, µ) class of processes

A.5.1 Risk-neutral dynamics of Vector Autoregressive Gamma (V ARG) processes

The purpose of this section is to specify, under the risk-neutral (Q) probability, a family of mul-

tivariate processes which possess simultaneously several important features: positivity, zero lower

bound spells, contemporaneous and lagged correlations between the scalar components, conditional

heteroscedasticity and tractability induced by an exponential-a�ne conditional Laplace transform.

The Vector ARGν(αQ, βQ, µQ) class of processes, denoted V ARGν(αQ, βQ, µQ), satis�es all these

requirements.

De�nition A.1 The n-dimensional process (Xt) is a risk-neutral V ARGν(αQ, βQ, µQ) process if,

for any j ∈ {1, . . . , n}, the risk-neutral distribution of Xj,t+1, conditionally on (X1,t+1, . . . , Xj−1,t+1,

Xt) (on Xt, if j = 1), is:

γνj

(
αQ
j +

j−1∑
k=1

ωQ
j,kXk,t+1 +

n∑
k=1

βQ
j,kXk,t, µ

Q
j

)
, (36)

where νj ≥ 0, αQ
j ≥ 0, µQ

j > 0; ωQ
j,k ≥ 0 (ωQ

j,k = 0, if j = 1), βQ
j,k ≥ 0. Then, the Laplace transform

of Xj,t+1, conditionally on (X1,t+1, . . . , Xj−1,t+1, Xt), is given by:

ϕQ
t,j(uj) = exp

(
j−1∑
k=1

cQj,k(uj)Xk,t+1 +

n∑
k=1

aQj,k(uj)Xk,t + bQj (uj)

)
(37)

where

cQj,k(uj) =
uj µ

Q
j ω

Q
j,k

1− uj µQ
j

, aQj,k(uj) =
uj µ

Q
j β

Q
j,k

1− uj µQ
j

, bQj (uj) =
uj µ

Q
j α

Q
j

1− uj µQ
j

− νj log(1− uj µQ
j ) . (38)

From relation (36) we see that all the components of (Xt) take non-negative values and the vector

of parameters ν = (ν1, . . . , νn)′ controls for zero lower bound spells; indeed, any componentXj,t fea-

turing νj = 0 will provide P (Xj,t+1 = 0 |X1,t+1, . . . , Xj−1,t+1, Xt) = exp
[
−αQ

j −
∑j−1
k=1 ω

Q
j,kXk,t+1 −

∑n
k=1 β

Q
j,kXk,t

]
>

0. Another key property of a V ARGν(αQ, βQ, µQ) process is that it is a discrete-time a�ne process.

Indeed, we have:

Proposition A.2 The n-dimensional V ARGν(αQ, βQ, µQ) process (Xt) is a risk-neutral discrete-

time a�ne (Car(1)) process characterized by the following exponential-a�ne Laplace transform:

ϕQ
t (u) = exp

(
n∑
k=1

ãQn,k(u1, . . . , un)Xk,t−1 + b̃Qn(u1, . . . , un)

)
(39)
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where, for any k ∈ {1, . . . , n}, we have recursively:



ãQj,k(u1, . . . , uj) = ãQj−1,k

[
u1 + cQj,1(uj), . . . , uj−1 + cQj,j−1(uj)

]
+ aQj,k(uj)

b̃Qj (u1, . . . , uj) = b̃Qj−1

[
u1 + cQj,1(uj), . . . , uj−1 + cQj,j−1(uj)

]
+ bQj (uj) ,

j ∈ {2, . . . , n} ,

(40)

with starting conditions ãQ1,k(u1) = aQ1,k(u1) and b̃Q1 (u1) = bQ1 (u1).

Proof See Monfort, Pegoraro, Renne, and Roussellet (2014).

A.5.2 Historical dynamics of the V ARG process

Let us consider now our one-period change of probability measure
dPt,t+1

dQt,t+1
= exp

[
θ′Xt+1 − ψQ

t (θ)
]
.

Then, the associated historical dynamics of (Xt) remains V ARG, that is discrete-time (recursive)

a�ne. Indeed, we have:

Proposition A.3 Given the n-dimensional risk-neutral V ARGν(αQ, βQ, µQ) process Xt = (X1,t,

. . . , Xn,t)
′ introduced in De�nition A.1 and given the one-period change of probability measure

dPt,t+1

dQt,t+1
= exp

[
θ′Xt+1 − ψQ

t (θ)
]
, then the historical Laplace transform of Xj,t+1, conditionally on

(X1,t+1, . . . , Xj−1,t+1, Xt), is given by:

ϕP
t,j(uj) = exp

(
j−1∑
k=1

cPj,k(uj)Xk,t+1 +

n∑
k=1

aPj,k(uj)Xk,t + bPj (uj)

)
(41)

where

cPj,k(uj) =
uj µ

P
j ω

P
j,k

1− uj µP
j

, aPj,k(uj) =
uj µ

P
j β

P
j,k

1− uj µP
j

, bPj (uj) =
uj µ

P
j α

P
j

1− uj µP
j

− νj log(1− uj µP
j ) , (42)

and where

αP
j =

αP
j

1− θ̃j µQ
j

, ωP
j,k =

ωQ
j,k

1− θ̃j µQ
j

,

βP
j,k =

βQ
j,k

1− θ̃j µQ
j

, µP
j =

µQ
j

1− θ̃j µQ
j

,

(43)

with 
θ̃n = θn

θ̃j = θj +

n−j∑
k=1

cQn−k+1,j(θ̃n−k+1) , j ∈ {n− 1, . . . , 1} .
(44)

Hence, the historical Laplace transform of Xt+1, conditionally on Xt, is:

ϕP
t (u) = exp

(
n∑
k=1

ãPn,k(u1, . . . , un)Xk,t−1 + b̃Pn(u1, . . . , un)

)
(45)
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where, for any k ∈ {1, . . . , n}, we have recursively:



ãPj,k(u1, . . . , uj) = ãPj−1,k
[
u1 + cPj,1(uj), . . . , uj−1 + cPj,j−1(uj)

]
+ aPj,k(uj)

b̃Pj (u1, . . . , uj) = b̃Pj−1
[
u1 + cPj,1(uj), . . . , uj−1 + cPj,j−1(uj)

]
+ bPj (uj) ,

j ∈ {2, . . . , n} ,

(46)

with starting conditions ãP1,k(u1) = aP1,k(u1) and b̃P1(u1) = bP1(u1).

Proof See Monfort, Pegoraro, Renne, and Roussellet (2014).

A.5.3 Moments, VAR representations, stationarity and lift-o�

Given the results already presented in the previous sections, it is straightforward to verify that

the conditional mean and variance of the component Xj,t+1 of a V ARGν(α, β, µ) process, given

(X1,t+1, . . . , Xj−1,t+1, Xt), are respectively given by:

mj,t+1 = µj

(
αj +

j−1∑
k=1

ωj,kXk,t+1 +

n∑
k=1

βj,kXk,t

)
+ µj ν

σ2
j,t+1 = 2µj

(
αj +

j−1∑
k=1

ωj,kXk,t+1 +

n∑
k=1

βj,kXk,t

)
+ µ2

j ν .

It is also easy to check that the process (Xt) has the following Recursive VAR representation:

Xj,t+1 = mj,t+1 + σ2
j,t+1 εj,t+1 ,

where εt = (ε1,t, . . . , εn,t)
′ is a martingale di�erence sequence with Et−1(εt) = 0 and Vt−1(εt) = I.

The conditional mean and variance-covariance matrix of Xt+1, given Xt, are respectively given by:

mt+1 = (I −∆m)−1 (AmXt + bm)

Σt+1 = (I −∆m)−1 diag(σ2
t+1) (I −∆m)−1 ,

where ∆m = diag(µj) ∆, ∆ being the lower triangular matrix with elements ∆i,j = 0, if j ≥

i, and ∆i,j = ωi,j for j < i; Am = diag(µj)B, with Bij = βij and bm = diag(µj) (α + ν);

σ2
t+1 = ∆ϑ (I −∆m)−1 (AmXt + bm) + AϑXt + bϑ = AσXt + bσ (say), where ∆ϑ = 2 diag(µ2

j )∆,

Aϑ = 2 diag(µ2
j )B and bϑ = diag(µ2

j )(2α + ν). We get therefore the following canonical VAR

representation:

Xt+1 = (I −∆m)−1 bm + (I −∆m)−1AmXt + Ωt+1ηt+1 , (47)

with Ωt+1 = (I−∆m)−1 diag(σt+1) and where ηt is a martingale di�erence sequence with Et−1(ηt) =

0 and Vt−1(ηt) = I. If we introduce now the notation Ãm = (I−∆m)−1Am for the autoregressive
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matrix in (47), it is easily seen that the unconditional mean and variance-covariance matrix of

(Xt), respectively denoted by m̃t and Σ̃t, satisfy a recursive system of the form:

 m̃t+1

vec(Σ̃t+1)

 =

 Ãm 0

(I −∆m)−1 ⊗ (I −∆m)−1 C Ãm ⊗ Ãm


 m̃t

vec(Σ̃t)

+ b

where

b =

 (I −∆m)−1 bm

(I −∆m)−1 ⊗ (I −∆m)−1 c

 ,

and where Cm̃t+ c = vec [diag(Aσ m̃t + bσ)]. This system admits a stationary solution if and only

if the moduli of the eigenvalues of Ãm are all smaller than one (since the eigenvalues of Ãm ⊗ Ãm

are all the possible products of the eigenvalues of Ãm). This solution is given by:

m̃ = (I − Ãm)−1 (I −∆m)−1 bm

vec(Σ̃) = (I − Ãm ⊗ Ãm)−1 (I −∆m)−1 ⊗ (I −∆m)−1vec(diag(Aσ m̃+ bσ)) .

Moreover, iterating (47), we easily �nd Cov(Xt+h, Xt) = Ãhm Σ̃t and we thus have the following

property:

Proposition A.4 The V ARGν(α, β, µ) process is (asymptotically) second order stationary if the

moduli of the eigenvalues of Ãm are all smaller than one and, in this case, E(Xt)→ m̃, V(Xt)→ Σ̃

and Cov(Xt+h, Xt)→ Ãhm Σ̃ when t→ +∞.

Corollary A.4.1 If B is lower triangular, that is to say if Xk,t does not cause Xj,t when k > j,

then the matrix Ãm = (I −∆m)−1Am = (I −∆m)−1 diag(µj)B is lower triangular, with diagonal

entries equal to µj βjj and, therefore, the stationary condition is µj βjj < 1 for all j ∈ {1, . . . , n}.
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Table 1: Mean and standard deviations of yields and volatility proxies

Maturity 6m 1y 2y 4y 7y 10y

Mean

Yields 0.2930 0.3451 0.5144 0.9369 1.5327 1.8988

Garch(1,1) 0.0023 0.0025 0.0038 0.0050 0.0060 0.0055

Egarch(1,1) 0.0024 0.0026 0.0038 0.0050 0.0060 0.0054

rolling-window 0.0020 0.0022 0.0033 0.0049 0.0061 0.0054

Std.

Yields 0.3842 0.4064 0.4891 0.6517 0.8207 0.7782

Garch(1,1) 0.0019 0.0021 0.0025 0.0025 0.0022 0.0022

Egarch(1,1) 0.0020 0.0022 0.0024 0.0023 0.0019 0.0019

rolling-window 0.0017 0.0019 0.0023 0.0024 0.0025 0.0022

Notes: Yields are expressed in annualized percentage points. Garch and Egarch models are computed on weekly
data whereas the rolling-window volatility is computed on a 60-day window of daily data and converted to the
weekly frequency keeping only Fridays data. Our volatility proxies are the square roots of the estimated
conditional variance proxies. We normalize them to make them homogeneous to annualized yields. 'Mean' and
'Std.' respectively present sample means and standard deviations of our proxies.
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Table 2: Correlation between rates and volatility proxies

Maturity 6m 1y

yield volatility yield volatility

total low half Garch Egarch total low half Garch Egarch

Garch 0.54 0.53 1 0.58 0.60 1

Egarch 0.56 0.63 0.96 1 0.59 0.70 0.97 1

Rw 0.54 0.62 0.95 0.94 0.60 0.72 0.96 0.96

Maturity 2y 4y

Garch 0.60 0.65 1 0.58 0.54 1

Egarch 0.64 0.75 0.97 1 0.61 0.61 0.96 1

Rw 0.65 0.73 0.95 0.96 0.58 0.61 0.91 0.91

Maturity 7y 10y

Garch 0.41 0.36 1 0.15 −0.05 1

Egarch 0.44 0.45 0.93 1 0.19 0.01 0.90 1

Rw 0.43 0.40 0.88 0.86 0.14 0.04 0.85 0.83

Notes: Yields are expressed in annualized percentage points. Garch and Egarch models are computed on weekly
data whereas the rolling-window volatility is computed on a 60-day window of weekly data. We take estimated
proxies and normalize them to be comparable to annualized yields.
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Table 3: Parameter estimates

Q-parameters P-parameters

Estimates Std. Estimates Std.

α1 0 − 0 −

α2 0 − 0 −

α3 0.090 0.006 0.090 0.006

α4 0.043 0.004 0.048 0.004

ρ1 0.999 9.011 · 10−5 0.959 9.055 · 10−4

ρ2 0.999 2.076 · 10−13 0.316 1.560 · 10−2

ρ3 0.997 9.489 · 10−5 0.996 3.484 · 10−4

ρ4 0.996 3.481 · 10−4 0.999 2.893 · 10−4

β2,1 1.649 0.027 0.926 0.132

β3,1 6.429 · 10−4 1.211 · 10−4 6.425 · 10−4 1.209 · 10−4

β3,2 1.174 · 10−5 .896 · 10−6 1.174 · 10−5 1.896 · 10−6

β4,1 0.075 3.592 · 10−3 0.075 0.004

β4,2 2.061 · 10−9 2.381 · 10−13 2.064 · 10−9 4.115 · 10−13

β4,3 0.029 0.014 0.029 0.014

µ1 1 − 0.980 4.312 · 10−4

µ2 1 − 0.562 0.014

µ3 1 − 0.999 1.871 · 10−4

µ4 1 − 1.001 1.609 · 10−4

Other Parameters

δ1 5.322 · 10−7 2.302 · 10−8 δ2 1.248 · 10−5 2.158 · 10−6

θ1 −0.021 4.491 · 10−4 θ2 −0.780 0.044

θ3 −6.531 · 10−4 1.873 · 10−4 θ4 1.340 · 10−3 1.605 · 10−4

ν1 0 − ν2 0 −

ν3 3.965 0.602 ν4 0.017 0.053

σV,1 1 · 10−3 − σV,2 2 · 10−3 −

σS,1 0.130 − σS,2 0.210 −

σK,1 0.228 − σK,2 1.419 −

σR 0.090 0.0009

Note: The symbol '−' in the standard-deviation column indicates that the parameter has been calibrated. The
σV 's are set to be coherent with the standard deviations of the di�erences between the Garch, Egarch, and
rolling window variance proxies. The σS 's are set at the in-sample mean of standard-deviations of forecasts among
the professional forecasters. The σK 's are set at a fourth of the in-sample standard deviations of the proxies of
expected excess bond-returns. Last, we impose that the unconditional mean of the short-term interest rate is equal
to its in-sample mean.
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Table 4: Cross-sectional �t of yield levels, conditional volatility proxies, and expected excess bond
returns for 6-months holding period

Maturity 6m 1y 2y 4y 7y 10y

level RMSE (in bps) 6.25 5.34 9.59 10.24 9.60 11.93

Volatility
regressions

intercept 0.002 −0.008 −0.007 0.004 0.02 0.01

slope 0.93 1.06 1.04 0.91 0.78 0.79

R2 0.64 0.80 0.92 0.87 0.80 0.76

Excess returns
regressions

intercept � −0.10 −0.25 −0.38 0.14 0.23

slope � 1.02 1.06 1.15 1.08 0.99

R2 � 0.75 0.68 0.63 0.49 0.37

Note: The volatility regressions are the regressions of Egarch(1,1) volatility proxies on the model-implied
conditional volatilities. Proxies of expected excess returns are derived based on the methodology of Cochrane and
Piazzesi (2005).
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Figure 2: Japanese yields data
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Notes: Yields are weekly data from January, 6th 1995 to March, 8th 2008. Yields are expressed in annualized
percentage points �gures, with maturity from 6 months (darkest line) to 10 years (lightest line).
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Figure 3: Conditional volatility proxies
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Notes: Top and bottom panels respectively present the volatility proxies for the 2-year and the 10-year yields.
Garch and Egarch conditional volatility models are computed on weekly yield changes whereas the
rolling-window volatility is computed on a 60-day window of weekly data. We take the square-root of estimated
proxies of conditional variance and obtain our conditional volatility proxies. We normalize them to be comparable
to annualized yields. We take estimated proxies and normalize them to be comparable to annualized yields.

Figure 4: Dependence between yield conditional volatilities and levels
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Note: The volatility proxy is extracted from an Egarch model computed on weekly yield changes. We take the
square-root of estimated proxy of conditional variance and obtain our conditional volatility proxy. We take the
estimated proxy and normalize it to make it homogeneous to annualized yields.
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Figure 5: Estimated Factors
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Figure 6: Observed and model-implied yields
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Notes: Yields are observed at the weekly frequency from January, 6th 1995 to March, 8th 2008. Yields are
expressed in annualized percentage points, with maturities from 6 months to 10 years. The black solid lines are the
observed yields and the grey dotted lines are the model-implied (or �tted) yields using the term structure
framework of Section 3 with 4 factors (n1 = 2 and n2 = 2).
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Figure 7: Fitted conditional variance proxies and surveys
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Notes: The top panel presents the two conditional variance proxies Vt(h) estimated with an Egarch(1,1) model
on 2- and 10-year yields (left and right tiles) of weekly data from January, 6th 1995 to March, 8th 2008. The black
solid lines are the observed variance proxies and the grey dotted lines are the model-implied (or �tted) equivalent.
The bottom panel presents the survey of professional forecasters for the 10-year yield, 3- and 12-months ahead.
Data is available quarterly from 2003 to 2008. The black dots correspond to the observed data, and the grey solid
lines are the �tted equivalent.
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Figure 8: Time-series of ZLB probabilities: Pt(rt+k 6 λ) and Qt(rt+k 6 λ)
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Notes: Probabilities are computed with weekly data from January, 6th 1995 to March, 8th 2008. They represent
the probabilities of the short-rate hitting zero in k = 26 weeks (top-left panel) and k = 104 weeks (top-right
panel). On bottom panels, we represent the probabilities of the short-rate being below 10 bps in k = 26 weeks
(bottom-left panel) and k = 104 weeks (bottom-right panel). Black solid lines are the risk-neutral probabilities
whereas red dashed lines are the historical ones. Grey-shaded areas are the di�erence between the two.
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Figure 9: Horizon structure of ZLB probabilities: Pt(rt+k 6 λ) and Qt(rt+k 6 λ).
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Notes: X axis is the horizon k of the short rate rt+k being exactly 0 (left tile), or below 10bps (right tile). Black
and red curves correspond distinguish the date at which these probabilities are evaluated, and respectively
correspond to the 13th of June 2003 and the 7th of March 2008. Solid and dashed lines represent respectively to Q
and P-probabilities.
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