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ABSTRACT
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standing debt. We explore whether technological progress in debt collection is behind this change by
developing a new theory featuring costly state verification with signals. We motivate our approach
by the predominance of informal bankruptcy in the credit card market, which necessitates the costly
involvement of the lending industry to enforce repayment. We show that the presence of enforcement
costs, when combined with the rate of technological progress suggested by the available evidence,
rationalizes the observed shift in the risk composition of debt.
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1 Introduction

There is a widespread consensus in the economic literature that the expansion of unsecured

borrowing over the last 30 year has been fueled by IT progress (see, for instance, White, 2007).

This transformation is largely associated with the development of centralized of consumer

scoring, which allowed lenders to assess default risk quickly, inexpensively and more precisely.

The intensive use of IT is particularly visible in the credit card market, which has become

a predominant source of unsecured consumer credit in the U.S., and more generally a major

form of credit for U.S. households.

Alongside the aforementioned expansion, the credit card market has also experienced a

puzzling shift in the risk composition of debt. Figure 1 illustrates this phenomenon. As we

can see, the fraction of unsecured revolving debt defaulted on has steadily been rising, far

outpacing the expansion of the market itself. However, theoretically attributing this particular

development to IT progress has been quite elusive.
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Figure 1: The Rise of Credit Card Debt Written-Off in the US.

Here we argue that the observed shift in the risk composition of debt can be well understood

by taking into account the important role that IT has played in the collection of debt and the

enforcement of credit contracts. This channel has been thus far neglected in the economic



literature, despite the fact that recent evidence suggests that this margin potentially plays an

important role in the workings of the credit markets. This evidence motivates our study, as

it shows that, first, defaults on credit card debt are predominately informal, necessitating the

costly involvement of the lending industry to collect unpaid debt.1 Second, consistent with the

predominance of informal default, the lending industry actually devotes significant resources

to enforcement and debt collection.2

Our reading of this evidence is that existing theories potentially miss out on a crucial aspect

of credit markets, namely the costs that must be assumed by the lending industry to sustain

repayment. In light of a well documented IT-based revolution that has transformed how debt

is collected in the U.S., we postulate that the presence of such costs can have important

ramifications for the pricing of risk. Showing that this channel can explain the aforementioned

shift in the risk composition of debt is the central goal of our paper.

To develop this theme, we explicitly model the enforcement of credit contracts as a costly

state verification process, similarly to Townsend (1979). We enrich this framework by introduc-

ing a signal extraction technology, which lenders can adopt to better target their verification

efforts. IT progress in our framework is captured by improvements in signal informativeness.

1Persistent delinquency implies debt forgiveness, as the statue of limitations on unpaid debt renders debt
uncollectable after about 3-7 years (depending on the state). Micro-level studies, which carefully track the
life-cycle of unpaid unsecured consumer debt, consistently show that at least half of the defaulted debt in
the U.S. is discharged in such an ‘informal’ way. For example, using a panel of 50,831 credit card borrowers,
Dawsey and Ausubel (2004) show that as much as half of discharged credit card debt during 1997-98 is not
attributable to formal bankruptcy filings thereafter. Similarly, Agarwal, Liu and Mielnicki (2003) study a
panel of over 1.5 million credit cards and report that informal defaults represent between 64% and 78% of
defaults in 1998-2000. Similar figures are reported in industry studies (e.g. 1999 Annual Bankruptcy Survey
by Visa U.S.A. Inc.). In Section 2, we analyze a panel of credit records of a representative sample of Americans
and also find that 73% of borrowers who default, do so informally.

2 According to the BLS, employment in the third-party debt collection industry is about 150,000 people.
PricewaterhouseCoopers estimates that the industry as a whole directly or indirectly supports employment
between 300,000 and 420,000 jobs (see “Value of Third-Part Debt Collection to the US Economy in 2004:
Survey and Analysis,” by PricewatehouseCoopers, prepared for ACA International). IBISWorld (2013b)
reports that credit card receivables are the largest sector serviced by the debt collection industry, representing
approximately a third of its $13-billion expected revenue in 2013. This suggests that about 1/3rd of these
resources might be devoted to collection of credit card debt. To put these numbers in perspective, the size of
the U.S. police force is about 700,000 officers across all agencies. See our online appendix for further details
about this industry.
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As in Townsend (1979), the rationale behind our modeling approach is the presence of asym-

metric information about true solvency status of the borrower – here brought about by the

phenomenon of informal default.3 Since lenders can only obtain repayment from solvent con-

sumers, state verification in our model is necessary as, in the absence of it, solvent consumers

would also be tempted to default. State verification costs thus partly determine the price of

credit contracts.

The key implication of our theory is that improvement in the informativeness of signals

can crucially affect the equilibrium risk composition of debt. In particular, our model implies

two enforcement regimes, with a cutoff rule on information precision governing the switching

between regimes: full monitoring and selective monitoring. Under full monitoring, which

arises when IT is underdeveloped, lenders do not adopt the signal extraction technology and

thus engage in state verification of all delinquent borrowers. In contrast, as signal precision

improves, our model predicts a switch to selective monitoring, which involves the use of signals

to target only a subset of defaulters, i.e., those more likely to be solvent. Such switch lowers the

price of contracts exposed to default risk, and thus crucially alters the relative attractiveness

of such contracts to consumers. In the presence of riskless contracts characterized by tight

credit limits, this is sufficient to alter the risk composition of debt, as risky contracts become

more prevalent. In addition, the switch to selective monitoring, by implying strategic default

among non-verified consumers, further reinforces the result.

Under plausible assumptions on enforcement costs and technological progress, our mecha-

nism can fully account for the rise of the charge-off rate in the data, as Figure 1 illustrates.4

Importantly, this result is achieved by, first, setting monitoring costs to match the resources

3Informal bankruptcy is critical. Formal bankruptcy renders such considerations irrelevant by definition since
it grants borrowers full legal protection from lenders.

4We could extend our model to early 1980s. However, we do not focus on earlier periods due to binding usury
laws, which have been gradually eliminated in the US by the 1978 Supreme Court ruling, Marquette National
Bank of Minneapolis vs. First of Omaha Service Corp. The increase in credit card lending in the early 80s was
likely affected by this decision and our analysis may not apply to this time period. Due to a major bankruptcy
reform in 2005, and later financial crisis, we do not look at the data after 2004.
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devoted to the collection of unsecured debt in the data and, second, by increasing the precision

of signal in line with industry evidence about the impact of IT-progress in debt collection.

In plain words, our model explains the recent changes in the US unsecured credit market in

the following way. In the late 80s, the enforcement technology employed by the lending industry

was not ready to deal with a vast pool of risky accounts; this shortcoming made enforcement

of repayment from moral hazard-prone borrowers costly. Consequently, such contracts were

rarely offered in the market; instead, lenders relied on safe contracts and/or extended credit

mostly to segments of the market posing little or no default risk. However, while improving

the ability to estimate credit risk – e.g., through the use of credit scoring models – in the

late 1980s and over the 1990s, the industry has also learned how to better assess delinquent

borrowers’ ability to repay. Such knowledge helped to optimize on collection effort and led

the industry to assume greater credit risk. This could have happened both along the intensive

margin of offering more generous and thus more risky credit contracts to existing customers,

or by expanding to riskier segments of the market.

Our story is broadly consistent with the evidence on the recent evolution of debt collection

practices. Throughout the 1990s, the lending industry embraced the use of collection scoring

and engaged in a much more selective use of resources,5 an approach known in the industry

lingo as segmentation of delinquent accounts based on collection scores, and prioritization of

collection resources. For example, credit bureaus started to provide comprehensive collection

scores since the mid 90s. Interestingly, over 7.5% of the credit reporting industry’s $10 billion

annual revenue is coming from serving debt collectors (IBISWorld, 2013a). To put this number

into perspective, 37% of this industry’s revenue comes from banks and financial institutions.

These figures forcefully underscore the widespread use of IT to facilitate the enforcement of debt

contracts. The global presence of commercially available collection scores speaks directly to the

5Similar to credit scores, collection scores are aimed at predicting the recovery rate from delinquent borrowers
based on borrower characteristics and the nature of delinquency. For an overview of the different types of
collection scores used by the industry see the online appendix.
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use of signals and selective monitoring predicted by our model.6 Furthermore, existing studies

report large gains brought by IT-driven collections, typically leading to 20-40% productivity

increases. These productivity gains came from the adoption of technologies that very much

paralleled the ones used by lenders to extend initial credit to new consumers.

Our theory is qualitatively consistent with several other related phenomena. For example,

the data reveals a secular decline in the use of legal actions to recover unpaid debt: from

2000 to 2006 the average number of suits, judgments and wage garnishments filled in court

per delinquent borrower decreased by 16.3%.7 At the same time, the use of credit bureau

information on delinquent borrowers by debt collectors, including credit and collection scores,

went up by 30%. We interpret these two trends as suggestive of a noticeable increase in the

use of IT-driven, selective approaches to enforcement.

To the best of our knowledge, no other study on consumer credit markets systematically

relates information technology to the effectiveness of debt collection. However, viewed more

broadly, our paper is related to a number of recent contributions in this area. These include

the adverse selection models of the IT-driven credit expansion by Narajabad (2012), Athreya,

Tam and Young (2008), and Sanchez (2012); papers on informal bankruptcy by Chatterjee

(2010), Athreya et al. (2012), Benjamin and Mateos-Planas (2012), and White (1998); and

other work on the effects of technology on credit pricing, such as Drozd and Nosal (2007), and

Livshits, MacGee and Tertilt (2010, 2011).

The paper is organized as follows. Section 2 reviews the existing evidence on informal

default and collection technology. We analyze the theoretical model in Section 3, which includes

our main comparative statics result and a discussion of possible extensions. Section 4 presents

the quantitative model and results. Section 5 concludes.

6As an example of collection scores, Table 5 in the Appendix shows how Experian’s Bankcard RecoveryScore
successfully predicts whether a delinquent credit card borrower in our dataset will default.

7Our data set only goes back to July 1999. However, using court data on wage garnishments from Virginia,
Hynes (2006) finds that, while the number of personal bankruptcy filings were rapidly growing over the 90s,
the growth of debt-related garnishment orders was negative.
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2 Empirical Motivation

This section overviews the evidence that motivates our approach and our key modeling deci-

sions. Specifically, we first describe the prevalence of informal default. We then document how

IT is used to deal with the informational asymmetries brought by informal default. In partic-

ular, we discuss how collection methods have changed with the advent of IT-based solutions.

2.1 Informal Default

The existing evidence shows that informal default is the preferred channel for the discharge

of credit card debt. Here we analyze the behavior of delinquent credit card borrowers using

a panel of over 150,000 borrowers from Experian, one of the three major credit bureaus.

Consistent with other studies that use account-level data, such as Dawsey and Ausubel (2004)

and Agarwal, Liu and Mielnicki (2003), we find that informal default is by far the most

prevalent form of default.8 Our data contains credit history, delinquency and public record

(bankruptcy, suits, judgments) information, allowing us to distinguish between informal and

formal default. As in Agarwal, Liu and Mielnicki (2003), we define delinquency as being 90

days or more past due date in a credit card opened in the last two years. Of those we flag as

delinquent, we consider them to be informal defaulters two and four years later if they did not

filed for bankruptcy and they did not fully pay back any of their delinquent accounts. We find

that 73% of delinquent credit card borrowers in the period 2001-05 that were still in default

two years later did not file for bankruptcy (79% for those still in default two years later).

These numbers are remarkable given that our notion of default uses long delinquency periods,

compared to the typical 180 days past due used in the above studies, and thus highlights the

sheer magnitude of informal default in the credit card market.9

8The panel contains 150,000 randomly selected individuals in July 2001 (the earliest date for which data was
accessible) and followed them every two years. It also contains, to partially account for attrition, another set
of randomly selected 150,000 in July 2013 that were ‘tracked back’ every two years down to July, 2001.

9These statistics are similar if we restrict the sample to borrowers with no history of bankruptcy.
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As Table 1 shows, those who default informally rarely turn to formally filing for bankruptcy

protection down the road (about 4.4%). This implies that formal and informal bankruptcy

represent quite disconnected paths, arguably appealing to distinct segments of borrowers. In

this context, we find that, as in Dawsey and Ausubel (2004), the credit card balances of informal

defaulters are 45% lower than those of formal filers. Such lower debt levels may explain why

informal defaulters have a strong incentive not to file for bankruptcy protection: just the legal

costs of doing so eat up a large fraction of their credit card debt discharged, typically around

13-25%.10 This can also explain why even mode st collection costs can introduce substantial

frictions in unsecured credit markets.

Finally, while a fraction of delinquent borrowers show some improvement in the data,

this does not necessarily imply repayment of credit card debt. This is because our definition

of ‘improvement’, due the lack of account level information, is fairly broad and indicates

repayment of any credit account in the portfolio of a delinquent borrower.

2.2 Collection Technology and its Recent Evolution

In light of the predominance of informal default and the long life of charged-off debt before it

runs its statute of limitation (3-10 years), typically transitioning from in-house to third-party

collection agencies to being sold and re-sold to distressed debt-buyers, collection costs per ac-

count can be quite substantial. To optimize on these costs, over the 90s the lending industry

developed a debt collection infrastructure centered around the use of IT. This transition paral-

leled similar developments on the evaluation of credit risk, such as automated and centralized

credit scoring. We provide a brief overview of this technological switch below. For an extended

review refer to the online appendix.

10Hynes (2008) reports a filing fee of $299 plus $1000-2000 in lawyer fees in 2007. This represents a lower
bound on legal and other costs associated to formal filing. Dawsey and Ausubel (2004) found that in 1997
credit card discharged per informal defaulter was about $9,648 in 2007 dollars.
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Table 1: Delinquency Transitions

Delinquent
t = 0 3.10%

↙a ↓ ↘

Bankruptcy Inf. Defaultb Improvement
t = 2 years 17.5% 65.7% 16.8%

↙ ↓ ↘

Bankruptcy Inf. Default Improvement
t = 4 years 4.4% 79.5% 16.1%

No. Observationsc 483,732

aThe arrows indicate the transition rates from the corresponding state in the upper row to a par-
ticular state in the lower row.

bDelinquent borrowers that did not file for bankruptcy, and did not showed an increase in the number
of paid accounts that were at least 90 days past due.

cIncludes observations for the three waves prior to the financial crisis: 2001, 2003 and 2005.

Before the 90s, debt collection relied on heuristic and labor intensive methods (Makuch

et al., 1992; Hunt, 2007). Under this ‘traditional approach,’ debt collectors would be phys-

ically looking into each case to decide what action to take, and analyzed data themselves.

Occasionally, ad hoc in-house solutions were adopted to aid this heuristic approach (Rosen-

berg and Gleit, 1994). The pioneering development of an IT-based solution by GE Capital

opened the door to more sophisticated methods (Makuch et al., 1992). With the advent of

global scoring and credit history databases these methods gained in precision (Chin and Ko-

tak, 2006; Till and Hand, 2003). The key difference between traditional methods and modern

collection technologies is the systematic use of information and statistical modeling, combined

with computer-based optimization methods to optimally allocate collection resources. For in-

stance, the core idea behind PAYMENT, the credit card collections system adopted by GE

Capital back in 1990, was to model their portfolio of delinquent accounts as a Markov ma-

trix summarizing the transition probability from X to X + y days of delinquency, with the

probability being a function of a set of possible collection actions that can be undertaken in
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a given state (Makuch et al., 1992). A computer algorithm then used this matrix to perform

cost-benefit analysis and choose the best action for each delinquent account based on borrower

and account characteristics. (See Hopper and Lewis (1992) for a description of the approach

and Rosenberg and Gleit (1994) for a survey of the different methods such as decision trees,

neural networks and Markov chains).

This early implementation led to major savings in its first months of operation, relative to

the existing heuristic methods use by the company. Specifically, using a randomized controlled

trial, Makuch et al. (1992) estimate that GE capital, at the time the largest provider of “private

label” consumer credit in the US, experienced a 7-9% increase in average recoveries while

targeting a smaller fraction of accounts. Overall, the adoption of PAYMENT led to at least

$37-million annual savings, equivalent to 9% of write-offs in 1990. Using the same empirical

approach, Banerjee (2001) analyzes the introduction of segmentation and prioritization in a

large bank in eastern U.S. during 1998, with a particular emphasis on the selective use of costly

arbitration/litigation. The estimated average savings were $217 per account, implying savings

of $40 million or about 11% of total write-offs. Importantly, the study reports total collection

costs incurred by the company, which were about 1.25% of outstanding debt. This number is

actually much higher than what our model will later imply for the 1990s.

These savings are similar or even larger in industry studies that look at productivity gains

in less tightly controlled environments. For example, in its 2005 annual report filed with the

SEC, Portfolio Recovery Associates, one of the four largest debt collection agencies, and whose

portfolio is primarily comprised of credit card receivables, documents a 120% increase in debt

recovered per dollar spent on collection. The company argues that their IT-driven approach

– which utilizes two large scale proprietary statistical models – is the main culprit of their

successful operations and growth. In another study, a medium scale bank, Trustmark National

Bank, reports that, after the adoption of an IT-based collection system, they increased the
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recovery rate on charged-off consumer accounts from 35% to 58% over the period 1998-2004,

while employing the same manpower in debt collection (Fair Isaac Corporation, 2006).11

Since the mid 90s access to these sophisticated methods has been greatly expanded with

the offering of centralized collection scoring by the major credit bureaus, such as Experian

and TransUnion.12 Over 7.5% of the credit reporting industry’s $10 billion annual revenue

nowadays comes from debt collection services (IBISWorld, 2013a). To put this number into

perspective, 37% of this industry’s revenue comes from banks and financial institutions. These

figures forcefully underscore the widespread use of IT-based collections. The global presence

of commercially available collection scores speaks directly to the use of signals and selective

monitoring that our model involves.

Finally, it is worth mentioning that the success of segmentation and prioritization in the

collection of credit card debt has led other industries to adopt a similar approach. Examples

include Fannie May and Freddie Mac in 1997 to manage delinquent mortgages (Cordell et al.,

1998); and New York State in 2009 to collect unpaid taxes (Miller, 2012). After adoption, New

York State increased its collections from delinquent taxpayers by $83 million (an 8% increase)

using the same resources.

3 Model

We first analyze a stylized model that highlights the main theoretical mechanism. Later on we

generalize it to a quantitative life-cycle environment to explore its ability to match the data.

The economy is populated by a continuum of consumers and a finite number of credit card

lenders. Credit card lenders have deep pockets and extend credit to consumers at the beginning

11Although these figures pertain to all receivables, given that about 1/3 of collected debt in the US by the debt
collection industry comes from credit cards, this evidence suggests IT-driven, double digit gains in collection.

12Experian introduced RecoveryScore for charged-off accounts in 1995 (personal communication), while Tran-
sUnion have been offering collection scores since at least 1996 (Pincetich and Rubadue, 1997).
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of the period. Consumers live for one period composed of two sub-periods. Their objective is

to smooth consumption across the two sub-periods by borrowing from lenders, as they enter

the period with some pre-existing exogenous stock of debt B > 0 – it is endogenous in our

life-cycle model. Credit is unsecured and consumers can default. Specifically, in the second

sub-period they are subject to a random realization of a binary distress shock d ∈ {0, 1} of

size E > 0 (e.g., job loss, divorce, or medical bills), which hits with probability p < 1/2. The

option to default provides some insurance against distress.

The key point of departure from the literature is the presence of moral hazard brought by

the fact that lenders do not observe d upon default. As a result, non-distressed borrowers may

be tempted to default strategically in expectation of debt forgiveness by lenders. To deal with

this problem, lenders in our model have access to a costly state verification technology that

allows them to learn the shock and induce repayment from non-distressed consumers. Lenders

also have access to a signal extraction technology that produces a noisy signal d̂ ∈ {0, 1} of

the distress shock.

The timing is as follows. At the beginning of the period, lenders compete to extend credit

lines to consumers and commit to a verification strategy. After accepting a contract, each

consumer privately learns whether she will be hit by the shock and all agents observe signal

d̂. With this information in hand the consumer decides how much to borrow and whether she

will repay or default in the second sub-period. If the consumer defaults lenders decide whether

to verify the shock given the signal realization and their monitoring strategy.

3.1 Lenders

Lenders are Bertrand competitors and offer credit lines to consumers. Credit lines are unse-

cured and committed to consumers prior to the realization of the the distress shock d. They

are characterized by a credit limit L, a fixed finance charge I, and a state verification or mon-
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itoring strategy P (d̂), which represents the probability that a defaulting consumer with signal

d̂ will be verified or monitored.13

Signals are characterized by exogenous precision 0 ≤ π ≤ 1. That is, with probability π

they reveal the true state and with probability 1 − π the are uninformative. This parameter

embodies the state of information technology in the economy. Change in this parameter will

later be the main focus of our analysis.

While monitoring results in repayment from non-distressed defaulters, for simplicity here

we assume it is completely ineffective in the case of truly distressed consumers.14 Formally,

at the beginning of the period lenders choose a credit line contract (I, L, P ) to maximize the

ex-ante expected utility of consumers:

max
I,L,P

V (I, L, P ) (1)

subject to the ex-ante zero profit condition

EΠ(S, I, L, P ) ≥ λ
∑
S

δ(S, I, L, P )P (d̂)Pr(d̂).

In the above problem, EΠ(S, I, L, P ) denotes ex-ante profits (gross of monitoring costs) from

a customer pool with normalized measure one, S = (d, d̂) is the interim state of the consumer,

λ represents verification or monitoring costs (per measure one of borrowers), and δ(S, I, L, P )

describes the consumer’s default decision (defined formally in the next section), which equals

13While our approach is positive in nature, our restriction to these contracts is partly based on optimality
grounds. First, credit lines allow for flexible borrowing levels, which are contingent on the shock realization
given the model’s timing. Second, fixed finance charges are superior to interest payments proportional to
borrowing since they do not distort intertemporal smoothing. Finally, commitment parsimoniously imple-
ments efficient monitoring policies, and conveniently abstracts from any institutional characteristics of the
debt collection industry. In his costly state verification model, Townsend (1979) shows that loan contracts
with monitoring commitment are constrained efficient. Unlike here, there are no intertemporal smoothing
considerations in his model since consumption only takes place after verification takes place.

14In our quantitative model we take a more general approach by assuming an enforcement constraint that
applies uniformly to all consumer types.
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one in case of default and zero otherwise. The interim profit function is given by

Π(S, I, L, P ) =


I if δ(S, I, L, P ) = 0,

−L+ (L+ Ī)(1− d)P (d̂) if δ(S, I, L, P ) = 1,

(2)

This expression incorporates the fact that, as we argue below, defaulting consumers dis-

charge the full credit line L plus finance charges I, while I is collected whenever the consumer

chooses not to default. Monitoring reverts any non-distressed defaulting consumer back to

repayment by recouping L+ Ī, where Ī is an exogenous penalty charge.15

3.2 Consumers

Consumers are endowed with utility over consumption given by u(c, c′), where c and c′ denote

first and second sub-period consumption, respectively, and u is a strictly concave, differentiable

and symmetric utility function. They choose c, c′, borrowing within the period b, and default

decision δ ∈ {0, 1}. For simplicity, these choices are made at the interim stage, that is, after the

signal d̂ and the distress shocks d are observed. Such timing greatly simplifies the proof of our

main comparative statics result, although most of our results do not depend on the specific

timing of borrowing decisions. It also captures in an stylized way the borrowing flexibility

that credit cards provide to consumers. Note that consumers potentially face the residual

uncertainty associated with being monitored upon default, which is denoted by m ∈ {0, 1}.

Formally, given I, L and P , the consumer chooses the default decision δ to solve

V (I, L, P ) ≡ E max
δ∈{0,1}

[(1− δ)N(S, I, L, P ) + δD(S, I, L, P )]. (3)

15Although we think of Ī as non-negative, our model could incorporate the idea of partial debt forgiveness
when I < 0.
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where N(·) and D(·) denote the interim indirect utility associated with repayment and default,

respectively, that is, they are conditional on state S.

Under repayment, the consumer chooses b to solve

N(S, I, L, P ) ≡ max
b≤L

u(Y −B + b, Y − b− I − dE) (4)

To define utility under default, we assume that defaulting distressed consumers incur a

pecuniary cost of defaulting equal to θY , and they can always fully discharge their debt. Non-

distressed defaulting consumers can discharge their debt only if they are not monitored, in

which case they also suffer penalty θY. If they are monitored, they must pay back the amount

defaulted on plus Ī . In this context, defaulting consumers find optimal to cash out the entire

credit line in the first sub-period. This is consistent with empirical evidence: credit card

utilization rates of defaulters are very high, with a median utilization rate of 100% in our

dataset (see also Herkenhoff (2012)). By doing so, distressed consumers mitigate the impact

of the shock, and non-distressed agents maximize their utility when they are not monitored

(m = 0) without affecting their utility under m = 1.16 Accordingly,

D(S, I, L, P ) ≡ max
b≤0

ES u(c, c′), (5)

subject to

c = Y −B + b+ L

c′ =


m(Y − b− L− Ī) + (1−m)((1− θ)Y − b) d = 0

(1− θ)Y − b− E d = 1,

16By maxing out on L, non-distressed defaulters also avoid separation from distressed defaulters. Hence our
assumption of monitoring being only a function of d̂ is without loss.
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where ES denotes the expectation operator conditional on state S. Note that the above ex-

pressions already embed the decision to max out on L prior to default. Heretofore, we refer to

default by a distressed consumer as non-strategic, and to default by a non-distressed consumer

as strategic.

Finally, we introduce two assumptions. The first avoids equilibrium indeterminacy by

having consumers choose to repay when indifferent between repayment and default.

Assumption 1. If N(S, I, L, P ) = D(S, I, L, P ) then δ = 0.

The second assumption rules out the uninteresting case in which everyone defaults in equi-

librium under both signal realizations. This might happen if default penalties are very small

compared to monitoring costs. In such context, if the monitoring intensity needed to deter

strategic default is very high, lenders might allow everyone to default and recoup part of the

lost revenue by reverting back a fraction of defaulters.

Assumption 2. λ < (1−p)2
p

θY.

The condition implies that the monitoring costs of preventing default by non-distressed

agents are smaller than the default penalties associated to allowing every non-distressed agent

to default under signal d̂ = 0. The condition is quite slack for any reasonable choice of param-

eters.

Finally, by equilibrium in this economy we mean a collection of indirect utility functions

V (·), N(·), D(·) and decisions δ(·), b(·), I, L, P (·) that are consistent with the definitions and

optimization problems stated above.

3.3 Characterization of Equilibrium

The goal of this section is to characterize the impact of information precision π on the risk

composition of debt. To accomplish this task, we first characterize the optimal monitoring

15



strategies that can arise in equilibrium to sustain any risky contracts, and then discuss the

pricing implications of our model. Before doing so, we state a preliminary result characterizing

default decisions in our model as a function of contract terms. (Unless otherwise noted, all

proofs are relegated to the Appendix.)

Proposition 1. For any contract (I, L, P ), the default decision satisfies:

1. There exists Lmin(I) > 0, continuous and decreasing in I, such that a borrower repays if

L ≤ Lmin(I), for all S and P .

2. If L > Lmin(I) then distressed borrowers default, regardless of P. In addition, there

exists P̄ (I, L) ∈ (0, 1], continuous and increasing in I, and independent of information

precision π, such that a non-distressed borrower with signal d̂ repays (defaults) if P (d̂) ≥

(<) P̄ (I, L).

If expected profits are zero at L = Lmin(I) and P (d̂) = 0 ∀d̂, then I = 0 and L = Lmin ≡ θY.

The last part comes from the fact that costs of funds are zero and no one defaults when

L = Lmin(I), implying that costs are zero and so are finance charges. The above result allows

us to distinguish between the two classes of contracts that can arise in equilibrium, risky, i.e.,

exposed to default, and risk-free.

Definition 1. We refer to a contract as a:

i) risk-free contract, if L ≤ Lmin,

iii) risky contract, if L > Lmin.

3.3.1 Optimal Monitoring

Our first result shows that lenders sustain risky contracts in equilibrium by using two types of

monitoring strategies: i) full monitoring, and ii) selective monitoring. Under full monitoring,

lenders simply ignore the signal, and uniformly monitor all defaulting borrowers up to the
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point at which strategic default is fully prevented (i.e. non-distressed consumers are indifferent

between defaulting and repaying). Under selective monitoring, lenders prevent strategic default

only under d̂ = 0, while non-distressed consumers with a signal of distress are not monitored

enough to prevent them from defaulting strategically. Selective monitoring might still involve

some monitoring under d̂ = 1, as long as it yields enough revenue by reverting strategic

defaulters back to repayment. Since the yield from monitoring in this case does depend on

signal precision, we write Pπ(·) instead of P (·) whenever the latter is affected by π.

Proposition 2. Risky contracts are supported in equilibrium by one of the following strategies:

i) full monitoring: P (d̂) = P̄ (I, L), d̂ = 0, 1, or

ii) selective monitoring: P (0) = P̄ (I, L) and 0 ≤ Pπ(1) < P̄ (I, L),

Furthermore, if π > π∗ ≡ 1− λ
(L+Ī)(1−p) then Pπ(1) = 0.

Corollary 1. Equilibrium risky contracts involve:

i) no strategic default in the case of full monitoring,

ii) strategic default by borrowers with signal d̂ = 1 under selective monitoring.

Proposition 2 in essence rules out the possibility of having widespread default under d̂ = 0

by setting P (0) < P̄ (I, L), which could be sustained by reverting a fraction of non-distressed

agents back to repayment. Assumption 2 guarantees that, compared to the case of P (0) =

P̄ (I, L), such contracts involve excessive deadweight losses in the form of default penalties θY ,

as well as suboptimal consumption smoothing across states of the world. In particular, we show

for any L > Lmin that, compared to any zero profit contract with P (0) < P̄ (I, L), the zero

profit full monitoring contract provides the same utility under distress, while it provides both

higher resources for consumption and lower consumption risk under no-distress. The former is

due to the lower deadweight losses while the latter is caused by the randomness associated to

having both strategic default and repayment states. These facts combined imply that lowering
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P (0) below P̄ (I, L) is akin to taking a gamble with negative expected value, something a risk

averse agent would never be willing to do.

3.3.2 Pricing of Risky Contracts

We next characterize pricing of risky debt by decomposing finance charges into a monitoring

premium and a default premium. Let IFM and ISM denote the finance charges associated to

the best zero-profit full monitoring and selective monitoring contracts, respectively. The next

proposition provides such decomposition for the class of full monitoring contracts. It is derived

from the corresponding zero profit condition associated to a credit line of size L which, given

Proposition 2 and Corollary 1, is given by

(1− p)I − pL− pP̄ (I, L)λ = 0, (6)

where the first term is the expected revenue, and the remaining terms respectively capture

expected default losses and the overall cost of monitoring. The proof of the proposition directly

follows from the equation above and is therefore omitted.

Proposition 3. IFM can be decomposed into a monitoring premiumM and a default premium

D as follows: IFM = (D +M) × L, where D = p
1−p and M = p

1−p P̄ (I, L) λ
L
. Furthermore,

M = D = 0 for risk-free contracts.

The above result is intuitive. First, under full monitoring, only distressed consumers de-

fault, and the probability of such occurrence is p. To break even, lenders must be compensated

for bearing this default risk. Second, lenders must be also compensated for the expected cost

of monitoring per dollar of credit granted, given by pP̄λ/L. A key implication of Proposition

3 is that, finance charges in full monitoring contracts are independent of signal precision.

We next derive the pricing of selective monitoring contracts. Let Pr(x, z) denote the joint

probability that d̂ = x and d = z, and recall that the probability that d̂ = 1 is equal to p.
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Proposition 4. ISM = (D +M)× L, where

D =
p

Pr(0, 0)
+

Pr(1, 0)

Pr(0, 0)︸ ︷︷ ︸
“strategic” default

and

M =
Pr(0, 1)P̄ (I, L) + pPπ(1)

Pr(0, 0)

λ

L
− Pr(1, 0)

Pr(0, 0)
Pπ(1)

(
1 +

Ī

L

)
.

Furthermore, as π → 1, D and M converge to p/(1− p) and 0, respectively.

The default premium involves an additional cost associated with the strategic default of non-

distressed borrowers with signal d̂ = 1. That is, selective monitoring contracts are inherently

riskier than full monitoring contracts. Thus, D is strictly higher than under full monitoring,

and the difference depends on π. At the same time, a smaller mass of agents is monitored,

and the monitoring premium is generally lower, although the difference again depends on π.

Moreover, M is reduced by the expected recovery rate whenever Pπ(1) > 0.

The left panel of Figure 2 shows the resulting pricing schedules. By Proposition 1, we

know that contracts with low credit limits are risk-free. This makes the pricing schedule

discontinuous: I = 0 for L ≤ Lmin and I ≥ p
1−p > 0 and increasing for L > Lmin.

L

I Low π

risk-free risky

0

selective
monitoring

full
monitoring

IC

L∗ = Lmin
L

I High π

risk-free risky

0

selective
monitoring

full
monitoring

IC

L∗

Figure 2: Effect of IT Progress on Equilibrium Price of Debt.
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3.3.3 Linking IT Progress to Risk Composition of Debt

We next turn to the comparative statics exercise. Looking at the expression for D under

selective monitoring, it is apparent that it goes down as signals become more informative,

since Pr(1, 0) and Pr(0, 1) decrease with precision. However, to understand how ISM evolves

with precision, we need to determine the behavior of Pπ(1).

Proposition 5. If Ī < λ and Pπ(1) > 0 then Pπ(1) is strictly decreasing in π and limπ↑π∗ Pπ(1) =

0, where π∗ is defined in Proposition 2.

Propositions 3 -5 imply that, as the precision of information improves, the optimal mon-

itoring strategy that sustains any fixed credit line eventually switches from full to selective

monitoring.

Proposition 6. For each L > Lmin there exists 0 < π(L) ≤ π̄(L) < 1 such that for all π > π̄(L)

the best zero-profit selective monitoring contract yields a strictly higher utility than the zero

profit full monitoring contract, while full monitoring yields higher utility when π < π(L).

This result is driven by the fact that ISM and Pπ(1) eventually go down with precision

while IFM is constant. In addition, Proposition 5 establishes that the drop in the price of

selective monitoring contracts relative to full monitoring is even more pronounced when penalty

charges are insufficient to cover monitoring costs, in which case, monitoring costs fall faster

with precision since Pπ(1) is strictly decreasing in π.

Figure 2 illustrates the implications of Proposition 6 on the selection of contracts in equi-

librium. This is the key mechanism behind our results. When signals are not very informative,

consumers may opt for risk free contracts typically involving tight credit limits (L = Lmin) and

no default (left panel). In contrast, at high precision, risky contracts with selective monitoring

exhibit low prices, leading to higher credit limits (L = L∗) and positive default risk (right

panel). That is, more precise information can lead to a larger share of risky contracts and also
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to a higher prevalence of selective monitoring among risky contracts. Since selective monitor-

ing involves strategic default and thus higher default rates than full monitoring, the pool of

equilibrium contracts shifts towards riskier contracts after an increase in π. In our quantitative

exercise, both phenomena are behind the increase in default and charge-off rates.

It is worth noting that ISM will generally more sensitive to π for borrowers at a greater risk

of distress, given that Pr(0, 1) and Pr(1, 0) are higher, and Pr(0, 0) lower, at higher p.17 As a

result, the model implies that the riskier a given segment of the consumer market is, as implied

by p, the more the price of risky contracts declines as the precision of information improves.

This result is consistent with the “democratization of credit” (Johnson, 2005; White, 2007).

Indeed, Agarwal et al. (2013) shows that nowadays riskier borrowers, such as those with lower

credit scores, are the most profitable segment for the credit card industry.

3.4 Discussion

Our model focuses on the effect of IT on informational asymmetries between borrowers and

lenders at the enforcement stage. Accordingly, it abstracts from such important aspects of

debt collection as renegotiation, the choice between formal and informal bankruptcy, and any

other aspects of enforcement for that matter. Here we discuss some of these issues and argue

that the mechanism we highlight would be at play in a more general framework.

Renegotiation and the option to default formally can serve as a tool for screening consumers

and thus save on enforcement costs.18 For instance, Kovrijnykh and Livshits (2013) show how

the use of partial debt forgiveness can help lenders separate consumers by propensity/ability to

repay their debts. In this context, our main comparative static result would nevertheless hold

in the following sense: as information becomes more precise lenders will find renegotiation less

attractive, compared to selective monitoring with little or no debt forgiveness. This is because,

17Up to an ambiguous effect of p on Pπ(1), which matters only in the case of π < π∗.
18We thank an anonymous referee for raising this point.
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as precision increases, both monitoring costs and strategic default losses go down relative to

the losses associated with partial debt forgiveness.

Alternatively, if the costs (both pecuniary and non-pecuniary) of formal bankruptcy are

small relative to monitoring costs, lenders could use the choice between formal and informal

default to identify distressed borrowers. Specifically, they could offer defaulting borrowers

a compensation in exchange for filing formally and, at the same time, monitor anyone who

does not take the deal. By doing so they could drive monitoring costs to zero at the expense

of compensating distressed borrowers for formally filing. While this solution is unlikely to

practical, our mechanism would nevertheless still be operational. To see why, note that IT

progress will lead to qualitatively the same outcome: as signals become more precise lenders can

save on formal filing costs by engaging in selective monitoring. The associated savings can be

substantial given that, as mentioned above, just the legal costs may account for about 13-25% of

the average debt discharged by informal defaulters. In addition, given the expected monitoring

costs per defaulter in our quantitative model for 2004, lenders would have about $800 to ‘bribe’

borrowers, well below the estimated pecuniary costs of filing for formal bankruptcy.

Furthermore, in our model, the only enforcement costs present are the state verification

costs borne by lenders (λ). However, a significant enforcement costs likely lie on the consumer

side. After all, delinquent borrowers may suffer disutility and even incur in pecuniary costs

whenever they are pursued by lenders. Our main result would still hold if such costs are

present. In fact, this would greatly reinforce our mechanism. Specifically, the enforcement

costs of selective monitoring contracts, however broadly defined, go down as IT improves, given

that the mass of defaulters who end up being monitored is decreasing in signal precision.19

We conclude our discussion of the model by pointing out that the relative drop in the

19Apart from a more cost-effective use of collection resources, Makuch et al. (1992) cites consumer goodwill and
avoiding unnecessary hassle as additional reasons for the adoption of a more selective approach to collections
by GE Capital. For some anecdotal evidence of reduction in consumer costs, see for example “Technology
Brings a Kinder, Gentler Process to Collections”, by Louis Barney, in Card and Payments, October 2005.
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price of risky contracts can also be generated by a drop in monitoring costs (λ), instead of an

increase in signal precision. We chose the latter for two reasons. First, while other costs might

have gone down, legal fees and costs have actually gone up. Second, a fall in monitoring costs

produces a counterfactual rise in monitored defaults: a drop in λ that matches the change

in charge-offs would lead to a switch from risk-free to (fully) monitored contracts, implying a

higher fraction of distressed agents being monitored. Such an increase would be at odds with

the downward trend in legal collections shown in Figure 3 below and reported in Hynes (2006).

4 Quantitative Analysis

Our next goal is to demonstrate that our mechanism can quantitatively account for the rise in

the charge-off rate observed in the US data over the time period 1990-2005. To this end, we

extend our setup so that it is amenable to quantitative analysis. In terms of the model, the

main differences are that we allow for multiple periods and use a more general specification

of the enforcement technology. In what follows next, we first describe our quantitative model,

discuss how we calibrate it, and present our quantitative results.

4.1 Quantitative Extension of the Baseline Model

The economy is populated by lenders dealing with a large number of borrowers (households).

Each household lives for T = 40 periods (in our calibration a model period is two years

long). Income yt(zt) of a borrower is given by an exogenous stochastic process governed by a

Markov chain z ∈ {z1, ..., zn}. The borrower is additionally subjected to an i.i.d. distress shock

κ(zt, dt) > 0, where d ∈ {0, 1} indexes the realization of the shock and κ(.) returns the value

of the shock for a given state (z, d).

As in our static economy, access to credit is in the form of unsecured credit lines, given by

(I, L, P ), which are extended for the length of one period. During each period, a household
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can borrow or save, and may default.20 These decisions determine the level of the pre-existing

debt in the following period, which evolves endogenously.

Consumption and borrowing are restricted by budget constraints, which are different de-

pending on whether whether the borrower decides to pay back her debt or default. Specifically,

in the case of repayment, the budget constraint takes the form:

BCN(B, I, L) ≡ {(cNt , Bt+1) : cNt ≤ yt −Bt − κ(zt, dt) +Bt+1 − I, Bt+1 ≤ L},

where cNt is consumption, Bt is current debt and Bt+1 is new borrowing that determines future

debt. In contrast, if the borrower decides to default, the borrowing constraint is given by

BCN(B,I, L;m) ≡

{(cDt , Bt+1) : cDt ≤ θyt −Bt − κ(zt, dt)φ(zt) + L+Bt+1 −mX(zt, dt; I, L), Bt+1 ≤ 0},

where it is assumed that, unless monitoring takes place (m = 1), defaulters fully discharge L

and a fraction 1 − φ(zt) of the distress shock. If m = 1 lenders collect X from the borrower,

which is a function of state and the contract on hand. Similarly to our theoretical setup,

a defaulting agent incurs a pecuniary cost of defaulting (1 − θ)yt. We next describe how we

specify X, which summarizes how enforcement works in our model.

Instead of adopting our previous approach, which simply assumes that no collection takes

place when the agent is distressed, here we impose a more general enforcement constraint that

better captures the legal environment in the US and also the idea that lenders cannot collect

from truly insolvent borrowers. Specifically, we assume that a defaulting agent is entitled to an

20While our model is limited to only one asset, such assumption is standard and should be interpreted as a
frictionless environment in which any durables are always financed using secured loans. Thus consumption
in the model corresponds to the flow of services from such goods. We do not model here the liquidity
considerations of households, which lead them to assume asset positions and credit card debt. We admit the
shortcoming of these models in this respect.
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exogenous minimum consumption cmin, placing a limit on debt collection. As a result, as long

as cDt ≥ cmin, Xt(.) = L+ I but, if this condition is not satisfied, X(.) is appropriately reduced

to assure cDt = cmin. In contrast to our static model, this specification implies that debt can

in principle be collected from distressed agents. However, since those agents must absorb the

non-defaultable portion of the shock κ(zt, dt)φ(zt), collection is still less effective in their case.

Consumers decide whether to default or not to maximize their expected utility. That is,

default decision δ solves

Vt(Bt, zt) = E max
δt∈{0,1}

{(1− δ)V N
t (Bt, zt; dt, d̂t) + δV D

t (Bt, zt; dt, d̂t)},

where V N
t (B, z; d, d̂) and V D

t (Bt, zt; dt, d̂t) represent household value functions associated to

repayment and default, respectively. These value functions are defined as follows:

V N
t (Bt, zt; dt, d̂t) = max

cNt ,Bt+1

{
ut(c

N
t ) + βVt+1(Bt+1, zt+1)

}

subject to (cNt , Bt+1) ∈ BCN(Bt, I, L), and

V D
t (Bt, zt; dt, d̂t) = E(d,d̂)

(
max
cDt ,Bt+1

{
ut(c

D
t ) + βV A

t+1(Bt+1, zt+1)
})

,

subject to (cDt , Bt+1) ∈ BCD(Bt, I, L,m). The period utility function is CRRA and it is

adjusted by age dependent family size, as is standard in this class of models. Specifically,

ut(c) = (c/st)1−σ

1−σ , where σ is the risk-aversion parameter and st is an exogenous family size

adjustment factor. Note that the continuation value under default V A
t+1 is different from the

one associated with repayment. This is implied by the fact that the agent with a default flag

on record is assumed to spend the next period in autarky. In autarky, the agent is assigned a

null contract L = 0, and continues to incur a pecuniary cost of defaulting equal to (1− θ)y.21

21The default penalty is not necessary in our model to sustain debt. It is needed to quantitatively match the
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The selection of contracts in equilibrium is largely analogous to our static environment and

therefore omitted. This is because contracts are assigned for the duration of one period and

so the lender problem is almost identical.

4.2 Parameterization

The key parameters of the model governing the results are monitoring cost λ, default penalty

1 − θ, and both the level and change in the precision of information, π and ∆π, respectively.

We discuss the choice of these parameters first. The remaining parameters and features of

the model are fairly standard and we discuss them last. Table 2 summarizes our parameter

choices and data targets. To avoid issues with data implied by the crisis and law changes, we

choose year 2004 as our calibration target for the 2000s. In many cases, we use trend values

obtained by regressing data from 1985-2004. These include charge-off rates and revolving debt

to income, as well as median household income growth in the economy (see the online Appendix

for all the relevant data sources).

Costs of monitoring/enforcement. Our results are very much a function of λ. If these

costs are very small, our mechanism is not operational. It thus important to choose a reasonable

level of collection costs. To this end, we use industry evidence to estimate collection costs

devoted to credit card debt. To stay on the conservative side, we focus on variable costs

and calibrate our model to the lowest bound on these costs. Specifically, we use the reported

total wage bill of the debt collection industry (IBISWorld, 2013b), and multiply it by the

fraction of industry revenue derived from unsecured consumer credit (which is mostly credit

card debt). This fraction is 1/3 of revenue, which despite our narrow focus on wage costs,

high default rates that we see in the data. In the absence of any punishment, the default rate would be
hardwired to the probability of the distress shock, and thus we would have no flexibility to match observed
default rates. At the same time, it sustains a range of risk free contracts. The pecuniary nature of penalties
is not important and similar results can be achieved if agents suffer disutility from being monitored.
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gives an estimated cost of about 3.5 billion dollars, or about 0.2% of total revolving debt in

2004. This is the moment we target to obtain the value of λ. These costs represent about 1/25

of total default losses in our model. Nonetheless, such costs can have significant implications

for the market when IT improves. As an additional check that these costs are reasonable,

note that debt collection costs in late 1980s incurred by GE Capital, our leading case study

discussed in Section 2, was about 1.25%. This is well above what our model implies for the

1990s, which reassures as that we stay within a reasonable range of values.

λ is equivalent to about $8500 (2004 dollars), a value we find sensible for several reasons.

First, in our model we do not have ‘soft’ collection methods, and thus enforcement costs

involve full state verification and, arguably, legal lawsuits. More importantly, however, in the

data consumers typically default on multiple accounts, implying that the same costs might be

incurred by multiple lenders. In contrast, in our model the cost is paid only once. In addition,

given our setup, the costs of collection pertain to a defaulting household, which in the data may

involve a more complex problem of collecting from more than one person at a time. Finally,

note that when we factor in the monitoring rate of defaulters in our model (see Table 4 below),

expected monitoring costs per defaulting household are much lower, about $800 in 2004.

Technological progress in monitoring/enforcement. While it is indisputable that sig-

nificant progress has taken place in the debt collection industry due to the widespread adoption

of IT based solutions – which we discuss earlier in the paper and in the online appendix – quan-

tification of the rate of progress in relation to our model remains difficult. To address this issue

and relate our assumptions to evidence, we proceed as follows. First, the evidence suggests

that the adoption of IT-based solutions on a wide scale began in the early 90s. This moti-

vates us to set signal precision π in the late 80s at a point where the use of signals is barely

profitable, that is, at such π lenders would be close to indifferent between adopting the new

technology or not. This gives us the initial level of π, which in the baseline calibration is about
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0.5. From this initial level we proceed by increasing π, knowing that a gradual switch from full

to selective monitoring will occur, i.e., the adoption of modern collection technologies based

on segmentation and prioritization will take place.

We choose ∆π to assure that: 1) we fully match the data as far as charge-offs are concerned,

and 2) the rate of progress in collection technologies is within the range of values implied by

the direct evidence from industry case studies discussed above. In particular, we use data from

the randomized control study of GE Capital (Makuch et al., 1992).

Table 2: Paramater Choices

Parameter Value Calibration Target Data (%) Model (%)
λ 0.1 Agg. monitoring costs/total debt 0.2a

π04 0.785 Charge-off rate in 04 (trend) 5.2 5.2

π89 0.538
∆Charge-off rate 89-04 3.4 3.4

Enforcement savings/total debt 0.3b 0.2-0.6

β 0.74 Debt to median income 15.1 15.1
θ 0.921 Charge-off rate in 89 (trend) 3.4 3.4
τ 0.07 Interest rate Premium 6.4 6.4
cmin 0.4 30-40×min.wage×52wks/disp.income 25-33 27c

σ 2 Arbitrary

(κ, φ, p)(zt)

{
(0.24, 0.9, 0.15) zt = 1

(0.33, 0.5, 0.05) zt > 1
See text.

aAggregate wage bill of the debt collection industry/aggregate revolving debt.
bData from GE capital study (Makuch et al., 1992).
cWe assume that mean disposable income is approximately 0.85 of mean income.

The GE Capital study reports that the company had $12 billion of outstanding credit card

debt at the time of adoption, and about $400 million in write-offs. Incidentally, the latter are

consistent with the aggregate charge-off rate in 1989, which is about 3.3%. The switch from

labor intensive collections based on human heuristics to an IT-based system based on signal

generation and a much more selective use of collection effort reported GE Capital estimated

savings of at least $37 million, equivalent to 0.3% of total debt or 9.3% of write-offs. These
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savings were computed by performing the following experiment: out of a random sample

of 100,000 delinquent accounts, 60,000 were subjected to the new collection system, 20,000

to the traditional collection method, and 20,000 were sent to collection agents for telephone

interviews. Total reported collection costs in the preceding period, which the company aimed

at reducing, were reported at 1.25% of debt – a number lower that what our model will assume.

To relate our model to GE capital case study, we emulate a similar procedure. Specifically,

we assume that lenders acquire a new technology that increases signal precision to deal with the

pool of contracts that have already been extended. After that, lenders use the new monitoring

strategy to re-optimize collection so that average profitability of the same contracts is enhanced.

Since in our model borrowers may react to a change in monitoring strategies, we assume two

scenarios regarding borrower expectations: i) borrowers are myopic and do not anticipate the

change,22 and ii) borrowers have rational expectations and detect any change in monitoring

regime, modifying their default decisions appropriately. Both scenarios are reasonable and can

be used as targets for our model. Table 2 reports the range of efficiency gains. As we can see,

the choice of ∆π that matches the change in the charge-off rate is close to the efficiency gains

under rational expectations, while overshooting the myopic scenario by a factor of two. Since

GE Capital was one of the early adopters back in 1990, and the 90s and 00s have experienced

large improvements in IT, we find the value in our model reasonable.

Income Process and the Distress Shock. The income process of the households is as-

sumed to be given yt = etzt, where zt is governed by a Markov process characterized by a

transition matrix Pt(z|z−1) and et is an age-dependent deterministic trend. The transition

matrix is identical from period 1 through T −N , and then again from period T −N to period

T. The last N periods are associated with retirement.23 During retirement, it is assumed that

22There are three possible cases, depending on whether the new signal is observable. This distinction does not
matter for this case, so we use the new signal in the reported results.

23Retirement income assumes a replacement rate of 65% relative to recent earnings, which matches the evidence
cited by Munnell and Soto (2005). Income level during retirement is given by a weighted average of the realized
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there is no income uncertainty, and so Pt(z|z−1) = 1, and zero otherwise. The initial distribu-

tion of income is given by the ergodic distribution of the driving process. Finally, our model

is biannual and so all processes are appropriately adjusted. The biannual nature of the model

will also matter later for the distinction between stock and flow variables. Namely, all flow

variables will be divided by a factor of two to make the comparison to annual flows observed

in the data (charge-off rate, default rate, etc...).

To calibrate the income process z and the distress shock parameters (κ, φ, p), we use the

available estimates of lifetime income processes in the literature and combine it with the

evidence collected by Livshits, MacGee and Tertilt (2010) regarding the size of the major

life-cycle distress (expense) shocks, such as unwanted pregnancy, divorce and medical bills.

In our analysis, we assume that medical bills are the only (directly) defaultable shock and

set φ accordingly; unwanted pregnancy and divorce expenses are non-defaultable, unless the

borrower can use a credit line to borrow and default. This specification, given we have only a

single shock, implies that a good portion of the distress shock is actually non-defaultable.

The starting life-cycle income process that we use in our income/shock estimation is iden-

tical to the one used by Livshits, MacGee and Tertilt (2010). This process is discretized to

yield a 6x6 biannual Markov chain. The distress shock is obtained by aggregating all 3 ma-

jor life-cycle shocks occurring at an appropriately rescaled frequency to match the biannual

specification of our model.24 This process is additionally augmented by any income shocks

that are larger than 20% relative to the average income realization of the underlying process.

We remove such deep negative shocks from our estimation of the Markov chain z and relocate

them to the distress shock.25 For brevity we only report the shock parameters in Table 4,

T −N persistent component of income (30%) and the average income in the economy (35%).
24The original specification assumes a triennial period length. We multiply the original frequency reported by

Livshits, MacGee and Tertilt (2010) by 2/3.
25Income shocks larger than 20% are assigned to the distress shock and are assumed to only affect the lowest

income bracket z1. This income group faces a higher probability of distress, and generally a lower size of the
shock. The size of the distress shock is 33% of the average income (per model period) for all zi, i > 1 and
24% in the case of i = 1. The frequency of the shock per model period is 5% (2.5% on annual basis) for higher
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which are key to our results.26

Other Parameters. As far as the utility function is concerned, we set the discount factor

to match the level of credit card debt to aggregate median household income. The target in

the data is 15.1%, which corresponds to our estimated trend value for 2004. We chose median

household income because, due to utility weights that adjust for family size, the appropriate

accounting unit in our model is a single household. We assume a standard relative risk aversion

of 2. As stated above, consumption of each unit in the model is equal to ct/st where st is an

exogenous family size adjustment factor taken from Livshits, MacGee and Tertilt (2010). This

feature is standard and helps match the hump shaped consumption pattern over the life-cycle.

The cost of bank funds and the saving rate are both normalized to zero. However, the use

of credit lines involves an exogenous transaction cost τ. We set τ = .07 (biannual) so that our

model, after adding costs of funds equal to the interest rate on savings, matches the trend-

implied annual interest premium on credit card accounts in 2004. This premium is defined

by the difference between the average interest rate on revolving credit card accounts assessing

interest and the aggregate net charge-off rate on credit card debt.

We set the cost of defaulting 1− θ to match the charge-off 1989, equal to 3.4%.

Finally, in inconsistency with legal limits on debt collection, we set cmin to be about 27%

of average disposable income in our model.27
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4.3 Quantitative Findings

As is clear from Table 3, our model can fully account for the rise in the charge-off rate in the

data. As already mentioned, this aspect of the expansion has been the Achilles’ heel of existing

IT-based models, both in terms of changes as well as level. At the same time, our model is

consistent with numerous other static characteristics of the US credit card market in 2004.

Another remarkable feature of our model is its ability to deliver high frequency of defaults

in the presence of high levels of gross debt held by households. This aspect is generally difficult

to account for using standard models due to an inherent tension between the sustainability of

high gross levels of debt – which requires that default must be costly to borrowers – and the

appeal of default, which requires it not to be too costly. Our model reconciles this tension in a

natural way: in the presence of an endogenous enforcement technology, default is more costly

for borrowers who ‘should’ repay, and not so otherwise.

Finally, our model matches remarkably well the data regarding credit limits. Credit limits

describe access to credit in the data, and they are distinct from the use of credit. Our model

can speak to this distinction. As is clear from Table 3, we match both the mean credit limit

in the data and qualitatively the upward trend in dispersion.

In terms of the change in interest rate premia and indebtedness, our mechanism alone can

only partially match the data. In this sense, other aspects of IT are necessary to fully account

for the expansion of the credit card market. Accordingly, our paper provides a complementary

mechanism which can alter the risk composition of debt to match the data. While we do not

income brackets, and 15% (7.5% on annual basis) in the case of the lowest income bracket. Moreover, the
shock is largely non-defaultable in the case of the lowest income bracket, implying φ(z1) = .9. This is because
in this group medical bills constitute a smaller fraction of the shock, which additionally include income drops
beyond the 20% mark. In the case of other income groups, i > 1, φ(zi) = .5.

26The transition matrix can be found in the online supplementary files.
27Title 3 of the Consumer Credit Protection Act limits debt-related wage garnishments to 25% of disposable

earnings, as long as weekly earnings are above 40 times the federal hourly minimum wage. In the latter case
collection is further restricted and completely eliminated when earnings are below 30 times the minimum
wage. Accordingly, we choose cmin to be between the annualized earnings associated to these two limits.
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report it here, we have experimented with lowering transaction costs and verified that one

can match the full extent of these changes. The required drop in transaction costs would be

consistent with evidence from the credit card industry (Berger, 2003).

Table 4 confirms the basic intuition that the increase in the charge-off rate comes from

transition to a regime in which 1) more risky contracts are extended (as opposed to risk free),

and 2) selective monitoring is more prevalent, which additionally involves strategic default.

Table 4: Technological Progress in Enforcement

(in %) 1989 2004 Data (2004)
Costs

Enforcement Costs per Dollar of Debt 0.71 0.21 0.2
Efficiency Gain Relative to Write-offs - 5.7-18.0a 9.3b

Monitoring Strategies
Fraction of Defaults Monitored 29.4 9.5 9.2c

Share of Risk-free Contracts 60 55 -
Share of Full Monitoring Contracts 34 23 -
Share of Selective Monitoring Contracts 6 22 -

aThe lower number was obtained assuming fully rational agents, while the higher number refers to
the case of myopic agents.

bData from GE capital study (Makuch et al., 1992).
cAverage number of suits, judgments and wage garnishments filed per delinquent borrower. Com-
puted using the Experian data set for the period between 07/2003 and 07/2005.

Finally, while one should not necessarily associate monitoring with litigation, we report

litigation rates as a rough measure of the monitoring rate of delinquent borrowers. Our model

matches this number in 2004. We do not know what this number was in the late 80s, but as

the next section highlights, the evidence suggests that data trends in this respect are, at least

qualitatively, in line with the predictions of our model.

4.4 Other Testable Implications of the Model

The switch to selective monitoring of risky contracts generates two testable predictions, which

are shown in Table 4: the monitoring rate of delinquent borrowers falls from 30% to 10%, and
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there is a sharp increase in the use of signals as the share of selective monitoring contracts goes

from 6% to 22%. Using our credit bureau data we are able to confirm both predictions. The

first one is validated by the trend in default-related litigation. As Figure 3 shows, the average

number of suits, judgments and wage garnishments filled in court per delinquent borrower

decreased by about 16.3% during the period 1999-2007. Our findings are consistent with Hynes

(2006). Using court data on wage garnishments (data for the state of Virginia, but partially

validated nationally) he reports that, while the number of personal bankruptcy filings were

rapidly growing over the 90s, the growth of garnishment orders was negative. Regarding the

second prediction, Figure 3 illustrates that the number of collection inquiries per delinquent

borrower went up by 30%. While these statistics are not readily comparable to enforcement

rates in our model, they nonetheless suggest that our mechanism is qualitatively consistent

with these developments.

0.07	  

0.08	  

0.09	  

0.10	  

0.7	  

0.8	  

0.9	  

1.0	  

07/99-‐07/01	   07/01-‐07/03	   07/03-‐07/05	   07/05-‐07/07	  

Inquiries	   Legal	  ac9ons	  

Figure 3: Collection Inquiries (left axis) vs. Legal Collections (right axis).
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5 Conclusion

Existing theories of consumer bankruptcy rule out the option of informal default by assumption,

and abstract from enforcement costs. Here we argue that this assumption is not only at odds

with the data, but neglects an important channel through which IT progress affects the pricing

and provision of credit. In particular, we show that this channel is potent enough to account

for key facts underlying the IT-driven expansion of credit card borrowing in the 1980s and

over the 1990s. Our mechanism is complementary to existing explanations that use IT to

account for the rise credit card borrowing. Independently, our approach can help account for

the observed high default rates and credit card debt by providing a theoretical foundation for

the use contingent default penalties.

The mechanism we study has broad implications, well beyond unsecured credit markets.

In particular, it applies to any environment exhibiting asymmetric information and substan-

tial enforcement costs, such as secured credit, insurance markets and taxes. We leave the

development of such applications to future research.

Appendix

A1. Collection Scores and Default

The next table presents the estimates of logit regressions, where the dependent variable is

the default status of delinquent borrowers 2 or 4 years later, and the independent variable is

Experian Bankcard RecoveryScore. Recovery scores take on values between 400 and 800. We

run the analysis for two different samples using pre-crisis data from years 2001, 2003 and 2005:

all delinquent borrowers, and those having an inquiry to the credit bureau made by a collection

department or a third-party collection agency.
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Table 5: Recovery Scores and Propensity to Default (Logit Regressions)

Defaulta (2 years) Default (4 years)
Coefficientb Coefficient
(std. error) (std. error)

All Delinquent
Recovery Score −0.0039∗ −0.0036∗

(0.0003) (0.0003)

No. Observations 13,477 13,470
With a Collection Inquiry in 24 months

Recovery Score −0.0036∗ −0.0039∗

(0.0004) (0.0004)

No. Observations 7,077 7,073

aDelinquent borrowers that did not file for bankruptcy, and did not showed an increase in the
number of fully paid accounts that were at least 90 days past due.

b(∗) denotes 1% significance level.

A2. Omitted Proofs

Proof of Proposition 1. We begin by noting several properties of indirect utility functions N

and D, defined in (4) and (5): i) N is constant in P and D is decreasing in P ; ii) N is strictly

decreasing in I and D is constant in I; and iii) they are continuous in I and P.

Part 1): Comparing (4) and (5) when d = 1, it is clear that D > N iff (1−θ)Y +L > Y −b−I

for all d̂ = 0, 1. The same is true for d = 0 when P (d̂) = 0. Thus, since D is decreasing in

P , consumers never default when L ≤ Lmin(I) ≡ θY − I for all S and all P , where the weak

inequality comes from Assumption 1.

Part 2): D being independent of P when d = 1 implies that distressed consumers always

default when L > Lmin(I). For d = 0, we note from i) that the default decision of a non-

distressed consumer must be decreasing in the underlying monitoring probability; that is, if

a non-distressed consumer decides not to default for P (d̂) = P̂ , she will not default for any

P (d̂) > P̂ . Accordingly, there must exist some P̄ ≤ 1, contingent on contract terms (I, L),

such that a non-distressed agent defaults if P (d̂) < P̄ and does not default when P (d̂) ≥ P̄ .
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Continuity w.r.t. I follows from iii). It is decreasing in I by i) and ii). P̄ (I, L) is independent

of π since expressions (4) and (5) do not depend on precision.

To prove the last part note that, when I = 0 and L = Lmin(0) = θY , both default losses

and monitoring costs are zero since no consumer defaults. Hence, lenders can feasibly offer

I = 0, given that costs of funds are zero.

Proof of Proposition 2 and Corollary 1. The outline of the proof is as follows. Fix L > Lmin,

implying that distressed agents always default and non-distressed consumers will want to de-

fault as long as they expect to be monitored with sufficiently low probability (Proposition 1).

First, we show that, by Assumption 2, it must be the case that P (0) ≥ P̄ (I, L). Second, we

argue that P (d̂) > P̄ (I, L) cannot happen in equilibrium. Finally, we pin down the sufficient

condition on π that guarantees Pπ(1) = 0 in selective monitoring.

To show that P (0) ≥ P̄ (I, L), we first prove that, given a zero profit contract (I, L, P )

with P (d̂) ≥ P̄ (I, L) for d̂ = 0, 1, any zero profit alternative contract (I ′, L, P ′) with P ′(0) <

P̄ (I ′, L) involves the same utility under distress but, under no distress, (i) fewer resources for

consumption due to excessive deadweight losses (burned resources) and (ii) higher consumption

risk.

To prove (i), it suffices to show that the total deadweight loss under (I, L, P ) is smaller than

the deadweight loss associated only to signal realization d̂ = 0 under (I ′, L, P ′). Deadweight

losses are given by the sum of default penalties and monitoring costs (defaulted debt is con-

sumed in some states of the world so it does not count as burned resources). Notice that the

deadweight loss associated to default by distressed consumers is the same under (I, L, P ) and

(I ′, L, P ′). Thus, we just need to compare monitoring costs and non-distressed default penalties

across both contracts. The total deadweight loss under (I, L, P ) is pλP (0), given that non-

distressed agents do not default. Under (I ′, L, P ′), for signal realization d̂ = 0, monitoring costs

are Pr(d̂ = 0)λP ′(0) while non-distressed default penalties amount to Pr(0, 0)(1 − P ′(0))θY.
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Accordingly, the difference in deadweight loss between contracts (I, L, P ) and (I, L, P ′) is at

most

pλP (0)− Pr(d̂ = 0)λP ′(0)− Pr(0, 0)(1− P ′(0))θY

≤ pλP (0)− (1− p)λP ′(0)− (1− p)2(1− P ′(0))θY

≤ pλ− (1− p)λP ′(0)− (1− p)2(1− P ′(0))θY,

where the first inequality follows from Pr(0, 0) = (1 − p)(π + (1 − π)(1 − p)) ≥ (1 − p)2. We

now show that the RHS of the last inequality is less than zero by Assumption 2. Rearranging

terms, the RHS is less than or equal to zero if

pλ ≤ (1− p) (λP ′(0) + (1− p)(1− P ′(0))θY ) = (1− p) ((1− p)θY + [λ− (1− p)θY ]P ′(0)) .

Since the last term is minimized at either P ′(0) = 0 or at P ′(0) = 1, a sufficient condition for

this expression to hold is pλ ≤ (1− p) min{(1− p)θY, λ}, which is clearly satisfied for p < 1/2

whenever pλ < (1− p)2θY , i.e., when Assumption 2 holds.

Part (ii) simply follows from the fact, from an ex ante perspective, consumption when d = 0

is stochastic under (I ′, L, P ′). This is due to the fact that some non-distressed agents repay

in order for lenders to break even and some default since P ′(0) < P̄ (I ′, L). In contrast, it is

deterministic under (I, L, P ), given that all non-distressed agents repay their debts.

Together, (i)-(ii) imply that the distribution of resources for consumption under (I ′, L, P ′)

can be expressed as the distribution under (I, L, P ) plus a risky gamble with negative expected

value due to the extra resources burned under (I ′, L, P ′). Accordingly, by the concavity of u and

the fact that borrowing constraints and are the same across contracts, the certainty equivalent

of expected utility under no-distress is higher under (I, L, P ). But then, since both contracts

provide the same utility to consumers under distress (it only depends on L), consumers’ ex
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ante utility under (I, L, P ) is higher than under (I ′, L, P ′).

To establish that P (d̂) > P̄ (I, L) cannot happen in equilibrium, notice that non-distressed

borrowers do not default under d̂ when P (d̂) = P̄ (I, L) by Proposition 1. Hence, setting P (d̂)

above P̄ (I, L) only leads to higher monitoring costs without increasing revenue and thus to

higher finance charges – which may additionally increase monitoring costs for d̂ = 1 under full

monitoring, given that P̄ is increasing in I.

We finish the proof by showing that if P (1) < P̄ (I, L) and π ≥ π∗ then P (1) = 0. Note

that, since all agents default under d̂ = 1 if P (1) < P̄ (I, L), for fixed contract terms, the

marginal increase in profits due to a infinitesimal increase in P (1) satisfies

∂EΠ(S, I, L, P )

∂P (1)
= Pr(0, 1)(L+ Ī)− Pr(d̂ = 1)λ = p

(
(1− p)(1− π)(L+ Ī)− λ

)

for all P (1) < P̄ (I, L). It is easy to check that
∂EI,L,PΠ(S,I,L,P )

∂P (1)
≤ 0 when π ≥ π∗. As a

result, lowering monitoring probabilities all the way down to P (1) = 0 with (I, L) unchanged

is profit feasible and increases utility, since consumers prefer lower monitoring probabilities.

Furthermore, lenders can (weakly) lower I, which also increases utility.

Proof of Proposition 4. Since all agents with d̂ = 1 default, and a fraction Pπ(1) of non-

distressed agents are reverted back to repayment under d̂ = 1, the zero profit condition under

selective monitoring is given by

Pr(0, 0)I = [p+ Pr(1, 0)]L+
[
Pr(0, 1)P̄ (I, L) + Pr(d̂ = 1)Pπ(1)

]
λ− Pr(1, 0)(L+ Ī)Pπ(1).

To derive the expressions for D andM we just solve for I and rearrange terms. The last part

follows form the fact that, as π increases, Pr(1, 0) and Pr(0, 1) monotonically decrease to zero,

and Pπ(1) = 0 for all π > π∗ by Proposition 2.

Proof of Proposition 5. We show that Pπ(1) is strictly decreasing in π whenever it is positive.
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The second part directly follows from Pπ(1) being decreasing and Proposition 2. Fix credit

limit L and signal precision πL, and let P ∗(0) = P̄ (I, L) and 0 ≤ P ∗(1) < P̄ (I, L) be the

monitoring probabilities under the preferred selective monitoring contract with credit limit L.

Also, let I(πL, L, P
∗) denote the associated zero profit interest rate. Suppose the precision of

information improves to πH = πL+ε, for some infinitesimal ε and let P ∗∗ denote the monitoring

probabilities of the best selective monitoring contract with L under πH . We need to prove that

P ∗∗(1) ≤ P ∗(1), with strict inequality if P ∗(1) > 0.

By contradiction, suppose that P ∗∗(1) > P ∗(1) and assume P̄ remains constant. Let Vπ

denote consumers’ ex ante utility under π. Our goal is to show that

VπH (L, I(πH , P
∗∗), P ∗∗) ≥ VπH (L, I(πH , L, P

∗), P ∗)

implies

VπL(L, I(πL, L, P
∗∗), P ∗∗) > VπL(L, I(πL, L, P

∗), P ∗).

Recall that, by Corollary 1, non-distressed consumers repay under d̂ = 0 and default under

d̂ = 1. Let x denote the additional revenue collected by lenders under πH by going from

P ∗ to P ∗∗. By assumption, the collected revenue must be strictly higher than the additional

monitoring costs, otherwise consumers’ ex-ante utility would be lower under P ∗∗ than under

P ∗. Note that, while the additional monitoring costs of going from P ∗ to P ∗∗ are independent

of π (the mass of defaulting agents with d̂ = 1 is equal to Pr(d̂ = 1) = p), the increase in

revenue is strictly higher under πL than under πH . This is because the mass of non-distressed

agents with d̂ = 1 is higher when π is lower. Specifically, the extra revenue collected under

πL is fx, where f = Pr(0|1;πL)
Pr(0|1;πH)

> 1 and Pr(y|z; π) is the probability that d = y conditional on

signal d̂ = z when precision is π.28

28The extra (gross) revenue collected due to an increase ∆P (1) is given by Pr(d̂ = 1)Pr(0|1, π)(L+ Ī)∆P (1).
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Next, suppose the collected resources under πH are used to lower I so that the zero profit

condition holds. Our goal is to show that, if such drop in I justifies the increase in monitoring

probability under πH relative to P ∗, it must justify a similar increase under πL. To this end,

note that the utility of distressed agents is independent of P and I, and so the change in

ex-ante utility under π is determined by:

∆Vπ = Vπ(L, I(π, L, P ∗∗), P ∗∗)− Vπ(L, I(π, L, P ∗), P ∗)

= pPr(0|1;π)∆Dπ + (1− p)Pr(0|0;π)∆Nπ,

where ∆Dπ and ∆Nπ denote the change in the indirect utility of non-distressed consumers

under signals d̂ = 1 and d̂ = 0, respectively. Importantly, ∆Dπ is the same under πL and

πH . This follows from the fact that for a non-distressed defaulting consumer the only relevant

variables are L and P , and these probabilities are identical in both cases. Hence, we can

express the change in the ex-ante utility under πL as follows

∆VπL = pPr(0|1;πL)∆DπL + (1− p)Pr(0|0; πL)∆NπL

= f

(
pPr(0|1;πH)∆DπH + (1− p)Pr(0|0;πH)

g

f
∆NπL

)
,

where g = Pr(0|0;πL)
Pr(0|0;πH)

< 1 since πH > πL. This implies that, if we establish

g

f
∆NπL > ∆NπH , (A1)

we would have shown that ∆VπL > f∆VπH . This is enough to establish the contradiction since

∆VπH ≥ 0 would imply ∆VπL > 0. To see why (A1) holds, note the following. Under πL,

all non-distressed consumers with d̂ = 0 receive a transfer of resources equal to fx. However,

compared to πH , their mass is lower by a factor g < 1. Hence, the transfer of resources from
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d̂ = 1 to d̂ = 1 under πH caused by the increase in monitoring probability, which in per capita

terms is x, is lower than f
g
x, which is the per capita transfer under πL. Furthermore, as we

show in Lemma 1 below, the zero profit condition implies that I(πL, L, P
∗∗) > I(πH , L, P

∗∗)

when Ī < λ. But then the marginal utility from an identical transfer is higher under πL than

under πH . Specifically, by the symmetry of u,

N(S, I, L, P ) =


u(y −B + L, y − L− I) L < B+I

2

u(y − B+I
2
, y − B+I

2
) L ≥ B+I

2
.

Accordingly, if ui denotes the marginal utility of consumption in sub-period i = 1, 2, we have

that

∂N(S, I, L, P )

∂I
=


−u2(y −B + L, y − L− I) L < B+I

2

−u2(y − B+I
2
, y − B+I

2
) L ≥ B+I

2
,

where the last term comes from the FOC for borrowing (u1(c, c′) = u2(c, c′)). Hence, by the

concavity of u, the higher I the higher the increase in N following a decrease in I.

This finishes the proof that (A1) holds, as the increase in utility more than compensates the

differences in masses. In addition, the drop in P̄ (I, L) is (weakly) higher under πL due a larger

impact on N (and no impact on D). This implies a (weakly) larger reduction in monitoring

costs due to a change P̄ (I, L), as there are more defaulting consumers with d̂ = 1 at lower

precision. Hence, our initial assumption of fixing P̄ (I, L) in the above argument was without

loss. Finally, the continuity of Vπ w.r.t. P yields the strict inequality P ∗∗(1) < P ∗(1).

Lemma 1. Fix L > Lmin and P (·) with P (1) < P̄ (I, L) ≤ P (0). If Ī < λ then the zero profit

I is strictly decreasing in π.

Proof. We need to show that D +M from Proposition 4 goes down with π when we replace
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P̄ (I, L) and Pπ(1) with P (0) and P (1), respectively. That is, we need to show that

p

Pr(0, 0)
+
Pr(1, 0)

Pr(0, 0)
+
Pr(0, 1)P (0) + pP (1)

Pr(0, 0)

λ

L
− Pr(1, 0)

Pr(0, 0)
P (1)

(
1 +

Ī

L

)

is decreasing in π if L > Ī − 2λ. Since Pr(1, 0) = Pr(0, 1), the above expression yields

Pr(1, 0)

Pr(0, 0)

(
1 + P (0)

λ

L
− P (1)

(
1 +

Ī

L

))
+

p

Pr(0, 0)

(
1 + P (1)

λ

L

)
.

The last term is clearly decreasing in π. The first term is decreasing in π if the expression in

brackets is positive. But this is the case whenever Ī < λ, given that P (0) > P (1).

Proof of Proposition 6. The result follows directly from the arguments laid out in the proofs

of Propositions 2-5. To see why, fix L > Lmin. By Proposition 3, IFM and thus consumers’ ex

ante expected utility, are constant with respect to π. In contrast, ex ante utility under selective

monitoring must eventually be increasing in π since, by Proposition 4, ISM must be decreasing

in π and Pπ(1) = 0 at high enough π. Furthermore, ex ante utility is higher under selective

monitoring when π = 1, given that the D is equal in both regimes while M is lower under

selective monitoring. Thus, there exists π̄ < 1 such that I is lower under selective monitoring

at any precision higher than π̄. The fact that π > 0 follows from the same argument used

to show that P (0) ≥ P̄ (I, L) in the proof of Proposition 2: when signals are uninformative

(π = 0) the costs associated with monitoring with intensity P̄ (I, L) under d̂ = 1 are lower than

the default penalties of strategic default. Hence, utility is higher under P (1) = P̄ (I, L) than

under P (1) < P̄ (I, L) when π = 0, since there are more aggregate resources for consumption

and better risk sharing across different paths.
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