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I. Introduction

Agenda voting is ubiquitous in legislative decision-making. While a wide variety of agendas are used
in practice (see Farquharson [1969]; Miller [1995]; Ordeshook and Schwartz [1987]; and, Riker [1958]),
the literature has only studied sophisticated (or forward looking) voting (Farquharson [1969]) for a small
handful of specific agendas, notably the so-called Euro-Latin and Anglo-American agendas (see Apesteguia
et al. [2014]; Banks [1985]; Miller [1977, 1980, 1995]; and, Sheplse and Weingast [1984]).1

In this paper, I introduce a much broader class of agendas, called priority agendas, and characterize
sophisticated voting outcomes associated with these agendas. For priority agendas, alternatives are added
one at a time using a priority order and an amendment rule. While the former determines when a given
alternative is to be added to the agenda, the latter determines how it is to be added.

The simple recursive structure of these agendas reflects the inherently incremental nature of the
legislative process. Since they account for this reality, priority agendas possess two features associated
with almost every agenda used in practice (see Ordeshook and Schwartz [1987]; also, Miller [1995]): every
vote eliminates some alternatives from consideration; and, alternatives are contested until they are either
eliminated or ultimately selected.2 In other words, priority agendas are non-repetitive and continuous.

At the same time, priority agendas depart only minimally from the paradigm of Euro-Latin and Anglo-
American agendas. Effectively, they only expand the scope of possible proposals. To elaborate, recall
that agendas induce “binary” extensive-form games with majority voting in every stage. The figure below
illustrates the induced Euro-Latin and Anglo-American games for three alternatives:

{x1, x2, x3}

x1

yes

{x2, x3}

x2

yes

x3

no

no

{x1, x2, x3}

{x1, x3}

x1 x3

x1

{x2, x3}

x2 x3

x2

Figure 1: Euro-Latin (left) and Anglo-American (right) agendas on three alternatives

For the Euro-Latin agenda, voting is by sequential majority approval. In every stage, voters consider
one alternative for approval (in bold). The selection from the agenda is the first alternative approved by
majority. For the Anglo-American agenda, voting is by sequential majority comparison. In every stage,
voters compare two alternatives (in bold) – with the “loser” being eliminated and “winner” moving on to
the next stage. The selection is the only alternative not eliminated by the end of this process.

It is straightforward to extend both agendas by proposing new alternatives as “amendments” to items
already on the agenda.3 For a Euro-Latin agenda, a new proposal amends the last alternative proposed.

1While a variety of names have been used for these two agendas, I follow the nomenclature of Schwartz [2008].
2Notably, the two-stage amendment agendas studied by Banks [1989] do not possess the second feature.
3I use the term “amendment” only out of convenience. Whether the proposal associated with a given alternative is

technically designated an “amendment”, a “motion”, or a “substitute bill” will depend on how it is added to the agenda.
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For an Anglo-American agenda, a new proposal amends every alternative proposed before it. To illustrate:

{x1, x2, x3, x4}

x1 {x2, x3, x4}

x2 {x3, x4}

x3 x4

{x1, x2, x3, x4}

{x1, x3, x4}

{x1, x4}

x1 x4

{x3, x4}

x3 x4

{x2, x3, x4}

{x2, x4}

x2 x4

{x3, x4}

x3 x4

Figure 2: Extending the Euro-Latin (left) and Anglo-American (right) agendas in Figure 1

Intuitively, the force of an amendment is to confront the voters with an additional decision. For a
Euro-Latin amendment (left), the voters only face such a decision when they would otherwise select the
previously last alternative on the agenda (i.e. x3). For an Anglo-American amendment (right), the voters
face an additional decision regardless of which alternative they would otherwise select.

The more flexible structure of priority agendas allows the agenda-setter to mix and match these
two kinds of amendments: a Euro-Latin agenda can be extended by Anglo-American amendment; and,
likewise, an Anglo-American agenda can be extended by Euro-Latin amendment. To illustrate:

{x1, x2, x3, x4}

{x1, x4}

x1 x4

{x2, x3, x4}

{x2, x4}

x2 x4

{x3, x4}

x3 x4

{x1, x2, x3, x4}

{x1, x3, x4}

x1 {x3, x4}

x3 x4

{x2, x3, x4}

x2 {x3, x4}

x3 x4

Figure 3: Priority agendas that extend Euro-Latin (left) and Anglo-American (right) agendas

More broadly, the amendment rules of priority agendas allow a new addition y to amend any alternative x
already on the agenda—subject only to the natural restriction that y also amend every alternative added
to the agenda after x . Intuitively, an alternative that “takes issue” with a particular alternative on the
agenda must also take issue with the other additions that took issue with the same alternative.

Preview of Results: I establish four results related to sophisticated voting—for priority agendas as well
as a wider range of agendas used in practice. These results provide key insights into the kinds of strategic
voting outcomes that one might expect in the context of legislative decision-making.
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Before turning to priority agendas, I first consider the more general case of non-repetitive and con-
tinuous agendas in Section III. This broad class of simple agendas includes every priority agenda as well
as a variety of non-priority agendas. I show that an intuitive Issue Splitting condition, which weakens
Path Independence (Plott [1973]), is effectively sufficient for implementation by sophisticated voting on
a simple agenda (Theorem 1). In particular, every social choice function satisfying this condition can be
implemented by a unique simple agenda. What is more, these agendas have the additional feature that
the removal of any alternative results in another simple agenda (Theorem 1∗). While not discussed in
the literature, many agendas used in practice seem to possess this “recursively simple” structure.

In Section IV, I take up the main question of implementation by priority agenda. I show that every
social choice function implementable by priority agenda satisfies a property previously only associated
with Euro-Latin and Anglo-American agendas.4 In particular, there exists a marginal alternative which is
selected only for preference profiles where it compares favourably with every other alternative (Proposition
1). As with Euro-Latin and Anglo-American agendas, this alternative corresponds with the last addition
to the agenda (Miller [1977]; Moulin [1991, Exercise 9.5]). Combined with Issue Splitting, this Weak
Marginalization property effectively characterizes implementability by priority agenda (Theorem 2).

To conclude, I highlight three ways that priority agendas extend our understanding of legislative voting
beyond what is known about sophisticated voting on Euro-Latin and Anglo-American agendas:

(1) Every priority agenda satisfies two normatively appealing monotonicity properties previously only
known to hold for Euro-Latin and Anglo-American agendas (see Moulin [1986]); Jung [1990]; and, Moulin
[1991, Exercise 9.5]). Like these two agendas, the sophisticated voting outcome on every priority agenda
remains unchanged when it either “improves” in terms of voter preference (Proposition 2) or in terms of
priority (Proposition 3). Given Proposition 1, this shows that every property of Euro-Latin and Anglo-
American agendas emphasized in the literature holds more generally for priority agendas.

(2) Despite (1), there is a principled way to distinguish Euro-Latin and Anglo-American agendas from
every other priority agenda: they are the only priority agendas that, subject to “marginalizing” certain al-
ternatives, otherwise treat the alternatives neutrally (Proposition 4). Unlike the separate characterizations
of Euro-Latin and Anglo-American voting due to Apesteguia et al. [2014], this common characterization
emphasizes a deep similarity between the two procedures rather than their differences.

(3) By varying how priority is assigned to the alternatives, the Euro-Latin and Anglo-American agendas
can be used to define two tournament solutions (see Laslier [1997] or Brandt et al. [2015] for an overview
of the vast literature on tournament solutions). In particular, the alternatives selected on some Euro-Latin
agenda (Miller [1977]) define the Top Cycle; and, those selected on some Anglo-American agenda define
the Banks Set (Banks [1985]). Since the latter refines the former (see Banks [1985]), the Anglo-American
agenda is more discriminating than the Euro-Latin agenda.

This observation generalizes to priority agendas. For a given priority agenda, every alternative in the
Banks Set is selected for some assignment of priority; and, some alternatives in the Top Cycle may not
be selected for any assignment of priority. Among priority agendas, this show that the Anglo-American
agenda is the most discriminating agenda while the Euro-Latin agenda is the least discriminating.

4The recent paper of Iglesias et al. [2014] defines an entire family of “Anglo-American style” agendas with this feature.
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Related Literature: At one extreme, the literature on sophisticated voting considers only a narrow class
of agendas. Besides the cited work on Euro-Latin and Anglo-American agendas, Banks [1989] studies
sophisticated voting for two-stage amendment agendas; and, a few papers examine agendas implementing
outcomes in the Iterated Banks Set (Coughlan and Le Breton [1999]) or outcomes with “high” Copeland
scores (Fischer et al. [2011]; Horan [2013]; and, Iglesias et al. [2014]).

At the other, the literature focuses on necessary and sufficient conditions for implementation (see
McKelvey and Niemi [1978]; Moulin [1986]; Srivastava and Trick [1996]; and, Horan [2013]; see also
Brandt et al. [2015] for an overview). While this clearly delimits what can be implemented by sophisticated
agenda voting in general, it does not help clarify what can be implemented by any specific agenda. In
part, this lacuna is related to the fact that the results rely on non-constructive proof techniques.

The current paper bridges the gap between these disparate strands of the agenda voting literature.
By characterizing sophisticated voting for a wide range of agendas used in practice, it sheds light on the
voting outcomes that can be implemented by decision-making procedures used in practice.

II. Basic Definitions

In this section, I briefly review the basic definitions and concepts used in the paper.
The environment consists of an odd number of voters with linear order preferences over the alternatives

in a finite set X . A preference profile of voters is denoted by P and the collection of all profiles by P.
A decision problem (P,A) consists of a profile P and a set of alternatives (known as an issue) A ⊆ X .
Where X denotes the collection of non-empty issues, a decision rule defines a mapping v : P × X → X

which selects a single social outcome v(P,A) ∈ A for every decision problem (P,A) ∈ P× X.
I study the implementation of decision rules by agenda voting. To formalize the notion of an agenda:

Definition 1 An agenda TX on a set of alternatives X is a rooted binary tree such that:

(1) every terminal node is labeled by (a set consisting of) one alternative in X ;5

(2) every alternative in X labels one or more terminal nodes; and,
(3) every non-terminal node is labeled by the set of alternatives that label its two successors.6

Figures 1-3 of the Introduction clearly illustrate these three features.
For an issue A ⊂ X , one can “prune” the agenda TX by deleting the terminal nodes labeled by

alternatives in X \ A. This operation is considered in a number of other papers (Bossert and Sprumont
[2013]; Horan [2011]; and, Xu and Zhou [2007]). Like an elimination-style tournament in sports, the idea
is that the infeasible alternatives “forfeit” without changing the structure of the agenda.

Definition 2 Given an agenda TX , the pruned agenda TX |A for an issue A ⊆ X is defined as follows.

In sequence, carry out the following three steps:
(1) first delete every terminal node of TX labeled by an alternative x ∈ X \ A;

5Wherever it causes no confusion, I abuse set notation by omitting the brackets for singleton sets.
6Property (3) follows the “Farquharson-Miller” definition of agendas rather than the “Ordeshook-Schwartz” definition

(see Schwartz [2008]). Since the interest is sophisticated voting rather than sincere voting, this is without loss of generality.
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(2) then, delete every node with a unique successor, connecting its successor to its predecessor;7

(3) and, finally, relabel every non-terminal node of the resulting tree to conform with Definition 1.

To illustrate, consider the agenda TX below and the pruned agenda associated with the issue {b, c , x}:

{a, a′, b, c , x}

{a, b, c , x}

a {b, c , x}

b {c , x}

x c

{a′, b, c , x}

{b, c , x}

{b, x}

b x

c

a′ −−−−−−−−−−−−−→
pruning the nodes a,a′

{b, c , x}

{b, c , x}

b {c , x}

x c

{b, c , x}

{b, x}

b x

c

Figure 4: An agenda TX (left) and its associated pruned agenda TX |{b,c,x} (right)

Every agenda TX |A defines an extensive game form where the outcomes are the terminal nodes and
the stage games (or decision nodes) consist of majority voting between two subgames. Given a decision
problem (P,A), the pair (TX |A;P) describes a complete information extensive-form game on the pruned
agenda TX |A. Every such game is dominance solvable (Moulin [1979]). In other words, (TX |A;P) has a
unique undominated Nash equilibrium outcome, denoted by UNE [TX |A;P], for all A ⊆ X .

This solution concept corresponds to Farquharson’s [1969] notion of sophisticated voting. The idea
is that sophisticated voters anticipate the outcome of voting in later stages. Since they have a dominant
strategy to endorse their preferred candidate in any terminal subgame, voters discount alternatives that
lose at this stage. By using this “backward induction” reasoning to roll back the agenda to the root, one
obtains the undominated Nash equilibrium outcome (McKelvey and Niemi [1978]).

To formalize the notion of implementation considered in the paper:

Definition 3 A decision rule v is implementable by agenda if there exists an agenda TX such that

v(P,A) = UNE [TX |A;P]

for every decision problem (P,A). In this case, the decision rule v is implemented by the agenda TX .

Despite superficial appearances, this notion of implementation is no more (and no less) general than the
standard notion of implementation where the issue is fixed (i.e. it does not vary from X ).

Remark 1 If a decision rule v is implementable by agenda, then v(P,A) = v(PA,X ) for any profile PA

that coincides with P on A but “demotes” every x ∈ X \ A below all a ∈ A in every voter preference.

This shows that the sub-issues A ⊂ X formally contribute nothing to the difficulty of the implementation
problem. Once the agenda-setter has determined what to implement for X , the outcomes for all sub-issues

7In case the root node (which has no predecessor) has a unique successor, its successor becomes the new root node.
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are determined. Having said this, there are compelling reasons to think about the sub-issues explicitly. For
one, some problems of economic interest depend on how the outcomes change when some alternatives
become unavailable (as discussed at greater length in Section VI). No less compelling, the sub-issues
simplify the statement of the conditions for implementation as well as their interpretation.

III. Implementation by Simple Agenda

After formally defining simple agendas in part (a), I identify two conditions that are sufficient for imple-
mentation by simple agenda in part (b). Finally, I provide in part (c) a “recipe” for constructing a simple
agenda to implement any decision rule which satisfies these sufficient conditions.

(a) Definition

Given a non-terminal node A of an agenda TX , the alternative x ∈ A is said to be contested at A if
x ∈ B \ C where B and C denote the successors of A. For a simple agenda, every non-terminal node
involves a “contest” between two alternatives; and, the “winner” of this contest continues to be contested
by other alternatives until it is either eliminated or ultimately selected as the outcome. To formalize:

Definition 4 A simple agenda SX on X is an agenda such that
(i) there exists an alternative b ∈ B \ C that labels exactly one terminal node below B and,
(ii) there exists an alternative c ∈ C \ B that labels exactly one terminal node below C

for every non-terminal node A of SX whose successors are labeled B and C .8

Equivalently, an agenda is simple if it is at once non-repetitive and continuous.
The non-repetitiveness feature refers to the fact that every stage of voting in the agenda eliminates

some alternatives regardless of which subgame the voters actually select. Formally:

Definition 5 An agenda TX is non-repetitive if

B,C ⊂ A for every non-terminal node A of TX whose successors are labeled B and C .

Non-repetitive agendas have the appealing feature that the outcome is invariably determined by
relatively few votes. Since every subgame contains alternatives unavailable at its “sibling” subgame, the
height of a non-repetitive agenda on X is at most |X |−1 so that the number of potential votes is limited
by the number of alternatives in X . Clearly, no agenda can guarantee fewer votes in the worst case.

In turn, the continuity feature refers to the fact that some alternatives contested at any stage continue
to be contested until they are either eliminated or selected as the outcome. Formally:

Definition 6 An agenda TX is continuous if, for every non-terminal node A of TX whose successors are
labeled B and C , some alternative x ∈ B contested at A labels exactly one terminal node below B .9

8A simple agenda on X will always be denoted by SX to help distinguish it from a generic agenda TX .
9Continuity was originally defined only for “Ordeshook-Schwartz” agendas (footnote 6). The stated definition adapts

the concept to “Farquharson-Miller” agendas in a way that addresses the concerns of Groseclose and Krebhiel [1993].
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For some alternative x contested at the node A of a continuous agenda, there is a unique path
starting at A that leads to the selection of x . On this path, the alternative x is contested at every
node. Intuitively, this means that every stage of voting on path may be interpreted as a choice between
continuing to entertain the possibility of selecting x and rejecting this alternative once and for all.

To help illustrate these two properties, consider the following pair of agendas:

{x1, x2, x3, x4}

{x1, x3, x4}

x1 {x3, x4}

x3 x4

{x2, x3, x4}

{x2, x3}

x2 x3

{x2, x4}

x2 x4

{x1, x2, x3}

{x1, x2}

x1 x2

{x1, x2, x3}

x2 {x1, x3}

x1 x3

Figure 5: A non-repetitive non-continuous agenda (left) and a repetitive continuous agenda (right)

The left-hand agenda is non-repetitive: the two successors of each node contain a strict subset of the
alternatives. However, it is also non-continuous: while x2 is contested at the root node, it is not contested
at the successor {x2, x3, x4}.10 Indeed, it is the only alternative not contested at {x2, x3, x4}.

Conversely, the right-hand agenda is repetitive: the right successor of the root node contains the
same alternatives as the root node. At the same time, it is continuous: the only alternative contested at
the root node (x3) appears at a single terminal node (and is thus contested all along this path).

(b) Sufficient Conditions

The sufficient conditions for implementation by simple agenda are natural restrictions related to Plott’s
[1973] Path Independence and Arrow’s [1950] Independence of Irrelevant Alternatives (IIA).

The first condition, which weakens Path Independence, states that the outcome for every issue can
be determined by splitting it into simpler sub-issues. For a decision rule v , an issue A ⊆ X can be split
if there exists a pair of issues (B,C ), called a splitting, such that: (i) B ∩ C 6= B,C (i.e. B and C are
distinctive) and B ∪ C = A (i.e. B and C cover A); and, (ii) v(P,A) = v(P, {v(P,B), v(P,C )}) for
every profile P . To state the splitting condition more formally:

Issue Splitting (IS) For v , every issue can be split into sub-issues.

By comparison, Path Independence imposes the stronger requirement that the identity in (ii) must hold
for all pairs of sub-issues (B,C ) that cover A, regardless of whether these issues are distinctive.11

10On the other hand, the other alternative contested at the root (x1) appears at a single terminal node below {x1, x3, x4}.
11This property also weakens the Division Consistency (DC) condition of Apesteguia et al. [2014]. For one, it does

not require the sub-issues (B,C) of A to be disjoint. More significantly, it does not impose any consistency between the
splitting of A and its sub-issues. That is, IS does not require v(P,D) = v(P, {v(P,B ∩D), v(P,C ∩D)}) for any D ⊂ A.

8



In the spirit of IIA, the second condition states that outcomes are not affected by alternatives that
never appeal to a majority.12 To formalize, an alternative a ∈ A is the Condorcet loser for the decision
problem (P,A) if, for all x ∈ A \ a, the majority of voters in P prefer x to a. Then, a decision rule v

is independent of the losers for the issue A if v(P,A) = v(P,A \ a) for every profile P where a is the
Condorcet loser on (P,A). The condition requires this kind of independence for every issue:

Independence of the Losing Alternatives (ILA) For every issue, v is independent of the losers.

Theorem 1 shows that every decision rule v satisfying these two conditions is implementable by a unique
simple agenda SvX . As discussed in section (c) below, the structure of SvX is straightforward to determine
from the outcomes of v for decision problems of three alternatives, called Condorcet triples, where the
pairwise majority preference forms a cycle:

Theorem 1 If a decision rule v satisfies IS and ILA, then it is implementable by a unique simple agenda
SvX whose structure is determined by the outcomes on Condorcet triples.

It is worth commenting on the necessity of the two conditions. Clearly, ILA is necessary for implementation
by simple agenda. Indeed, it is necessary for implementation by any kind of agenda. Since the Condorcet
loser cannot win a majority vote in any terminal subgame of an agenda, sophisticated voters disregard
it when deciding how to vote in earlier stages. By extending this reasoning, McKelvey and Niemi [1978]
identify a more general necessary condition (discussed in Sections V-VI below).

In contrast, IS is not necessary for implementation by simple agenda. To see this, consider the decision
rule implemented by the simple agenda TX in Figure 4. Let Pxbc denote the Condorcet triple with cycle
orientation xbc (i.e. x is preferred by majority to b, b to c , and c to x); and, let Pxcb denote the triple
with the reverse orientation. “Backward induction” shows that TX |{b,c,x} implements a rule that selects
b for Pxbc and c for Pxcb. In other words, TX |{b,c,x} selects the majority preferred alternative between b

and c . However, there is no way to do this by splitting {b, c , x} (as shown in Table 1 below).13

(c) A Recipe

IS and ILA ensure that there is a unique way to split every issue (see Claim 10 of the Appendix).
To get the basic intuition, suppose that (B,C ) splits A. Given IS and ILA, it follows that v(P,D) =

v(P, {v(P,B ∩ D), v(P,C ∩ D)}) on every sub-issue D ⊆ A. By way of contradiction, suppose that
(B ′,C ′) also splits A. If (B,C ) and (B ′,C ′) are distinct, then there exists a sub-issue D ⊆ A and a
profile P that forms a Condorcet triple on D such that

v(P,D) = v(P, {v(P,B ∩ D), v(P,C ∩ D)}) 6= v(P, {v(P,B ′ ∩ D), v(P,C ′ ∩ D)}) = v(P,D).

The unique splitting of every issue makes is straightforward to define the agenda SvX from Theorem
1 recursively. First, define a root node and label it X . Then, for any existing node whose label is a non-

12Apesteguia et al. [2014] call this condition Condorcet Loser Consistency.
13The outcome for Pxbc (resp. Pxcb) implies that x cannot be paired with b (resp. c). So, the only potential splitting is

(x , {b, c}). Since this requires x as the outcome for both Pxbc and Pxcb however, there is no way to split {b, c, x}.
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singleton issue A, construct two successors nodes BA and CA, labelled according to the unique splitting
(BA,CA) of A. To illustrate this construction:

X

BX

...

{x , y}

x y

...

SvX (CBX
)

CX

...

A

BA

... ...

CA

... ...

...

SvX (CCX
)

Figure 6: The recursive construction of SvX

In Figure 6, the leftmost nodes below BX illustrate the construction for |A| = 2 while the leftmost nodes
below CX illustrate it for |A| > 2. In turn, the two triangles represent the subgames starting from the
nodes labeled CBX

and CCX
while the ellipses indicate where some details have been omitted.14

As Theorem 1 indicates, the outcomes for Condorcet triples may be used to describe SvX more explicitly.
For the issue {x , b, c}, there are three splittings where b and c appear in separate sub-issues:

({b, x}, {c , x}) (b, {c , x}) ({b, x}, c)

Each of these splittings corresponds to the initial stage game of a different simple agenda on {x , b, c}:

(a) (b) (c)

{b, c , x}

{b, x}

b x

{c, x}

c x

{b, c , x}

b {c, x}

c x

{b, c , x}

{b, x}

b x

c

Figure 7: Simple agendas on three alternatives {x , b, c}

These three agendas implement different combinations of outcomes for the triples Pxbc and Pxcb:
14It is important not to confuse SX (A) and SX |A. While the former refers to the subgame at node A in SX , the latter

refers to the agenda obtained from SX by pruning away X \A. As Figure 4 illustrates, these agendas may be quite different.
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Profile\Agenda (a) (b) (c)

Pxbc c b c

Pxcb b b c

Outcomes
Majority loser

between b and c

Outcome b for
both triples

Outcome c for
both triples

Table 1: Outcomes implemented by agendas (a)-(c) on {x , b, c}

By construction, there exist alternatives bA and cA that appear only on opposite sides of the agenda
SvX (A) starting at any node A. For these alternatives, the outcomes on any issue {x , bA, cA} involving an
x ∈ A must coincide with one of the possibilities in Table 1. After using this observation to locate some
bA, cA ∈ A, one can use Table 1 to describe the splitting (BA,CA) of A in terms of Condorcet triples:

BA ≡ {bA} ∪ {x ∈ A : type-(a) or type-(c) outcomes on {x , bA, cA}}

CA ≡ {cA} ∪ {x ∈ A : type-(a) or type-(b) outcomes on {x , bA, cA}}

Intuitively, type-(a) outcomes reveal that x appears in both sub-issues of (BA,CA) while type-(c) outcomes
(resp. type-(b) outcomes) reveal that x appears only in the same sub-issue as bA (resp. cA).

While the goal was to define a simple agenda for the “grand” issue X , the same approach also defines
a simple agenda SvA that implements v for any issue A ⊂ X . This is a straightforward consequence of IS
and ILA. This highlights a practical feature of decision rules satisfying these conditions. Instead of using
the pruned agenda SvX |A to implement the social choice function v( · ,A) : P→ A, one can use SvA. The
advantage is that the latter requires less voting. While every decision node in SvA must affect the outcome
for some profile, SvX |A may include redundant nodes that cannot affect the outcome for any profile.

To summarize, IS ensures that it is possible to “simplify” the agenda implementing a decision rule on
X for every issue A ⊆ X . Indeed, it is the defining property of agenda voting rules with this feature:

Theorem 1∗ If a decision rule v is implementable by agenda, then it satisfies IS if and only if the social
choice function v( · ,A) is implementable by simple agenda for every issue A.

IV. Implementation by Priority Agenda

I define priority agendas in part (a) and characterize the decision rules that they implement in part (b).

(a) Definition

A priority agenda on X is defined by a pair (%,α) consisting of a weak priority % and an amendment
rule α. Intuitively, (%,α) provides a way to construct the agenda by progressively adding alternatives.
Whereas % determines when each alternative is added, α determines how each is added.

Formally, % is a weak order on X whose indifference classes contain at most two alternatives. When
x � y , the idea is that x has higher priority and is added to the agenda before y . When x ∼ y however,
the two alternatives have equal priority and may be added to the agenda in either order.
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To formalize the amendment rule α, let Xj denote the j th highest indifference class of % and let
X̃ ≡ {{x} : x ∈ X} ∪ {Xj : |Xj | 6= 1} denote the collection of singletons and equal priority pairs in X .
Using this notation, the amendment rule is a mapping α : X \ X1 → X̃ .

An alternative z is said to amend another alternative x if:

x ∈ α(z); or, y � x � z for some y ∈ α(z).

The interpretation is that, when z is added to the agenda, it amends y ∈ α(z) and every alternative
x already on the agenda with strictly lower priority than y . Consistent with this interpretation, α must
satisfy the following restrictions: (i) every new addition to the agenda amends some alternative already
on the agenda; (ii) alternatives with the same priority amend the same alternatives; and, (iii) every
alternative whose priority is immediately below two alternatives with the same priority amends both.15

The Euro-Latin and Anglo-American agendas are easy to describe in terms of this notation:

% α

Euro-Latin x1 � ... � xn−1 ∼ xn α(xi ) =

 {xi−1} for i 6= n

{xn−2} for i = n

Anglo-American x1 ∼ x2 � ... � xn α(xi ) = {x1, x2}

Table 2: (%,α) for Euro-Latin and Anglo-American agendas of n alternatives

To reconstruct the Euro-Latin and Anglo-American agendas from the (%,α) pairs in this table, one simply
adds the alternatives in decreasing order of priority % using the amendment rule α. Indeed, the same
type of construction defines an agenda for every priority-amendment pair (%,α). To formalize:

Definition 7 For any pair (%,α) on X , the priority agenda P(%,α) is defined recursively as follows:

(1) Define P1
(%,α) to be the simple agenda SX1 on the highest indifference class X1 of %.

(2) Define P j+1
(%,α) by adding the alternatives xj+1 ∈ Xj+1 to P j

(%,α) as follows:

(i) Replace every terminal node of P j
(%,α) labeled by:

- xk ∈ α(xj+1) with the simple agenda S{xk ,Xj+1}; and,

- xk ′ ∈ Xk ′ for k ′ s.t. k < k ′ ≤ j with the simple agenda S{xk′ ,Xj+1}.

(ii) If |Xj+1| 6= 1, replace every node Xj+1 in the agenda resulting from (i) with SXj+1
.16

(3) Define P(%,α) to be PK
(%,α) where K is the number of indifference classes in %.

15For the interested reader, these three requirements can be formalized as follows: (i) x ∈ α(z)⇒ x � z ; (ii) x ∼ y ⇒
α(x) = α(y); and, (iii) [x ∼ y � z and no z ′ ∈ X s.t. x ∼ y � z ′ � z] ⇒ [x ∈ α(z) or w � x for all w ∈ α(z)].

16To be very clear: S{xk ,Xj+1} has two terminal nodes xk and Xj+1; and, SXj+1 has two terminal nodes xj+1 and x ′j+1.
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Clearly, this recursive construction defines a simple agenda on X .17 At any stage j ≤ K , the simple
agenda P j

(%,α) is extended into a longer simple agenda P j+1
(%,α) by appending new simple agendas (of two

or three alternatives) to the terminal nodes. The figure below serves to illustrate:

...

... xk ′
(i) S{xk′ ,Xj+1}−−−−−−−−→

...

xk′

xk ′ Xj+1

(ii) SXj+1−−−−−−−−−−−→
if Xj+1={xj+1,x

′
j+1}

...

xk ′

xk ′ Xj+1

xj+1 x ′j+1

Figure 8: Detail at the terminal node x ′k in stage j ≤ K of the construction.

Notice that Definition 7 effectively uses the class of priority agendas on m alternatives to define the class
of priority agendas on m + 1 alternatives. The following example serves to illustrate this point:

Example 1 There are three consistent ways of proposing a new alternative x4 to extend the (i) Euro-Latin
and (ii) Anglo-American agendas in Figure 1 into priority agendas on {x1, x2, x3, x4}.

(1) By Euro-Latin amendment – x4 amends only the last alternative x3 in {x1, x2, x3}, which leads
to (i) the Euro-Latin agenda in Figure 2 and (ii) the right-hand agenda in Figure 3;

(2) By Anglo-American amendment – x4 amends every alternative in {x1, x2, x3}, which leads to
(i) the left-hand agenda in Figure 3 and (ii) the Anglo-American agenda in Figure 2; and,

(3) By Intermediate amendment – x4 amends x2 and x3, which leads to the two agendas below.

{x1, x2, x3, x4}

x1 {x2, x3, x4}

{x2, x4}

x2 x4

{x3, x4}

x3 x4

{x1, x2, x3, x4}

{x1, x3, x4}

x1 {x3, x4}

x3 x4

{x2, x3, x4}

{x2, x4}

x2 x4

{x3, x4}

x3 x4

Figure 9: Priority agendas that extend Euro-Latin (left) and Anglo-American (right) agendas

Since the Euro-Latin and Anglo-American agendas are the only priority agendas on three alternatives,
these six agendas constitute the entire class of priority agendas on four alternatives (up to permutation).

Before moving on, it is worth clarifying three issues related to equal priority alternatives:
17Technically, one must relabel the non-terminal nodes to conform with Definition 1(3). Since this relabelling is straight-

forward but cumbersome, it has been omitted to preserve clarity. For the technical details, see Claim 1 of the Appendix.
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(1) It is not crucial to add these alternatives at the same time as described in Definition 7. Nothing about
the construction would be affected if one added them one at a time—provided that one re-interpreted
the amendment rule to mean that the second of the two additions only amends the first.

(2) Alternatives that occupy symmetric positions in a priority agenda (like the last two alternatives on a
Euro-Latin agenda or the first two on an Anglo-American agenda) may be viewed as having equal priority.
The converse is not necessarily true (see e.g. x1 and x2 in the right-hand agenda of Figure 9 above).

(3) The previous remarks may give the impression that it is without loss of generality to restrict attention
to priority agendas defined by pairs (�,α) where � is a strict priority (i.e. a linear order). To see that
this is not the case, consider the following extension of the right-hand agenda in Figure 9:

{x1, x2, x3, x4, x5}

{x1, x3, x4, x5}

{x1, x5}

x1 x5

{x3, x4, x5}

{x3, x5}

x3 x5

{x4, x5}

x4 x5

{x2, x3, x4, x5}

{x2, x4, x5}

x2 {x4, x5}

x4 x5

{x3, x4, x5}

{x3, x5}

x3 x5

{x4, x5}

x4 x5

Figure 10: A priority agenda extending the right-hand agenda in Figure 9

For this agenda, assigning a strict priority between x1 and x2 leaves no way to define the amendments
α(x4) and α(x5). The problem is not difficult to see: x4 does not amend x1 while x5 does not amend x2.

(b) Necessary and Sufficient Conditions

Euro-Latin and Anglo-American agendas are structured so that the lowest priority alternatives are the
sophisticated voting outcomes only when they always appeal to a majority. To formalize, an alternative
a ∈ A is the Condorcet winner for the decision problem (P,A) if, for all x ∈ A \ a, the majority of voters
in P prefer a to x . Then, an alternative a∗ ∈ A is said to be marginal for the issue A when v(P,A) = a∗

only if P is a profile where a∗ is the Condorcet winner for (P,A). To state the property:

Weak Marginalization (WM) For every issue, v has a marginal alternative.

It turns out that the same property is satisfied by sophisticated voting on every priority agenda:

Proposition 1 Every decision rule v implementable by priority agenda satisfies Weak Marginalization.

Indeed, it is the distinguishing feature of decision rules implementable by priority agenda:
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Theorem 2 A decision rule v satisfies IS, ILA, and WM if and only if it is implementable by a priority
agenda Pv

X . For any decision rule v satisfying these three conditions, Pv
X is unique and the pair (%v ,αv )

that defines this agenda is uniquely determined by the outcomes on Condorcet triples.

To establish the sufficiency of the axioms, the key step is to determine the priority structure imposed
by WM. To accomplish this task, the proof relies on the familiar tool of revealed preference:

Definition 8 Given a decision rule v , define the binary relations �v and ∼v on X by:

- y �v z if there exists an issue A ⊇ {y , z} where z is marginal but y is not; and,
- y ∼v z if y is marginal for every issue A where z is marginal and vice versa.

Using �v and ∼v , define the binary relation %v on X by y %v z if y �v z or y ∼v z .

For the Anglo-American and Euro-Latin agendas, %v reflects the underlying weak priority. For every
issue A, the first marginalizes the lowest ranked alternative in A according to %v while the second
marginalizes the two lowest ranked alternatives.18 In fact, %v defines a weak priority with similar features
for any decision rule that satisfies IS, ILA, and WM:

Lemma 1 If v satisfies IS, ILA, and WM, then: (i) %v is a weak priority; and; (ii) for every issue A, v
marginalizes either the lowest or two lowest alternatives in A according to %v .

As indicated in Theorem 2, it is possible to re-formulate the revealed priority %v in terms of Condorcet
triples. For any two alternatives y and z , Table 1 shows that there are six combinations of outcomes for
the triples Pxyz and Pxzy . Of these, four directly reveal y �v z or z �v y while two combinations are
consistent with every possible priority ranking of y and z . By varying the alternative x , it is possible to
resolve these ambiguous cases (see Corollary 3 of the Appendix).

Table 1 also shows how to define the amendment rule αv in terms of Condorcet triples. Intuitively, x
is “revealed to amend” a higher priority alternative b if the Condorcet triples for every alternative c with
intermediate priority yields type-(a) or type-(c) outcomes—namely the outcomes where x appears in the
same sub-issue as b in Figure 7. Then, αv (x) can be defined as the highest priority alternative(s) that x
is revealed to amend (see Definition 11 and Lemma 2 of the Appendix).

In light of Theorem 1, the sufficiency of the axioms in Theorem 2 follows by showing that the simple
agenda SvX “branches” in the same way as the priority agenda Pv

X defined by (%v ,αv ).

V. Discussion

In this section, I examine the relationship of Euro-Latin and Anglo-American agendas to other priority
agendas. The goal is to highlight how the latter extend our understanding of legislative voting beyond
Euro-Latin and Anglo-American agendas. In part (a), I first describe two distinctive features that every
priority agenda shares with Euro-Latin and Anglo-American agendas. In part (b), I then highlight a key
difference between these two agendas and other priority agendas. Finally, in part (c), I describe how
priority agendas expand the scope of implementation beyond Euro-Latin and Anglo-American agendas.

18Eliaz et al. [2011] characterize choice behaviour that is consistent with selecting the “lowest two” alternatives.
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(a) Similarities

The literature emphasizes three features of sophisticated voting on Euro-Latin and Anglo-American agen-
das. One of these features, Weak Marginalization, was used in Section IV to characterize the decision
rules implemented by priority agendas. The other two features are monotone comparative statics.

The first is a property of decision rules that relates to changes in voter preferences. Given a profile
P , let Px denote a profile where every preference is identical to P except for one voter, whose preference
between x and the immediately preferred alternative are reversed.19 That is, Px differs from P only by
improving x in the eyes of one voter. Using this notation, a decision rule v is preference monotonic if,
for every decision problem (P,A) such that v(P,A) = x , v(Px ,A) = x for every profile Px .

Like Euro-Latin and Anglo-American agendas, every priority agenda is preference monotonic:

Proposition 2 Every decision rule v implementable by priority agenda is preference monotonic.

The second is a property of agendas that relates to changes in priority. Given a priority agenda PX
defined by (%,α), let (%x ,αx) denote a pair identical to (%,α) except for one alternative x , whose
priority and amendment features are swapped with an alternative y such that: (i) y � z � x for no
alternative z ∈ X ; or, (ii) x ∼ y and x is amended by every alternative that amends y . Let Px

X denote
the priority agenda defined by (%x ,αx). Intuitively, x weakly improves in terms of priority in Px

X by
“swapping places” with y in the agenda.20 Using this notation, PX is priority monotonic if, for every
decision problem (P,A) such that UNE [PX |A,P] = x , UNE [Px

X |A,P] = x for Px
X .

Like Euro-Latin and Anglo-American agendas, every priority agenda is priority monotonic:

Proposition 3 Every priority agenda PX is priority monotonic.

(b) Differences

Unlike other rules implemented by priority agenda, the Euro-Latin and Anglo-American agendas treat
the alternatives neutrally after taking the priorities into account. Intuitively, the outcomes may depend
on the “structure” of the profile and the priorities but not the “names” of the alternatives. Perhaps the
simplest (if not the weakest) implication of this neutrality is that issues of the same size must have the
same number of marginal alternatives. Where two issues A,A′ such that |A| = |A′| are understood to be
similar, this neutrality property can be stated more formally as follows:

Neutral Priority (NP) For similar issues, v has the same number of marginal alternatives.

The next result shows that, besides the Euro-Latin and Anglo-American procedures, no other decision
rule implementable by priority agenda satisfies even this weak form of neutrality:

Proposition 4 The Euro-Latin and Anglo-American procedures both satisfy NP. In fact, they are the
only decision rules implementable by priority agenda that satisfy this property.

19For the voter in question, the preference “... �i y �i x �i ...” in P becomes “... �x
i x �x

i y �x
i ...” in Px .

20Formally, Px
X can be obtained by permuting the labels of the terminal nodes in PX marked x and y .
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Whereas the Euro-Latin agenda always marginalizes two alternatives, the Anglo-American agenda always
marginalizes one. No other rule that satisfies IS, ILA, and WM marginalizes the same number of alterna-
tives, even for similar issues. In recent work, Apesteguia et al. [2014] provide a different characterization
of the Euro-Latin and Anglo-American procedures using the following properties:

Condorcet Priority (CP) Every issue A has a prioritarian alternative p∗ ∈ A such that

v(Pp∗xy , {p∗, x , y}) = p∗ for any Condorcet triple Pp∗xy involving alternatives x , y ∈ A.

Condorcet Anti-Priority (CA) Every issue A has an anti-prioritarian alternative p∗ ∈ A such that

v(Pp∗xy , {p∗, x , y}) = y for any Condorcet triple Pp∗xy involving alternatives x , y ∈ A.

To characterize the Euro-Latin procedure, they use CP along with ILA and Division Consistency (DC)
(see footnote 11). To characterize the Anglo-American procedure, they use CA along with ILA and a
property called Elimination Consistency (EC). Theorem 2 shows that one can replace DC and EC in these
characterizations by IS:

Corollary 1 A decision rule v is:

(i) a Euro-Latin procedure if and only if it satisfies IS, ILA, and Condorcet Priority.
(ii) an Anglo-American procedure if and only if it satisfies IS, ILA, and Condorcet Anti-Priority.

Using %v (particularly as characterized in Corollary 3 of the Appendix), it is easy to see that CP marginal-
izes two alternatives for every issue while CA marginalizes one. This shows that the key difference between
the Euro-Latin and Anglo-American procedures is the structure of the amendments associated with each.

(c) Implementation

The majority relation MA
P associated with a given decision problem (P,A) is defined by

xMA
P y if the majority of voters in P prefer x ∈ A over y ∈ A.

Since the number of voters was assumed to be odd, the majority relation MA
P associated with every

decision problem (P,A) defines a tournament (a total21 and asymmetric relation) on A.
Two of the most widely discussed tournament solutions are the Top Cycle and the Banks Set:

Definition 9 The Top Cycle TC (MA
P ) is the set of the alternatives that are majority preferred (directly or

indirectly) to every other alternative in A. Formally: TC (MA
P ) = {a ∈ A : aMA

P ...M
A
P a
′ for all a′ ∈ A\a}.

Definition 10 The Banks Set BA(MA
P ) is the set of alternatives at the top of some maximal MA

P -
transitive chain in A.22 Formally: BA(MA

P ) ≡ {a ∈ A : a = b1 for some maximal MA
P -transitive chain 〈b〉}.

21Formally, xMA
P y or yMA

P x for all x , y ∈ A. Thus, MA
P is incomplete only because it is irreflexive.

22Formally: a MA
P -transitive chain is a sequence 〈b〉 = b1, ..., bm of alternatives in A such that biMA

Pbj for all j > i ; and,
a MA

P -transitive chain is maximal if there is no alternative a ∈ A \ 〈b〉 such that a, b1, ..., bm defines a MA
P -transitive chain.
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While the Top Cycle corresponds to the alternatives that are sophisticated voting outcomes on the
Euro-Latin agenda for some priority, the Banks Set corresponds to the alternatives that are sophisticated
voting outcomes on the Anglo-American agenda for some priority.

To formalize this observation, consider a priority agenda PA defined by (%,α). Given a permutation
σ : A → A, let Pσ

A denote the priority agenda defined by permuting the priority % and the amendment
rule α according to σ. In other words, Pσ

A is the priority agenda defined by (σ· %,σ · α). Then:

(i’) a ∈ TC (MA
P ) iff UNE [Pσ

A;P] = a for some permutation σ of a Euro-Latin agenda PA; and,
(ii’) a ∈ BA(MA

P ) iff UNE [Pσ
A;P] = a for some permutation σ of an Anglo-American agenda PA.

It turns out that observations (i’) and (ii’) can be generalized to all priority agendas. In particular:

Proposition 5 Given a priority agenda PX :

(i) a /∈ TC (MA
P ) implies UNE [Pσ

A;P] 6= a for every permutation σ; and,
(ii) a ∈ BA(MA

P ) implies UNE [Pσ
A;P] = a for some permutation σ.23

Part (i) follows from a general observation due to McKelvey and Niemi [1978]: no agenda ever selects
an alternative outside of the Top Cycle. It is included only as a point of contrast to observation (i’).

The real novelty is part (ii). Given a decision problem (P,A) and an alternative a in the Banks Set
BA(MA

P ), the proof defines a permutation σ such that Pσ
A selects a for every priority agenda PA on

A. The idea generalizes Sheplse and Weingast [1984]. For a given a ∈ BA(MA
P ), they show that the

alternatives of an Anglo-American agenda can be re-prioritizing according to some sophisticated sequence
so that a is selected.24 The proof of Proposition 5(ii) shows that this extends to every priority agenda.

Proposition 5(ii) has an immediate corollary for implementation by priority agenda:

Corollary 2 No v implemented by priority agenda selects outside the Banks Set for every (P,A).

One implication is that priority agendas cannot be used to implement decision rules that select scoring
winners (according to any of the Copeland, Slater, or Markov scoring rules) for every decision problem.25

VI. Conclusion

In this paper, I characterize the sophisticated voting outcomes for a wide range of agendas that possess
the kinds of simple features observed in practice. Not only do these results provide key insights into
legislative decision-making but they have broader implications for a variety of other issues:

23This notation follows the Restrict-Permute (R-P) convention that one first restricts PX to A (as in Claim 3 of the
Appendix) before re-prioritizing the alternatives in PA according to σ : A → A. Following an alternative Permute-Restrict
(P-R) convention, one first re-prioritizes the alternatives in PX according to σ : X → X before restricting Pσ

X to A. For
Euro-Latin and Anglo-American agendas, the two conventions lead to identical results. For all other priority agendas, the
P-R convention is more flexible. In fact, the R-P convention is just a special case of the P-R convention with the restriction
that σ(x) = x for all x ∈ X \ A. As such, Proposition 5 continues to hold when one instead follows the P-R convention.

24Effectively, this establishes the “only if” direction of observation (ii’).
25For some tournaments, the Banks Set contains no such scoring winners (see Brandt et al. [2015, Figure 3.7]).
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(1) Implementation by Agenda: In related work, I give general necessary and sufficient conditions
for implementation by agenda (Horan [2013]). A priori, these conditions impose no limitations on the
size or structure of the implementing agenda. Indeed, some agenda-implementable social choice functions
require complex agendas, even when the number of alternatives is relatively small (Trick [2006]).

In the interest of identifying “simple” implementing mechanisms (Moore [1992]), it is worth reformu-
lating the three conditions in Theorem 2 using Remark 1. On the conventional implementation domain,
ILA states that the outcome cannot be affected by the majority ranking of alternatives outside the Con-
dorcet Set. This amounts to the well-known observation of McKelvey and Niemi [1978]. In contrast, the
two other conditions (IS and ILA) appear to have no precedent in the literature. Intuitively, both impose
strong inter-profile restrictions on what can and cannot be selected from the Condorcet Set.

(2) Tournament Solutions: By varying the priority of the alternatives, the Euro-Latin and Anglo-
American agendas can be used to define the Top Cycle and the Banks Set. In principle, one could use the
same kind of approach to define a tournament solution for any priority agenda.26 This possibility raises
an interesting question about another well-known tournament solution: is there some priority agenda that
can be used to define the Uncovered Set (Miller [1980])? 27

(3) Agenda Manipulation: The paper has implications for the manipulation of agenda voting. For
one, decision rules are well-suited to explore the issue of strategic candidacy (Dutta et al. [2002]). Since
they range over all decision problems (P,A), the change in the outcome when a candidate (an alternative)
drops out of the election becomes part of the primitive. In principle, this makes it possible to extend the
analysis of strategic candidacy on Anglo-American agendas to more general classes of agendas.

Equally relevant are the monotonicity features of priority agendas. Since it weakens strategyproofness
(Sanver and Zwicker [2009]), preference monotonicity has obvious implications for the misrepresentation
of preferences by voters.28 This feature also eliminates the possibility for candidates to gain an advantage
by “throwing” majority comparisons with other candidates (see Altman et al. [2009]). In turn, priority
monotonicity imposes some mild limitations on the agenda-setter: to prevent an alternative from being
selected, the agenda-setter must move it down the agenda. Having said this, Proposition 5 shows that
the agenda-setter can re-prioritize the alternatives to select any outcome in the Banks Set.

(4) Preference Monotonicity: As the discussion above suggests, this is a desirable property for
voting rules (see also Fishburn [1982]). Besides the priority agendas introduced here, it is known that
every knockout agenda (i.e. each alternative labels exactly one terminal node) implements a preference
monotonic decision rule (Altman et al. [2009]; Moulin [1991, Exercise 9.4]). Since the only overlap
between knockout agendas and priority agendas are Euro-Latin agendas, this begs the following question:
what features characterize the entire class of agendas implementing preference monotonic decision rules?

26For a given priority agenda PX , one must also specify which restriction of PA is to be used for every issue A′ of size
|A′| = |A|. Because of their structure, this is redundant for Euro-Latin and Anglo-American agendas (see also footnote 23).

27Given Proposition 5, any such solution must be nested between the Banks Set and the Top Cycle. The Uncovered Set
is the only well-known tournament solution in this range (see Brandt et al. [2015, Figure 3.7] or Laslier [1997, Table A.1]).

28In the setting of the current paper (i.e. single-valued choice rules on the “universal domain” of strict preference profiles),
strategyproofness is equivalent to Maskin Monotonicity (see e.g. Muller and Satterthwaite [1977]).
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VIII. Appendix – Proofs

NOTE: Except as indicated, the claims in sections (c)-(g) below suppose that v satisfies IS and ILA.

(a) Proof of Remark 1

To formalize the remark, some notation is required. Given a profile P, let PA denote the profile that coincides
with P on A but, for each voter preference, places all x ∈ X \ A (in a fixed order) below every a ∈ A.

Proof of Remark 1. Suppose v is implemented by TX . To establish v(P,A) = v(PA,X ), note that “backward
induction” determines the UNE on any agenda (McKelvey and Niemi [1978]). In any terminal subgame, it selects
the Condorcet winner. One can then delete the Condorcet loser and repeat the argument on the resulting (smaller)
agenda. From this observation, it follows that UNE [TX ;PA] = UNE [TX |A;PA]. Since PA and P coincide on A,
UNE [TX |A;PA] = UNE [TX |A;P] as well. So, UNE [TX ;PA] = UNE [TX |A;P] as required.

(b) Proof of Propositions 1, 2, and 3

Some additional notation is required. Given a weak order %, let L%(a) ≡ {x ∈ X : a � x} denote the strict lower
contour set of a ∈ X . And, let �∗ denote any strict order such that y � z implies y �∗ z for all y , z ∈ X .
Given an issue A = {a1, ..., aK} labeled according to �∗, let Ak

j denote the alternatives in A between aj and ak

(inclusive). Formally, let Ak
j ≡ {aj , ..., ak} if j ≤ k ≤ K ; and, let Ak

j ≡ ∅ otherwise.

Claim 1 Given a priority agenda P(%,α), the two successor nodes of any non-terminal node A are a1 ∪ AK
j and

AK
2 where j ∈ {3, ...,K + 1} and A = {a1, ..., aK} is labeled according to �∗. Moreover:

(i) AK
2 = Xm

m−K+2 where X = {x1, ..., xm} is labeled according to �∗; and,
(ii) a2 � aj and aj is a highest priority alternative in AK

3 that amends a1 (if such an alternative exists).

Proof. Let B and C denote the labels attached to the two successors of node A. Since % is a weak priority: (1)
max% A = {a1, a2}; or, (2) max% A = {a1}. Since the claim is trivial if |A| = 2, suppose |A| ≥ 3.

(1) By construction (step (ii) in Definition 7), a1 and a2 must have been added at A. Since they must be added
to different successors of A, a1 ∈ B \C and a2 ∈ C \B. By definition of α, the next highest priority alternative(s)
in X are added under the successors identified with a1 and a2. By a straightforward induction argument, it follows
that B = a1 ∪ L%(a1) and C = a2 ∪ L%(a2). So, B = a1 ∪ AK

3 , C = AK
2 = Xm

m−K+2, and a2 � a3.

(2) By construction (step (i) in Definition 7), a1 and the next highest priority alternative(s) at A must
be added to different successors of A. Defining A−1 ≡ max%(A \ a1), a1 ∈ B \ C and A−1 ⊆ C \ B. So,
C = A−1 ∪ L%(a2) = Xm

m−K+2 by the same argument as (1). To add an aj /∈ A−1 under the successor identified
with a1, the construction requires that aj amends a1. Then, by the same argument as (1), B = a1 ∪ AK

j where aj

is a highest priority in C = Xm
m−K+2 ≡ AK

2 that amends a1 besides a2 � aj (if such an alternative exists).

Claim 2 Fix a priority agenda P(%,α) on X = {x1, ..., xm} as labeled according to �∗ and an alternative xj that
amends x1 and x2 according to α. Then, every path from the root X to a terminal node in P(%,α) passes through
a non-terminal node xi ∪ Xm

j whose successors are Xm
j and xi ∪ Xm

k for some i < j < k ≤ m + 1.

Proof. The proof is by strong induction on m. The base case m = 3 is straightforward. For the induction step
m = n+1, consider the two successors of the root X . By Claim 1, these are x1 ∪Xm

k and Xm
2 for 2 < k ≤ m+1.
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If j = 3, then Claim 1 implies k = 3. In this case, x1 ∪ Xm
3 and Xm

2 are the desired nodes. Every path to a
terminal node goes through one of these nodes. And, Claim 1 establishes the following: the successors of x1 ∪Xm

3

are x1 ∪ Xm
k′ and Xm

3 ; and, the successors of Xm
2 are x2 ∪ Xm

k′′ and Xm
3 .

If j > 3, then xj ∈ Xm
3 and xj ∈ Xm

k (by Claim 1). Moreover, xj amends x3 (by definition of α and the
assumption that xj amends x1 and x2). Since the agendas starting at x1 ∪ Xm

k and Xm
2 are priority agendas on n

or fewer alternatives (where xj amends the two highest priority alternatives), the induction hypothesis implies that
every path to a terminal node starting from x1 ∪ Xm

k or Xm
2 passes through a non-terminal node with the desired

characteristics. And, since every path from the root X passes through Xm
2 or x1 ∪ Xm

k , the result follows.

The next results require two additional definitions.

- Two agendas TX and T ′Y such that Y ⊂ X are outcome-equivalent on Y if:

UNE [TX |A,P] = UNE [T ′Y |A,P] for every decision problem (P,A) such that A ⊆ Y .

- Given a priority agenda PX defined by the pair (%,α), let PX\x denote the deleted priority agenda induced by
constructing the agenda without the alternative x ∈ X . Formally, let PX\x be defined by (%−x ,α−x) where the
priority %−x is the restriction of % to X \ x and the amendment rule α−x is defined as follows:

α−x(y) ≡



α(y) if y does not amend x ,

{x ′} if α(y) = {x , x ′},

Xj+1 if α(y) = {x} ∈ Xj and |Xj | = 2, and

max% α(x) ∪ α(y) otherwise – i.e. z � x for z ∈ α(y).

Equivalently, one can obtain PX\x by “deleting” certain subgames of PX where x has highest priority. In particular:

(1) Identify every node Cx of PX s.t. x ∈ max% Cx and x /∈ max% C p
x for the predecessor C p

x of Cx :
- let Bs

x denote the successor of Cx s.t. x ∈ Bs
x ; and, let C s

x denote its sibling.
- let Bx denote the sibling of Cx ; and, let B̃s

x and C̃ s
x denote its two successors.

(2) If C s
x = B̃s

x or C s
x = C̃ s

x , delete the agenda starting at Cx ; otherwise, delete the agenda starting at Bs
x .

(3) Delete every non-terminal node with a unique successor, connecting its successor to its predecessor.
(4) To obtain PX\x , relabel every non-terminal node of the resulting tree to conform with Definition 1.

Claim 3 If (%,α) on X , then (%−x ,α−x) defines a priority agenda on X \ x .

Proof. Clearly, %−x defines a priority on X \ x . To see that (%−x ,α−x) defines a priority agenda, one must verify
that, in combination with %−x , the function α−x satisfies the conditions (i)-(iii) described in Section IV.(a):

(i) To see that z ∈ α−x(y) ⇒ z �−x y : In the first two cases, α−x(y) inherits (i) from α(y). This follows
from the fact that z � y implies z �−x y for z 6= x . In the third case, y cannot have priority immediately lower
than x . Otherwise, α(y) = Xj by (iii) on α. Thus, z �−x y for z ∈ Xj+1. In the final case, fix z ∈ α−x(y). By
construction, z % z ′ for any z ′ ∈ α(y). By (i) on α(y), z % z ′ � y so that z � y . Thus, z �−x y .

(ii) To see that y ∼−x y ′ ⇒ α−x(y) = α−x(y
′): Fix a pair such that y ∼−x y ′. By definition, y ∼ y ′ and

x 6= y , y ′. In light of this, it is easy to check that α−x(y) inherits (ii) from α(y) in each of the four cases.

(iii) To see that [z ∼−x z ′ �−x y and no y ′ ∈ X \ x s.t. z ∼−x z ′ �−x y ′ �−x y ] ⇒ [z ∈ α−x(y) or
w �−x z for all w ∈ α−x(y)]: There are four possibilities: (a) y % x ; (b) x � w � y for some w ∈ X ; (c) x ∈ Xj

immediately precedes y in % with |Xj | = 2; and, (d) x ∈ Xj immediately precedes y in % with |Xj | = 1.
- For (a)-(b), it is straightforward to check that α−x(y) inherits (iii) from α(y).
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- For (c), the first/third cases cannot arise: y amends x by (i) on α; and, y amends x , x ′ ∈ Xj by (iii) on α.
In the second/fourth cases, (iii) is vacuously satisfied: x ′ immediately precedes y but x ′ ∼x z for no z ∈ X \ x .

- For (d), the first/second/third cases cannot arise: y amends x by (i) on α; y amends x and x ′ by (iii) on
α; and, |Xj | = 1. In the fourth case, an issue with (iii) only arises when |Xj−1| = 2. In that case, x amends
z , z ′ ∈ Xj−1 by (iii) on α. By definition, it follows that y must amend z , z ′ ∈ Xj−1 on α−x .

It is worth noting that the deleted priority agenda PX\x is formally distinct from the pruned priority agenda PX |X\x .
Intuitively, PX\x prunes “higher up” the agenda than PX |X\x (unless x has lowest priority according to %). As a
result, it prunes away a larger portion of PX . However, the two agendas are outcome-equivalent:

Claim 4 For any priority agenda PX and any x ∈ X , PX is outcome-equivalent to PX\x on X \ x .

Proof. Suppose X = {x1, ..., xm} where X is labeled according to �∗. The proof is by strong induction on m.
The base cases m = 2, 3 are trivial. For the induction step m = n + 1, note that the successors at the root X of
PX are (x1 ∪ Xm

j ,Xm
2 ) by Claim 1. Consider the three cases: (i) j = m + 1; (ii) j = 3; and, (iii) 3 < j ≤ m.

The argument is identical in all cases if x 6= x1, x2. In fact, this argument also works for x = x2 in cases (i)
and (iii). Fix any x = xi s.t. i ≥ 2 (where i 6= 2 if case (ii) is the relevant case). By the induction hypothesis,
the priority agenda PXm

2
= PX (X

m
2 ) starting at the “right” successor Xm

2 of the root is outcome-equivalent on
Xm
2 \ xi to PXm

2 \xi . Similarly, the priority agenda Px1∪Xm
j
= PX (x1 ∪Xm

j ) starting at the “left” successor x1 ∪Xm
j is

outcome-equivalent on (x1 ∪Xm
j ) \ xi to P(x1∪Xm

j )\xi . Then, “backward induction” shows that the outcome on PX

for any issue A ⊆ X \ xi does not change if one replaces the agendas at the root by their outcome-equivalents.
Since the resulting agenda is PX\xi by definition, the claim follows. The following diagram serves to illustrate:

Agenda PX Agenda PX\xi

X

Px1∪Xm
j

PXm
2

X \ xi

P(x1∪Xm
j )\xi PXm

2 \xi

To complete the proof, it suffices to establish the result for x = x1 in cases (i)-(iii) and x = x2 in case (ii).

(i) The claim is trivial since PX |(X\x1) = PX\x1 by definition.

(ii)-(iii) It suffices to show the claim for x = x1. (In case (ii), the same reasoning works for x = x2 as well.)
By the induction hypothesis, Px1∪Xm

j
is outcome-equivalent on Xm

j to PXm
j
. Let TX\x1 denote the agenda obtained

from PX by replacing the agenda Px1∪Xm
j

at x1 ∪ Xm
j with PXm

j
. To complete the proof, I show that TX\x1 is

outcome-equivalent to the priority agenda PXm
2
starting at Xm

2 .
By way of contradiction, suppose there exists some profile P s.t. UNE [TX\x1 ,P] ≡ x 6= y ≡ UNE [PXm

2
,P].

Since x is the outcome at the root of TX\x1 , “backward induction” establishes that: UNE [PXm
j
,P] = x ; and, x is

majority preferred to y . By Claims 1 and 2, every path down the agenda from Xm
2 reaches a node xi ∪Xm

j where:
(i) the “left” successor is xi ∪ Xm

k for i < j < k ; and, (ii) the “right” successor is Xm
j .29 Since UNE [PXm

j
,P] = x ,

y must be the outcome at one or more “left” successors xi ∪ Xm
k . Since UNE [PXm

j
,P] = x however, y must be

eliminated at the predecessor xi ∪ Xm
j of any such “left” successor. So, UNE [PXm

2
,P] 6= y , a contradiction which

establishes that TX\x1 is outcome-equivalent to PXm
2
.

29Claim 2 is clearly applicable in both cases. In case (ii) (i.e. j = 3), x3 must amend x2 by definition of α. In case (iii)
(i.e. j > 3), the fact that xj amends x1 implies that xj must amend x2 and x3 (again by definition of α).
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Proof of Proposition 1. Suppose v is implementable by a priority agenda PX defined by (%,α). I show that
xm is marginal for X = {x1, ..., xm} as labeled according to �∗. It then follows that xm is marginal for any issue
A s.t. xm ∈ A. Since PX |{x1,...,xm−1} is a priority agenda on X \ xm s.t. xj % xm−1, the same argument shows that
xm−1 is marginal for any issue A ⊆ X \ xm s.t. xm−1 ∈ A. The result follows by extending this reasoning.

The proof that xm is marginal for X is by strong induction on m. The base cases m = 2, 3 are trivial. For
the induction step m = n + 1, consider the successors of the root X . By Claim 1, these are x1 ∪ Xm

k and Xm
2 for

2 < k ≤ m + 1. There are three possibilities: (i) k = m + 1; (ii) k = m; and, (iii) 2 < k < m.

(i) In this case, the root splits PX into x1 and a priority agenda PXm
2
on n alternatives. Since xi % xm for all

xi ∈ Xm
2 , the induction hypothesis implies that xm is the outcome on PXm

2
only if it is the Condorcet winner on

Xm
2 . Rolling back the agenda to the root node X , xm is the outcome on PX only if it is the Condorcet winner on
{x1, xm} as well. Combining the last two observations gives the result.

(ii) In this case, xm amends x1 by Claim 1. Then, by construction of PX , every terminal subgame pairs xm

against another alternative in X . So, any alternative majority defeated by xm is eliminated at the last stage (i.e.
only xm and alternatives that beat xm can be selected as outcomes). Rolling back the agenda to the root node,
it then follows that xm is the outcome on PX only if it is the Condorcet winner on X .30

(iii) In this case, the agendas Px1∪Xm
k
= PX (x1 ∪Xm

k ) and PXm
2
= PX (X

m
2 ) are priority agendas on n or fewer

alternatives. Since xi % xm for all xi ∈ X , the induction hypothesis implies that xm is the outcome on PX only if
it is the Condorcet winner on Xm

k (i.e. the intersection of x1 ∪ Xm
k and Xm

2 ).
In that case, one can prune away Xm−1

k from PX to obtain PX |Y where Y ≡ X k−1
1 ∪ xm. By Claim 4, PX is

outcome-equivalent on Y to the priority agenda PY (on n or fewer alternatives). Since xi % xm for all xi ∈ Y ,
the induction hypothesis implies xm is the outcome on PY (and hence PX |Y ) only if it is the Condorcet winner on
X k−1
1 ∪ xm. Combining this with the observation in the last paragraph gives the result.

Claim 5 Every decision rule v implementable by priority agenda satisfies IS.

Proof. If v is implementable by the priority agenda PX , then there exists a way to split X . By Claim 4, the same
is true for any X \ x . By applying Claim 4 to the resulting priority agenda PX\x , the same must be true for any
X \ {x , y}. Extending this reasoning by induction, it follows that v satisfies IS.

Claim 6 If PX is a priority agenda s.t. the successors of the root node X are labeled B and C , then:

UNE [PX ,P] ∈ B ∩ C implies UNE [PX (B),P] = UNE [PX (C ),P].

Proof. The proof is by strong induction on m. The base case m = 3 is straightforward. For the induction step
m = n+1, suppose (%,α) defines PX and X = {x1, ..., xm} is labeled according to �∗. By Claim 1: B = x1∪Xm

j

for some 3 ≤ j ≤ m + 1; and, C = Xm
2 . If j = m + 1, then B is a singleton and there is no profile P s.t.

UNE [PX ,P] ∈ B ∩ C . So, suppose j ≤ m without loss of generality. Now, fix a profile P s.t. UNE [PX ,P] = xk

for j ≤ k ≤ m. By way of contradiction, suppose the claim is false. Since UNE [PX ,P] = xk , “backward induction”
leads to two possibilities for UNE [PX (B),P] ≡ xb and UNE [PX (C ),P] ≡ xc : (i) b = k and c 6= k ; and, (ii)
b 6= k and c = k . To establish the result, I show that each case leads to a contradiction:

(i) Consider the agenda TX\x1 (described in Claim 4) where the successors of the root are Xm
j and C = Xm

2 .
Since UNE [PX (B),P] = xb, UNE [PXm

j
,P] = xb. To see this, let B ′ denote the “left” successor of B in PX . If

xb ∈ B ′ ∩Xm
j , then UNE [PXm

j
,P] = xb by the induction hypothesis. If xb /∈ B ′, then UNE [PXm

j
,P] = xb as well.

(Otherwise, “backward induction” gives UNE [PX (B),P] 6= xb.) Since UNE [PX ,P] = xb, UNE [PXm
j
,P] = xb

30This type of argument is well-known in the literature (see e.g. Theorem 2.2 of Iglesias et al. [2012]).

25



implies UNE [TX\x1 ,P] = xb as well. By the argument in Claim 4(ii)-(iii), TX\x1 must be outcome-equivalent to
PX\x1 = PX (C ). So, xb = UNE [TX\x1 ,P] = UNE [PX (C ),P] = xc , which is a contradiction.

(ii) By Claim 1, Xm
3 is the “right” successor of C in PX . Moreover, UNE [PXm

3
,P] = xc by the same reasoning

as in (i). Now, consider the priority agenda PX\x2 on n alternatives. If j > 3, then the successors at the root node
X \x2 are B and Xm

3 . So, “backward induction” gives UNE [PX\x2 ,P] = xc . Since UNE [PX (B),P] = xb however,
this contradicts the induction hypothesis. If j = 3, then PX\x2 = PX (B). So, UNE [PX\x2 ,P] = xb. Since the
“right” successor of B in PX\x2 is Xm

3 and UNE [PXm
3
,P] = xc however, this contradicts UNE [PX ,P] = xc .

Proof of Proposition 2. Let PX denote the priority agenda that implements v . It suffices to show preference
monotonicity for X . Since UNE [PX |A,P] = UNE [PX ,P

A] by Remark 1, the result then follows for all A ⊆ X .
The proof is by strong induction on m. The base case m = 3 is straightforward. For the induction step

m = n+1, fix a profile P s.t. UNE [PX ,P] = x and suppose the successors of the root X are B and C . There are
two cases: (i) x ∈ B ∩ C ; and, (ii) x ∈ B \ C . (i) By Claim 6, UNE [PX (B),P] = UNE [PX (C ),P] = x . Since
PX (B) and PX (C ) are priority agendas on n or fewer alternatives, UNE [PX (B),P

x ] = UNE [PX (C ),Px ] = x

by the induction hypothesis. Then, “backward induction” gives UNE [PX ,P
x ] = x . (ii) Since PX (B) is a

priority agenda on n or fewer alternatives, UNE [PX (B),P
x ] = x by the induction hypothesis. Since x /∈ C ,

UNE [PX (C ),Px ] = UNE [PX (C ),P]. Since UNE [PX ,P] = x , “backward induction” gives UNE [PX ,P
x ] = x .

Proof of Proposition 3. Suppose PX is defined by (%,α) where X = {x1, ..., xm} is labeled according to �∗.
By Remark 1, it suffices to establish the result for X . The proof is by strong induction on m.

The base cases m = 2, 3 are straightforward. For the induction step m = n + 1, fix a profile P s.t.
UNE [PX ,P] = xk . (Where xk−1 ∼ xk , suppose that every alternative that amends xk−1 also amends xk .)
By Claim 1, the successors of the root X are: B ≡ x1 ∪Xm

j for some 3 ≤ j ≤ m+1; and, C ≡ Xm
2 . So, there are

four cases to consider: (i) j + 1 ≤ k ≤ m; (ii) 3 ≤ k ≤ j − 1; (iii) k = j ; and, (iv) k = 2. To establish the result,
I show that UNE [Pk

X ,P] = xk in each case (where Pk
X ≡ P

xk
X to simplify the notation):

(i) Since xk ∈ B∩C and UNE [PX ,P] = xk , Claim 6 implies UNE [PX (B),P] = UNE [PX (C ),P] = xk . Since
PX (B) and PX (C ) are priority agendas on n or fewer alternatives and k 6= j , the induction hypothesis implies
UNE [Pk

X (B),P] = UNE [Pk
X (C ),P] = xk . So, UNE [Pk

X ,P] = xk .

(ii) Since xk /∈ B and UNE [PX ,P] = xk , “backward induction” implies UNE [PX (C ),P] = xk . Since PX (C ) is
a priority agenda on n or fewer alternatives, the induction hypothesis implies UNE [Pk

X (C ),P] = UNE [PX (C ),P] =

xk . Since xk /∈ B, UNE [Pk
X ,P] = xk by the same kind of reasoning as Proposition 2(ii).

(iii) By the reasoning in case (i), UNE [PX (B),P] = UNE [PX (C ),P] = xj and UNE [Pk
X (C ),P] = xj . By way

of contradiction, suppose UNE [Pk
X ,P] 6= xj . Then, UNE [Pk

X ,P] = x1 by Claim 6. Since UNE [Pk
X (C ),P] = xj ,

“backward induction” implies that x1 is majority preferred to xj .
Since UNE [Pk

X ,P] = x1, “backward induction” implies UNE [Pk
X (Bj),P] = x1 where Bj ≡ {x1, xj−1} ∪ Xm

j+1

is the “left” successor of the root X in Pk
X . Since the agenda at the “left” successors B ′ ≡ x1 ∪ Xm

j′ of B and
Bj coincide and UNE [Pk

X (Bj),P] = x1, “backward induction” implies UNE [Pk
X (B

′),P] = UNE [PX (B
′),P] = x1.

Since UNE [PX (B),P] = xj however, “backward induction” implies that xj is majority preferred to x1. Since this
contradicts the inference drawn in the last paragraph, it follows that UNE [Pk

X ,P] = xj .

(iv) While more involved than case (iii), the basic proof technique in this case is similar. Since UNE [PX ,P] =

x2 and x2 /∈ B, “backward induction” implies UNE [PX (C ),P] = x2. Let B ′ ≡ x2 ∪ Xm
j′ and C ′ ≡ Xm

3 denote
the two successors of C in PX . Since x2 only appears at one terminal node below B ′ and UNE [PX (C ),P] = x2,
x2 is majority preferred to UNE [PX (C

′),P] and every alternative it meets on the “backward induction” path in
PX (B

′). Now, consider P2
X , letting B2 ≡ x2 ∪ Xm

j and C2 ≡ x1 ∪ Xm
3 denote its two successors. By construction,
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B ′2 ≡ x1 ∪ Xm
j′ and C ′2 ≡ C ′ are the two successors of C2 in P2

X .
Since every alternative that amends x1 in PX also amends x2, everything that x2 meets on the “backward

induction path” in PX (B2) is something that it meets in PX (B
′). Since x2 is majority preferred to all of these

alternatives by the first observation in the last paragraph, UNE [P2
X (B2),P] = x2. Moreover, UNE [P2

X (C
′
2),P] =

UNE [PX (C
′),P] by the second observation in the last paragraph.

By way of contradiction, suppose UNE [P2
X ,P] 6= x2. Since UNE [P2

X (B2),P] = x2 and x2 is majority preferred
to UNE [P2

X (C
′
2),P] = UNE [PX (C

′),P], “backward induction” implies UNE [P2
X ,P] = UNE [P2

X (B
′
2),P]. Since

x2 is majority preferred to everything that x1 meets along the “backward induction path” in PX (B
′
2), UNE [P2

X ,P] =

UNE [P2
X (B

′
2),P] = x1. Since UNE [P2

X (B2),P] = x2, x1 is majority preferred to x2.
Since UNE [P2

X (B
′
2),P] = x1, the same kind of reasoning as in the previous paragraphs establishes that

UNE [P2
X (B),P] = x1. Since UNE [P2

X ,P] = x2 however, x2 is majority preferred to x1. Since this contradicts the
inference drawn in the last paragraph, it follows that UNE [P2

X ,P] = x2.

(c) Proof of Theorems 1 and 1∗

Claim 7 For any two profiles P,P ′ that coincide on A, v(P,A) = v(P ′,A).

Proof. The proof is by induction on |A|. The base case |A| = 2 follows from ILA. For the induction step, v(P,A) =
v(P, {v(P,B), v(P,C )}) = v(P, {v(P ′,B), v(P ′,C )}) = v(P ′, {v(P ′,B), v(P ′,C )}) = v(P ′,A) follows from IS,
the induction hypothesis, and the base case.

Using the definition of PA from section (a) above, one can establish an analog of Remark 1:

Claim 8 For any decision problem (P,A), v(P,A) = v(PA,X ).

Proof. By ILA, v(PA,X ) = ... = v(PA,A). Since v(PA,A) = v(P,A) by Claim 7, v(PA,X ) = v(P,A).

Claim 9 Suppose (B,C ) splits A for v . Then, for all D ⊆ A:

(i) v(P,D) = v(P, {v(P,B ∩ D), v(P,C ∩ D)}); and,
(ii) (B ∩ D,C ∩ D) splits D if D 6= B ∩ D,C ∩ D.

Proof. Fix some x ∈ A and let Px coincide with P except x is demoted to Condorcet loser on A. Then,
v(P,A \ x) = v(Px ,A \ x) = v(Px ,A) = v(Px , {v(Px ,B), v(Px ,C )}) = ... = v(P, {v(P,B \ x), v(P,C \ x)})
by Claim 7, ILA, and IS. Part (i) follows by repeated application of this reasoning. For part (ii), observe that
D 6= B ∩ D,C ∩ D implies B ∩ C ∩ D 6= B ∩ D,C ∩ D. Then, given part (i), (B ∩ D,C ∩ D) splits D.

Claim 10 For v , there is a unique way to split every issue.

Proof. The proof is by induction on |A|. The claim holds trivially for |A| = 2 and is straightforward to
show for |A| = 3. While there are a number of cases to check, the idea is relatively simple. Contrary to IS,
v(P, {v(P,B), v(P,C )}) 6= v(P, {v(P,B ′), v(P,C ′)}) for some cyclic profile P.

To complete the induction, suppose the claim holds for |A| = n and consider the case |A| = n + 1. By way
of contradiction, suppose (B,C ) and (B ′,C ′) are distinct splittings of A. First, suppose (B,C ) and (B ′,C ′) both
partition A. Then, there exists some x ∈ A such that (B \ x ,C \ x) and (B ′ \ x ,C ′ \ x) are distinct partitions of
A\ x . But, this contradicts the induction hypothesis. Next, suppose x ∈ B ∩C . If x ∈ B ′∩C ′, then (B \ x ,C \ x)
and (B ′ \ x ,C ′ \ x) are distinct splittings of A \ x , which again contradicts the induction hypothesis. Finally,
suppose x ∈ B ′ \ C ′. There are two possibilities:
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- (B \ x ,C \ x) and (B ′ \ x ,C ′ \ x) coincide: Without loss of generality, B \ x = B ′ \ x and C \ x = C ′ (since
the only other possibility is symmetric). Since (B,C ) splits A, there exist alternatives b ∈ B \ C and c ∈ C \ B.
Since B \ x = B ′ \ x and C \ x = C ′, b ∈ B ′ \ C ′ and c ∈ C ′ \ B ′. Now, consider D = {b, c , x}. Collecting the
observations above: (B ∩D,C ∩D) = ({x , b}, {x , c}) and (B ′ ∩D,C ′ ∩D) = ({x , b}, {c}). For the profile Pbxc

whose Condorcet set is the cyclic triple bxc : v(Pbxc , {v(Pbxc ,B ∩ D), v(Pbxc ,C ∩ D)}) = v(Pbxc , {b, x}) = b;
and, v(Pbxc , {v(Pbxc ,B

′ ∩ D), v(Pbxc ,C
′ ∩ D)}) = v(Pbxc , {b, c}) = c . But, this contradicts Claim 9(i).

- (B \x ,C \x) and (B ′\x ,C ′\x) are distinct: First, suppose B ′\C ′ 6= x . Then (B \x ,C \x) and (B ′\x ,C ′\x)
are distinct splittings of A \ x , which contradicts the induction hypothesis. Next, suppose B ′ \ C ′ = x . Since
(B,C ) splits A, there exist alternatives b ∈ B \ C and c ∈ C \ B. Now, consider D = {b, c , x}. Collecting
the observations above: (B ∩ D,C ∩ D) = ({x , b}, {x , c}), x ∈ B ′ \ C ′, and b, c ∈ C ′. The last two set
inclusions leave three possibilities: (i) (B ′ ∩ D,C ′ ∩ D) = ({x}, {b, c}); (ii) (B ′ ∩ D,C ′ ∩ D) = ({x , b}, {b, c});
and, (iii) (B ′ ∩ D,C ′ ∩ D) = ({x , b, c}, {b, c}). In cases (i)-(ii): v(Pbcx , {v(Pbcx ,B ∩ D), v(Pbcx ,C ∩ D)}) =
v(Pbcx , {x , c}) = c ; and, v(Pbcx , {v(Pbcx ,B

′∩D), v(Pbcx ,C
′∩D)}) = v(Pbcx , {x , b}) = x . But, this contradicts

Claim 9(i). In case (iii): v(Pbcx ,D) = c by Claim 9(i); and, v(Pbcx ,D) = v(Pbcx , {v(Pbcx ,B
′ ∩D), v(Pbcx ,C

′ ∩
D)}) = v(Pbcx , {v(Pbcx ,D), v(Pbcx , {b, c})}) = v(Pbcx , {c , b}) = b. But, this is a contradiction.

Claim 11 SvX is continuous.

Proof. The proof is by strong induction on m ≡ |X |. The base cases m = 2, 3 follow directly from the definition
of SvX and IS. For the induction step m = n + 1, consider the root node X of SvX . Let B and C denote its two
successors. By IS and the induction hypothesis, the agendas SvX (B) and SvX (C ) are simple.

Let B ′ and C ′ denote the two successors of B. And, let b ∈ B ′\C ′ (resp. c ∈ C ′\B ′) denote some alternative
that labels one terminal node below B ′ (resp. C ′). To complete the proof, it suffices to show that b /∈ C or
c /∈ C . (The argument for C is similar.) By way of contradiction, suppose b, c ∈ C . By IS, there exists some
x ∈ B \ C . By Claim 9, it follows that v(P, {x , b, c}) = v(P, {v(P, {x , b, c}), v(P, {b, c})}.

By Claim 9 and the assumption about B ′, the only possible splittings of {x , b, c} are: (i) ({b}, {c , x}); (ii)
({b, x}, {c}); or, (iii) ({b, x}, {c , x}). By the formula in the last paragraph, each of these cases entails a contradic-
tion: (i) b = v(Pxcb, {x , b, c}) 6= v(Pxcb, {v(Pxcb, {x , b, c}), v(Pxcb, {b, c})} = c ; (ii) c = v(Pxbc , {x , b, c}) 6=
v(Pxbc , {v(Pxbc , {x , b, c}), v(Pxbc , {b, c})} = b; or, (iii) both of the contradictions obtained in cases (i)-(ii).

Proof of Theorem 1. Using the approach described in the text, the structure of the agenda Sv
X can be determined

from outcomes on Condorcet triples. By construction, Sv
X is non-repetitive. By Claim 11, Sv

X is continuous.
To show that SvX implements v , I show that UNE [SvX ;P] = v(P,X ) for any profile P. Since UNE [SvX |A;P] =

UNE [SvX ;PA] (by Remark 1) and v(PA,X ) = v(P,A) (by Claim 8), UNE [SvX |A;P] = v(P,A) for any A ⊂ X . To
see that UNE [SvX ;P] = v(P,X ), use “backward induction” on SvX (see the proof of Remark 1). In any terminal
subgame, the UNE selects the Condorcet winner. By ILA, so does v . By deleting the Condorcet loser and
continuing in this fashion, UNE [SvX ;P] = v(P,X ) follows immediately by IS and the construction of SvX . Finally,
Claim 10 ensures that SvX is the unique simple agenda implementing v . For any simple agenda SX implementing
v , the subgames at any node A must induce the unique splitting of A. So, SX must coincide with SvX .

Proof of Theorem 1∗. (using the assumptions about v in the statement of the Theorem) (⇒) Since ILA
is necessary for v to be implementable by agenda and v satisfies IS by assumption, the result follows from the
discussion in the text. (⇐) Fix an issue A. Since v(·,A) is implementable by simple agenda, “backward induction”
establishes that A can be split. Since this is true for every A ⊆ X , v satisfies IS.

(d) Proof of Theorem 2
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Sub-sections (i) and (ii) establish Lemmas 1 and 2. The proof of Theorem 2 is given in sub-section (iii).

(i) Proof of Lemma 1

Claim 12 If a∗ is marginal in A for v , then it is marginal in A \ x for all x ∈ A \ a∗.

Proof. Fix any x ∈ A \ a∗. By way of contradiction, suppose v(P,A \ x) = a∗ for some profile P where a∗ is
not the Condorcet winner in A \ x . By Claim 7, v(Px ,A \ x) = v(P,A \ x) for any profile Px that coincides with
P except x is demoted to Condorcet loser in A. Moreover, v(Px ,A) = v(Px ,A \ x) by ILA. So, v(Px ,A) = a∗,
which contradicts the assumption that a∗ is marginal in A.

Claim 13 For v , every issue A has at most two marginal alternatives.

Proof. Suppose otherwise. Denote any three marginal alternatives by x , y , and z and consider the triple Pxyz

(as defined in the text). Then, v(Pxyz , {x , y , z}) /∈ {x , y , z} by Claim 12, which is a contradiction.

Claim 14 Suppose (B,C ) splits A for v and a∗ is marginal in A. Then:

(i) if a∗ ∈ C \ B, then (B,C ) = (b,A \ b); and,
(ii) if a∗ ∈ B ∩ C and a∗∗ ∈ C \ a∗ is also marginal in A, then a∗∗ ∈ B ∩ C .

Proof. (i) By way of contradiction, suppose |B \ C | ≥ 2. Fix b, b′ ∈ B \ C and consider the triple Pa∗bb′ .
By Claim 9, v(Pa∗bb′ , {a∗, b, b′}) = v(Pa∗bb′ , {v(Pa∗bb′ , {b, b′}), a∗}) = a∗. By Claim 12, this contradicts the
assumption that a∗ is marginal in A. (ii) By way of contradiction, suppose a∗∗ /∈ B. Fix some b ∈ B \ C and
consider the triple Pa∗ba∗∗ . Then, a contradiction obtains along the same lines as (i).

Claim 15 If v satisfies WM, then �v is asymmetric and %v is complete.

Proof. The completeness of %v is a direct consequence of the asymmetry of �v . To see that �v is asymmetric,
suppose y �v z and z �v y for some y , z ∈ X . Let Y and Z denote the issues leading to the inferences y �v z

and z �v y . The proof that this amounts to a contradiction is by induction on |Y ∪ Z |.

For |Y ∪ Z | = 4: suppose Y = {a∗, y , z} and Z = {x , y , z}. (Every other case is ruled out by ILA or Claim
12.) By WM and Claims 12-13, the only possible marginal alternatives in Y ∪ Z are: a∗ and x ; or, one of the
two, say a∗. Now, consider the unique splitting (B,C ) of {a∗, x , y , z}. There are two possibilities: (i) a∗ ∈ C \B;
and, (ii) a∗ ∈ B ∩C . (i) By Claim 14(i), (B,C ) = (b, {a∗, x , y , z} \ b) with b 6= a∗. By Claim 9, every possibility
for b leads to a contradiction: if b = y , then y is not marginal in {a∗, y , z}; if b = z , then z is not marginal
in {x , y , z}; and, if b = x , then y is marginal in {x , y , z}.31 (ii) By Claims 9 and 14(ii), y ∈ B ∩ C . So,
(B,C ) = ({a∗, y , z}, {a∗, x , y}). But, then z is not marginal in {x , y , z}.

For |Y ∪ Z | = n + 1: Y and Z have one or two marginal alternatives (by WM and Claim 13). If both have
two, then this reduces to the case |Y ∪ Z | = n by Claim 12. If both have one, then y or z is marginal in Y ∪ Z

by WM and Claims 12-13. So, either y is marginal in Z or z is marginal in Y by Claim 12, both contradictions.
So, suppose y and a∗ are marginal in Y while z is marginal in Z . By WM and Claim 12, a∗ is the only marginal
alternative in Y ∪ Z and a∗ /∈ Z . By Claim 12, it also follows that: a∗ and y are marginal in {a∗, y , z}; and, z is
marginal in {x , y , z} for any x ∈ Z .

Now, consider the splitting (B,C ) of Z∗ = Z ∪ a∗. As in the base case, there are two possibilities: (i)
(B,C ) = ({b},Z∗ \ b) with b 6= a∗; and, (ii) a∗ ∈ B ∩ C . For both, I claim that y and z must appear in the

31This last case cannot occur if x is marginal in {a∗, x , y , z}.
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same sub-issues as a∗. (i) As in the base case, b 6= y , z . So, {y , z} ⊆ C as claimed. (ii) As in the base case,
y ∈ B ∩ C . This, in turn, implies z ∈ B ∩ C . To see why, suppose z ∈ B \ C and fix some x ∈ C \ B. Then, as
in the base case, z cannot be marginal in {x , y , z}. So, {y , z} ⊆ B ∩ C as claimed.

Continuing in the same vein on the sub-issues B and C , it follows that y and z always appear in the same
sub-issues (up to the splitting of {a∗, y , z}). Now, construct the agenda SvZ∪a∗ . By the last observation, y

and z appear in exactly the same subgames of SvZ∪a∗|Z (i.e. after a∗ is deleted). By assumption, v(P,Z ) = y

for some profile P where y is not the Condorcet winner in Z . Since SvZ implements v on Z by Theorem 1,
v(P,Z ) = UNE [SvZ ;P] = y . To show a contradiction, consider the related profile Pσ that permutes z and y in
every voter’s preference. From the symmetry of SvZ , v(Pσ,Z ) = UNE [SvZ ;Pσ] = z . But, this contradicts the
assumption that z is marginal in Z and establishes that �v is asymmetric.

Claim 16 If v satisfies WM, %v is a weak order whose indifference classes contain one or two alternatives.

Proof. Since %v is complete by Claim 15, showing transitivity proves %v is a weak order. Fix x %v y %v z . By
way of contradiction, suppose z %v x . By WM, some alternative is marginal in A = {x , y , z}. By definition of %v ,
it then follows that A has three marginal alternatives. But, this contradicts Claim 13. This rules out the possibility
that z %v x . Since %v is complete by Claim 15, it follows that x �v z , which shows that the indifference classes
of %v may contain at most two alternatives.

Proof of Lemma 1. Claim 16 establishes (i). To establish (ii), fix an issue A. By WM, some x ∈ A must
be marginal. Let z ∈ min%v

A and y ≡ min%v
A \ z . If x 6= y , z , one obtains a contradiction along the lines of

Claim 16. So, suppose x = y . Since %v is complete by Claim 15, there are two possibilities. If x %v z , then z is
marginal as well. If z �v x , then x may be the only marginal alternative.

Corollary 3 If v satisfies WM, then:

(i) y �v z if and only if there exists an x ∈ X such that v(Pxyz , {x , y , z}) = y ; and,

(ii) y ∼v z if and only if


v(Pxyz , {x , y , z}) = z and v(Pxzy , {x , y , z}) = y

or

v(Pxyz , {x , y , z}) = x and v(Pxzy , {x , y , z}) = x

 for all x ∈ X .

Proof. (i) (⇐) From the six possible splittings of {x , y , z}, v(Pxyz , {x , y , z}) = y implies v(Pxzy , {x , y , z}) ∈
{x , y}. So, y �v z . (⇒) By way of contradiction, suppose v(Pxyz , {x , y , z}) 6= y for all x ∈ X . Since y �v z ,
asymmetry implies v(Pxyz , {x , y , z}) 6= z for all x ∈ X . So, v(Pxyz , {x , y , z}) = x for all x ∈ X . By the argument
in (⇐), v(Pxzy , {x , y , z}) ∈ {x , z} for all x ∈ X . Since y �v z , asymmetry implies v(Pxzy , {x , y , z}) = x

for all x ∈ X . Now, fix an issue A s.t |A| ≥ 3 with splitting (B,C ). First, observe that y , z ∈ B ∩ C or
y , z ∈ C \ B. Otherwise, y ∈ C \ B and z ∈ B without loss of generality. If z ∈ B \ C , Claim 9 shows that
v(Pxyz , {x , y , z}), v(Pxzy , {x , y , z}) 6= x for any x ∈ A. If z ∈ B∩C , there is a similar contradiction for x ∈ B \C .
Since y , z ∈ B ∩ C or y , z ∈ C \ B for the splitting (B,C ) of any issue A, y and z appear in the same subgames
of SvX . Since y �v z , a contradiction obtains by the argument in Claim 15. (ii) Fix any x ∈ X . Given the six
possible splittings of {x , y , z}, the result follows from (i) and the fact that %v is a weak order (by Claim 15).

(ii) Proof of Lemma 2

Claim 17 If v satisfies WM and (B,C ) is the unique splitting of A, then |C \ B| ≥ 2 implies |B \ C | = 1.
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Proof. By way of contradiction, suppose |C \B|, |B \ C | ≥ 2. Fix any b, b′ ∈ B \ C and c , c ′ ∈ C \B. By Claim
9, ({b, b′}, {c , c ′}) is the unique splitting of A′ = {b, b′, c , c ′}. For all a ∈ A′, it follows that v(P(a),A′) = a for
some profile P(a) where a is not the Condorcet winner, which contradicts WM.

Using the definitions in section (b) above:

Claim 18 If v satisfies WM and A = {a1, ..., aK} is labeled according to �∗v for K ≥ 2, then:

(a1 ∪ AK
j ,A

K
2 ) splits A for some j s.t. j ∈ {3, ...,K + 1}.

Proof. By Claim 14(i), there are two possibilities for the unique splitting (B,C ) of A: (i) either (B,C ) = (b,A\b)
with b 6= aK ; or, (ii) aK ∈ B ∩ C . In either case, I show that (B,C ) has the form required.

(i) In this case, it suffices to show b = a1. By way of contradiction, suppose b = ak for some k 6= 1,K . Then,
v(PaK aka1 , {a1, ak , aK}) = ak by Claim 9 so that ak �v a1 by Lemma 3. Since a1 %v ak by assumption, ak �v a1

contradicts the fact that %v is a weak order (by Claim 15). So, b = a1 as required.

(ii) By Claim 17, there are two possibilities: (1) (B,C ) = (A \ c ,A \ b); and, (2) (B,C ) = (b ∪ B ′,A \ b)
for B ′ ⊂ A \ b and |A \ B ′| ≥ 3. (1) It suffices to show b = a1 and c = a2. If a1 6= b, c , then the outcomes on
{a1, b, c} lead to the contradictions b, c �v a1 following the same kind of reasoning as in case (i). So, b = a1

without loss of generality. If a2 6= c , then the outcomes on {a1, a2, c} lead to the contradiction c �v a2. So,
c = a2. (2) It suffices to show: (a) b = a1; (b) a2 /∈ B ′; and, (c) ak ∈ B ′ implies ak+1 ∈ B ′. (a) By the same
reasoning as (1), a1 /∈ B ∩ C = B ′. If a1 6= b, then {a1, b, c} leads to the contradiction b �v a1 for c /∈ b ∪ B ′.
So, b = a1. (b) If a2 ∈ B ′, then {a1, a2, c} leads to the contradiction c �v a2 for c /∈ a1 ∪ B ′ given (a). So,
a2 /∈ B ′. (c) If ak ∈ B ′ and ak+1 /∈ B ′, then {a1, ak , ak+1} leads to the contradiction ak+1 �v ak given (a).

Definition 11 Given a decision rule v with revealed priority %v , x is revealed to amend b �v x if:

v(Pxbc , {b, c , x}) = c for all c ∈ X such that b %v c �v x .

Define αv as follows: b ∈ αv (x) if x is revealed to amend b and x is not revealed to amend any a �v b.

Lemma 2 If v satisfies WM, then αv is an amendment rule.

Proof. Definition 11 and Corollary 3 ensure the following: (i) x ∈ αv (z)⇒ x �v z ; and, (iii) [x ∼v y �v z and no
z ′ ∈ X s.t. x ∼v y �v z ′ �v z ]⇒ [x ∈ αv (z) or w �v x for all w ∈ αv (z)]. I show: (ii) x ∼v y ⇒ αv (x) = αv (y).

(ii) It suffices to show that y is revealed to amend b if x is revealed to amend b. By way of contradiction,
suppose y is not revealed to amend b. By Definition 11, there exists some c s.t. b %v c �v y ∼v x and, moreover,
v(Pybc , {b, c , y}) 6= c for all such c . By Corollary 3, v(Pybc , {b, c , y}) 6= y . Otherwise, y �v b which contradicts
the fact that %v is a weak order (by Claim 15). So, v(Pybc , {b, c , y}) = b which, by Corollary 3, implies b �v c .
Finally, Definition 11(i) implies v(Pxbc , {b, c , x}) = c for all c s.t. b %v c �v x (since x is revealed to amend b).
To summarize, v(Pxbc , {b, c , x}) = c and v(Pybc , {b, c , y}) = b for some c s.t. b �v c �v y ∼v x .

By Claim 18, the splitting of {b, c , x , y} is (b∪B ′, {c , x , y}) for B ′ ⊆ {x , y}. By Claim 9, v(Pxbc , {b, c , x}) = c

implies x ∈ B ′ and v(Pybc , {b, c , y}) = b implies y /∈ B ′. So, the splitting of {b, c , x , y} is ({b, x}, {c , x , y}). By
Claim 9, this implies v(Pbyx , {b, x , y}) = y so that y �v x by Corollary 3, which is a contradiction.

(iii) Proof of Theorem 2
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Proof of Theorem 2. (using the assumptions about v in the statement of the Theorem) (⇐) The
discussion in the text following Theorem 1 shows that v satisfies ILA (i.e. any decision rule implemented by an
agenda satisfies ILA). In turn, Proposition 1 and Claim 5 show that v satisfies WM and IS.

(⇒) This follows from the fact that the simple agenda SvX from Theorem 1 coincides with the priority agenda
Pv
X defined by (%v ,αv ). To establish this fact, it suffices to show that the successors at the root node of Pv

X and
SvX coincide. Extending this reasoning by induction, it follows that SvX coincides with Pv

X .
Consider the root node X = {x1, ..., xm} of SvX as labeled according to �∗v . By Claim 18, the successors of X

are x1 ∪ Xm
j and Xm

2 for some j s.t. j ∈ {3, ...,m + 1}. There are two cases: (i) Xm
j is empty (i.e. j = m + 1);

or, (i) Xm
j is non-empty (i.e. j ≤ m). The fact that the successors of X on SvX coincide with the successors on

Pv
X follows by Claim 1 in both cases: (i) Claim 9 applied to (x1,X

m
2 ) gives v(Pxjx1c , {x1, xj , x}) = x1 for all xj , c

s.t. x1 %v c �v xj . So, no xj s.t. x2 �v xj is revealed to amend x1 (by Definition 11). (ii) Claim 9 applied to
(x1 ∪ Xm

j ,Xm
2 ) gives v(Pxjxkx1 , {x1, xk , xj}) = x1 and v(Pxjx1xk , {x1, xk , xj}) = xk for xk ∈ X j−1

2 . This shows that
xk �v xj (by Corollary 3) and xj is revealed to amend x1. To see that no xk s.t. x2 �v xk �v xj is revealed to
amend x1, it is enough to observe that v(Pxkx1x2 , {x1, x2, xk}) = x1 for all xk ∈ X j−1

3 .

(e) Proof of Proposition 4

Claim 19 If every issue A s.t. |A| 6= 1 has two marginal alternatives, then SvX is a Euro-Latin agenda.

Proof. Consider the splitting (B1,X1) of X and let a∗ denote a marginal alternative in X . By Claim 14(i), there
are two possibilities: (1) a∗ ∈ B1 ∩ X1 with b1 ∈ B1 \ X1 and x1 ∈ X1 \ B1; and, (2) (B1,X1) = (b1,X \ b1). For
(1), Claim 9 implies that {a∗, b1, x1} has one marginal alternative a∗, a contradiction. So, the splitting must be
(2). Continuing in the same vein on X1 establishes that SvX is a Euro-Latin agenda.

Claim 20 If every issue A s.t. |A| 6= 2 has a unique marginal alternative, then SvX is an Anglo-American agenda.

Proof. Consider the splitting (B,C ) of X . If |C \B| ≥ 1 (with b ∈ B \C and c , c ′ ∈ C \B), then Claim 9 implies
that {b, c , c ′} has two marginal alternatives c and c ′, a contradiction. This shows that |C \B| = |B \ C | = 1. In
other words, (B,C ) = (X \ c1,X \ b1) for some b1 ∈ B and c1 ∈ C . Continuing in the same vein on X \ c1 and
X \ b1 establishes that SvX is an Anglo-American agenda.

Proof of Proposition 4. (using the assumptions about v in the statement of the Theorem) Regarding
the first part of the claim: the Euro-Latin procedure has two marginal alternatives for all A s.t. |A| 6= 1; and, the
Anglo-American procedure has a unique marginal alternative for all A s.t. |A| 6= 2.

Regarding the second part of the claim, suppose |X | ≥ 3. (If |X | = 2, the claim is trivial.) By Claim 13, there are
two cases: (i) X has two marginal alternatives a∗1 and a∗2 ; or, (ii) X has a unique marginal alternative.

(i) By Theorem 1 and Claim 19, it suffices to show that all A s.t. |A| 6= 1 have two marginal alternatives. By
Claim 12, a∗1 and a∗2 are marginal in X \ x for all x 6= a∗1 , a

∗
2 . By NP, every X \ x has two marginal alternatives.

Continuing in the same vein, the result follows by a simple inductive argument.

(ii) By Theorem 1 and Claim 20, it suffices to show that all A s.t. |A| 6= 2 have one marginal alternative. By way
of contradiction, suppose |X | ≥ 4 and some X \ x has two marginal alternatives. Then, by the argument in case
(i), every A 6= X s.t. |A| 6= 1 has two marginal alternatives. To establish the contradiction, consider the splitting
(B1,X1) of X . By the argument in Claim 19, (B1,X1) = (b1,X \ b1). Since SvX1

is Euro-Latin by Claim 19, this
shows that SvX is as well. It follows that X has two marginal alternatives, which is a contradiction.
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(f) Proof of Corollary 1

For part (i), Apesteguia et al. [2014] show CP is necessary. Sufficiency follows from Claim 19 and:

Claim 21 If v satisfies CP, then every issue A such that |A| 6= 1 has two marginal alternatives.

For part (ii), Apesteguia et al. [2014] show CA is necessary. Sufficiency follows from Claim 20 and:

Claim 22 If v satisfies CP, then every issue A such that |A| 6= 2 has a unique marginal alternative. What is more,
this alternative coincides with the unique anti-prioritarian alternative in A when |A| ≥ 3.

Since the proofs of these claims are quite similar, I point out only where the differences arise:

Proof. The proof of Claim 21 (22) is by induction on |X |. For the base cases |X | = 2, 3, the claim follows from
ILA and CP (CA). For the induction step, note that all A ⊂ X satisfy the claim by the induction hypothesis. To
see that X also satisfies the claim, consider the splitting (B,C ) of X . There are two possibilities for the prioritarian
(anti-prioritarian) alternative p in X : (i) p ∈ B ∩ C ; and, (ii) p ∈ B \ C .

For Claim 21: Consider b ∈ B \ C and c ∈ C \ B. Using Claim 9, (i) leads to the contradiction that p is not
prioritarian in {b, c , p} (let alone X ). So, (ii) must hold. Using the same kind of reasoning, it can be shown that
B = {p}. (The idea is to consider an issue {b′, c , p} s.t. b′ ∈ B, c ∈ C \ B. While there are several cases,
a contradiction obtains for each.) By the induction hypothesis, X \ p has two marginal alternatives. Since the
splitting of X is ({p},X \ p), IS implies that these alternatives are marginal in X as well.

For Claim 22: Consider b ∈ B and c ∈ C \ B. Using Claim 9, (ii) leads to the contradiction that p is not
anti-prioritarian in {b, c , p} (let alone X ). So, (i) must hold. By the induction hypothesis, p is marginal in B and
C (since it is anti-prioritarian for these issues). By IS, it then follows that p is marginal in X . Finally, by Claim 12
and the induction hypothesis, there can be no other marginal alternative in X .

(g) Proof of Proposition 5

For a given decision problem (P,A), a sequence 〈a〉 ≡ a1, ..., an is said to be universal for a ∈ A if:

(1) every alternative in A appears exactly once in the sequence 〈a〉;
(2) 〈a〉 contains a MA

P -transitive subsequence 〈b〉 ≡ b1, ..., bm such that a = b1; and,
(3) every alternative ai ∈ 〈a〉 \ 〈b〉 satisfies the following two conditions:

(i) ai appears before some alternative b ∈ 〈b〉 in the sequence 〈a〉; and,
(ii) bjMA

P ai for the first bj ∈ 〈b〉 after ai in the sequence 〈a〉.

Two observations about universal sequences will be critical for the result:

Claim 23 A sequence 〈a〉 in A is universal for at most one alternative in A.

Proof. By way of contradiction, suppose 〈a〉 = a1, ..., an is universal for distinct alternatives ai and aj . Without
loss of generality, suppose i < j . Let 〈bi 〉 and 〈bj〉 denote the transitive subsequences associated with ai and aj ,
respectively. By condition (3.i), it follows that bi1 = ai and bj1 = aj . So, ai /∈ 〈bj〉. Hence, ajMA

P ai by condition
(3.ii). Since 〈bi 〉 is a transitive sequence with ai maximal by condition (2), ajMA

P ai implies aj /∈ 〈bi 〉.
By condition (3.ii), aj /∈ 〈bi 〉 implies b̃iMA

P aj for some b̃i ∈ 〈bi 〉 such that b̃i = ak(i) and k(i) > j . Since 〈bj〉 is
a transitive subsequence by condition (2), b̃iMA

P aj implies b̃i /∈ 〈bj〉. By condition (3.ii), b̃i /∈ 〈bj〉 implies b̃jMA
P b̃

i

for some b̃j ∈ 〈bj〉 such that b̃j = ak(j) and k(j) > k(i). Since 〈bi 〉 is a transitive subsequence by condition (2),
b̃jMA

P b̃
i implies b̃j /∈ 〈bi 〉. Continuing in this vein leads to the contradiction that 〈a〉 does not terminate.
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Claim 24 There exists a universal sequence for a on (P,A) iff a ∈ BA(MA
P ).

Proof. (⇒) Fix some b ∈ A \ BA(MA
P ). By way of contradiction, suppose that 〈a〉 is universal for b on (P,A).

Consider the transitive subsequence 〈b〉 = b1, ..., bm with b1 = b. Since b ∈ A \ BA(MA
P ), 〈b〉 is not a maximal

transitive sequence. In other words, there exists some a ∈ A \ 〈b〉 such that a, b1, ..., bm is a transitive sequence.
So, there exists no bj ∈ 〈b〉 such that bjMA

P a. Since a must appear before some bj ∈ 〈b〉 by condition (3.i), this
contradicts condition (3.ii). In particular, no bj ∈ 〈b〉 may comes after a in 〈a〉.

(⇐) Since a ∈ BA(MA
P ), there exists a maximal transitive sequence 〈b〉 in A with b1 = a. For every a ∈ A\〈b〉,

there exists some b ∈ 〈b〉 such that bMA
P a. Otherwise, a, b1, ..., bm is a transitive sequence, which contradicts the

maximality of 〈b〉. Let bi(a) denote the last alternative in 〈b〉 such that bi(a)M
A
P a. Extend 〈b〉 into a sequence

〈a〉 on A by inserting each a ∈ A \ 〈b〉 between the alternatives bi(a)−1 and bi(a). By construction, 〈a〉 satisfies
conditions (1)-(3). So, 〈a〉 is a universal sequence for a on (P,A).

Given a priority agenda PA on A defined by (%,α), define a strict ordering �∗ from %. Let 〈a〉∗ = a∗1 , ..., a
∗
n

denote the sequence defined by taking the alternatives in A in ascending order according to �∗. Given another
sequence 〈a〉 = a1, ..., an of the alternatives in A, define the permutation σ∗〈a〉 : A → A by σ∗〈a〉(ai ) = a∗i . To

simplify the notation, let P〈a〉A ≡ Pσ∗〈a〉
A denote the agenda where the i th alternative in the sequence 〈a〉 occupies

the i th highest priority position in the agenda.

Claim 25 Given a priority agenda PA on A and a universal sequence 〈a〉 for a on (P,A), UNE [P〈a〉A ,P] = a.

Proof. Since 〈a〉 in A is universal for at most one alternative in A by Claim 23, the claim is well-defined.
The proof is by strong induction on |A|. The base case |A| = 2 is trivial. So, suppose the claim holds for

|A| = n. For |A| = n + 1, fix a universal sequence 〈a〉 for a on (P,A) with transitive subsequence 〈b〉 satisfying
conditions (2)-(3). Given Claim 1, let C ≡ a1 ∪ An+1

k and C ′ ≡ An+1
2 for 2 < k < n + 2 denote the successors of

the root node in P〈a〉A ; and, let 〈c〉 and 〈c ′〉 denote the subsequences associated with C and C ′.

There are three cases to consider: (i) a ∈ C \ C ′; (ii) a ∈ C ∩ C ′; and, (iii) a ∈ C ′ \ C .
(i) Since |C \C ′| = 1, it follows that a = a1. Then, it is easy to check that 〈c〉 = a, ak , ..., an+1 is a universal

sequence for a on (P,C ). Since the last alternative in 〈a〉 must be in 〈b〉 by condition (3.i), it is also easy to verify
that 〈c ′〉 = a2, ..., b2, ..., an+1 is a universal sequence for b2 on (P,C ′). Since P〈a〉A (C ) and P〈a〉A (C ′) are both
priority agendas, UNE [P〈a〉A (C );P] = a and UNE [P〈a〉A (C );P] = b2 by the induction hypothesis. Since aMA

Pb2 by
construction, “backward induction” implies UNE [P〈a〉A ;P] = a.

(ii) Since |C \C ′| = 1, it follows that a 6= a1. So, a ∈ C implies a = aj for some j ≥ k . As in case (i), it is easy
to check that 〈c〉 = a1, ak , ..., a, ..., an+1 is a universal sequence for a on (P,C ). Likewise, it is easy to verify that
〈c ′〉 = a2, ..., a, ..., an+1 is a universal sequence for a on (P,C ′). So, UNE [P〈a〉A (C );P] = a = UNE [P〈a〉A (C ′);P]

by the induction hypothesis. Using “backward induction”, it then follows that UNE [P〈a〉A ;P] = a.
(iii) Since |C\C ′| = 1, a 6= a1. So, a ∈ C implies a = aj for some j ≥ k . As in case (ii), 〈c ′〉 = a2, ..., a, ..., an+1

is a universal sequence for a on (P,C ′). So, UNE [P〈a〉A (C ′);P] = a by the induction hypothesis. By way of
contradiction, suppose UNE [P〈a〉A ;P] 6= a. Since C \ C ′ = {c} and UNE [P〈a〉A (C ′);P] = a, Claim 6 implies
UNE [P〈a〉A ;P] = c . Since c /∈ C ′, it follows that UNE [P〈a〉A (C );P] = c . Given UNE [P〈a〉A ;P] = c , “backward
induction” implies cMA

P a, which contradicts condition (3.ii).

Proof of Proposition 5. (i) This is a consequence of McKelvey and Niemi’s [1978] observation that no agenda
ever selects an alternative outside of the Top Cycle. (ii) Fix a priority agenda PX on X and consider the deleted
agenda PA on A. Given an alternative a ∈ BA(MA

P ), Claim 24 ensures that there exists a universal sequence 〈a〉
for a on (P,A). Then, Claim 25 establishes that a is selected from P〈a〉A .
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IX. Appendix – Independence of the Axioms

{x1, x2, x3, x4}

{x1, x2}

x1 x2

{x3, x4}

x3 x4

{x1, x2, x3}

x1 {x1, x2, x3}

x2 {x1, x3}

x1 x3

Figure 11: Agenda T1 (left) and Agenda T2 (right)

It is easy to see that the decision rule v1 induced by T1 satisfies IS and ILA. To see that it violates WM, note that
v1(P1, {x1, x2, x3, x4}) = x1 for the profile P1 where: x1 is majority preferred to x2 and x3 but not x4; and, x3 is
majority preferred to x4. So, x1 is selected without being the Condorcet winner. Since the other alternatives are
symmetrically placed, there are also profiles where they are selected without being the Condorcet winner.

It is easy to see that the decision rule v2 induced by T2 satisfies ILA. To see that it satisfies WM, note that
v(P, {x1, x2, x3}) = x3 only if x3 is the Condorcet winner on {x1, x2, x3}. To see that it violates IS, note that
v2(P123, {x1, x2, x3}) = x1 and v2(P132, {x1, x2, x3}) = x2. As such, the more preferred between x1 and x2 is
selected for both Condorcet triples. By Table 1, this cannot be achieved with any simple agenda.

Finally, consider the decision rule v3 on {x1, x2, x3} that selects: the majority preferred alternative between
x1 and x2 when both are available; xi on {xi , x3}; and, xi on {xi}. Since ({x1, x3}, {x2, x3}) splits {x1, x2, x3}, v3
satisfies IS. Since x3 is trivially marginal, v3 also satisfies WM. To see that it violates ILA, consider a profile P3

where x3 is the Condorcet winner on {x1, x2, x3}. If v3 satisfies ILA, then v3(P3, {x1, x2, x3}) = ... = x3. But, this
contradicts the assumption that v3(P3, {x1, x2, x3}) = v3(P3, {x1, x2}) 6= x3.
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